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Abstract

We give new algorithms for learning halfspaces in the chaileg malicious noisenodel, where
an adversary may corrupt both the labels and the underlyisighiition of examples. Our algo-
rithms can tolerate malicious noise rates exponentiatiyelathan previous work in terms of the
dependence on the dimensionand succeed for the fairly broad class of all isotropic togcave
distributions.

We give poly(n,1/¢)-time algorithms for solving the following problems to acacye:

e Learning origin-centered halfspacesR" with respect to the uniform
distribution on the unit ball with malicious noise rafe- Q(g2/log(n/)).
(The best previous result wae/(nlog(n/g))¥4).)

e Learning origin-centered halfspaces with respect to aatrapic log-
concave distribution oR" with malicious noise ratg = Q(e3/log?(n/g)).
This is the first efficient algorithm for learning under isugic log-concave
distributions in the presence of malicious noise.

We also give a pol§n, 1/¢)-time algorithm for learning origin-centered halfspacesler any
isotropic log-concave distribution oR" in the presence o@dversarial label noiseat raten =
Q(3/log(1/g)). In the adversarial label noise setting (or agnostic modabels can be noisy,
but not example points themselves. Previous results candlen = Q(g) but had running time
exponential in an unspecified function ofel

Our analysis crucially exploits both concentration and-eahcentration properties of isotropic
log-concave distributions. Our algorithms combine analige outlier removal procedure using
Principal Component Analysis together with “smooth” bamgt

Keywords: PAC learning, noise tolerance, malicious noise, agnostienling, label noise, half-
space learning, linear classifiers
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1. Introduction

A halfspaces a Boolean-valued function of the forfn= sign(3{.; wix; — 6). Learning halfspaces
in the presence of noisy data is a fundamental problem in machine learmngddition to its
practical relevance, the problem has connections to many well-studied sagib as kernel meth-
ods (Shawe-Taylor and Cristianini, 2000), cryptographic hardneksaming (Klivans and Sher-
stov, 2006), hardness of approximation (Feldman et al., 2006; Gumisavel Raghavendra, 2006),
learning Boolean circuits (Blum et al., 1997), and additive/multiplicative teplgarning algorithms
(Littlestone, 1991; Freund and Schapire, 1999).

Learning an unknown halfspace from correctly labeled (non-noisyingles is one of the best-
understood problems in learning theory, with work dating back to the famenegptron algorithm
of the 1950s (Rosenblatt, 1958) and a range of efficient algorithms rkfiorvdifferent settings
(Novikoff, 1962; Littlestone, 1987; Blumer et al., 1989; Maass and fui®94). Much less is
known, however, about the more difficult problem of learning halfepae the presence of noise.

Important progress was made by Blum et al. (1997) who gave a polyndimiaalgorithm for
learning a halfspace undelassification noise In this model each label is flipped independently
with some fixed probability; the noise does not affect the actual exampléspgbemselves, which
are generated according to an arbitrary probability distribution Ber

In the current paper we consider a much more challengialicious noisenodel. In this model,
introduced by Valiant (1985) (see also Kearns and Li 1993), thene is1enown target functiorf
and distribution® over examples. Each time the learner receives an example, independigmtly w
probability 1—n it is drawn from? and labeled correctly according fo but with probabilityn it
is an arbitrary pai(x,y) which may be generated by an omniscient adversary. The paramister
known as the “noise rate.”

Malicious noise is a notoriously difficult model with few positive results. Iswdready shown
by Kearns and Li (1993) that for essentially all concept classes, ifasnration-theoretically im-
possible to learn to accuracy-le if the noise rate is greater tharg/(1+€). Indeed, known
algorithms for learning halfspaces (Servedio, 2003; Kalai et al., 2008yen simpler target func-
tions (Mansour and Parnas, 1998) with malicious noise typically make stsswgrgtions about
the underlying distributiorD, and can learn to accuracy-le only for noise rates) much smaller
thane. We describe the most closely related work that we know of in Section 1.2.

In this paper we consider learning under the uniform distribution on thehatliin R", and
more generally under any isotropic log-concave distribution. The lattesislgp hroad class of dis-
tributions that includes spherical Gaussians and uniform distributiorrsaowede range of convex
sets. Our algorithms can learn from malicious noise rates that are quite bigfe, @ow describe.

1.1 Main Results

Our first result is an algorithm for learning halfspaces in the malicious mog#e| with respect to
the uniform distribution on tha-dimensional unit ball:

Theorem 1 There is apoly(n,1/¢)-time algorithm that learns origin-centered halfspaces to accu-
racy 1 — € with respect to the uniform distribution on the unit ball in n dimensions in theepies
of malicious noise at ratg = Q(g?/log(n/e)).

The condition om is expressed usin@ and notO because we are showing that a weak upper
bound on the noise rate suffices to achieve accuraeg.1
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Via a more sophisticated algorithm, we can learn in the presence of maliciogsurasr any
isotropic log-concave distribution:

Theorem 2 There is apoly(n, 1/¢)-time algorithm that learns origin-centered halfspaces to accu-
racy 1 — € with respect to any isotropic log-concave distribution oR8rand can tolerate malicious
noise at raten = Q(&3/log?(n/e)).

We are not aware of any previous polynomial-time algorithms for learningmisdtropic log-
concave distributions in the presence of malicious noise.

Finally, we also consider a related noise model knowad&rsarial label noiseln this model
there is a fixed probability distributioR overR" x {—1,1} (i.e., over labeled examples) for which
a 1—n fraction of draws are labeled according to an unknown halfspacemgnginal distribution
overR" is assumed to be isotropic log-concave; so the idea is that an “advecsagses an frac-
tion of examples to mislabel, but unlike the malicious noise model she cannaetan(isotropic
log-concave) distribution of the actual example point®ih Learning with adversarial label noise
is clearly harder than with independent misclassification noise—the ability wsehwshich labels
to corrupt allows the adversary to coordinate their effects to an extent.

For the adversarial label noise model we prove:

Theorem 3 There is apoly(n, 1/¢)-time algorithm that learns origin-centered halfspaces to accu-
racy 1 — € with respect to any isotropic log-concave distribution oR8rand can tolerate adversar-
ial label noise at rate) = Q(£3/log(1/¢)).

1.2 Previous Work

Our work builds on a number of lines of research.

1.2.1 MaLICcIoUS NOISE

General-purpose tools developed by Kearns and Li (1993) (seKaksms et al. 1994) directly
imply that halfspaces can be learned for any distribution over the domaindomgized polyfg,1/¢)

time with malicious noise at a rafe(e/n); the algorithm repeatedly picks a random subsample of
the training data, hoping to miss all the noisy examples. Kannan (see Aratal&93) devised

a deterministic algorithm with &(e/n) bound that repeatedly exploits Helly’s Theorem to find

a group ofn+ 1 examples that includes a noisy example, then removes the group. Kalai et a
(2008) showed that the poly(l/¢)-time averaging algorithm (Servedio, 2001) tolerates noise at a
rateQ(g/,/n) when the distribution is uniform. They also described an improvemeft¢gn®/4)
based on the observation that uniform examples will tend to be well-sepasatehat pairs of
examples that are too close to one another can be removed.

1.2.2 ADVERSARIAL LABEL NOISE

Kalai, et al. showed that if the distribution over the instances is uniform thesunit ball, the
averaging algorithm tolerates adversarial label noise at &x@tg,/log(1/¢€)) in poly(n,1/¢) time.
(In that paper, learning in the presence of adversarial label noisealked “agnostic learning”.)
They also described an algorithm that fits low-degree polynomials thattederaise at a rate within

an additivee of the accuracy, but in po()nl/e") time; for log-concave distributions, their algorithm
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took poly(nd(l/s)) time, for an unspecified functiah The latter algorithm does not require that the
distribution is isotropic, as ours does.

1.2.3 RoBUSTPCA

Independently of this work, Xu et al. (2009) designed and analyzedganithm that performs prin-
cipal component analysis when some of the examples are corruptedrédybiéisin the malicious
noise model studied here. Also, the thesis of Brubaker (2009) premséRisbust PCA’ algorithm
which is a PCA variant aimed at ameliorating the effects of noisy examples.

1.3 Techniques

Here is a high-level description of the main techniques in our analysis.

1.3.1 QuTLIER REMOVAL

Consider first the simplest problem of learning an origin-centered lzadéswith respect to the uni-
form distribution on the-dimensional ball. A natural idea is to use a simple “averaging” algorithm
that takes the vector average of the positive examples it receives anthisas the normal vector
of its hypothesis halfspace. Servedio (2001) analyzed this algoriththéarandom classification
noise model, and Kalai et al. (2008) extended the analysis to the adatlaael noise model.

Intuitively the “averaging” algorithm can only tolerate low malicious noise réesause the
adversary can generate noisy examples which “pull” the average vfactivom its true location.
Our main insight is that the adversary does this most effectively when ikg examples are coor-
dinated to pull in roughly the same direction. We use a form of outlier detectisadon Principal
Component Analysis to detect such coordination. This is done by computinditthctionw of
maximal variance of the data set; if the variance in directiois suspiciously large, we remove
from the sample all points for which (w - x)? is large. Our analysis shows that this causes many
noisy examples, and only a few non-noisy examples, to be removed.

We repeat this process until the variance in every direction is not toa I@rges cannot take too
many stages since many noisy examples are removed in each stage.) Whilecssymexamples
may remain, we show that their scattered effects cannot hurt the algorittsim mu

Thus, in a nutshell, our overall algorithm for the uniform distribution is to fictoutlier re-
moval by an iterated PCA-type procedure, and then simply run the averagingtiaigmn the
remaining “cleaned-up” data set.

1.3.2 EXTENDING TO LOG-CONCAVE DISTRIBUTIONS VIA SMOOTH BOOSTING

We are able to show that the iterative outlier removal procedure descatbeck is useful for
isotropic log-concave distributions as well as the uniform distribution: ifhrgdas are removed
in a given stage, then many of the removed examples are noisy and onlyaagaewn-noisy (the
analysis here uses concentration bounds for isotropic log-concavibutisns). However, even if
there were no noise in the data, the average of the positive examplesamidetropic log-concave

1. We note briefly that the sophisticated outlier removal techniques of Btuah €.997) and Dunagan and Vempala
(2004) do not seem to be useful in our setting; those works deal witlomgstrotion of outliers, which is such that
no point on the unit ball can be an outlier if a significant fraction of poinésuariformly distributed on the unit ball.

2718



LEARNING HALFSPACES WITHMALICIOUS NOISE

distribution need not give a high-accuracy hypothesis. Thus thegiagralgorithm alone will not
suffice after outlier removal.

To get around this, we show that after outlier removal the average obitve examples gives
a (real-valuedweak hypothesis that has some nontrivial predictive accuracy. (Interégtiting
proof of this relies heavily oanti-concentration properties of isotropic log-concave distributions!)
A natural approach is then to use a boosting algorithm to convert this wagateleinto a strong
learner. This is not entirely straightforward because boosting “skévesdistribution of examples;
this has the undesirable effects of both increasing the effective malicwss rate, and causing
the distribution to no longer be isotropic log-concave. However, by usitgreoth” boosting
algorithm (Servedio, 2003) that skews the distribution as little as possiblerenabée to control
these undesirable effects and make the analysis go through. (Theaotoadfe in the bound of
Theorem 2 compared with Theorem 1 comes from the fact that the boosgimigtlam constructs
“1 /e-skewed” distributions.)

We note that our approach of using smooth boosting is reminiscent of eadi&r(Servedio,
2002, 2003), but the current algorithm goes well beyond that. Sier¢2002) did not consider a
noisy scenario, and Servedio (2003) only considered the averalgjogtiam without any outlier
removal as the weak learner (and thus could only handle quite low ratesliofaus noise in our
isotropic log-concave setting).

1.3.3 TOLERATING ADVERSARIAL LABEL NOISE

Finally, our results for learning under isotropic log-concave distributigtisadversarial label noise
are obtained using a similar approach. The algorithm here is in fact simplethkamalicious
noise algorithm: since the adversarial label noise model does not allovdteesary to alter the
distribution of the examples iR", we can dispense with the outlier removal and simply use smooth
boosting with the averaging algorithm as the weak learner. (This is why twa glghtly better
guantitative bound in Theorem 3 than Theorem 2).

1.3.4 ORGANIZATION

For completeness we review the precise definitions of isotropic log-certiatributions and the
various learning models in Section 2. We present the simpler and more eaddlystood uniform
distribution analysis in Section 3. We extend the algorithm and analysis to igntogpconcave
distributions in Section 4. Learning with adversarial label noise is treateedtidh 5. We conclude
in Section 6.

2. Definitions and Preliminaries

In this section, we provide some definitions and lemmas that will be used thooutite paper.

2.1 Learning with Malicious Noise

Given a probability distributiorD overR", and a target functiofi : R" — {—1,1}, we define the
oracle EX(f, D) as follows:

e with probability 1—n the oracle drawg according to?, and outputsx, f(x)), and
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e with probability n the oracle outputs an arbitrafy,y) pair. This “noisy” example can be
thought of as being generated adversarially and can depend on thefstetdearning algo-
rithm and previous draws from the oracle.

Given a data set drawn from EBXf, D), we often refer to the examplé€s, f(x)) (that came
from D) as “clean” examples and the remaining exampley) as “dirty” examples.

For a sets of probability distributions and a sé&t of possible target functions, we say that
a learning algorithimA learnsF to accuracy 1- € with respect ta$ in the presence of malicious
noise at a rate if the following holds: for anyf € F, andD € , given access to Exf,D),
with probability at least 12, the output hypothestsgenerated by satisfies Rr_p[h(x) # f(X)] <
€. (The probability of success may be amplified arbitrarily close to 1 using atdridchniques
(Haussler et al., 1991).)

Since scalingk by a positive constant does not affect its classification by a linear clssifi
drawing examples uniformly from the unit ball is equivalent to drawing thaifounly from the
surfaceS™ ! of the unit sphere. When this is the distribution, we may also assume w.l.0.g. that
even noisy example&, y) havex € S"~1—this is simply because a learning algorithm can trivially
identify and ignore any noisy examp(e,y) that has|x|| # 1.

2.2 Log-concave Distributions

A probability distribution oveR" is said to bdog-concavéf its density function is exp-wW(x)) for
a convex function).

A probability distribution oveR" is isotropicif the mean of the distribution is 0 and the covari-
ance matrix is the identity, that ig[xx;] = 1 fori = j and O otherwise.

Isotropic log-concave (henceforth abbreviated i.l.c.) distributions awmgrly broad class of
distributions. It is well known that any distribution induced by taking a umifalistribution over
an arbitrary convex set and applying a suitable linear transformation to inegaropic is then
isotropic and log-concave. For an excellent treatment on basic prapeftieg-concave distribu-
tions, see Lo&sz and Vempala (2007).

We will use the following facts:

Lemma 4 (Lovasz and Vempala 2007)Let D be an isotropic log-concave distribution ovBf!
anda e S"! any direction. Then fox drawn according taD, the distribution ofa- x is an isotropic
log-concave distribution oveR.

Lemma 5 (Lovasz and Vempala 2007)Any isotropic log-concave distributiaf overR" has light
tails,

Pr [|x]| > By < e P+,

X~

If n =1, the density ofD is bounded:

P

<|[b—al.
Prixefab]]<b-a

3. The Uniform Distribution and Malicious Noise

In this section we prove Theorem 1. As described above, our algoritstrdfies outlier removal
using PCA and then applies the “averaging algorithm.”
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We may assume throughout that the noise rpte smaller than some absolute constant, and
that the dimension is larger than some absolute constant.

3.1 The Algorithm: Removing Outliers and Averaging
Consider the following Algorithmf\y,:
Algorithm Anqg:
1. Draw a sampl&of m= poly(n/g) many examples from the malicious oracle.
2. Identify the directiorw € S"~* that maximizes

If 02, < %‘” then go to Step 4 otherwise go to Step 3.

3. Remove fronBevery example that hasy-x)2 > 129" G to Step 2.
4. For the exampleSthat remain lev = é Y (xy)esyX and output the linear classifiby defined

by hy(x) = sgn(v-x).

We first observe that Step 2 can be carried out in polynomial time:

Lemma 6 There is a polynomial-time algorithm that, given a finite collection S of poinf8"in
outputsw € S"~1 that maximize§ y.s(W - X)2.

Proof. By applying Lagrange multipliers, we can see that the optima an eigenvector of =

S xesXX'. Further, ifA is the eigenvalue ofv, theny,.g(Ww-x)? = wTAw = w' (Aw) = A. The
eigenvectom with the largest eigenvalue can be found in polynomial time (see, e.g., Joiif2)2
|

Before embarking on the analysis we establish a terminological conventioch bf our analy-
sis deals with high-probability statements over the draw oftfedement sampl§&; it is straightfor-
ward but quite cumbersome to explicitly keep track of all of the failure prititiab. Thus we write
“with high probability” (or “w.h.p.”) in various places below as a shorthémd‘with probability at
least 1- 1/poly(n/€).” The interested reader can easily verify that an appropriate p&y choice
of m makes all the failure probabilities small enough so that the entire algorithneetdsavith
probability at least 12 as required.

3.2 Properties of the Clean Examples

In this subsection we establish properties of the clean examples that wgrkeddn Step 1 oy,
The first says that no direction has much more variance than the expecizadce of ¥n:

Lemma 7 W.h.p. over a random draw dfclean examplesgan we have
1 1 I

max { = z (a. X)Z <4+ M
aesn-t £ (X7y)es:lean n E

Proof. The proof uses standard tools from VC theory and is in Appendix A. [ |

The next lemma says that in fact no direction has too many clean examplesdyiogt fin that
direction:
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2n
Lemma 8 For any > 0 andk > 1, if Seanis a random set of > %

then w.h.p. we have

clean examples

1
max = |{X € Syean: (@-X)2 > B2} < (1+K)e P2,
acsn-1 /¢

Proof. In Appendix B. |

3.3 Whatis Removed

In this section, we provide bounds on the number of clean and dirty exangohesed in Step 3.
The first bound is a Corollary of Lemma 8.

Corollary 9 W.h.p. over the random draw of the m-element sample S, the numbearoégiemples
removed during any one execution of Step 3, & at mosienlogm.

Proof. Since the noise ratg is sufficiently small, w.h.p. the numbérnf clean examples is at least

10logm

Ea and indeed we

(say)m/2. We would like to apply Lemma 8 witk = 5/*nlog/ andp =
may do this because we have

O(1)-n?p2e¥2 (1) - n(logm)mP m m
A+ 0L = A+0n(iir) = <Iogm) sg st

for n sufficiently large. Since clean points are only removed if they Havex)? > 2, Lemma 8
gives us that the number of clean points removed is at most

m(1+k)e P2 < 6rPnlog(¢) /nP < 6nlogm.

The counterpart to Corollary 9 is the following lemma. It tells us that if exampkeseanoved in
Step 3, then there must be madtiyty examples removed. It exploits the fact that Lemma 7 bounds
the variance irall directionsa, so that it can be reused to reason about what happens in different
executions of step 3.

Lemma 10 W.h.p. over the random draw of S, whenevgy, Axecutes step 3, it removes at least
4”"%‘ noisy examples fromygy, the set of dirty examples in S

Proof. As stated earlier we may assume that 1/4. This implies that w.h.p. the fractiam of
noisy examples in the initial s&is at most 22. Finally, Lemma 7 implies thah = Q(n%) suffices
for it to be the case that w.h.p., for ale S"1, for the original multiseSean Of clean examples

drawn in step 1, we have
2m

> (@x)f<=
(X,Y)€ESlean n
We shall say that a random sam@¢hat satisfies all these requirements is “reasonable”. We will
show that for any reasonable data set, the number of noisy examplesaegohaing the execution
of step 3 0fAn is at least™oom,

: (1)
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If we remove examples using directionthen it meanss , y)cs(w-x)? > %™, SinceSis

reasonable, by (1) the contribution to the sum from the clean examplestiiates! to the current
stage is at mostri/n so we must have

s (w-x)? > 10mlog(m)/n—2m/n > 9mlog(m)/n.
(X:Y)egirty

Let us decompos&iy into NUF whereN (“near”) consists of those points s.t. (W-x)? <
10log/m)/n andF (“far”) is the remaining points for whictiw - x)2 > 10log(m)/n. Since|N| <
|Siry| < M, (any dirty examples removed in earlier rounds will only reduce the si&igf) we
have

> (w-x)? < (fim)10logm)/n
(x.y)eN

and so
IF|> 5 (w-x)?>9mlog(m)/n— (Rm)10log(m)/n > 4mlog(m)/n
(x,y)eF

(the last line used the fact that< 1/2). Since the points iff are removed in Step 3, the lemma is
proved. |

3.4 Exploiting Limited Variance in Any Direction

In this section, we show that if all directional variances are small, then tloeithlon’s final hypoth-
esis will have high accuracy.

We first recall a simple lemma which shows that a sample of “clean” exampleksras a
high-accuracy hypothesis for the averaging algorithm:

Lemma 11 (Servedio 2001)Supposex, ..., Xm are chosen uniformly at random froSf—, and
a target weight vectou € S"! produces labels y= sign(u - X1), ..., Ym = Signu - Xy,). Letv =
5 2C1yexe. Thenw.h.pu-v = Q(x), while|[v — (u-v)ul| = O(y/log(n)/m).

Now we can state Lemma 12.

Lemma 12 Let S= Seand Sty be the sample of m examples drawn from the noisy oaX|g f, ).
Let

e S,.anPe those clean examples that were never removed during step,,0f A
° %my be those dirty examples that were never removed during step 3.0f A

o= % that is, the fraction of dirty examples among the examples that surviv8,step
Clean irty

and

e 0= % the ratio of the number of clean points that were erroneously removiie to
clean irty

size of the final surviving data set.
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Letg %' Sieant Siny- Suppose thg8| > m/2 (i.e., fewer than half the total points were removed)
and that, for every directiow € S"! we have

10mlogm

3=y wxPs =

(x,y)es

Then w.h.p. over the draw of S, the halfspace with normal vac%%frﬁ Y (xy)es YX has error rate

@) (N/n’logm+aﬁ+\/ nltrangn> .

Proof. The claimed bound is trivial unlesg < o(1)/logm anda < o(1)/1/n, so we shall freely
use these bounds in what follows.
Let u be the unit length normal vector for the target halfspace.viygt, be the average dl
the clean examplesz{jirty be the average of the dirty (noisy) examples that were not deleted (i.e., the
examples ir§; ), andvgel be the average of the clean examples that were deleted. Then

1
V — -
cleanU S(dlrty‘ (xy) Egc%a,pgd.ny
= PIEDLY sl RPN LS e )3 yx
’SlcleanU S/dwty‘ (( (X.Y)€Stlean ) ((X-,Y)Gs'dmy ) ((X:Y)G&Iean—sclean ))
V. = (1-n"+a)Veeant+N'Vgiry — AVel-

Let us begin by exploiting the bound on the variance in every direction tadthe length of
Viiry- FOr anyw € S * we know that

s (w-x)%< w, andhence y (w-x)?<

(va)es (X>y)€%irty

2 10mlogm
n

sinceS;y, C S. Since|Syy| < n'm, the fact thaf|r ||, < VK||r||2 for any vector € R¥ gives

S wex| < ¢ 10miSiryllogm

(va)esldirty n

Takingw to be the unit vector in the direction of;,,,, we havef|vgq, || =

1 s yx< 1 s wex| < 10mlogm @)
|Shirty | XYy S (XY)ESiny B |Shirty [N ‘

Because the domain distribution is uniform, the erronpis proportional to the angle between
v andu, in particular,

/
W Vdirty = W

v — (vl

Prihy # f] = narctan("(vvu)u‘> <(1/m) (3)
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We have that|v — (v-u)u|| equals
[(1—n"+a)(Velean— (Velean- U)U) + n/(Vﬁirty - (Vamy “U)U) — a(Vael — (Vdel- U)U) ||
< 2||Velean— (Velean- UU|| + 1’| [Vgjiny || + || Vaell|

where we have used the triangle inequality and the factdhatare “small.” Lemma 11 lets us
bound the first term in the sum I§)(/log(n)/m), and the fact thatqe is an average of vectors of
length 1 lets us bound the third loy For the second term, Equation (2) gives us

12 l i
0 V|| < 10m(n’)%logm _ 10mn’logm < /200 Iogm’
g |Shiny [N Sn n

where for the last equality we us¢8l| > m/2. We thus get

V= (v-u)u]| < O(/log(n)/m) + /200" log(m) /n+a. @

Now we consider the denominator of (3). We have

u-v=(1-n"40a)(u-Veean) +N'U" Vgiry — OU - Vgel.

Similar to the above analysis, we again use Lemma 11 (but now the lower bound Q(1/,/n)),
Equation (2), and the fact thlvqel|| < 1. Sincea andn’ are “small,” we get that there is an absolute

constant such thau-v > ¢/,/n— /20n/log(m)/n— a. Combining this with (4) and (3), we get

U -
Prihy # f] < :O< mg + n’logm+aﬁ>.
n(\;ﬁ_ /Zm/rl]ogm_a>

3.5 Proof of Theorem 1

By Corollary 9, w.h.p. each outlier removal stage removes at nrdsggén clean points.

Since, by Lemma 10, each outlier removal stage removes atﬂ@'ﬁ%@ noisy examples, there
must be at mosD(n/(logm)) such stages. Consequently the total number of clean examples re-
moved across all stages @&(n?). Since w.h.p. the initial number of clean examples is at least
3m/4, this means that the final data set (on which the averaging algorithm isaotgins at least
3m/4 — O(n?) clean examples, and hence at leasy8— O(n?) examples in total. The condition
m>> n? means that the number of surviving examples will be at leg& Consequently the value
of a from Lemma 12 after the final outlier removal stage (the ratio of the total nuwbeean

examples deleted, to the total number of surviving examples) is at%{gét
The standard Hoeffding bound implies that w.h.p. the actual fraction of maiamples in the
original sampleSis at mostn + \/O(logm)/m. It is easy to see that w.h.p. the fraction of dirty
examples does not increase (since each stage of outlier removal remoxeglirty points than
clean points, for a suitably large pdty/s) value ofm), and thus the fraction’ of dirty examples
among the remaining examples after the final outlier removal stage is anmogtO(logm)/m.
Applying Lemma 12, for a suitably large valua = poly(n/g), we obtain Pjh, # f] <
O (y/nTogm) . Rearranging this bound, we can learn to accugaeyen forn = Q(g2/log(n/«)).
This completes the proof of the theorem. [ |
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4. Isotropic Log-concave Distributions and Malicious Noise

Our algorithmAnc that works for arbitrary isotropic log-concave distributions uses smomtisth
ing.

4.1 Smooth Boosting

A boosting algorithm uses a subroutine, calledi@ak learner that is only guaranteed to output
hypotheses with a non-negligible advantage over random gues$ing boosting algorithm that we
consider uses eonfidence-ratetveak learner (Schapire and Singer, 1999), which prediets 1}
labels using continuous values[inl, 1]. Formally, theadvantageof a hypothesi$’ with respect to
a distribution? is defined to bé&,._ 4 [N (X) f ()], wheref is the target function.

For the purposes of this paper, a boosting algorithm makes use of thdeeeakr, an example
oracle (possibly corrupted with noise), a desired accugaeyd a boung on the advantage of the
hypothesis output by the weak learner.

A boosting algorithm that is trying to learn an unknown target funcfiomith respect to some
distribution D repeatedly simulates a (possibly noisy) example oracld faith respect to some
other distribution?’ and calls a subroutindeak With respect to this oracle, receivingveeak
hypothesiswhich mapsR" to the continuous intervat-1,1].

After repeating this for some number of stages, the boosting algorithm cosnthireweak
hypotheses generated during its various calls to the weak learner intd aggragate hypothesis
which it outputs.

Let D, D' be two distributions oveR". We say that?’ is (1/€)-smooth with respect t@ if
D'(E) < (1/¢)D(E) for all eventsE.

The following lemma from Servedio (2003) (similar results can be readilydaeleewhere,
see, e.g., Gavinsky 2003) identifies the properties that we need fromsérmpalgorithm for our
analysis.

Lemma 13 (Servedio 2003)There is a boosting algorithm B and a polynomial p such that, for
anye,y > 0, the following properties hold. When learning a target function f udig,(f, D),

we have: (a) If each call to fvak takes time t, then B takes timétl/y,1/¢). (b) The weak
learner is always called with an oracleXy (f,?’) where?’ is (1/¢)-smooth with respect t@®
andn’ <n/e. (c) Suppose that for each distributi@X, (f, ') passed to feak by B, the output

of Ayeakhas advantagg. Then the final output h of B satisfiBgcp[h(x) # f(X)] <E€.

4.2 The Algorithm

Our algorithm for learning under isotropic log-concave distributions with riwal&c noise, Algo-
rithm Anmic, applies the smooth booster from Lemma 13 with the following weak learnerhwiéc
call Algorithm Anicw. (The valuecy is an absolute constant that will emerge from our analysis.)

2. For simplicity of presentation we ignore the confidence parameter efe¢h& learner in our discussion; this can be
handled in an entirely standard way.
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Algorithm Amicw:

1. Drawm= poly(n/€) examples from the oracle EXf,?’).
2. Remove all those examplés y) for which||x|| > /3nlogm.
3. Repeatedly

e find a direction (unit vectony that mzslximize%)(’y)es(w-x)2 (see Lemma 6)
o if T (xyes(W-X)2 < cdmlog?(n/e) then move on to Step 4, and otherwise
e remove fromSall examplegXx,y) for which |w- x| > cplog(n/e), and iterate again.

4. Letv = é Y (xy)esYX, and returrh defined byh(x) = %ﬁ, if [v-x| <3nlogm, andh(x) =
sgnv - x) otherwise.

4.3 The Key Claim: The Weak Learner is Effective

Our main task is to analyze the weak learner. Given the following Lemma, &me2rwill be an
immediate consequence of Lemma 13.

Lemma 14 Suppose Algorithm fcw is run usingEX,, (f,2’) where f is an origin-centered half-
space,?’ is (1/¢)-smooth w.rt. an isotropic log-concave distributidh, n’ < n/e, andn <

Q(£3/log?(n/g)). Then w.h.p. the hypothesis h returned ky.f has advantag® (W(Zn/s)) .

Before proving Lemma 14, we need to prove some uniformity results on aisy-examples
drawn from an isotropic, log-concave distribution. This will enable us auglier removal and
averaging to find a weak learner.

4.4 Lemmas in Support of Lemma 14

In this section, let us consider a single call to the weak learner with an deagléf, D’) where?’
is (1/€)-smooth with respect to an isotropic log-concave distributibandn’ < n/e. Our analysis
will follow the same basic steps as Section 3.

A preliminary observation is that w.h.p. all clean examples drawn in Step 1 afithgn Amicw
have||x|| < /3nlogm; indeed, for any given draw affrom 2, the probability thal{x|| > \/3nlogm
is at most_>; by Lemma 5 together with the fact thdl' is 1/e-smooth with respect to an i.l.c.
distribution. Therefore, w.h.p., only noisy examples are removed in Steth2 algorithm, and we
shall assume that the distributiofisand?’ are in fact supported entirely dix : ||x|| < /3nlogm}.
This assumption affects us in two ways: first, it costs us an additiﬁaah the failure probability
analysis below (which is not a problem and is in fact swallowed up by oun.pp notation).
Second, it means that the overalt £ accuracy bound we establish for the entire learning algorithm
may be slightly worse than the true value. This is because our final hyotinay always be
wrong on the examplesthat havel|x|| > \/3nlogm and are ignored in our analysis; however such
examples have probability mass at m@tunder the isotropic log-concave distributidn (again
by Lemma 5), and thus the additional accuracy cost is at Fos$incee > -5, this does not affect
the overall correctness of our analysis. Note that a consequencis esgumption is that we can
just taken(x) = ziioom:

The remarks about high-probability statements and failure probabilities $ection 3.1 ap-
ply here as well, and as in Section 3 we write “w.h.p.” as shorthand for “witioability 1—

1/poly(n/e).”
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We first show that the variance @ in every direction is not too large:
Lemma 15 For anya € S" ! we have k_,[(a-x)?] = O(log?(1/¢)).

Proof. Forx chosen according t®, the distribution ofa- x is a unit variance log-concave distribu-
tion by Lemma 4. Thus, for any positive inteder

Eenl(@x)? < k2+_§k<i+1>zxgar),na-xre<i7i+1n

< k2+_i(i +1)%(1/¢) Prila-x| € (i.i+1]

IN

2+ (1/¢) i(i +172 Prijax| > i

K%+ (1/¢) i(i +1)2e 1 <K+ (1/e) - O(K%e ™)

IN

where the first inequality in the last line uses Lemmas 4 and 5.
Settingk = In(1/€) completes the proof. |

The following anticoncentration bound will be useful for proving that oleaamples drawn
from 2’ tend to be classified correctly with a large margin.

Lemma 16 Letu € S™ 1. Then

Ex-o[Ju-X|] > ¢€/8.

Proof. Clearly

Ex-n[lu-x] > (e/4) Pr [lu-x| > £/4).

Pr
X~D'
But by Lemma 5,

1 e/2
Priju-xl<e/d4] < — Prlju-x|<eg/4] < —=1/2.
M),H |_/]_€M)H | <e/4] < . /

The next two lemmas are isotropic log-concave analogues of the unifotmibdi®on Lemmas 7
and 8 respectively. The first one says that w.h.p. no dire@ibas much more variance than the
expected variance in any direction:

Lemma 17 W.h.p. over a random draw dfclean examples8anfrom D', we have

,1 n32log?¢

1 2
max { — a-x <0(){log*=+—FF——|.
aGSn71 { g (X:y)gglean( ) } ( ) < 8 \/Z )

Proof. By Lemma 15, for any € S"~* we have
Exwo[(a-%)%] = O(log?(1/¢)).
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Since as remarked earlier we may assués supported ofx : ||x|| < y/3nlogm}, we may apply
2
Lemmas 25 and 27 (see Appendix A) with functidgglefined byf; = @X)° Thjg completes the

3nlogm*

proof. [ |

The second lemma says that for a sufficiently large clean data set, w.h.pentioth has too
many examples lying too far out in that direction:

O(1)eeP(nIn(eP/¢)-+logm)

Lemma 18 For any > 0 andk > 1, if Syeanis a set off > EETIITEEy

drawn from2”, then w.h.p. we have

clean examples

max %\{x € Slean: |a-X| > B} < (1+4K) <i> e P+l

aeSn-1
Proof. Lemma 5 implies that for the original isotropic log-concave distributigrwe have

Prija-x| > ] <e P+l
X~D

Since?’ is (1/¢g)-smooth with respect t@, this implies that

Pr fla-x > B < & ©
X~ D >
In the proof of Lemma 8, we observed that the VC-dimension of
{{x:]a-x| >B} : aeR",BeR}
is O(n), so applying Lemma 28 with (5) completes the proof of this lemma. [ |

The following is an isotropic log-concave analogue of Corollary 9, estahlisthat not too
many clean examples are removed in the outlier removal step:

Corollary 19 W.h.p. over the random draw of the m-element sample S frogr{ EX), the num-
ber of clean examples removed during any one execution of the outlieved step (final substep
of Step 2) in Algorithm f\cw is at mosme® /n*.

Proof. Since the true noise ratgis assumed sufficiently small, the valge< n/¢ is at moste/4,
and thus w.h.p. the numbérnf clean examples i is at least (sayjn/2. We would like to apply
Lemma 18 withk = (n/g)®~* andp = colog(n/¢), and we may do this since we have

O(1)ee? (nin (eeP) +logm)  O(1)e(n/e)%nlogm m
TOmTr0 S (e flogm < OWIN/e < 5 <t

for a suitable fixed pol§n/€) choice ofm. Since clean points are only removed if they havex| >
B, Lemma 18 gives us that the number of clean points removed is at most

m(1+K)- %G‘B“ < m—(G/s)(n/s)CO*“

- (n/e)%

< 6me3/n’.

The following lemma is an analogue of Lemma 10; it lower bounds the numbetyp&dmmples
that are removed in the outlier removal step.
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Lemma 20 W.h.p. over the random draw of S, any time Algorithg.f executes the outlier re-
moval step it removes at Ieag%) noisy examples.

Proof. Since our ultimate goal is only to prove that the algorithm succeeds for gavhéch iso(e),
we may assume without loss of generality that the original noiserestéess tharg/4. This means
thatn’ < 1/4, and consequently a Chernoff bound gives that w.h.p. the fragtiohnoisy examples
in Sat the beginning of the weak learner’s training is at mg& JAnd Lemma 17 implies that for a
sufficiently large polynomial choice @f, we have that w.h.p. for ali € S"1, the following holds
for all the clean examples in the data before any examples were removed:

(a-x)? < cmilog?(1/¢) 6)
(X,y)eatlean

wherec is an absolute constant. We say that a random sample that meets all thessreqts is
“reasonable.” We now set the constapthat is used in the specification Afycw to be/2(c+ 1).

We will now show that, for any reasonable sam@léhe number of noisy examples removed during
the first execution of the outlier removal stepficw is at Ieas%.

If we remove examples using directionthen it meansy ,.s(w - x)? > c3mlog?(n/g). SinceS
is reasonable, by (6) the contribution to the sum from the clean exampldsat@tsurvived until
this point is at mostmlog?(1/€) so we must have

(w-x)?2 = (&~ cmlog2(n/e).
(XvY)ESjirly

Let Sy = NUF whereN is the examplegx, y) for whichx satisfiegw - x)2 < c3log?(n/e) andF
is the other points. We have

(w-x)2 < c3f'mlog?(n/e).
(x,y)eN

and so, sincélx|| < \/3nlogmimplies that(w - x)2 < 3nlogm for all unit lengthw, we have

B> oy WX g WP e (W

T iR 3nlogm G, 30l0gM - e Snlogm
. (§—cymlog’(n/e) — cii' mlog?(n/e)
B 3nlogm

miog*(n/e)

3nlogm

_m

O(n)

where the next-to-last inequality useS< 1/2 andcy = 1/2(c+ 1), and the final one uses =
O(poly(n/€)). The points inF are precisely the ones that are removed, and thus the lemma is
proved. [ |
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4.5 Proof of Lemma 14

We first note that Lemma 20 implies that w.h.p. the weak learner must terminatataftestO(n)
iterations of outlier removal.

Let u be the unit length normal vector of the separating halfspace for the tangetion f.
Recall that we have assumed without loss of generality| hiat< \/3nlogmfor all x in the training
set, so that|v|| < v/3nlogm, and thus the advantage ofvith respect ta?’ can be expressed as

Ex~ar[(V-X) f(X)]
3nlogm

Ex~o [N(X) F(X)] = ()

and so we shall work on lower boundiig..o (V- Xx) f(X)].
As in the proof of Lemma 12, let

e Siean be all of the clean examples in the initial sam@eand S, be those that are not
removed in any stage of outlier removal;

* Sy be all of the dirty examples in the initial samBgeandS;;,, be those that are not removed
in any stage of outlier removal;

e n= \sd‘gdmé(‘, L that is, the noise rate among the examples that survive until the end ofdrainin

of the weak Iearner, and

e 0= ‘|SSC,C'|9'°‘"U§Z'%A‘, the ratio of the number of clean points that were erroneously removed to the
ean irty
size of the final surviving data set.

As before we writeS for §;e5,U Sjiny- Als0 as before, letcean be the average @l the clean
examples,\/girty be the average of the dirty (noisy) examples that were not deleted;qarink the
average of the clean examples that were deleted. Then arguing exdo#ifoes, we have

= (1-n"+a)Veleant N'Vgirty — AVdel.
The expectation ofeanWill play a special role in the analysis:

% def
Velean = EX~@/[f (X)X]-

Once again, we will demonstrate the limited effeclvgfty by bounding its length. This time,
the outlier removal enforces the fact that, for amg S"~1, we have

S (wex)? < miog*(n/e)
(x,y)eS

Applying this for the unit vectow in the direction ofvOIIrty as was done in Lemma 12, this implies

V|| < colog(n/e)
dirty |Sd|rw

Next, let us apply this to bound an expression that captures the averagelbne bwgirty.
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|Ex~@’[f (X) (V:jirty : X)H = |Véiirty 'VéleaA

IN

colog(n/e) |,Sdm\vé|ear4\. (8)
irty

To show that/ciean plays a relatively large role, it is helpful to lower bound the lengthipf,
We do this by lower bounding the length of its projection onto the unit normabvemf the target
as follows:

Velean' U = Exwor[(F(X)X) - U] = Expr[sgN(U - X) (X~ U)] = Ex~or[[X- U] = €/8,

by Lemma 16. Since is unit length, this implies

[IVetean | = €/8. 9)
Armed with this bound, we can now lower bound the benefit imparted by
1
Ezoo[f(2)(Velean-2)] = s >  Erolyf(2)(x-2)]
lean (X,Y) €ESlean
1

= (yx) : Véle
&Iean (XsY)gS;Iean -

SINCEE[(YX) - Viiead = ||Vijead |2 @NA(YX) - Vijean€ [—3nlogm, 3nlogm], a Hoeffding bound implies
that w.h.p.

Ezor[f(2) (Vetean2)] = |Vijeard|* — O(nlog®Zm) /v/[Suiearl-

Since the noise ratg’ is at mostn /e andn certainly less thar/4 as discussed above, another
Hoeffding bound gives that w.h.[&;ear is at leasim/2; thus for a suitably large polynomial choice
of m, using (9) we have

vE 2
Eo17[1(2) (Voo 2)] > | Viead ? ~ Onlog?2my /2> Meteanl” )
Now we are ready to put our bounds together and lower bound the adeaofv. We have
EXNQ’[f (X) (V ’ X)] = (1 - r]/ + G)E[f (X) (Vclean‘ X)]
+N'E[f(X) (Vainy - X)] — QE[f (X) (Vatel - X)].

We bound each of the three contributions in turn. First, usirgnl > 1/2 and (10), we have

(11 + Q[ f (X) (Votean %)) > [esail”
Next, by (8), we have

IN'Exea [ (%) (Vainy - X)]| < Colog(n/e) /20| [Vgieal -

Since we may assume thai< c'e3/log?(n/¢) for as small a fixed constantas we like (recall the
overall bound of Theorem 2), we get

COIOQ(n/e) \/ZT],‘ |Vzlear“ < (8/64) ’ |Vzlear”
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(for a suitably small constant choice d§, and this is less thaﬁ"é'g#“Hz since||Veard| = /8.

Finally Corollary 19, together with the fact that there are at n@@t) iterations of outlier
removal and the final surviving data set is of size at le@&gt, gives us thadt < %723/”4), which
(recalling that bothvge and allx in the support of’ have norm at mos{/3nlogm) means that
|aE[f (x) (Vael-X)]| = O(€?).

Combining all these bounds, we get

2 2
HvébaA| __‘|VaeaA| ——0(82)3> g
4 8

, -X)] >
Ex~or[f(X)(V-X)] > = 1024
by (9). Together with (7), the proof of Lemma 14 is completed.

5. Learning Under Isotropic Log-concave Distributions with Adversarial Label Noise

In this section, we consider the model where an adversary can chamgectass labels, but cannot
otherwise modify examples.

5.1 The Model

We now define the model of learning with adversarial label noise undi&ofso log-concave dis-
tributions. In this model the learning algorithm has access to an oracle thatles independent
random examples drawn according to a fixed distribuBam R" x {—1,1}, where

e the marginal distribution oveR" is isotropic log-concave, and
e there is a halfspace such that Ry ) .p[f(X) # Y] =n.

The parameten is thenoise rate As usual, the goal of the learner is to output a hypothiesis
such that Ry y).p[h(x) # y] < & if an algorithm achieves this goal, we say it learns to accuracy
1—¢in the presence of adversarial label noise at nate

5.2 The Algorithm

Like the algorithmAmc considered in the last section, the algoritiAg, studied in this section
applies the smooth boosting algorithm of Lemma 13 to a weak learner thatrperdeeraging. The
weak learne”gcw behaves as follows:

Algorithm Agjew:
1. Draw a sef of mexamples according & (the oracle for a modified distribution provided
by the boosting algorithm).
2. Remove all examples,y) such that|x|| > y/3nlogmfrom S.
3. Letv = % Y (xy)esYX. Return the confidence-rated classitiedefined byh(x) VX jf

~ 3nlogm
[v-x| < 3nlogm, andh(x) = sgn(v - x) otherwise.

5.3 Claim About the Weak Learner

As in the previous section, the heart of our analysis will be to analyze thak lgarner. We omit
discussing the application of the smooth boosting algorithm here, as it is indamljcal to Section
4.

2733



KLIVANS, LONG AND SERVEDIO

Lemma 21 Suppose Algorithm 4 is run using P as the source of labeled examples, where P
is a distribution that is(1/€)-smooth with respect to a joint distribution P & x {—1,1} whose
marginal 2’ on R" is isotropic and log-concave. Further, assume there exists a linearhbies
function f such thaPry).p[f(X) #y] <n/e andn < Q(Iog(l/s)) Then with high probability,

Aaicw OUtputs a hypothesis with advanta@énlog ) )

5.4 Lemmas in Support of Lemma 21

During this section, let us focus our attention on a single call to the weakeleatret P’ be a
distribution as in Lemma 21 and I be the marginal oR". We observe that sind® is (1/¢)-
smooth with respect tB, the marginat?y’ of P’ is (1/€)-smooth with respect to the marginal of
P.

As in Section 4, we may assume that the supporfDofies entirely onx such that||x|| <
v/3nlogm (this negligibly affects the final bounds obtained in our analyses).

The following technical lemma will be used to limit the extent to which the distribuBocan
concentrate a lot of noise in one direction.

Lemma 22 Let E be any event with positive probability undef, and letk = 2'(E). For any unit
lengtha € R", Expy[|a-X| | E] =O(log1).

Proof. Let B be such that Rr.4y[|a- x| > B] = k. By Lemmas 4 and 5, together with the fact txt
is (1/€) smooth with respect t®, we have

K < }e‘B+1
~ ¢

which impliesp < 1+In ().

Let F be the event thgta- x| > B. We will show thatE,.sy[|a-X| | E] < Ex_p[|a-x| | F], and
then boundey. o [|a-x| | F]. If Pri(E—F)U(F —E)] =0, then, obviouslyEx.x[|a-x| | E] =
Ex-p|[|la-X| | F]. Suppose R(E —F)U (F —E)] > 0. Then

Ex~o[a-x[ | E]
=Ex-p[la-X| | ENF]PIENF]+Ex.p[la-x| | E—F]PrE —F]
=Ex.o[la-x| | ENF]PIENF]+Ex o (la-x| | E—F]Pr{F — E]
(because PE| = Pr{F])
< Exo[la-x[[ENF]PIENF]+Ex.ov[la-x| | F — E]P{F —E],

because for every € E — F and every’ € F —E,
la-x| <B<a-X|.
But
Ex~o[la-x[[ENF]PIENF]+Ex.p[la-x| [ F —E]PF —E] = Ex.p[|a-X| | F],

SO
Ex~ZYHa'X|’E]<:Ex~iﬂﬂa'x|‘F]' (11)
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Now, settingb = [B|, we have

Eenl@x |Fl < gy 3 0+0) Prlaxe it
< @,lF) gb(i +1)e—i+1
1 e b
- @%F)(O< : >>
= O(b),
since?’(F) = ©(e /g). Combining with (11) completes the proof. |

5.5 Proof of Lemma 21

Fix some halfspacé such that Ry \).p[f(X) # y] = n, and letu be the unit normal vector of its
separating hyperplane.
Let P’ be the joint distribution given tégcw and let?’ be its marginal orR". As noted in the
previous subsectior?)’ is (1/€)-smooth with respect to the original marginal distributidrof P.
First, we bound the advantage of the hypothésisth respect td® in terms of the tendency of
h to agree with the best linear functidn

E xy)~p [N(X)Y] = Exy)op [h(X) F(X)] =N = Exear [(X) £ (X)] = 1. (12)

Furthermore, as we have assumed without loss of generality{xfiat /3nlogm for all exam-
ples in the training set, and therefore that| < /3nlogm, we have

f(X)(X~V)}

3nlogm (13)

QWWWWF&w{

so we will work on boundinde...o [ f (X) (X V)].
Let P, be obtained by conditioning a random dréxyy) from P’ on the event that (x) =y.

DefinePy;,, analogously, and leDy.,,and Dy, be the corresponding marginals BA. Let
Véirty - E(x,,y)rvPc’jirty [yx]
Veorreet: = Exear[f(X)X].

Note that the linearity of expectation implies that

1

EXND’[f (X) (X ’ V)] = (EXNZ)’[f (X) (X)D V= Véorrect' V= m z Vzorrect' (yx) (14)

(x,y)eS

Equation (14) expressés,..o [f(X)(X- V)], which is closely related to the advantagehahrough
(13) and (12), as a sum of independent random variables, onad¢brexample. We will bound
Ex-o [T (X)(X- V)] by bounding the expected effect of a random example on its value, qhydrap
a Hoeffding bound.
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Letn’ = Pry)~p[f(X) #Y]. SinceP’ is 1/e-smooth with respect tB, we haven’ <n/e. We
can rearrange the effect of a random example as follows
E(x7y)~P’[Véorrect' (yx)] = (l ﬂ) (xwa’[ correct( (X)X)| ( )]
+n E( ~P’[ correct' (— F(X)X)|y # ()]
= (1 f]) (xy~P’[ correct( (X)X)| ( )]
+n E(xwa’[ correct’ ( ( ) )|Y7é f(X)]
—n E(xy ~P’[ correct’ ( (X)X)|y7'é f(X)]
+Nn E(xy P’[ correct’ ( f(X) )‘Y# f(X)]. (15)
Since

E(x,y)NP’ [Véorrect' ( f (X)X)]
= r]/E(x,y)NP’ [Véorrect' (f (X)X) ‘y 7é f (X)] + (1 - r]/)E(x7y)~P’ [Véorrect' (f (X)X) ’y = f (X)]a
by replacing the first two terms of (15) with y)p [Véorrecr ( f(X)X)], we get

E(X7Y)~P’ Veorreer (YX)] = E(x,y)NP/ [Vaorreet: (F(X)X)]
_r]/E(va)NP’ Veorrect (F(X)X)]y # f(X)]
+r]/E(X7y)~P’ Veorrect: (— F(X)X) |y # f(x)]
= Exy~r Veorrect: (F(X)X)]
_Zn,E(XN)NP’ [Veorrecr (F(X)X)]y # f(X)].
Twice applying the linearity of expectation, we get

E(x,y)NP' [Vzorrect' (yx)] = ||Véorrect| ‘2 - 2n/E(x,y)~P' [Véorrect' (f(X)X) |y 7£ f(X)]
| IVeorrect ‘2 — 2n'Veorrect: Véirty
> [Veorreed I = 20 [IVéormect | - Vi |
> §| |Véorrect| |2 - 4('1')2| |Véirty| |27

The last line follows from the fact thaf — qr > (g7 —r?)/2 for all realq,r.

So now our goals are a lower bound |0/ ec{| and an upper bound gV, |-

We can lower boundlv,.{| essentially the same way we did before, by lower bounding its
projection onto the “target” normal vectar

Veorreet U = E(x,y)~P’[( f(x)x)-u] = Exy)~pP [sgn(u-x)(x-u)] = E(x,y)NP'HX -ul] >€/16, (16)

by Lemma 16.
We upper boundlvg; || as follows:

2
HvéirtyH = Véiﬂy EXNfdey F(x)x]

dlrty
= HVéirty‘ | XN@dmy [ ( ’ ‘dety‘ ‘ ) . (X>)X]
dlrty
< HVSirtyH XN@dlrty ” ( Hlerty’ ‘ ) | ]

< HvdlrtyHO(IOg 1/ ﬂ'E)
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by Lemma 22. Thu§vg, || < O(log(1/(n’e))).
Combining this with (16) and (14) we have that if

n'v/log(1/(n’e) < ce?

for a suitably small constamt thenEy_4[f(x)(x-V)] is a sum ofmi.i.d. random variables, each
with mean at leas®(£?), and coming from an interval of lengt(nlogm). Applying the standard
Hoeffding bound, polynomially many examples suffice BQr.q [ f (x)(x - v)] > Q(€2). Combining
with (13) and (12) completes the proof.

6. Conclusion

Our algorithms use boosting together with a confidence-rated weak lehatgrerform a simple
averaging of labeled examples. As shown in earlier work (Servedi®,Z@03) there are close
connections between such an approach and the Perceptron algorieems likely that the Per-
ceptron could be used as an alternative to boosting and averaging ifgotitrens; it would be
interesting to see if a Perceptron-based approach has any theoreticapivical advantages over
the algorithms we give in this paper.

More generally, there are relatively few algorithms for learning interegiagses of functions
in the presence of malicious noise. We hope that our results will help lead ttetledopment of
more efficient algorithms for this challenging noise model.

As a challenge for future work, we pose the following question: do thedst eomputationally
efficient algorithms for learning halfspaces unddbitrary distributions in the presence of malicious
noise? As of now no better results are known for this problem than theigenaversions of Kearns
and Li (1993), which can be applied to any concept class. We feedtleata small improvement in
the malicious noise rate that can be handled for halfspaces would be imtezgsting result.
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Appendix A. Proof of Lemma 7

Let us start with a couple of definitions and a couple of bounds from thatites.

Definition 23 (VC-dimension) A set F of{ —1,1}-valued functions defined on a common domain
X shatters«, ..., Xq if every sequenceyy...,yq € {—1,1} of function values has a function f such
that f(xq) =vi,..., f(x4) = yg. The VC-dimension of F is the size of the largest set shattered by F.

Definition 24 (pseudo-dimension)For a set F of real-valued functions defined on a common do-
main X, thepseudo-dimensioaf F is the VC-dimension dsign(f(-) —0): f € F,8 € R}.

Lemma 25 (Pollard 1984; Talagrand 1994)Let F be a set of real-valued functions defined on a

common domain X taking values i@, 1], and let d be the pseudo-dimension of F. [Zebe a
probability distribution over X. Then if1x..., Xy are obtained by drawing m times independently
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according toD, for anyd > 0,

Prlaf e F,iélf(xs) > E@[f]+C\/d+lor?](1/&] <3,

where ¢> 0 is an absolute constant.
Lemma 26 (see Blumer et al. 1989 he VC-dimension of unions of two halfspaces (8)O

Now, let us bound the pseudo-dimension of the class of functions tha¢eg: n

Lemma 27 Let F, consist of the functions f froR" to R which can be defined by(X) = (a- x)?
for somea € R". The pseudo-dimension of 5 at most @n).

Proof. According to the definition, the pseudo dimensiorFgis the VC-dimension of the s&p,
of {—1,1}-valued functionsy, ¢ defined bygag(x) = sign((a-x)2 — 6). Eachga e is equivalent to
an OR of two halfspaces:
a-x>v0 OR (—a)-x>6.
Thus the VC-dimension d&, is at most the VC-dimension of the class of all ORs of two halfspaces.
Applying Lemma 26 completes the proof. |

Applying Lemmas 25 and 27, we obtain Lemma 7.

Appendix B. Proof of Lemma 8

We will use the following, which strengthens bounds like Lemma 25 when thecéajions being
estimated are small. It differs from most bounds of this type by providingpeaally strong bound
on the probability that the estimates anecchlarger than the true expectations.

Lemma 28 (Bshouty et al. 2009)Suppose F is a set di0,1}-valued functions with a common
domain X. Let d be the VC-dimension of F. iethe a probability distribution over X. Choose
o >0and K> 4. Then if
c(dlog2 +logg)
aKlogK

)
where c is an absolute constant, then

Pr [3f € F, Ep(f) <abutEy(f) > Ka] <3,

u~pm

whereE,(f) = 2 5M, f(u).

m

To prove Lemma 8, we first use the fact that, for any fizeddS"~* andp > 0, it is known (see

Kalai et al. 2008) that ,
Pr [la-x| > B] < e P2
xesn-1
Further, as in the proof of Lemma 7, we have that
la-x| >pB ifandonlyif a-x>BOR(—a)-x>f,

so that the set of events whose probabilities we need to estimate is containedét tf unions of
pairs of halfspaces. Applying Lemma 26 and Lemma 28 completes the proof.
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