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Abstract
We give new algorithms for learning halfspaces in the challengingmalicious noisemodel, where
an adversary may corrupt both the labels and the underlying distribution of examples. Our algo-
rithms can tolerate malicious noise rates exponentially larger than previous work in terms of the
dependence on the dimensionn, and succeed for the fairly broad class of all isotropic log-concave
distributions.

We give poly(n,1/ε)-time algorithms for solving the following problems to accuracyε:

• Learning origin-centered halfspaces inRn with respect to the uniform
distribution on the unit ball with malicious noise rateη = Ω(ε2/ log(n/ε)).
(The best previous result wasΩ(ε/(nlog(n/ε))1/4).)

• Learning origin-centered halfspaces with respect to any isotropic log-
concave distribution onRn with malicious noise rateη = Ω(ε3/ log2(n/ε)).
This is the first efficient algorithm for learning under isotropic log-concave
distributions in the presence of malicious noise.

We also give a poly(n,1/ε)-time algorithm for learning origin-centered halfspaces under any
isotropic log-concave distribution onRn in the presence ofadversarial label noiseat rateη =
Ω(ε3/ log(1/ε)). In the adversarial label noise setting (or agnostic model), labels can be noisy,
but not example points themselves. Previous results could handleη = Ω(ε) but had running time
exponential in an unspecified function of 1/ε.

Our analysis crucially exploits both concentration and anti-concentration properties of isotropic
log-concave distributions. Our algorithms combine an iterative outlier removal procedure using
Principal Component Analysis together with “smooth” boosting.

Keywords: PAC learning, noise tolerance, malicious noise, agnostic learning, label noise, half-
space learning, linear classifiers
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1. Introduction

A halfspaceis a Boolean-valued function of the formf = sign(∑n
i=1wixi −θ). Learning halfspaces

in the presence of noisy data is a fundamental problem in machine learning. In addition to its
practical relevance, the problem has connections to many well-studied topics such as kernel meth-
ods (Shawe-Taylor and Cristianini, 2000), cryptographic hardness of learning (Klivans and Sher-
stov, 2006), hardness of approximation (Feldman et al., 2006; Guruswami and Raghavendra, 2006),
learning Boolean circuits (Blum et al., 1997), and additive/multiplicative update learning algorithms
(Littlestone, 1991; Freund and Schapire, 1999).

Learning an unknown halfspace from correctly labeled (non-noisy) examples is one of the best-
understood problems in learning theory, with work dating back to the famous Perceptron algorithm
of the 1950s (Rosenblatt, 1958) and a range of efficient algorithms known for different settings
(Novikoff, 1962; Littlestone, 1987; Blumer et al., 1989; Maass and Turan, 1994). Much less is
known, however, about the more difficult problem of learning halfspaces in the presence of noise.

Important progress was made by Blum et al. (1997) who gave a polynomial-time algorithm for
learning a halfspace underclassification noise. In this model each label is flipped independently
with some fixed probability; the noise does not affect the actual example points themselves, which
are generated according to an arbitrary probability distribution overRn.

In the current paper we consider a much more challengingmalicious noisemodel. In this model,
introduced by Valiant (1985) (see also Kearns and Li 1993), there is an unknown target functionf
and distributionD over examples. Each time the learner receives an example, independently with
probability 1−η it is drawn fromD and labeled correctly according tof , but with probabilityη it
is an arbitrary pair(x,y) which may be generated by an omniscient adversary. The parameterη is
known as the “noise rate.”

Malicious noise is a notoriously difficult model with few positive results. It was already shown
by Kearns and Li (1993) that for essentially all concept classes, it is information-theoretically im-
possible to learn to accuracy 1− ε if the noise rateη is greater thanε/(1+ ε). Indeed, known
algorithms for learning halfspaces (Servedio, 2003; Kalai et al., 2008)or even simpler target func-
tions (Mansour and Parnas, 1998) with malicious noise typically make strong assumptions about
the underlying distributionD, and can learn to accuracy 1− ε only for noise ratesη much smaller
thanε. We describe the most closely related work that we know of in Section 1.2.

In this paper we consider learning under the uniform distribution on the unitball in Rn, and
more generally under any isotropic log-concave distribution. The latter is a fairly broad class of dis-
tributions that includes spherical Gaussians and uniform distributions over a wide range of convex
sets. Our algorithms can learn from malicious noise rates that are quite high, as we now describe.

1.1 Main Results

Our first result is an algorithm for learning halfspaces in the malicious noisemodel with respect to
the uniform distribution on then-dimensional unit ball:

Theorem 1 There is apoly(n,1/ε)-time algorithm that learns origin-centered halfspaces to accu-
racy 1− ε with respect to the uniform distribution on the unit ball in n dimensions in the presence
of malicious noise at rateη = Ω(ε2/ log(n/ε)).

The condition onη is expressed usingΩ and notO because we are showing that a weak upper
bound on the noise rate suffices to achieve accuracy 1− ε.
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Via a more sophisticated algorithm, we can learn in the presence of malicious noise under any
isotropic log-concave distribution:

Theorem 2 There is apoly(n,1/ε)-time algorithm that learns origin-centered halfspaces to accu-
racy1−ε with respect to any isotropic log-concave distribution overRn and can tolerate malicious
noise at rateη = Ω(ε3/ log2(n/ε)).

We are not aware of any previous polynomial-time algorithms for learning under isotropic log-
concave distributions in the presence of malicious noise.

Finally, we also consider a related noise model known asadversarial label noise. In this model
there is a fixed probability distributionP overRn×{−1,1} (i.e., over labeled examples) for which
a 1−η fraction of draws are labeled according to an unknown halfspace. Themarginal distribution
overRn is assumed to be isotropic log-concave; so the idea is that an “adversary”chooses anη frac-
tion of examples to mislabel, but unlike the malicious noise model she cannot change the (isotropic
log-concave) distribution of the actual example points inRn. Learning with adversarial label noise
is clearly harder than with independent misclassification noise—the ability to choose which labels
to corrupt allows the adversary to coordinate their effects to an extent.

For the adversarial label noise model we prove:

Theorem 3 There is apoly(n,1/ε)-time algorithm that learns origin-centered halfspaces to accu-
racy1−ε with respect to any isotropic log-concave distribution overRn and can tolerate adversar-
ial label noise at rateη = Ω(ε3/ log(1/ε)).

1.2 Previous Work

Our work builds on a number of lines of research.

1.2.1 MALICIOUS NOISE

General-purpose tools developed by Kearns and Li (1993) (see alsoKearns et al. 1994) directly
imply that halfspaces can be learned for any distribution over the domain in randomized poly(n,1/ε)
time with malicious noise at a rateΩ(ε/n); the algorithm repeatedly picks a random subsample of
the training data, hoping to miss all the noisy examples. Kannan (see Arora etal. 1993) devised
a deterministic algorithm with aΩ(ε/n) bound that repeatedly exploits Helly’s Theorem to find
a group ofn+ 1 examples that includes a noisy example, then removes the group. Kalai et al.
(2008) showed that the poly(n,1/ε)-time averaging algorithm (Servedio, 2001) tolerates noise at a
rateΩ(ε/

√
n) when the distribution is uniform. They also described an improvement toΩ̃(ε/n1/4)

based on the observation that uniform examples will tend to be well-separated, so that pairs of
examples that are too close to one another can be removed.

1.2.2 ADVERSARIAL LABEL NOISE

Kalai, et al. showed that if the distribution over the instances is uniform overthe unit ball, the
averaging algorithm tolerates adversarial label noise at a rateΩ(ε/

√
log(1/ε)) in poly(n,1/ε) time.

(In that paper, learning in the presence of adversarial label noise was called “agnostic learning”.)
They also described an algorithm that fits low-degree polynomials that tolerates noise at a rate within

an additiveε of the accuracy, but in poly
(

n1/ε4
)

time; for log-concave distributions, their algorithm
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took poly
(
nd(1/ε)) time, for an unspecified functiond. The latter algorithm does not require that the

distribution is isotropic, as ours does.

1.2.3 ROBUST PCA

Independently of this work, Xu et al. (2009) designed and analyzed analgorithm that performs prin-
cipal component analysis when some of the examples are corrupted arbitrarily, as in the malicious
noise model studied here. Also, the thesis of Brubaker (2009) presentsa “Robust PCA” algorithm
which is a PCA variant aimed at ameliorating the effects of noisy examples.

1.3 Techniques

Here is a high-level description of the main techniques in our analysis.

1.3.1 OUTLIER REMOVAL

Consider first the simplest problem of learning an origin-centered halfspace with respect to the uni-
form distribution on then-dimensional ball. A natural idea is to use a simple “averaging” algorithm
that takes the vector average of the positive examples it receives and uses this as the normal vector
of its hypothesis halfspace. Servedio (2001) analyzed this algorithm forthe random classification
noise model, and Kalai et al. (2008) extended the analysis to the adversarial label noise model.

Intuitively the “averaging” algorithm can only tolerate low malicious noise ratesbecause the
adversary can generate noisy examples which “pull” the average vectorfar from its true location.
Our main insight is that the adversary does this most effectively when the noisy examples are coor-
dinated to pull in roughly the same direction. We use a form of outlier detection based on Principal
Component Analysis to detect such coordination. This is done by computing the directionw of
maximal variance of the data set; if the variance in directionw is suspiciously large, we remove
from the sample all pointsx for which (w · x)2 is large. Our analysis shows that this causes many
noisy examples, and only a few non-noisy examples, to be removed.

We repeat this process until the variance in every direction is not too large. (This cannot take too
many stages since many noisy examples are removed in each stage.) While some noisy examples
may remain, we show that their scattered effects cannot hurt the algorithm much.

Thus, in a nutshell, our overall algorithm for the uniform distribution is to firstdo outlier re-
moval1 by an iterated PCA-type procedure, and then simply run the averaging algorithm on the
remaining “cleaned-up” data set.

1.3.2 EXTENDING TO LOG-CONCAVE DISTRIBUTIONS VIA SMOOTH BOOSTING

We are able to show that the iterative outlier removal procedure describedabove is useful for
isotropic log-concave distributions as well as the uniform distribution: if examples are removed
in a given stage, then many of the removed examples are noisy and only a feware non-noisy (the
analysis here uses concentration bounds for isotropic log-concave distributions). However, even if
there were no noise in the data, the average of the positive examples underan isotropic log-concave

1. We note briefly that the sophisticated outlier removal techniques of Blum et al. (1997) and Dunagan and Vempala
(2004) do not seem to be useful in our setting; those works deal with a strong notion of outliers, which is such that
no point on the unit ball can be an outlier if a significant fraction of points are uniformly distributed on the unit ball.

2718



LEARNING HALFSPACES WITHMALICIOUS NOISE

distribution need not give a high-accuracy hypothesis. Thus the averaging algorithm alone will not
suffice after outlier removal.

To get around this, we show that after outlier removal the average of the positive examples gives
a (real-valued)weakhypothesis that has some nontrivial predictive accuracy. (Interestingly, the
proof of this relies heavily onanti-concentration properties of isotropic log-concave distributions!)
A natural approach is then to use a boosting algorithm to convert this weak learner into a strong
learner. This is not entirely straightforward because boosting “skews”the distribution of examples;
this has the undesirable effects of both increasing the effective malicious noise rate, and causing
the distribution to no longer be isotropic log-concave. However, by using a“smooth” boosting
algorithm (Servedio, 2003) that skews the distribution as little as possible, we are able to control
these undesirable effects and make the analysis go through. (The extra factor ofε in the bound of
Theorem 2 compared with Theorem 1 comes from the fact that the boosting algorithm constructs
“1/ε-skewed” distributions.)

We note that our approach of using smooth boosting is reminiscent of earlierwork (Servedio,
2002, 2003), but the current algorithm goes well beyond that. Servedio (2002) did not consider a
noisy scenario, and Servedio (2003) only considered the averaging algorithm without any outlier
removal as the weak learner (and thus could only handle quite low rates of malicious noise in our
isotropic log-concave setting).

1.3.3 TOLERATING ADVERSARIAL LABEL NOISE

Finally, our results for learning under isotropic log-concave distributionswith adversarial label noise
are obtained using a similar approach. The algorithm here is in fact simpler than the malicious
noise algorithm: since the adversarial label noise model does not allow the adversary to alter the
distribution of the examples inRn, we can dispense with the outlier removal and simply use smooth
boosting with the averaging algorithm as the weak learner. (This is why we get a slightly better
quantitative bound in Theorem 3 than Theorem 2).

1.3.4 ORGANIZATION

For completeness we review the precise definitions of isotropic log-concave distributions and the
various learning models in Section 2. We present the simpler and more easily understood uniform
distribution analysis in Section 3. We extend the algorithm and analysis to isotropic log-concave
distributions in Section 4. Learning with adversarial label noise is treated in Section 5. We conclude
in Section 6.

2. Definitions and Preliminaries

In this section, we provide some definitions and lemmas that will be used throughout the paper.

2.1 Learning with Malicious Noise

Given a probability distributionD overRn, and a target functionf : Rn → {−1,1}, we define the
oracle EXη( f ,D) as follows:

• with probability 1−η the oracle drawsx according toD, and outputs(x, f (x)), and
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• with probability η the oracle outputs an arbitrary(x,y) pair. This “noisy” example can be
thought of as being generated adversarially and can depend on the stateof the learning algo-
rithm and previous draws from the oracle.

Given a data set drawn from EXη( f ,D), we often refer to the examples(x, f (x)) (that came
fromD) as “clean” examples and the remaining examples(x,y) as “dirty” examples.

For a setS of probability distributions and a setF of possible target functions, we say that
a learning algorithmA learnsF to accuracy 1− ε with respect toS in the presence of malicious
noise at a rateη if the following holds: for anyf ∈ F , andD ∈ S , given access to EXη( f ,D),
with probability at least 1/2, the output hypothesish generated byA satisfies Prx∼D [h(x) 6= f (x)]≤
ε. (The probability of success may be amplified arbitrarily close to 1 using standard techniques
(Haussler et al., 1991).)

Since scalingx by a positive constant does not affect its classification by a linear classifier,
drawing examples uniformly from the unit ball is equivalent to drawing them uniformly from the
surfaceS

n−1 of the unit sphere. When this is the distribution, we may also assume w.l.o.g. that
even noisy examples(x,y) havex ∈ S

n−1—this is simply because a learning algorithm can trivially
identify and ignore any noisy example(x,y) that has‖x‖ 6= 1.

2.2 Log-concave Distributions

A probability distribution overRn is said to belog-concaveif its density function is exp(−ψ(x)) for
a convex functionψ.

A probability distribution overRn is isotropic if the mean of the distribution is 0 and the covari-
ance matrix is the identity, that is,E[xix j ] = 1 for i = j and 0 otherwise.

Isotropic log-concave (henceforth abbreviated i.l.c.) distributions are a fairly broad class of
distributions. It is well known that any distribution induced by taking a uniform distribution over
an arbitrary convex set and applying a suitable linear transformation to makeit isotropic is then
isotropic and log-concave. For an excellent treatment on basic properties of log-concave distribu-
tions, see Lov́asz and Vempala (2007).

We will use the following facts:

Lemma 4 (Lovász and Vempala 2007)Let D be an isotropic log-concave distribution overRn

anda∈ S
n−1 any direction. Then forx drawn according toD, the distribution ofa·x is an isotropic

log-concave distribution overR.

Lemma 5 (Lovász and Vempala 2007)Any isotropic log-concave distributionD overRn has light
tails,

Pr
x∼D

[||x|| > β
√

n] ≤ e−β+1.

If n = 1, the density ofD is bounded:

Pr
x∼D

[x ∈ [a,b]] ≤ |b−a|.

3. The Uniform Distribution and Malicious Noise

In this section we prove Theorem 1. As described above, our algorithm first does outlier removal
using PCA and then applies the “averaging algorithm.”
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We may assume throughout that the noise rateη is smaller than some absolute constant, and
that the dimensionn is larger than some absolute constant.

3.1 The Algorithm: Removing Outliers and Averaging

Consider the following AlgorithmAmu:
Algorithm Amu:
1. Draw a sampleSof m= poly(n/ε) many examples from the malicious oracle.
2. Identify the directionw ∈ S

n−1 that maximizes

σ2
w

de f
= ∑

(x,y)∈S
(w ·x)2.

If σ2
w < 10mlogm

n then go to Step 4 otherwise go to Step 3.

3. Remove fromSevery example that has(w ·x)2 ≥ 10logm
n . Go to Step 2.

4. For the examplesSthat remain letv = 1
|S| ∑(x,y)∈Syx and output the linear classifierhv defined

by hv(x) = sgn(v ·x).

We first observe that Step 2 can be carried out in polynomial time:

Lemma 6 There is a polynomial-time algorithm that, given a finite collection S of points inRn,
outputsw ∈ S

n−1 that maximizes∑x∈S(w ·x)2.

Proof. By applying Lagrange multipliers, we can see that the optimalw is an eigenvector ofA =

∑x∈SxxT . Further, ifλ is the eigenvalue ofw, then∑x∈S(w · x)2 = wTAw = wT(λw) = λ. The
eigenvectorw with the largest eigenvalue can be found in polynomial time (see, e.g., Jolliffe 2002).

Before embarking on the analysis we establish a terminological convention. Much of our analy-
sis deals with high-probability statements over the draw of them-element sampleS; it is straightfor-
ward but quite cumbersome to explicitly keep track of all of the failure probabilities. Thus we write
“with high probability” (or “w.h.p.”) in various places below as a shorthandfor “with probability at
least 1−1/poly(n/ε).” The interested reader can easily verify that an appropriate poly(n/ε) choice
of m makes all the failure probabilities small enough so that the entire algorithm succeeds with
probability at least 1/2 as required.

3.2 Properties of the Clean Examples

In this subsection we establish properties of the clean examples that were sampled in Step 1 ofAmu.
The first says that no direction has much more variance than the expected variance of 1/n:

Lemma 7 W.h.p. over a random draw ofℓ clean examples Sclean, we have

max
a∈Sn−1

{
1
ℓ

∑
(x,y)∈Sclean

(a·x)2

}
≤ 1

n
+

√
O(n+ logℓ)

ℓ
.

Proof. The proof uses standard tools from VC theory and is in Appendix A.

The next lemma says that in fact no direction has too many clean examples lying far out in that
direction:
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Lemma 8 For any β > 0 and κ > 1, if Sclean is a random set ofℓ ≥ O(1)·n2β2eβ2n/2

(1+κ) ln(1+κ) clean examples
then w.h.p. we have

max
a∈Sn−1

1
ℓ
|{x ∈ Sclean: (a·x)2 > β2}| ≤ (1+κ)e−β2n/2.

Proof. In Appendix B.

3.3 What is Removed

In this section, we provide bounds on the number of clean and dirty examplesremoved in Step 3.
The first bound is a Corollary of Lemma 8.

Corollary 9 W.h.p. over the random draw of the m-element sample S, the number of clean examples
removed during any one execution of Step 3 in Amu is at most6nlogm.

Proof. Since the noise rateη is sufficiently small, w.h.p. the numberℓ of clean examples is at least

(say)m/2. We would like to apply Lemma 8 withκ = 5ℓ4nlogℓ andβ =
√

10logm
n , and indeed we

may do this because we have

O(1) ·n2β2eβ2n/2

(1+κ) ln(1+κ)
≤ O(1) ·n(logm)m5

(1+κ) ln(1+κ)
≤ O

(
m

logm

)
≤ m

2
≤ ℓ

for n sufficiently large. Since clean points are only removed if they have(a · x)2 > β2, Lemma 8
gives us that the number of clean points removed is at most

m(1+κ)e−β2n/2 ≤ 6m5nlog(ℓ)/m5 ≤ 6nlogm.

The counterpart to Corollary 9 is the following lemma. It tells us that if examples are removed in
Step 3, then there must be manydirty examples removed. It exploits the fact that Lemma 7 bounds
the variance inall directionsa, so that it can be reused to reason about what happens in different
executions of step 3.

Lemma 10 W.h.p. over the random draw of S, whenever Amu executes step 3, it removes at least
4mlogm

n noisy examples from Sdirty, the set of dirty examples in S.

Proof. As stated earlier we may assume thatη ≤ 1/4. This implies that w.h.p. the fraction̂η of
noisy examples in the initial setS is at most 1/2. Finally, Lemma 7 implies thatm= Ω̃(n3) suffices
for it to be the case that w.h.p., for alla ∈ S

n−1, for the original multisetSclean of clean examples
drawn in step 1, we have

∑
(x,y)∈Sclean

(a·x)2 ≤ 2m
n

. (1)

We shall say that a random sampleS that satisfies all these requirements is “reasonable”. We will
show that for any reasonable data set, the number of noisy examples removed during the execution
of step 3 ofAmu is at least4mlogm

n .
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If we remove examples using directionw then it means∑(x,y)∈S(w · x)2 ≥ 10mlogm
n . SinceS is

reasonable, by (1) the contribution to the sum from the clean examples that survived to the current
stage is at most 2m/n so we must have

∑
(x,y)∈Sdirty

(w ·x)2 ≥ 10mlog(m)/n−2m/n > 9mlog(m)/n.

Let us decomposeSdirty into N ∪ F whereN (“near”) consists of those pointsx s.t. (w · x)2 ≤
10log(m)/n andF (“far”) is the remaining points for which(w · x)2 > 10log(m)/n. Since|N| ≤
|Sdirty| ≤ η̂m, (any dirty examples removed in earlier rounds will only reduce the size ofSdirty) we
have

∑
(x,y)∈N

(w ·x)2 ≤ (η̂m)10log(m)/n

and so

|F| ≥ ∑
(x,y)∈F

(w ·x)2 ≥ 9mlog(m)/n− (η̂m)10log(m)/n≥ 4mlog(m)/n

(the last line used the fact thatη̂ < 1/2). Since the points inF are removed in Step 3, the lemma is
proved.

3.4 Exploiting Limited Variance in Any Direction

In this section, we show that if all directional variances are small, then the algorithm’s final hypoth-
esis will have high accuracy.

We first recall a simple lemma which shows that a sample of “clean” examples results in a
high-accuracy hypothesis for the averaging algorithm:

Lemma 11 (Servedio 2001)Supposex1, ...,xm are chosen uniformly at random fromSn−1, and
a target weight vectoru ∈ S

n−1 produces labels y1 = sign(u · x1), ...,ym = sign(u · xm). Let v =
1
m ∑m

t=1ytxt . Then w.h.p.u ·v = Ω( 1√
n), while ||v− (u ·v)u|| = O(

√
log(n)/m).

Now we can state Lemma 12.

Lemma 12 Let S= Sclean∪Sdirty be the sample of m examples drawn from the noisy oracleEXη( f ,U).
Let

• S′cleanbe those clean examples that were never removed during step 3 of Amu,

• S′dirty be those dirty examples that were never removed during step 3 of Amu,

• η′ =
|S′dirty|

|S′clean∪S′dirty|
, that is, the fraction of dirty examples among the examples that survive step3,

and

• α =
|Sclean−S′clean|
|S′clean∪S′dirty|

, the ratio of the number of clean points that were erroneously removed tothe

size of the final surviving data set.

2723



KLIVANS , LONG AND SERVEDIO

Let S′
de f
= S′clean∪S′dirty. Suppose that|S′| ≥ m/2 (i.e., fewer than half the total points were removed)

and that, for every directionw ∈ S
n−1 we have

σ2
w

de f
= ∑

(x,y)∈S′
(w ·x)2 ≤ 10mlogm

n
.

Then w.h.p. over the draw of S, the halfspace with normal vectorv
de f
= 1

|S′| ∑(x,y)∈S′ yx has error rate

O

(
√

η′ logm+α
√

n+

√
nlogn

m

)
.

Proof. The claimed bound is trivial unlessη′ ≤ o(1)/ logm andα ≤ o(1)/
√

n, so we shall freely
use these bounds in what follows.

Let u be the unit length normal vector for the target halfspace. Letvclean be the average ofall
the clean examples,v′dirty be the average of the dirty (noisy) examples that were not deleted (i.e., the
examples inS′dirty), andvdel be the average of the clean examples that were deleted. Then

v =
1

|S′clean∪S′dirty|
∑

(x,y)∈S′clean∪S′dirty

yx

=
1

|S′clean∪S′dirty|

((

∑
(x,y)∈Sclean

yx

)
+

(

∑
(x,y)∈S′dirty

yx

)
−
(

∑
(x,y)∈Sclean−S′clean

yx

))

v = (1−η′ +α)vclean+η′v′dirty −αvdel.

Let us begin by exploiting the bound on the variance in every direction to bound the length of
v′dirty. For anyw ∈ S

n−1 we know that

∑
(x,y)∈S′

(w ·x)2 ≤ 10mlogm
n

, and hence ∑
(x,y)∈S′dirty

(w ·x)2 ≤ 10mlogm
n

sinceS′dirty ⊆ S′. Since|S′dirty| ≤ η′m, the fact that||r ||1 ≤
√

k||r ||2 for any vectorr ∈ Rk gives

∑
(x,y)∈S′dirty

|w ·x| ≤

√
10m|S′dirty| logm

n
.

Takingw to be the unit vector in the direction ofv′dirty, we have‖v′dirty‖ =

w ·v′dirty = w · 1
|S′dirty|

∑
(x,y)∈S′dirty

yx ≤ 1
|S′dirty|

∑
(x,y)∈S′dirty

|w ·x| ≤
√

10mlogm
|S′dirty|n

. (2)

Because the domain distribution is uniform, the error ofhv is proportional to the angle between
v andu, in particular,

Pr[hv 6= f ] =
1
π

arctan

( ||v− (v ·u)u||
u ·v

)
≤ (1/π)

||v− (v ·u)u||
u ·v . (3)
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We have that||v− (v ·u)u|| equals

||(1−η′ +α)(vclean− (vclean·u)u)+η′(v′dirty − (v′dirty ·u)u)−α(vdel− (vdel ·u)u)||
≤ 2||vclean− (vclean·u)u||+η′||v′dirty||+α||vdel||

where we have used the triangle inequality and the fact thatα,η are “small.” Lemma 11 lets us
bound the first term in the sum byO(

√
log(n)/m), and the fact thatvdel is an average of vectors of

length 1 lets us bound the third byα. For the second term, Equation (2) gives us

η′‖v′dirty‖ ≤
√

10m(η′)2 logm
|S′dirty|n

=

√
10mη′ logm

|S′|n ≤
√

20η′ logm
n

,

where for the last equality we used|S′| ≥ m/2. We thus get

||v− (v ·u)u|| ≤ O
(√

log(n)/m
)

+
√

20η′ log(m)/n+α. (4)

Now we consider the denominator of (3). We have

u ·v = (1−η′ +α)(u ·vclean)+η′u ·v′dirty −αu ·vdel.

Similar to the above analysis, we again use Lemma 11 (but now the lower boundu ·v ≥ Ω(1/
√

n)),
Equation (2), and the fact that||vdel|| ≤ 1. Sinceα andη′ are “small,” we get that there is an absolute
constantc such thatu ·v ≥ c/

√
n−
√

20η′ log(m)/n−α. Combining this with (4) and (3), we get

Pr[hv 6= f ] ≤
O

(√
logn

m

)
+
√

20η′ logm
n +α

π
(

c√
n −
√

20η′ logm
n −α

) = O

(√
nlogn

m
+
√

η′ logm+α
√

n

)
.

3.5 Proof of Theorem 1

By Corollary 9, w.h.p. each outlier removal stage removes at most 6nlogmclean points.
Since, by Lemma 10, each outlier removal stage removes at least4mlogm

n noisy examples, there
must be at mostO(n/(logm)) such stages. Consequently the total number of clean examples re-
moved across all stages isO(n2). Since w.h.p. the initial number of clean examples is at least
3m/4, this means that the final data set (on which the averaging algorithm is run)contains at least
3m/4−O(n2) clean examples, and hence at least 3m/4−O(n2) examples in total. The condition
m≫ n2 means that the number of surviving examples will be at leastm/2. Consequently the value
of α from Lemma 12 after the final outlier removal stage (the ratio of the total numberof clean

examples deleted, to the total number of surviving examples) is at mostO(n2)
m .

The standard Hoeffding bound implies that w.h.p. the actual fraction of noisy examples in the
original sampleS is at mostη +

√
O(logm)/m. It is easy to see that w.h.p. the fraction of dirty

examples does not increase (since each stage of outlier removal removesmore dirty points than
clean points, for a suitably large poly(n/ε) value ofm), and thus the fractionη′ of dirty examples
among the remaining examples after the final outlier removal stage is at mostη+

√
O(logm)/m.

Applying Lemma 12, for a suitably large valuem = poly(n/ε), we obtain Pr[hv 6= f ] ≤
O
(√

η logm
)
. Rearranging this bound, we can learn to accuracyε even forη = Ω(ε2/ log(n/ε)).

This completes the proof of the theorem.
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4. Isotropic Log-concave Distributions and Malicious Noise

Our algorithmAmlc that works for arbitrary isotropic log-concave distributions uses smooth boost-
ing.

4.1 Smooth Boosting

A boosting algorithm uses a subroutine, called aweak learner, that is only guaranteed to output
hypotheses with a non-negligible advantage over random guessing.2 The boosting algorithm that we
consider uses aconfidence-ratedweak learner (Schapire and Singer, 1999), which predicts{−1,1}
labels using continuous values in[−1,1]. Formally, theadvantageof a hypothesish′ with respect to
a distributionD ′ is defined to beEx∼D ′ [h′(x) f (x)], where f is the target function.

For the purposes of this paper, a boosting algorithm makes use of the weaklearner, an example
oracle (possibly corrupted with noise), a desired accuracyε, and a boundγ on the advantage of the
hypothesis output by the weak learner.

A boosting algorithm that is trying to learn an unknown target functionf with respect to some
distributionD repeatedly simulates a (possibly noisy) example oracle forf with respect to some
other distributionD ′ and calls a subroutineAweak with respect to this oracle, receiving aweak
hypothesis, which mapsRn to the continuous interval[−1,1].

After repeating this for some number of stages, the boosting algorithm combines the weak
hypotheses generated during its various calls to the weak learner into a final aggregate hypothesis
which it outputs.

Let D,D ′ be two distributions overRn. We say thatD ′ is (1/ε)-smooth with respect toD if
D ′(E) ≤ (1/ε)D(E) for all eventsE.

The following lemma from Servedio (2003) (similar results can be readily found elsewhere,
see, e.g., Gavinsky 2003) identifies the properties that we need from a boosting algorithm for our
analysis.

Lemma 13 (Servedio 2003)There is a boosting algorithm B and a polynomial p such that, for
any ε,γ > 0, the following properties hold. When learning a target function f usingEXη( f ,D),
we have: (a) If each call to Aweak takes time t, then B takes time p(t,1/γ,1/ε). (b) The weak
learner is always called with an oracleEXη′( f ,D ′) whereD ′ is (1/ε)-smooth with respect toD
andη′ ≤ η/ε. (c) Suppose that for each distributionEXη′( f ,D ′) passed to Aweak by B, the output
of Aweakhas advantageγ. Then the final output h of B satisfiesPrx∈D [h(x) 6= f (x)] ≤ ε.

4.2 The Algorithm

Our algorithm for learning under isotropic log-concave distributions with malicious noise, Algo-
rithm Amlc, applies the smooth booster from Lemma 13 with the following weak learner, which we
call AlgorithmAmlcw. (The valuec0 is an absolute constant that will emerge from our analysis.)

2. For simplicity of presentation we ignore the confidence parameter of theweak learner in our discussion; this can be
handled in an entirely standard way.
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Algorithm Amlcw:
1. Drawm= poly(n/ε) examples from the oracle EXη′( f ,D ′).
2. Remove all those examples(x,y) for which ||x|| > √

3nlogm.
3. Repeatedly

• find a direction (unit vector)w that maximizes∑(x,y)∈S(w ·x)2 (see Lemma 6)

• if ∑(x,y)∈S(w ·x)2 ≤ c2
0mlog2(n/ε) then move on to Step 4, and otherwise

• remove fromSall examples(x,y) for which |w ·x| > c0 log(n/ε), and iterate again.

4. Letv = 1
|S| ∑(x,y)∈Syx, and returnh defined byh(x) = v·x

3nlogm, if |v ·x| ≤ 3nlogm, andh(x) =

sgn(v ·x) otherwise.

4.3 The Key Claim: The Weak Learner is Effective

Our main task is to analyze the weak learner. Given the following Lemma, Theorem 2 will be an
immediate consequence of Lemma 13.

Lemma 14 Suppose Algorithm Amlcw is run usingEXη′( f ,D ′) where f is an origin-centered half-
space,D ′ is (1/ε)-smooth w.r.t. an isotropic log-concave distributionD, η′ ≤ η/ε, and η ≤
Ω(ε3/ log2(n/ε)). Then w.h.p. the hypothesis h returned by Amlcw has advantageΩ

(
ε2

nlog(n/ε)

)
.

Before proving Lemma 14, we need to prove some uniformity results on non-noisy examples
drawn from an isotropic, log-concave distribution. This will enable us to use outlier removal and
averaging to find a weak learner.

4.4 Lemmas in Support of Lemma 14

In this section, let us consider a single call to the weak learner with an oracleEXη′( f ,D ′) whereD ′

is (1/ε)-smooth with respect to an isotropic log-concave distributionD andη′ ≤ η/ε. Our analysis
will follow the same basic steps as Section 3.

A preliminary observation is that w.h.p. all clean examples drawn in Step 1 of AlgorithmAmlcw

have‖x‖≤√
3nlogm; indeed, for any given draw ofx fromD ′, the probability that‖x‖>

√
3nlogm

is at most e
εm3 by Lemma 5 together with the fact thatD ′ is 1/ε-smooth with respect to an i.l.c.

distribution. Therefore, w.h.p., only noisy examples are removed in Step 2 ofthe algorithm, and we
shall assume that the distributionsD andD ′ are in fact supported entirely on{x : ‖x‖≤√

3nlogm}.
This assumption affects us in two ways: first, it costs us an additionale

εm2 in the failure probability
analysis below (which is not a problem and is in fact swallowed up by our “w.h.p.” notation).
Second, it means that the overall 1−ε accuracy bound we establish for the entire learning algorithm
may be slightly worse than the true value. This is because our final hypothesis may always be
wrong on the examplesx that have‖x‖ >

√
3nlogm and are ignored in our analysis; however such

examples have probability mass at moste
m3 under the isotropic log-concave distributionD (again

by Lemma 5), and thus the additional accuracy cost is at moste
m3 . Sinceε ≫ e

m3 , this does not affect
the overall correctness of our analysis. Note that a consequence of this assumption is that we can
just takeh(x) = v·x

3nlogm.
The remarks about high-probability statements and failure probabilities fromSection 3.1 ap-

ply here as well, and as in Section 3 we write “w.h.p.” as shorthand for “with probability 1−
1/poly(n/ε).”
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We first show that the variance ofD ′ in every direction is not too large:

Lemma 15 For anya∈ S
n−1 we have Ex∼D ′ [(a·x)2] = O(log2(1/ε)).

Proof. For x chosen according toD, the distribution ofa ·x is a unit variance log-concave distribu-
tion by Lemma 4. Thus, for any positive integerk,

Ex∼D ′ [(a·x)2] ≤ k2 +
∞

∑
i=k

(i +1)2 Pr
x∼D ′

[|a·x| ∈ (i, i +1]]

≤ k2 +
∞

∑
i=k

(i +1)2(1/ε) Pr
x∼D

[|a·x| ∈ (i, i +1]]

≤ k2 +(1/ε)
∞

∑
i=k

(i +1)2 Pr
x∼D

[|a·x| > i]

≤ k2 +(1/ε)
∞

∑
i=k

(i +1)2e−i+1 ≤ k2 +(1/ε) ·Θ(k2e−k)

where the first inequality in the last line uses Lemmas 4 and 5.
Settingk = ln(1/ε) completes the proof.

The following anticoncentration bound will be useful for proving that clean examples drawn
fromD ′ tend to be classified correctly with a large margin.

Lemma 16 Letu ∈ S
n−1. Then

Ex∼D ′ [|u ·x|] ≥ ε/8.

Proof. Clearly
Ex∼D ′ [|u ·x|] ≥ (ε/4) Pr

x∼D ′
[|u ·x| > ε/4].

But by Lemma 5,

Pr
x∼D ′

[|u ·x| ≤ ε/4] ≤ 1
ε

Pr
x∼D

[|u ·x| ≤ ε/4] ≤ ε/2
ε

= 1/2.

The next two lemmas are isotropic log-concave analogues of the uniform distribution Lemmas 7
and 8 respectively. The first one says that w.h.p. no directiona has much more variance than the
expected variance in any direction:

Lemma 17 W.h.p. over a random draw ofℓ clean examples Sclean fromD ′, we have

max
a∈Sn−1

{
1
ℓ ∑

(x,y)∈Sclean

(a·x)2

}
≤ O(1)

(
log2 1

ε
+

n3/2 log2ℓ√
ℓ

)
.

Proof. By Lemma 15, for anya∈ S
n−1 we have

Ex∼D ′ [(a·x)2] = Θ(log2(1/ε)).
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Since as remarked earlier we may assumeD ′ is supported on{x : ‖x‖ ≤√
3nlogm}, we may apply

Lemmas 25 and 27 (see Appendix A) with functionsfa defined byfa = (a·x)2

3nlogm. This completes the
proof.

The second lemma says that for a sufficiently large clean data set, w.h.p. no direction has too
many examples lying too far out in that direction:

Lemma 18 For anyβ > 0 andκ > 1, if Sclean is a set ofℓ ≥ O(1)εeβ(nln(e−β/ε)+logm)
(1+κ) ln(1+κ) clean examples

drawn fromD ′, then w.h.p. we have

max
a∈Sn−1

1
ℓ
|{x ∈ Sclean: |a·x| > β}| ≤ (1+κ)

(
1
ε

)
e−β+1.

Proof. Lemma 5 implies that for the original isotropic log-concave distributionD, we have

Pr
x∼D

[|a·x| > β] ≤ e−β+1.

SinceD ′ is (1/ε)-smooth with respect toD, this implies that

Pr
x∼D ′

[|a·x| > β] ≤ e−β+1

ε
. (5)

In the proof of Lemma 8, we observed that the VC-dimension of

{{x : |a·x| > β} : a∈ Rn,β ∈ R}

is O(n), so applying Lemma 28 with (5) completes the proof of this lemma.

The following is an isotropic log-concave analogue of Corollary 9, establishing that not too
many clean examples are removed in the outlier removal step:

Corollary 19 W.h.p. over the random draw of the m-element sample S from EXη′( f ,D ′), the num-
ber of clean examples removed during any one execution of the outlier removal step (final substep
of Step 2) in Algorithm Amlcw is at most6mε3/n4.

Proof. Since the true noise rateη is assumed sufficiently small, the valueη′ ≤ η/ε is at mostε/4,
and thus w.h.p. the numberℓ of clean examples inS is at least (say)m/2. We would like to apply
Lemma 18 withκ = (n/ε)c0−4 andβ = c0 log(n/ε), and we may do this since we have

O(1)εeβ (nln
(
εeβ)+ logm

)

(1+κ) ln(1+κ)
≤ O(1)ε(n/ε)c0nlogm

(n/ε)c0−4 logm
≤ O(1)n5/ε3 ≪ m

2
≤ ℓ

for a suitable fixed poly(n/ε) choice ofm. Since clean points are only removed if they have|a·x| ≥
β, Lemma 18 gives us that the number of clean points removed is at most

m(1+κ) · 1
ε

e−β+1 ≤ m
(6/ε)(n/ε)c0−4

(n/ε)c0
≤ 6mε3/n4.

The following lemma is an analogue of Lemma 10; it lower bounds the number of dirty examples
that are removed in the outlier removal step.
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Lemma 20 W.h.p. over the random draw of S, any time Algorithm Amlcw executes the outlier re-
moval step it removes at leastmO(n) noisy examples.

Proof. Since our ultimate goal is only to prove that the algorithm succeeds for someη which iso(ε),
we may assume without loss of generality that the original noise rateη is less thanε/4. This means
thatη′ < 1/4, and consequently a Chernoff bound gives that w.h.p. the fractionη̂′ of noisy examples
in Sat the beginning of the weak learner’s training is at most 1/2. And Lemma 17 implies that for a
sufficiently large polynomial choice ofm, we have that w.h.p. for alla∈ S

n−1, the following holds
for all the clean examples in the data before any examples were removed:

∑
(x,y)∈Sclean

(a·x)2 ≤ cmlog2(1/ε) (6)

wherec is an absolute constant. We say that a random sample that meets all these requirements is
“reasonable.” We now set the constantc0 that is used in the specification ofAmlcw to be

√
2(c+1).

We will now show that, for any reasonable sampleS, the number of noisy examples removed during
the first execution of the outlier removal step ofAmlcw is at least m

O(n) .

If we remove examples using directionw then it means∑x∈S(w ·x)2 ≥ c2
0mlog2(n/ε). SinceS

is reasonable, by (6) the contribution to the sum from the clean examples thathave survived until
this point is at mostcmlog2(1/ε) so we must have

∑
(x,y)∈Sdirty

(w ·x)2 ≥ (c2
0−c)mlog2(n/ε).

Let Sdirty = N∪F whereN is the examples(x,y) for whichx satisfies(w ·x)2 ≤ c2
0 log2(n/ε) andF

is the other points. We have

∑
(x,y)∈N

(w ·x)2 ≤ c2
0η̂′mlog2(n/ε).

and so, since||x|| ≤ √
3nlogm implies that(w ·x)2 ≤ 3nlogm for all unit lengthw, we have

|F| ≥ ∑
(x,y)∈F

(w ·x)2

3nlogm
= ∑

(x,y)∈Sdirty

(w ·x)2

3nlogm
− ∑

(x,y)∈N

(w ·x)2

3nlogm

≥ (c2
0−c)mlog2(n/ε)−c2

0η̂′mlog2(n/ε)
3nlogm

≥ mlog2(n/ε)
3nlogm

≥ m
O(n)

where the next-to-last inequality usesη′ ≤ 1/2 andc0 =
√

2(c+1), and the final one usesm =
O(poly(n/ε)). The points inF are precisely the ones that are removed, and thus the lemma is
proved.
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4.5 Proof of Lemma 14

We first note that Lemma 20 implies that w.h.p. the weak learner must terminate afterat mostO(n)
iterations of outlier removal.

Let u be the unit length normal vector of the separating halfspace for the targetfunction f .
Recall that we have assumed without loss of generality that||x|| ≤√

3nlogm for all x in the training
set, so that||v|| ≤ √

3nlogm, and thus the advantage ofh with respect toD ′ can be expressed as

Ex∼D ′ [h(x) f (x)] =
Ex∼D ′ [(v ·x) f (x)]

3nlogm
(7)

and so we shall work on lower boundingEx∼D ′ [(v ·x) f (x)].
As in the proof of Lemma 12, let

• Sclean be all of the clean examples in the initial sampleS, andS′clean be those that are not
removed in any stage of outlier removal;

• Sdirty be all of the dirty examples in the initial sampleS, andS′dirty be those that are not removed
in any stage of outlier removal;

• η′ =
|S′dirty|

|S′clean∪S′dirty|
, that is, the noise rate among the examples that survive until the end of training

of the weak learner, and

• α =
|Sclean−S′clean|
|S′clean∪S′dirty|

, the ratio of the number of clean points that were erroneously removed to the

size of the final surviving data set.

As before we writeS′ for S′clean∪S′dirty. Also as before, letvcleanbe the average ofall the clean
examples,v′dirty be the average of the dirty (noisy) examples that were not deleted, andvdel be the
average of the clean examples that were deleted. Then arguing exactly asbefore, we have

v = (1−η′ +α)vclean+η′v′dirty −αvdel.

The expectation ofvcleanwill play a special role in the analysis:

v∗clean
de f
= Ex∼D ′ [ f (x)x].

Once again, we will demonstrate the limited effect ofv′dirty by bounding its length. This time,

the outlier removal enforces the fact that, for anyw ∈ S
n−1, we have

∑
(x,y)∈S

(w ·x)2 ≤ c2
0mlog2(n/ε).

Applying this for the unit vectorw in the direction ofv′dirty as was done in Lemma 12, this implies

‖v′dirty‖ ≤ c0 log(n/ε)
√

m
|S′dirty|

.

Next, let us apply this to bound an expression that captures the average harm done byv′dirty.
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|Ex∼D ′ [ f (x)(v′dirty ·x)]| = |v′dirty ·v∗clean|

≤ c0 log(n/ε)
√

m
|S′dirty|

||v∗clean||. (8)

To show thatvcleanplays a relatively large role, it is helpful to lower bound the length ofv∗clean.
We do this by lower bounding the length of its projection onto the unit normal vector u of the target
as follows:

v∗clean·u = Ex∼D ′ [( f (x)x) ·u] = Ex∼D ′ [sgn(u ·x)(x ·u)] = Ex∼D ′ [|x ·u|] ≥ ε/8,

by Lemma 16. Sinceu is unit length, this implies

||v∗clean|| ≥ ε/8. (9)

Armed with this bound, we can now lower bound the benefit imparted byvclean:

Ez∼D ′ [ f (z)(vclean·z)] =
1

Sclean
∑

(x,y)∈Sclean

Ez∼D ′ [y f(z)(x ·z)]

=
1

Sclean
∑

(x,y)∈Sclean

(yx) ·v∗clean.

SinceE[(yx) ·v∗clean] = ||v∗clean||2, and(yx) ·v∗clean∈ [−3nlogm,3nlogm], a Hoeffding bound implies
that w.h.p.

Ez∼D ′ [ f (z)(vclean·z)] ≥ ||v∗clean||2−O(nlog3/2m)/
√
|Sclean|.

Since the noise rateη′ is at mostη/ε andη certainly less thanε/4 as discussed above, another
Hoeffding bound gives that w.h.p.|Sclean| is at leastm/2; thus for a suitably large polynomial choice
of m, using (9) we have

Ez∼D ′ [ f (z)(vclean·z)] ≥ ||v∗clean||2−O(nlog3/2m)/
√

m/2≥ ||v∗clean||2
2

. (10)

Now we are ready to put our bounds together and lower bound the advantage ofv. We have

Ex∼D ′ [ f (x)(v ·x)] = (1−η′ +α)E[ f (x)(vclean·x)]

+η′E[ f (x)(v′dirty ·x)]−αE[ f (x)(vdel ·x)].

We bound each of the three contributions in turn. First, using 1− η′ ≥ 1/2 and (10), we have

(1−η′ +α)E[ f (x)(vclean·x)] ≥ ||v∗clean||2
4 .

Next, by (8), we have

|η′Ex∼D ′ [ f (x)(v′dirty ·x)]| ≤ c0 log(n/ε)
√

2η′||v∗clean||.

Since we may assume thatη ≤ c′ε3/ log2(n/ε) for as small a fixed constantc′ as we like (recall the
overall bound of Theorem 2), we get

c0 log(n/ε)
√

2η′||v∗clean|| ≤ (ε/64)||v∗clean||
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(for a suitably small constant choice ofc′), and this is less than||v
∗
clean||2
8 since||v∗clean|| ≥ ε/8.

Finally Corollary 19, together with the fact that there are at mostO(n) iterations of outlier

removal and the final surviving data set is of size at leastm/4, gives us thatα ≤ O(n)(6mε3/n4)
m/4 , which

(recalling that bothvdel and allx in the support ofD ′ have norm at most
√

3nlogm) means that
|αE[ f (x)(vdel ·x)]| = o(ε2).

Combining all these bounds, we get

Ex∼D ′ [ f (x)(v ·x)] ≥ ||v∗clean||2
4

− ||v∗clean||2
8

−o(ε2) ≥ ε2

1024

by (9). Together with (7), the proof of Lemma 14 is completed.

5. Learning Under Isotropic Log-concave Distributions with Adversarial Label Noise

In this section, we consider the model where an adversary can change some class labels, but cannot
otherwise modify examples.

5.1 The Model

We now define the model of learning with adversarial label noise under isotropic log-concave dis-
tributions. In this model the learning algorithm has access to an oracle that provides independent
random examples drawn according to a fixed distributionP onRn×{−1,1}, where

• the marginal distribution overRn is isotropic log-concave, and

• there is a halfspacef such that Pr(x,y)∼P[ f (x) 6= y] = η.

The parameterη is thenoise rate. As usual, the goal of the learner is to output a hypothesish
such that Pr(x,y)∼D [h(x) 6= y] ≤ ε; if an algorithm achieves this goal, we say it learns to accuracy
1− ε in the presence of adversarial label noise at rateη.

5.2 The Algorithm

Like the algorithmAmlc considered in the last section, the algorithmAalc studied in this section
applies the smooth boosting algorithm of Lemma 13 to a weak learner that performs averaging. The
weak learnerAalcw behaves as follows:

Algorithm Aalcw:
1. Draw a setSof m examples according toP′ (the oracle for a modified distribution provided

by the boosting algorithm).
2. Remove all examples(x,y) such that||x|| > √

3nlogm from S.
3. Let v = 1

|S| ∑(x,y)∈Syx. Return the confidence-rated classifierh defined byh(x) = v·x
3nlogm if

|v ·x| ≤ 3nlogm, andh(x) = sgn(v ·x) otherwise.

5.3 Claim About the Weak Learner

As in the previous section, the heart of our analysis will be to analyze the weak learner. We omit
discussing the application of the smooth boosting algorithm here, as it is nearlyidentical to Section
4.
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Lemma 21 Suppose Algorithm Aalcw is run using P′ as the source of labeled examples, where P′

is a distribution that is(1/ε)-smooth with respect to a joint distribution P onRn×{−1,1} whose
marginalD ′ on Rn is isotropic and log-concave. Further, assume there exists a linear threshold
function f such thatPr(x,y)∼P′ [ f (x) 6= y] ≤ η/ε and η ≤ Ω( ε3

log(1/ε)). Then with high probability,

Aalcw outputs a hypothesis with advantageΩ( ε2

nlog(n/ε)).

5.4 Lemmas in Support of Lemma 21

During this section, let us focus our attention on a single call to the weak learner. Let P′ be a
distribution as in Lemma 21 and letD ′ be the marginal onRn. We observe that sinceP′ is (1/ε)-
smooth with respect toP, the marginalD ′ of P′ is (1/ε)-smooth with respect to the marginalD of
P.

As in Section 4, we may assume that the support ofD ′ lies entirely onx such that||x|| ≤√
3nlogm (this negligibly affects the final bounds obtained in our analyses).

The following technical lemma will be used to limit the extent to which the distributionP′ can
concentrate a lot of noise in one direction.

Lemma 22 Let E be any event with positive probability underD ′, and letκ =D ′(E). For any unit
lengtha∈ Rn, Ex∼D ′ [|a·x| | E] = O

(
log 1

κε
)
.

Proof. Let β be such that Prx∼D ′ [|a·x| > β] = κ. By Lemmas 4 and 5, together with the fact thatD ′

is (1/ε) smooth with respect toD, we have

κ ≤ 1
ε

e−β+1

which impliesβ ≤ 1+ ln
(

1
εκ
)
.

Let F be the event that|a ·x| > β. We will show thatEx∼D ′ [|a ·x| | E] ≤ Ex∼D ′ [|a ·x| | F ], and
then boundEx∼D ′ [|a · x| | F ]. If Pr[(E−F)∪ (F −E)] = 0, then, obviously,Ex∼D ′ [|a · x| | E] =
Ex∼D ′ [|a·x| | F ]. Suppose Pr[(E−F)∪ (F −E)] > 0. Then

Ex∼D ′ [|a·x| | E]

= Ex∼D ′ [|a·x| | E∩F ]Pr[E∩F ]+Ex∼D ′ [|a·x| | E−F ]Pr[E−F]

= Ex∼D ′ [|a·x| | E∩F ]Pr[E∩F ]+Ex∼D ′ [|a·x| | E−F ]Pr[F −E]

(because Pr[E] = Pr[F])

< Ex∼D ′ [|a·x| | E∩F ]Pr[E∩F ]+Ex∼D ′ [|a·x| | F −E]Pr[F −E],

because for everyx ∈ E−F and everyx′ ∈ F −E,

|a·x| ≤ β < |a·x′|.

But

Ex∼D ′ [|a·x| | E∩F ]Pr[E∩F ]+Ex∼D ′ [|a·x| | F −E]Pr[F −E] = Ex∼D ′ [|a·x| | F ],

so
Ex∼D ′ [|a·x| | E] < Ex∼D ′ [|a·x| | F ]. (11)
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Now, settingb = ⌊β⌋, we have

Ex∼D ′ [|a·x| | F ] ≤ 1
D ′(F) ∑

i=b

(i +1) Pr
x∼D ′

[|a·x| ∈ (i, i +1]]

≤ 1
D ′(F) ∑

i=b

(i +1)e−i+1

=
1

D ′(F)

(
O

(
e−bb

ε

))

= O(b),

sinceD ′(F) = Θ(e−b/ε). Combining with (11) completes the proof.

5.5 Proof of Lemma 21

Fix some halfspacef such that Pr(x,y)∼P[ f (x) 6= y] = η, and letu be the unit normal vector of its
separating hyperplane.

Let P′ be the joint distribution given toAalcw and letD ′ be its marginal onRn. As noted in the
previous subsection,D ′ is (1/ε)-smooth with respect to the original marginal distributionD of P.

First, we bound the advantage of the hypothesish with respect toP′ in terms of the tendency of
h to agree with the best linear functionf :

E(x,y)∼P′ [h(x)y] ≥ E(x,y)∼P′ [h(x) f (x)]−η = Ex∼D ′ [h(x) f (x)]−η. (12)

Furthermore, as we have assumed without loss of generality that||x|| ≤ √
3nlogm for all exam-

ples in the training set, and therefore that||v|| ≤ √
3nlogm, we have

Ex∼D ′ [h(x) f (x)] = Ex∼D ′

[
f (x)(x ·v)

3nlogm

]
(13)

so we will work on boundingEx∼D ′ [ f (x)(x ·v)].
Let P′

cleanbe obtained by conditioning a random draw(x,y) from P′ on the event thatf (x) = y.
DefineP′

dirty analogously, and letD ′
cleanandD ′

dirty be the corresponding marginals onRn. Let

v∗dirty = E(x,y)∼P′
dirty

[yx]

v∗correct = Ex∼D ′ [ f (x)x].

Note that the linearity of expectation implies that

Ex∼D ′ [ f (x)(x ·v)] = (Ex∼D ′ [ f (x)(x)]) ·v = v∗correct·v =
1
m ∑

(x,y)∈S

v∗correct· (yx). (14)

Equation (14) expressesEx∼D ′ [ f (x)(x · v)], which is closely related to the advantage ofh through
(13) and (12), as a sum of independent random variables, one for each example. We will bound
Ex∼D ′ [ f (x)(x ·v)] by bounding the expected effect of a random example on its value, and applying
a Hoeffding bound.
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Let η′ = Pr(x,y)∼P′ [ f (x) 6= y]. SinceP′ is 1/ε-smooth with respect toP, we haveη′ ≤ η/ε. We
can rearrange the effect of a random example as follows

E(x,y)∼P′ [v∗correct· (yx)] = (1−η′)E(x,y)∼P′ [v∗correct· ( f (x)x)|y = f (x)]

+η′E(x,y)∼P′ [v∗correct· (− f (x)x)|y 6= f (x)]

= (1−η′)E(x,y)∼P′ [v∗correct· ( f (x)x)|y = f (x)]

+η′E(x,y)∼P′ [v∗correct· ( f (x)x)|y 6= f (x)]

−η′E(x,y)∼P′ [v∗correct· ( f (x)x)|y 6= f (x)]

+η′E(x,y)∼P′ [v∗correct· (− f (x)x)|y 6= f (x)]. (15)

Since

E(x,y)∼P′ [v∗correct· ( f (x)x)]

= η′E(x,y)∼P′ [v∗correct· ( f (x)x)|y 6= f (x)]+(1−η′)E(x,y)∼P′ [v∗correct· ( f (x)x)|y = f (x)],

by replacing the first two terms of (15) withE(x,y)∼P′ [v∗correct· ( f (x)x)], we get

E(x,y)∼P′ [v∗correct· (yx)] = E(x,y)∼P′ [v∗correct· ( f (x)x)]

−η′E(x,y)∼P′ [v∗correct· ( f (x)x)|y 6= f (x)]

+η′E(x,y)∼P′ [v∗correct· (− f (x)x)|y 6= f (x)]

= E(x,y)∼P′ [v∗correct· ( f (x)x)]

−2η′E(x,y)∼P′ [v∗correct· ( f (x)x)|y 6= f (x)].

Twice applying the linearity of expectation, we get

E(x,y)∼P′ [v∗correct· (yx)] = ||v∗correct||2−2η′E(x,y)∼P′ [v∗correct· ( f (x)x)|y 6= f (x)]

= ||v∗correct||2−2η′vcorrect·v∗dirty

≥ ||v∗correct||2−2η′||v∗correct|| · ||v∗dirty||

≥ 1
2
||v∗correct||2−4(η′)2||v∗dirty||2,

The last line follows from the fact thatq2−qr ≥ (q2− r2)/2 for all realq, r.
So now our goals are a lower bound on||v∗correct|| and an upper bound on||v∗dirty||.
We can lower bound||v∗correct|| essentially the same way we did before, by lower bounding its

projection onto the “target” normal vectoru:

v∗correct·u = E(x,y)∼P′ [( f (x)x) ·u] = E(x,y)∼P′ [sgn(u ·x)(x ·u)] = E(x,y)∼P′ [|x ·u|] ≥ ε/16, (16)

by Lemma 16.
We upper bound||v∗dirty|| as follows:

||v∗dirty||2 = v∗dirty ·Ex∼D ′
dirty

[− f (x)x]

= ||v∗dirty|| ·Ex∼D ′
dirty

[(
v∗dirty

||v∗dirty||

)
· (− f (x))x

]

≤ ||v∗dirty|| ·Ex∼D ′
dirty

[∣∣∣∣∣

(
v∗dirty

||v∗dirty||

)
·x
∣∣∣∣∣

]

≤ ||v∗dirty||O(log(1/(η′ε)))
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by Lemma 22. Thus||v∗dirty|| ≤ O(log(1/(η′ε))).
Combining this with (16) and (14) we have that if

η′√log(1/(η′ε) ≤ cε2

for a suitably small constantc, thenEx∼D ′ [ f (x)(x · v)] is a sum ofm i.i.d. random variables, each
with mean at leastΩ(ε2), and coming from an interval of lengthO(nlogm). Applying the standard
Hoeffding bound, polynomially many examples suffice forEx∼D ′ [ f (x)(x ·v)] ≥ Ω(ε2). Combining
with (13) and (12) completes the proof.

6. Conclusion

Our algorithms use boosting together with a confidence-rated weak learnerthat perform a simple
averaging of labeled examples. As shown in earlier work (Servedio, 2002, 2003) there are close
connections between such an approach and the Perceptron algorithm. Itseems likely that the Per-
ceptron could be used as an alternative to boosting and averaging in our algorithms; it would be
interesting to see if a Perceptron-based approach has any theoretical or empirical advantages over
the algorithms we give in this paper.

More generally, there are relatively few algorithms for learning interestingclasses of functions
in the presence of malicious noise. We hope that our results will help lead to thedevelopment of
more efficient algorithms for this challenging noise model.

As a challenge for future work, we pose the following question: do there exist computationally
efficient algorithms for learning halfspaces underarbitrary distributions in the presence of malicious
noise? As of now no better results are known for this problem than the generic conversions of Kearns
and Li (1993), which can be applied to any concept class. We feel thateven a small improvement in
the malicious noise rate that can be handled for halfspaces would be a veryinteresting result.
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Appendix A. Proof of Lemma 7

Let us start with a couple of definitions and a couple of bounds from the literature.

Definition 23 (VC-dimension) A set F of{−1,1}-valued functions defined on a common domain
X shattersx1, ...,xd if every sequence y1, ...,yd ∈ {−1,1} of function values has a function f such
that f(x1) = y1, ..., f (xd) = yd. The VC-dimension of F is the size of the largest set shattered by F.

Definition 24 (pseudo-dimension)For a set F of real-valued functions defined on a common do-
main X, thepseudo-dimensionof F is the VC-dimension of{sign( f (·)−θ) : f ∈ F,θ ∈ R}.

Lemma 25 (Pollard 1984; Talagrand 1994)Let F be a set of real-valued functions defined on a
common domain X taking values in[0,1], and let d be the pseudo-dimension of F. LetD be a
probability distribution over X. Then if x1, ...,xm are obtained by drawing m times independently
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according toD, for anyδ > 0,

Pr

[
∃ f ∈ F,

1
m

m

∑
s=1

f (xs) > ED [ f ]+c

√
d+ log(1/δ)

m

]
≤ δ,

where c> 0 is an absolute constant.

Lemma 26 (see Blumer et al. 1989)The VC-dimension of unions of two halfspaces is O(n).

Now, let us bound the pseudo-dimension of the class of functions that we need.

Lemma 27 Let Fn consist of the functions f fromRn to R which can be defined by f(x) = (a ·x)2

for somea∈ Rn. The pseudo-dimension of Fn is at most O(n).

Proof. According to the definition, the pseudo dimension ofFn is the VC-dimension of the setGn

of {−1,1}-valued functionsga,θ defined byga,θ(x) = sign((a · x)2−θ). Eachga,θ is equivalent to
an OR of two halfspaces:

a·x ≥
√

θ OR (−a) ·x ≥
√

θ.

Thus the VC-dimension ofGn is at most the VC-dimension of the class of all ORs of two halfspaces.
Applying Lemma 26 completes the proof.

Applying Lemmas 25 and 27, we obtain Lemma 7.

Appendix B. Proof of Lemma 8

We will use the following, which strengthens bounds like Lemma 25 when the expectations being
estimated are small. It differs from most bounds of this type by providing an especially strong bound
on the probability that the estimates aremuchlarger than the true expectations.

Lemma 28 (Bshouty et al. 2009)Suppose F is a set of{0,1}-valued functions with a common
domain X. Let d be the VC-dimension of F. LetD be a probability distribution over X. Choose
α > 0 and K≥ 4. Then if

m≥
c
(
d log 1

α + log 1
δ
)

αK logK
,

where c is an absolute constant, then

Pr
u∼Dm

[∃ f ∈ F, ED( f ) ≤ α but Êu( f ) > Kα] ≤ δ,

whereÊu( f ) = 1
m ∑m

i=1 f (ui).

To prove Lemma 8, we first use the fact that, for any fixeda∈ S
n−1 andβ > 0, it is known (see

Kalai et al. 2008) that
Pr

x∈Sn−1
[|a·x| > β] ≤ e−β2n/2.

Further, as in the proof of Lemma 7, we have that

|a·x| > β if and only if a·x > β OR (−a) ·x > β,

so that the set of events whose probabilities we need to estimate is contained in the set of unions of
pairs of halfspaces. Applying Lemma 26 and Lemma 28 completes the proof.
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