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Abstract
We address the problem of estimating the ratio of two probability density functions, which is often
referred to as theimportance. The importance values can be used for various succeeding tasks
such ascovariate shift adaptationor outlier detection. In this paper, we propose a new importance
estimation method that has a closed-form solution; the leave-one-out cross-validation score can also
be computed analytically. Therefore, the proposed method is computationally highly efficient and
simple to implement. We also elucidate theoretical properties of the proposed method such as the
convergence rate and approximation error bounds. Numerical experiments show that the proposed
method is comparable to the best existing method in accuracy, while it is computationally more
efficient than competing approaches.
Keywords: importance sampling, covariate shift adaptation, noveltydetection, regularization
path, leave-one-out cross validation

1. Introduction

In the context ofimportance sampling(Fishman, 1996), the ratio of two probability density func-
tions is called theimportance. The problem of estimating the importance is attracting a great deal of
attention these days since the importance can be used for various succeeding tasks such ascovariate
shift adaptationor outlier detection.

Covariate Shift Adaptation: Covariate shift is a situation in supervised learning where
the distributions of inputs change between the training and test phases but the con-
ditional distribution of outputs given inputs remains unchanged (Shimodaira,2000;
Quiñonero-Candela et al., 2008). Covariate shift is conceivable in many real-world

∗. A MATLAB R© or R implementation of the proposed importance estimation algo-
rithm, unconstrained Least-Squares Importance Fitting (uLSIF), is available from
http://sugiyama-www.cs.titech.ac.jp/ ∼sugi/software/uLSIF/ .
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applications such as bioinformatics (Baldi and Brunak, 1998; Borgwardt et al., 2006),
brain-computer interfaces (Wolpaw et al., 2002; Sugiyama et al., 2007), robot control
(Sutton and Barto, 1998; Hachiya et al., 2008), spam filtering (Bickel and Scheffer,
2007), and econometrics (Heckman, 1979). Under covariate shift, standard learning
techniques such as maximum likelihood estimation or cross-validation are biasedand
therefore unreliable—the bias caused by covariate shift can be compensated by weight-
ing the loss function according to the importance (Shimodaira, 2000; Zadrozny, 2004;
Sugiyama and M̈uller, 2005; Sugiyama et al., 2007; Huang et al., 2007; Bickel et al.,
2007).

Outlier Detection: The outlier detection task addressed here is to identify irregular
samples in a validation data set based on a model data set that only contains regular
samples (Scḧolkopf et al., 2001; Tax and Duin, 2004; Hodge and Austin, 2004; Hido
et al., 2008). The values of the importance for regular samples are close toone, while
those for outliers tend to be significantly deviated from one. Thus the valuesof the
importance could be used as an index of the degree of outlyingness.

Below, we refer to the two sets of samples as thetraining set and thetestset.
A naive approach to estimating the importance is to first estimate the training and test density

functions from the sets of training and test samples separately, and then take the ratio of the esti-
mated densities. However, density estimation is known to be a hard problem particularly in high-
dimensional cases if we do not have simple and good parametric density models(Vapnik, 1998;
Härdle et al., 2004). In practice, such an appropriate parametric model maynot be available and
therefore this naive approach is not so effective.

To cope with this problem, direct importance estimation methods which do not involve den-
sity estimation have been developed recently. Thekernel mean matching(KMM) method (Huang
et al., 2007) directly gives estimates of the importance at the training inputs by matching the two
distributions efficiently based on a special property ofuniversal reproducing kernel Hilbert spaces
(Steinwart, 2001). The optimization problem involved in KMM is a convex quadratic program, so
the unique global optimal solution can be obtained using a standard optimization software. How-
ever, the performance of KMM depends on the choice of tuning parameters such as the kernel pa-
rameter and the regularization parameter. For the kernel parameter, a popular heuristic of using the
median distance between samples as the Gaussian width could be useful in somecases (Scḧolkopf
and Smola, 2002; Song et al., 2007). However, there seems no strong justification for this heuristic
and the choice of other tuning parameters is still open.

A probabilistic classifier that separates training samples from test samples can be used for di-
rectly estimating the importance, for example, alogistic regression(LogReg) classifier (Qin, 1998;
Cheng and Chu, 2004; Bickel et al., 2007). Maximum likelihood estimation of LogReg models
can be formulated as a convex optimization problem, so the unique global optimalsolution can be
obtained. Furthermore, since the LogReg-based method only involves a standard supervised clas-
sification problem, the tuning parameters such as the kernel width and the regularization parameter
can be optimized based on the standard cross-validation procedure. Thisis a very useful property
in practice.

TheKullback-Leibler importance estimation procedure(KLIEP) (Sugiyama et al., 2008b; Nguyen
et al., 2008) also directly gives an estimate of the importance function by matching the two distribu-
tions in terms of the Kullback-Leibler divergence (Kullback and Leibler, 1951). The optimization
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problem involved in KLIEP is convex, so the unique global optimal solution—which tends to be
sparse—can be obtained, when linear importance models are used. In addition, the tuning parame-
ters in KLIEP can be optimized based on a variant of cross-validation.

As reviewed above, LogReg and KLIEP are more advantageous than KMM since the tuning
parameters can be objectively optimized based on cross-validation. However, optimization proce-
dures of LogReg and KLIEP are less efficient in computation than KMM dueto high non-linearity
of the objective functions to be optimized—more specifically, exponential functions induced by the
LogReg model or the log function induced by the Kullback-Leibler divergence. The purpose of
this paper is to develop a new importance estimation method that is equipped with a build-in model
selection procedure as LogReg and KLIEP and is computationally more efficient than LogReg and
KLIEP.

Our basic idea is to formulate the direct importance estimation problem as a least-squares
function fitting problem. This formulation allows us to cast the optimization problem as a con-
vex quadratic program, which can be efficiently solved using a standard quadratic program solver.
Cross-validation can be used for optimizing the tuning parameters such as thekernel width or the
regularization parameter. We call the proposed methodleast-squares importance fitting(LSIF).
We further show that the solutions of LSIF is piecewise linear with respect totheℓ1-regularization
parameter and the entire regularization path (that is, all solutions for different regularization pa-
rameter values) can be computed efficiently based on theparametric optimization technique(Best,
1982; Efron et al., 2004; Hastie et al., 2004). Thanks to this regularization path tracking algorithm,
LSIF is computationally efficient in model selection scenarios. Note that in the regularization path
tracking algorithm, we can trace the solution path without a quadratic programsolver—we just need
to compute matrix inverses.

LSIF is shown to be efficient in computation, but it tends to share a common weakness of reg-
ularization path tracking algorithms, that is,accumulation of numerical errors(Scheinberg, 2006).
The numerical problem tends to be severe if there are many change points inthe regularization
path. To cope with this problem, we develop an approximation algorithm in the sameleast-squares
framework. The approximation version of LSIF, which we callunconstrained LSIF(uLSIF), allows
us to obtain the closed-form solution that can be computed just by solving a system of linear equa-
tions. Thus uLSIF is numerically stable when regularized properly. Moreover, the leave-one-out
cross-validation score for uLSIF can also be computed analytically (cf. Wahba, 1990; Cawley and
Talbot, 2004), which significantly improves the computational efficiency in model selection scenar-
ios. We experimentally show that the accuracy of uLSIF is comparable to the best existing method
while its computation is faster than other methods in covariate shift adaptation andoutlier detection
scenarios.

Our contributions in this paper are summarized as follows. A proposed density-ratio estima-
tion method, LSIF, is equipped with cross-validation (which is an advantage over KMM) and is
computationally efficient thanks to regularization path tracking (which is an advantage over KLIEP
and LogReg). Furthermore, uLSIF is computationally even more efficient since its solution and
leave-one-out cross-validation score can be computed analytically in a stable manner. The proposed
methods, LSIF and uLSIF, are similar in spirit to KLIEP, but the loss functions are different: KLIEP
uses the log loss while LSIF and uLSIF use the squared loss. The difference of the log functions
allows us to improve computational efficiency significantly.

The rest of this paper is organized as follows. In Section 2, we proposea new importance
estimation procedure based on least-squares fitting (LSIF) and show its theoretical properties. In
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Section 3, we develop an approximation algorithm (uLSIF) which can be computed efficiently. In
Section 4, we illustrate how the proposed methods behave using a toy data set.In Section 5, we dis-
cuss the characteristics of existing approaches in comparison with the proposed methods and show
that uLSIF could be a useful alternative to the existing methods. In Section 6, we experimentally
compare the performance of uLSIF and existing methods. Finally in Section 7,we summarize our
contributions and outline future prospects. Those who are interested in practical implementation
may skip the theoretical analyses in Sections 2.3, 3.2, and 3.3.

2. Direct Importance Estimation

In this section, we propose a new method of direct importance estimation.

2.1 Formulation and Notation

LetD ⊂ (Rd) be the data domain and suppose we are given independent and identically distributed
(i.i.d.) training samples{xtr

i }ntr
i=1 from a training distribution with densityptr(x) and i.i.d. test samples

{xte
j }nte

j=1 from a test distribution with densitypte(x):

{xtr
i }ntr

i=1
i.i.d.∼ ptr(x),

{xte
j }nte

j=1
i.i.d.∼ pte(x).

We assume that the training density is strictly positive, that is,

ptr(x) > 0 for all x∈D.

The goal of this paper is to estimate theimportance w(x) from {xtr
i }ntr

i=1 and{xte
j }nte

j=1:

w(x) =
pte(x)
ptr(x)

,

which is non-negative by definition. Our key restriction is that we want to avoid estimating densities
pte(x) andptr(x) when estimating the importancew(x).

2.2 Least-squares Approach to Direct Importance Estimation

Let us model the importancew(x) by the following linear model:

ŵ(x) =
b

∑
ℓ=1

αℓϕℓ(x), (1)

whereα = (α1,α2, . . . ,αb)
⊤ are parameters to be learned from data samples,⊤ denotes the transpose

of a matrix or a vector, and{ϕℓ(x)}bℓ=1 are basis functions such that

ϕℓ(x)≥ 0 for all x∈D and forℓ = 1,2, . . . ,b.

Note thatb and{ϕℓ(x)}bℓ=1 could be dependent on the samples{xtr
i }ntr

i=1 and{xte
j }nte

j=1, for example,

kernel models are also allowed. We explain how the basis functions{ϕℓ(x)}bℓ=1 are chosen in
Section 2.5.
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We determine the parameters{αℓ}bℓ=1 in the modelŵ(x) so that the following squared errorJ0

is minimized:

J0(α) =
1
2

Z

(ŵ(x)−w(x))2 ptr(x)dx

=
1
2

Z

ŵ(x)2ptr(x)dx−
Z

ŵ(x)w(x)ptr(x)dx+
1
2

Z

w(x)2ptr(x)dx

=
1
2

Z

ŵ(x)2ptr(x)dx−
Z

ŵ(x)pte(x)dx+
1
2

Z

w(x)2ptr(x)dx,

where in the second term the probability densityptr(x) is canceled with that included inw(x).
The squared lossJ0(α) is defined as the expectation under the probability of training samples. In
covariate shift adaptation (see Section 6.2) and outlier detection (see Section 6.3), the importance
values on the training samples are used. Thus, the definition ofJ0(α) well agrees with our goal.

The last term ofJ0(α) is a constant and therefore can be safely ignored. Let us denote the first
two terms byJ:

J(α) =
1
2

Z

ŵ(x)2ptr(x)dx−
Z

ŵ(x)pte(x)dx

=
1
2

b

∑
ℓ,ℓ′=1

αℓαℓ′

(
Z

ϕℓ(x)ϕℓ′(x)ptr(x)dx

)
−

b

∑
ℓ=1

αℓ

(
Z

ϕℓ(x)pte(x)dx

)

=
1
2

α⊤Hα−h⊤α, (2)

whereH is theb×b matrix with the(ℓ,ℓ′)-th element

Hℓ,ℓ′ =
Z

ϕℓ(x)ϕℓ′(x)ptr(x)dx, (3)

andh is theb-dimensional vector with theℓ-th element

hℓ =
Z

ϕℓ(x)pte(x)dx.

Approximating the expectations inJ by empirical averages, we obtain

Ĵ(α) =
1

2ntr

ntr

∑
i=1

ŵ(xtr
i )2− 1

nte

nte

∑
j=1

ŵ(xte
j )

=
1
2

b

∑
ℓ,ℓ′=1

αℓαℓ′

(
1
ntr

ntr

∑
i=1

ϕℓ(x
tr
i )ϕℓ′(x

tr
i )

)
−

b

∑
ℓ=1

αℓ

(
1

nte

nte

∑
j=1

ϕℓ(x
te
j )

)

=
1
2

α⊤Ĥα− ĥ
⊤

α,

whereĤ is theb×b matrix with the(ℓ,ℓ′)-th element

Ĥℓ,ℓ′ =
1
ntr

ntr

∑
i=1

ϕℓ(x
tr
i )ϕℓ′(x

tr
i ), (4)
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andĥ is theb-dimensional vector with theℓ-th element

ĥℓ =
1

nte

nte

∑
j=1

ϕℓ(x
te
j ). (5)

Taking into account the non-negativity of the importance functionw(x), we can formulate our opti-
mization problem as follows.

min
α∈Rb

[
1
2

α⊤Ĥα− ĥ
⊤

α+λ1⊤b α
]

subject toα≥ 0b, (6)

where 0b and 1b are theb-dimensional vectors with all zeros and ones, respectively; the vector
inequalityα≥ 0b is applied in the element-wise manner, that is,αℓ≥ 0 for ℓ = 1,2, . . . ,b. In Eq. (6),
we included a penalty termλ1⊤b α for regularization purposes, whereλ (≥ 0) is a regularization
parameter. The above is a convex quadratic programming problem and therefore the unique global
optimal solution can be computed efficiently by a standard optimization package.We call this
methodLeast-Squares Importance Fitting(LSIF).

We can also use theℓ2-regularizerα⊤α instead of theℓ1-regularizer 1⊤b α without changing the
computational property. However, using theℓ1-regularizer would be more advantageous since the
solution tends to be sparse (Williams, 1995; Tibshirani, 1996; Chen et al., 1998). Furthermore, as
shown in Section 2.6, the use of theℓ1-regularizer allows us to compute the entire regularization
path efficiently (Best, 1982; Efron et al., 2004; Hastie et al., 2004). Theℓ2-regularization method
will be used for theoretical analysis in Section 3.3.

2.3 Convergence Analysis of LSIF

Here, we theoretically analyze the convergence property of the solutionα̂ of the LSIF algorithm;
practitioners may skip this theoretical analysis.

Let α̂(λ) be the solution of the LSIF algorithm with regularization parameterλ, and letα∗(λ)
be the optimal solution of the ‘ideal’ problem:

min
α∈Rb

[
1
2

α⊤Hα−h⊤α+λ1⊤b α
]

subject toα≥ 0b. (7)

Below, we theoretically investigate thelearning curve(Amari et al., 1992) of LSIF, that is, we
elucidate the relation betweenJ(α̂(λ)) andJ(α∗(λ)) in terms of the expectation over all possible
training and test samples as a function of the number of samples.

Let E be the expectation over all possible training samples of sizentr and all possible test sam-
ples of sizente. LetA ⊂ {1,2, . . . ,b} be the set ofactiveindices (Boyd and Vandenberghe, 2004),
that is,

A = {ℓ | α∗ℓ(λ) = 0, ℓ = 1,2, . . . ,b}.
For the active setA = { j1, j2, . . . , j|A |}with j1 < j2 < · · ·< j|A |, letE be the|A |×b indicator matrix
with the(i, j)-th element

Ei, j =

{
1 j = j i ,

0 otherwise.
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Similarly, let Â be the active set of̂α(λ):

Â = {ℓ | α̂ℓ(λ) = 0, ℓ = 1,2, . . . ,b}.

For the active set̂A = { ĵ1, ĵ2, . . . , ĵ|Â|}with ĵ1 < ĵ2 < · · ·< ĵ|Â |, let Ê be the|Â |×b indicator matrix

with the(i, j)-th element similarly defined by

Êi, j =

{
1 j = ĵ i ,

0 otherwise.
(8)

First, we show the optimality condition of (6) which will be used in the following theoretical
analyses. TheLagrangianof the optimization problem (6) is given as

L(α,ξ) =
1
2

α⊤Ĥα− ĥ
⊤

α+λ1⊤b α−ξ⊤α,

whereξ is the b-dimensionalLagrange multipliervector. Then theKarush-Kuhn-Tucker (KKT)
conditions(Boyd and Vandenberghe, 2004) are expressed as follows:

Ĥα− ĥ+λ1b−ξ = 0b, (9)

α≥ 0b,

ξ≥ 0b,

ξℓαℓ = 0 for ℓ = 1,2, . . . ,b. (10)

Let ξ̂
′
(λ) be the|Â |-dimensional vector with thei-th element being thêj i-th element of̂ξ(λ):

ξ̂′i(λ) = ξ̂ ĵ i
(λ), i = 1, . . . , |Â|. (11)

We assume that̂ξ
′
(λ) only contains non-zero elements ofξ̂(λ). Let Ĝ be

Ĝ =

(
Ĥ −Ê

⊤

−Ê O|Â |×|Â|

)
,

whereO|Â |×|Â| is the|Â |× |Â|matrix with all zeros. Then Eqs. (9) and (10) are together expressed
in a matrix form as

Ĝ

(
α̂(λ)

ξ̂
′
(λ)

)
=

(
ĥ−λ1b

0|Â |

)
. (12)

Regarding the matrix̂G, we have the following lemma:

Lemma 1 The matrixĜ is invertible ifĤ is invertible.

The proof of the above lemma is given in Appendix A. Below, we assume thatĤ is invertible.

Then the inverse of̂G exists and multiplyinĝG
−1

from the left-hand side of Eq. (12) yields
(

α̂(λ)

ξ̂
′
(λ)

)
= Ĝ

−1
(

ĥ−λ1b

0|A |

)
. (13)
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The following inversion formula holds for block matrices (Petersen and Pedersen, 2007):
(

M1 M2

M3 M4

)−1

=

(
M−1

1 +M−1
1 M2M−1

0 M3M−1
1 −M−1

1 M2M−1
0

−M−1
0 M3M−1

1 M−1
0

)
, (14)

where
M0 = M4−M3M−1

1 M2.

Applying Eq. (14) to Eq. (13), we have

α̂(λ) = Â(ĥ−λ1b), (15)

whereÂ is defined by

Â = Ĥ
−1− Ĥ

−1
Ê
⊤
(ÊĤ

−1
Ê
⊤
)−1ÊĤ

−1
. (16)

When the Lagrange multiplier vector satisfies

ξ∗ℓ(λ) > 0 for all ℓ ∈ A , (17)

we say that thestrict complementarity conditionis satisfied (Bertsekas et al., 2003). An important
consequence of strict complementarity is that the optimal solution and the Lagrange multipliers of
convex quadratic problems are uniquely determined. Then we have the following theorem.

Theorem 2 Let P be the probability over all possible training samples of size ntr and test samples of
size nte. Letξ∗(λ) be the Lagrange multiplier vector of the problem(7) and supposeξ∗(λ) satisfies
the strict complementarity condition(17). Then, there exists a positive constant c> 0 and a natural
number N such that formin{ntr,nte} ≥ N,

P(Â 6= A) < e−cmin{ntr,nte}.

The proof of the above theorem is given in Appendix B. Theorem 2 shows that the probability
that the active set̂A of the empirical problem (6) is different from the active setA of the ideal
problem (7) is exponentially small. Thus we may regardÂ = A in practice.

Let A be the ‘ideal’ counterpart of̂A:

A = H−1−H−1E⊤(EH−1E⊤)−1EH−1,

and letCw,w′ be theb×b covariance matrix with the(ℓ,ℓ′)-th element being the covariance between
w(x)ϕℓ(x) andw′(x)ϕℓ′(x) underptr(x). Let

w∗(x) =
b

∑
ℓ=1

α∗ℓ(λ)ϕℓ(x),

v(x) =
b

∑
ℓ=1

[A1b]ℓϕℓ(x).

Let
f (n) = ω(g(n))

denote thatf (n) asymptotically dominatesg(n); more precisely, for allC > 0, there existsn0 such
that

|Cg(n)|< | f (n)| for all n > n0.

Then we have the following theorem.
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Theorem 3 Assume that

(a) The optimal solution of the problem(7) satisfies the strict complementarity condition(17).

(b) ntr and nte satisfy
nte = ω(n2

tr). (18)

Then, for anyλ≥ 0, we have

E[J(α̂(λ))] = J(α∗(λ))+
1

2ntr
tr(A(Cw∗,w∗−2λCw∗,v))+o

(
1
ntr

)
. (19)

The proof of the above theorem is given in Appendix C. This theorem elucidates the learning
curve of LSIF up to the order ofn−1

tr . In Section 2.4.1, we discuss practical implications of this
theorem.

2.4 Model Selection for LSIF

The practical performance of LSIF depends on the choice of the regularization parameterλ and
basis functions{ϕℓ(x)}bℓ=1 (which we refer to as amodel). Since our objective is to minimize the
cost functionJ defined in Eq. (2), it is natural to determine the model such thatJ is minimized.

However, the value of the cost functionJ is inaccessible since it includes the expectation over
unknown probability density functionsptr(x) andpte(x). The value of the empirical cost̂J may be
regarded as an estimate ofJ, but this is not useful for model selection purposes since it is heavily
biased—the bias is caused by the fact that the same samples are used twice for learning the parameter
α and estimating the value ofJ. Below, we give two practical methods of estimating the value ofJ
in more precise ways.

2.4.1 INFORMATION CRITERION

In the same way as Theorem 3, we can obtain an asymptotic expansion of the empirical cost

E

[
Ĵ(α̂(λ))

]
as follows:

E[Ĵ(α̂(λ))] = J(α∗(λ))− 1
2ntr

tr(A(Cw∗,w∗ +2λCw∗,v))+o

(
1
ntr

)
. (20)

Combining Eqs. (19) and (20), we have

E[J(α̂(λ))] = E[Ĵ(α̂(λ))]+
1
ntr

tr(ACw∗,w∗)+o

(
1
ntr

)
.

From this, we can immediately obtain aninformation criterion(Akaike, 1974; Konishi and Kita-
gawa, 1996) for LSIF:

Ĵ(IC) = Ĵ(α̂(λ))+
1
ntr

tr(ÂĈŵ,ŵ),

whereÂ is defined by Eq. (16).̂E is defined by Eq. (8) and̂Cw,w′ is theb×b covariance matrix with
the(ℓ,ℓ′)-th element being the covariance betweenw(x)ϕℓ(x) andw′(x)ϕℓ′(x) over{xtr

i }ntr
i=1. Since

Â andĈŵ,ŵ are consistent estimators ofA andCw∗,w∗ , the above information criterion is unbiased up
to the order ofn−1

tr .
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Note that the term tr(ÂĈŵ,ŵ) may be interpreted as theeffective dimensionof the model (Moody,
1992). Indeed, when̂w(x) = 1, we havêH = Ĉŵ,ŵ and thus

tr(ÂĈŵ,ŵ) = tr(Ib)− tr(EĈ
−1
ŵ,ŵE⊤(EĈ

−1
ŵ,ŵE⊤)−1) = b−|Â |,

which is the dimension of thefaceon whichα̂(λ) lies.

2.4.2 CROSS-VALIDATION

Although the information criterion derived above is more accurate than just anaive empirical estima-
tor, its accuracy is guaranteed only asymptotically. Here, we employ cross-validation for estimating
J(α̂), which has an accuracy guarantee for finite samples.

First, the training samples{xtr
i }ntr

i=1 and test samples{xte
j }nte

j=1 are divided intoR disjoint subsets
{X tr

r }Rr=1 and {X te
r }Rr=1, respectively. Then an importance estimateŵX tr

r ,X te
r
(x) is obtained using

{X tr
j } j 6=r and{X te

j } j 6=r (that is, withoutX tr
r andX te

r ), and the costJ is approximated using the
held-out samplesX tr

r andX te
r as

Ĵ(CV)
X tr

r ,X te
r

=
1

2|X tr
r | ∑

xtr∈X tr
r

ŵX tr
r ,X te

r
(xtr)2− 1

|X te
r | ∑

xte∈X te
r

ŵX tr
r ,X te

r
(xte).

This procedure is repeated forr = 1,2, . . . ,Rand its averagêJ(CV) is used as an estimate ofJ:

Ĵ(CV) =
1
R

R

∑
r=1

Ĵ(CV)
X tr

r ,X te
r
.

We can show that̂J(CV) gives an almost unbiased estimate of the true costJ, where the ‘almost’-ness
comes from the fact that the number of samples is reduced in the cross-validation procedure due to
data splitting (Luntz and Brailovsky, 1969; Wahba, 1990; Schölkopf and Smola, 2002).

Cross-validation would be more accurate than the information criterion for finite samples. How-
ever, it is computationally more expensive than the information criterion since the learning proce-
dure should be repeatedR times.

2.5 Heuristics of Basis Function Design for LSIF

A good model may be chosen by cross-validation or the information criterion,given that a family of
promising model candidates is prepared. As model candidates, we propose using a Gaussian kernel
model centered at thetestpoints{xte

j }nte
j=1, that is,

ŵ(x) =
nte

∑
ℓ=1

αℓKσ(x,xte
ℓ ),

whereKσ(x,x′) is the Gaussian kernel with kernel widthσ:

Kσ(x,x′) = exp

(
−‖x−x′‖2

2σ2

)
. (21)

The reason why we chose the test points{xte
j }nte

j=1 as the Gaussian centers, not the training points
{xtr

i }ntr
i=1, is as follows (Sugiyama et al., 2008b). By definition, the importancew(x) tends to take
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large values if the training densityptr(x) is small and the test densitypte(x) is large; conversely,
w(x) tends to be small (that is, close to zero) ifptr(x) is large andpte(x) is small. When a function
is approximated by a Gaussian kernel model, many kernels may be needed in the region where the
output of the target function is large; on the other hand, only a small numberof kernels would be
enough in the region where the output of the target function is close to zero. Following this heuristic,
we allocate many kernels at hightestdensity regions, which can be achieved by setting the Gaussian
centers at the test points{xte

j }nte
j=1.

Alternatively, we may locate(ntr +nte) Gaussian kernels at both{xtr
i }ntr

i=1 and{xte
j }nte

j=1. However,
in our preliminary experiments, this did not further improve the performance,but just slightly in-
creased the computational cost. Whennte is large, just using all the test points{xte

j }nte
j=1 as Gaussian

centers is already computationally rather demanding. To ease this problem, wepractically propose
using a subset of{xte

j }nte
j=1 as Gaussian centers for computational efficiency, that is,

ŵ(x) =
b

∑
ℓ=1

αℓKσ(x,cℓ), (22)

wherecℓ, ℓ = 1,2, . . . ,b are template points randomly chosen from{xte
j }nte

j=1 without replacement
andb (≤ nte) is a prefixed number. In the rest of this paper, we usually fix the number oftemplate
points at

b = min(100,nte),

and optimize the kernel widthσ and the regularization parameterλ by cross-validation with grid
search.

2.6 Entire Regularization Path for LSIF

We can show that the LSIF solution̂α is piecewise linear with respect to the regularization parameter
λ (see Appendix D). Therefore, theregularization path(that is, solutions for allλ) can be computed
efficiently based on theparametric optimization technique(Best, 1982; Efron et al., 2004; Hastie
et al., 2004).

A basic idea of regularization path tracking is to check violation of the KKT conditions—which
are necessary and sufficient for optimality of convex programs—when the regularization parameter
λ is changed. The KKT conditions of LSIF are summarized in Section 2.3. The strict comple-
mentarity condition (17) assures the uniqueness of the optimal solution for a fixedλ, and thus the
uniqueness of the regularization path. A pseudo code of the regularization path tracking algorithm
for LSIF is described in Figure 1—its detailed derivation is summarized in Appendix D. Thanks to
the regularization path algorithm, LSIF is computationally efficient in model selection scenarios.

The pseudo code implies that we no longer need a quadratic programming solver for obtaining
the solution of LSIF—just computing matrix inverses is enough. Furthermore,the regularization
path algorithm is computationally more efficient when the solution is sparse, thatis, most of the
elements are zero since the number of change points tends to be small for such sparse solutions.

Even though the regularization path tracking algorithm is computationally efficient, it tends to
be numerically unreliable, as we experimentally show in Section 4. This numerical instability is
caused by near singularity of the matrix̂G. WhenĜ is nearly singular, it is not easy to accurately
obtain the solutionsu,v in Figure 1, and therefore the change pointλτ+1 cannot be accurately com-
puted. As a result, we cannot accurately update the active set of the inequality constraints and thus
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Input: Ĥ andĥ % see Eqs. (4) and (5) for the definitions
Output: entire regularization patĥα(λ) for λ≥ 0

τ←− 0;
k←− argmaxi{ĥi | i = 1,2, . . . ,b};
λτ←− ĥk;
Â ←− {1,2, . . . ,b}\{k};
α̂(λτ)←− 0b; % the vector with all zeros
While λτ > 0

Ê←−O|Â |×b; % the matrix with all zeros

For i = 1,2, . . . , |Â|
Êi, ĵ i
←− 1; % Â = { ĵ1, ĵ2, . . . , ĵ|Â| | ĵ1 < ĵ2 < · · ·< ĵ|Â |}

end

Ĝ←−
(

Ĥ −Ê
⊤

−Ê O|Â |×|Â|

)
;

u←− Ĝ
−1

(
ĥ

0|Â |

)
;

v←− Ĝ
−1

(
1b

0|Â |

)
;

If v≤ 0b+|Â| % the final interval

λτ+1←− 0;
α̂(λτ+1)←− (u1,u2, . . . ,ub)

⊤;
else % an intermediate interval

k←− argmaxi{ui/vi | vi > 0, i = 1,2, . . . ,b+ |Â|};
λτ+1←−max{0,uk/vk};
α̂(λτ+1)←− (u1,u2, . . . ,ub)

⊤−λτ+1(v1,v2, . . . ,vb)
⊤;

If 1≤ k≤ b
Â ←− Â ∪{k};

else
Â ←− Â\{ ĵk−b};

end
end
τ←− τ+1;

end

α̂(λ)←−
{

0b if λ≥ λ0
λτ+1−λ
λτ+1−λτ

α̂(λτ)+ λ−λτ
λτ+1−λτ

α̂(λτ+1) if λτ+1≤ λ≤ λτ

Figure 1: Pseudo code for computing the entire regularization path of LSIF. When the computation

of Ĝ
−1

is numerically unstable, we may add small positive diagonals toĤ for stabilization
purposes.
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the obtained solution̂α(λ) becomes unreliable; furthermore, such numerical error tends to be accu-
mulated through the path-tracking process. This instability issue seems to be a common pitfall of
solution path tracking algorithms in general (see Scheinberg, 2006).

When the Gaussian widthσ is very small or very large, the matrix̂H tends to be nearly singular
and thus the matrix̂Galso becomes nearly singular. On the other hand, when the Gaussian widthσ is
not too small or too large compared with the dispersion of samples, the matrixĜ is well-conditioned
and therefore the path-following algorithm would be stable and reliable.

3. Approximation Algorithm

Within the quadratic programming formulation, we have proposed a new importance estimation
procedure LSIF and showed its theoretical properties. We also gave a regularization path tracking
algorithm that can be computed efficiently. However, as we experimentally show in Section 4, it
tends to suffer from a numerical problem and therefore is not practicallyreliable. In this section, we
give a practical alternative to LSIF which gives an approximate solution to LSIF in a computation-
ally efficient and reliable manner.

3.1 Unconstrained Least-squares Formulation

The approximation idea we introduce here is very simple: we ignore the non-negativity constraint
of the parameters in the optimization problem (6). This results in the following unconstrained
optimization problem.

min
β∈Rb

[
1
2

β⊤Ĥβ− ĥ
⊤

β+
λ
2

β⊤β
]
. (23)

In the above, we included a quadratic regularization termβ⊤β/2, instead of the linear one 1⊤b β since
the linear penalty term does not work as a regularizer without the non-negativity constraint. Eq. (23)
is an unconstrained convex quadratic program, so the solution can be analytically computed as

β̃(λ) = (Ĥ +λIb)
−1ĥ,

whereIb is theb-dimensional identity matrix. Since we dropped the non-negativity constraintβ ≥
0b, some of the learned parameters could be negative. To compensate for thisapproximation error,
we modify the solution by

β̂(λ) = max(0b, β̃(λ)),

where the ‘max’ operation for a pair of vectors is applied in the element-wise manner. This is the
solution of the approximation method we propose in this section.

An advantage of the above unconstrained formulation is that the solution canbe computed just
by solving a system of linear equations. Therefore, its computation is stable whenλ is not too small.
We call this methodunconstrained LSIF(uLSIF). Due to theℓ2 regularizer, the solution tends to
be close to 0b to some extent. Thus, the effect of ignoring the non-negativity constraintmay not be
so strong—later, we analyze the approximation error both theoretically and experimentally in more
detail in Sections 3.3 and 4.5.

Note that LSIF and uLSIF differ only in parameter learning. Thus, the basis design heuristic of
LSIF given in Section 2.5 is also valid for uLSIF.
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3.2 Convergence Analysis of uLSIF

Here, we theoretically analyze the convergence property of the solutionβ̂(λ) of the uLSIF algo-
rithm; practitioners may skip Sections 3.2 and 3.3.

Let β◦(λ) be the optimal solution of the ‘ideal’ version of the problem (23):

min
β∈Rb

[
1
2

β⊤Hβ−h⊤β+
λ
2

β⊤β
]
.

Then the ideal solutionβ∗(λ) is given by

β∗(λ) = max(0b,β◦(λ)),

β◦(λ) = B−1
λ h, (24)

Bλ = H +λIb.

Below, we theoretically investigate the learning curve of uLSIF.
LetB ⊂ {1,2, . . . ,b} be the set of negative indices ofβ◦(λ), that is,

B = {ℓ | β◦ℓ(λ) < 0, ℓ = 1,2, . . . ,b},

andB̃ ⊂ {1,2, . . . ,b} be the set of negative indices ofβ̃(λ), that is,

B̃ = {ℓ | β̃ℓ(λ) < 0, ℓ = 1,2, . . . ,b}.

Then we have the following theorem.

Theorem 4 Assume thatβ◦ℓ(λ) 6= 0 for ℓ = 1,2, . . . ,b. Then, there exists a positive constant c and
a natural number N such that formin{ntr,nte} ≥ N,

P(B 6= B̃) < e−cmin{ntr,nte}.

The proof of the above theorem is given in Appendix E. The assumption that β◦ℓ(λ) 6= 0 for
ℓ = 1,2, . . . ,b corresponds to the strict complementarity condition (17) in LSIF. Theorem 4shows
that the probability that̃B is different fromB is exponentially small. Thus we may regardB̃ = B in
practice.

Let D be theb-dimensional diagonal matrix with theℓ-th diagonal element

Dℓ,ℓ =

{
0 ℓ ∈ B,

1 otherwise.

Let

w◦(x) =
b

∑
ℓ=1

β◦ℓ(λ)ϕℓ(x),

u(x) =
b

∑
ℓ=1

[B−1
λ D(Hβ∗(λ)−h)]ℓϕℓ(x).

Then we have the following theorem.
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Theorem 5 Assume that

(a) β◦ℓ(λ) 6= 0 for ℓ = 1,2, . . . ,b.

(b) ntr and nte satisfy Eq.(18).

Then, for anyλ≥ 0, we have

E[J(β̂(λ))] = J(β∗(λ))+
1

2ntr
tr(B−1

λ DHDB−1
λ Cw◦,w◦ +2B−1

λ Cw◦,u)+o

(
1
ntr

)
. (25)

The proof of the above theorem is given in Appendix F. Theorem 5 elucidates the learning curve
of uLSIF up to the order ofn−1

tr . An information criterion may be obtained in the same way as
Section 2.4.1. However, as shown in Section 3.4, we can have a closed-form expression of the
leave-one-out cross-validation score for uLSIF, which would be practically more useful. For this
reason, we do not go into the detail of information criterion.

3.3 Approximation Error Bounds for uLSIF

The uLSIF method is introduced as an approximation of LSIF. Here, we theoretically evaluate the
difference between the uLSIF solutionβ̂(λ) and the LSIF solution̂α(λ). More specifically, we use
the following normalizedL2-norm on the training samples as the difference measure and derive its
upper bounds:

diff(λ) =
infλ′≥0

√
1
ntr

∑ntr
i=1

(
ŵ(xtr

i ; α̂(λ′))− ŵ(xtr
i ; β̂(λ))

)2

∑ntr
i=1 ŵ(xtr

i ; β̂(λ))
, (26)

where the importance function̂w(x;α) is given by

ŵ(x;α) =
b

∑
ℓ=1

αℓϕℓ(x).

In the theoretical analysis below, we assume

ntr

∑
i=1

ŵ(xtr
i ; β̂(λ)) 6= 0.

For p∈ N∪{∞}, let ‖ · ‖p be theLp-norm, and let‖α‖Ĥ be

‖α‖Ĥ =
√

α⊤Ĥα, (27)

whereĤ is theb×b matrix defined by Eq. (4). Then we have the following theorem.

Theorem 6 (Norm bound) Assume that all basis functions satisfy

0 < ϕℓ(x)≤ 1.
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Then we have

diff(λ) ≤ ‖β̂(λ)‖Ĥ
∑ntr

i=1 ŵ(xtr
i ; β̂(λ))

(28)

≤ b2
(

1+
b
λ

)
1

minℓ ∑ntr
i=1 ϕℓ(xtr

i )
· nte

minℓ ∑nte
j=1 ϕℓ(xte

j )
, (29)

where b is the number of basis functions. The upper bound(29) is reduced as the regularization
parameterλ increases. For the Gaussian basis function model(22), the upper bound (29) is reduced
as the Gaussian widthσ increases.

The proof of the above theorem is given in Appendix G. We call Eq. (28)thenorm boundsince
it is governed by the norm of̂β. Intuitively, the approximation error of uLSIF would small ifλ is
large sincẽβ ≥ 0 may not be severely violated due to the strong regularization effect. The upper
bound (29) justifies this intuitive claim since the error bound tends to be small ifthe regularization
parameterλ is large. Furthermore, the upper bound (29) shows that for the Gaussian basis function
model (22), the error bound tends to be small if the Gaussian widthσ is large. This is also intuitive
since the Gaussian basis functions are nearly flat when the Gaussian widthσ is large—a difference
in parameters does not cause a significant change in the learned importance functionŵ(x). From
the above theorem, we expect that uLSIF is a nice approximation of LSIF whenλ is large andσ is
large. In Section 4.5, we numerically investigate this issue.

Below, we give a more sophisticated bound on diff(λ). To this end, let us introduce an interme-
diate optimization problem defined by

min
γ∈Rb

[
1
2

γ⊤Ĥγ− ĥ
⊤

γ+
λ
2

γ⊤γ
]

subject toγ≥ 0b, (30)

which we refer to asLSIF with quadratic penalty(LSIFq). LSIFq bridges LSIF and uLSIF since
the ‘goodness-of-fit’ part is the same as LSIF but the ‘regularization’ part is the same as uLSIF. Let
γ̂(λ) be the optimal solution of LSIFq (30). Based on the solution of LSIFq, we have the following
upper bound.

Theorem 7 (Bridge bound) For anyλ≥ 0, the following inequality holds:

diff(λ) ≤

√
λ
(
‖γ̂(λ)‖1 · ‖γ̂(λ)‖∞−‖γ̂(λ)‖22

)
+‖γ̂(λ)− β̂(λ)‖Ĥ

∑ntr
i=1 ŵ(xtr

i ; β̂(λ))
. (31)

The proof of the above theorem is given in Appendix H. We call the abovebound thebridge
boundsince the bridged estimatorγ̂(λ) plays a central role in the bound. Note that, in the bridge
bound, the inside of the square root is assured to be non-negative dueto Hölder’s inequality (see
Appendix H for detail). The bridge bound is generally much sharper than the norm bound (28), but
not always (see Section 4.5 for numerical examples).
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3.4 Efficient Computation of Leave-one-out Cross-validation Score for uLSIF

A practically important advantage of uLSIF over LSIF is that the score of leave-one-out cross-
validation (LOOCV) can be computed analytically—thanks to this property, the computational
complexity for performing LOOCV is the same order as just computing a single solution.

In the current setup, we are given two sets of samples,{xtr
i }ntr

i=1 and{xte
j }nte

j=1, which generally
have different sample size. For simplicity, we assume thatntr < nte and thei-th training samplextr

i
and thei-th test samplexte

i are held out at the same time; the test samples{xte
j }nte

j=ntr+1 are always
used for importance estimation. Note that this assumption is only for the sake of simplicity; we can
change the order of test samples without sacrificing the computational advantages.

Let ŵ(i)(x) be an estimate of the importance obtained without thei-th training samplextr
i and the

i-th test samplexte
i . Then the LOOCV score is expressed as

LOOCV =
1
ntr

ntr

∑
i=1

[
1
2
(ŵ(i)(xtr

i ))2− ŵ(i)(xte
i )

]
. (32)

Our approach to efficiently computing the LOOCV score is to use theSherman-Woodbury-Morrison
formula (Golub and Loan, 1996) for computing matrix inverses: for an invertible square matrixA
and vectorsu andv such thatv⊤A−1u 6=−1,

(A+uv⊤)−1 = A−1− A−1uv⊤A−1

1+v⊤A−1u
. (33)

Efficient approximation schemes of LOOCV have often been investigated under asymptotic
setups (Stone, 1974; Hansen and Larsen, 1996). On the other hand,we provide the exact LOOCV
score of uLSIF, which follows the same line as that of ridge regression (Hoerl and Kennard, 1970;
Wahba, 1990).

A pseudo code of uLSIF with LOOCV-based model selection is summarized in Figure 2—its
detailed derivation is described in Appendix I. Note that the basis-functiondesign heuristic given
in Section 2.5 is used in the pseudo code, but the analytic form of the LOOCV score is available for
any basis functions.

4. Illustrative Examples

In this section, we illustrate the behavior of LSIF and uLSIF using a toy data set.

4.1 Setup

Let the dimension of the domain bed = 1 and the training and test densities be

ptr(x) =N (x;1,(1/2)2),

pte(x) =N (x;2,(1/4)2),

whereN (x;µ,σ2) denotes the Gaussian density with meanµ and varianceσ2. These densities are
depicted in Figure 3. The task is to estimate the importancew(x) = pte(x)/ptr(x).
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Input: {xtr
i }

ntr
i=1 and{xte

j }
nte
j=1

Output: ŵ(x)

b←−min(100,nte); n←−min(ntr,nte);
Randomly chooseb centers{cℓ}bℓ=1 from {xte

j }
nte
j=1 without replacement;

For each candidate of Gaussian widthσ

Ĥℓ,ℓ′ ←−
1
ntr

ntr

∑
i=1

exp

(
−‖x

tr
i −cℓ‖2 +‖xtr

i −cℓ′‖2
2σ2

)
for ℓ,ℓ′ = 1,2, . . . ,b;

ĥℓ←−
1

nte

nte

∑
j=1

exp

(
−
‖xte

j −cℓ‖2

2σ2

)
for ℓ = 1,2, . . . ,b;

Xtr
ℓ,i ←− exp

(
−‖x

tr
i −cℓ‖2
2σ2

)
for i = 1,2, . . . ,n andℓ = 1,2, . . . ,b;

Xte
ℓ,i ←− exp

(
−‖x

te
i −cℓ‖2
2σ2

)
for i = 1,2, . . . ,n andℓ = 1,2, . . . ,b;

For each candidate of regularization parameterλ

B̂←− Ĥ +
λ(ntr−1)

ntr
Ib;

B0←− B̂
−1

ĥ1⊤n + B̂
−1

Xtr diag

(
ĥ
⊤

B̂
−1

Xtr

ntr1⊤n −1⊤b (Xtr ∗ B̂
−1

Xtr)

)
;

B1←− B̂
−1

Xte+ B̂
−1

Xtr diag

(
1⊤b (Xte∗ B̂

−1
Xtr)

ntr1⊤n −1⊤b (Xtr ∗ B̂
−1

Xtr)

)
;

B2←−max

(
Ob×n,

ntr−1
ntr(nte−1)

(nteB0−B1)

)
;

wtr←− (1⊤b (Xtr ∗B2))
⊤; wte←− (1⊤b (Xte∗B2))

⊤;

LOOCV(σ,λ)←− w⊤tr wtr

2n
− 1⊤n wte

n
;

end
end
(σ̂, λ̂)←− argmin(σ,λ) LOOCV(σ,λ);

H̃ℓ,ℓ′ ←−
1
ntr

ntr

∑
i=1

exp

(
−‖x

tr
i −cℓ‖2 +‖xtr

i −cℓ′‖2
2σ̂2

)
for ℓ,ℓ′ = 1,2, . . . ,b;

h̃ℓ←−
1

nte

nte

∑
j=1

exp

(
−
‖xte

j −cℓ‖2

2σ̂2

)
for ℓ = 1,2, . . . ,b;

α̂←−max(0b,(H̃ + λ̂Ib)
−1h̃);

ŵ(x)←−
b

∑
ℓ=1

α̂ℓ exp

(
−‖x−cℓ‖2

2σ̂2

)
;

Figure 2: Pseudo code of uLSIF algorithm with LOOCV.B∗B′ denotes the element-wise multi-
plication of matricesB andB′ of the same size, that is, the(i, j)-th element is given by
Bi, jB′i, j . For n-dimensional vectorsb andb′, diag

(
b
b′
)

denotes then×n diagonal matrix
with i-th diagonal elementbi/b′i . A MATLAB R© or R implementation of uLSIF is avail-
able fromhttp://sugiyama-www.cs.titech.ac.jp/ ∼sugi/software/uLSIF/ .
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4.2 Importance Estimation

First, we illustrate the behavior of LSIF and uLSIF in importance estimation. We set the number
of training and test samples atntr = 200 andnte = 1000, respectively. We use the Gaussian kernel
model (22), and the number of basis functions is set atb = 100. The centers of the kernel function
are randomly chosen from the test points{xte

i }n
te

j=1 without replacement (see Section 2.5).
We test different Gaussian widthsσ and different regularization parametersλ. The following

two setups are examined:

(A) λ is fixed atλ = 0.2 andσ is changed as 0.1≤ σ≤ 1.0,

(B) σ is fixed atσ = 0.3 andλ is changed as 0≤ λ≤ 0.5.

Figure 4 depicts the true importance and its estimates obtained by LSIF and uLSIF, where all
importance functions are normalized so that

R

w(x)dx= 1 for better comparison. Figures 4(a) and
4(b) show that the estimated importanceŵ(x) tends to be too peaky when the Gaussian widthσ
is small, while it tends to be overly smoothed whenσ is large. If the Gaussian width is chosen
appropriately, both LSIF and uLSIF seem to work reasonably well. As shown in Figures 4(c)
and 4(d), the solutions of LSIF and uLSIF also significantly change whendifferent regularization
parametersλ are used. Again, given that the regularization parameter is chosen appropriately, both
LSIF and uLSIF tend to perform well.

From the graphs, we also observe that model selection based on cross-validation works rea-
sonably well for both LSIF (5-fold) and uLSIF (leave-one-out) to choose appropriate values of the
Gaussian width or the regularization parameter; this will be analyzed in more detail in Section 4.4.

4.3 Regularization Path

Next, we illustrate how the regularization path tracking algorithm for LSIF behaves. We set the
number of training and test samples atntr = 50 andnte = 100, respectively. For better illustration,
we set the number of basis functions at a small value asb = 30 in the Gaussian kernel model (22)
and use the Gaussian kernels centered at equidistant points in[0,3] as basis functions.

We use the algorithm described in Figure 1 for regularization path tracking.Theoretically, the
inequalityλτ+1 < λτ is assured. In numerical computation, however, the inequality is occasionally
violated. In order to avoid this numerical problem, we slightly regularizeĤ for stabilization (see
also the caption of Figure 1).

Figure 5 depicts the values of the estimated coefficients{αℓ}bℓ=1 as functions of‖α‖1 for
σ = 0.1,0.3, and 0.5. Note that small‖α‖1 corresponds to largeλ. The figure indicates that the
regularization parameterλ works as a sparseness controlling factor of the solution, that is, the larger
(smaller) the value ofλ (‖α‖1) is, the sparser the solution is.

The path following algorithm is computationally efficient and therefore practically very attrac-
tive. However, as the above experiments illustrate, the path following algorithm is numerically
rather unstable. Modification of̂H can ease to solve this problem, but this in turn results in accu-
mulating numerical errors through the path tracking process. Consequently, the solutions for small
λ tend to be inaccurate. This problem becomes prominent if the number of change points in the
regularization path is large.
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Figure 3: The solid line is the probability density of training data, and the dashed line is the proba-
bility density of test data.
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(a) LSIF forλ = 0.2, σ = 0.1,0.4,1.0.
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(b) uLSIF forλ = 0.2, σ = 0.1,0.3,1.0.
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Figure 4: True and estimated importance functions obtained by LSIF and uLSIF for various differ-
ent Gaussian widthsσ and regularization parametersλ.
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(c) σ = 0.5.

Figure 5: Regularization path of LSIF: the values of the estimated coefficients{αℓ}bℓ=1 are depicted
as functions of theL1-norm of the estimated parameter vector forσ = 0.1,0.3, and 0.5.
Small‖α‖1 corresponds to largeλ.

4.4 Cross-validation

Here we illustrate the behavior of the cross-validation scores of LSIF anduLSIF. We set the number
of training and test samples atntr = 200 andnte = 1000, respectively. The number of template
points isb = 100 and the Gaussian kernel model (22) is used. The centers of the kernel functions
are randomly chosen from the test points as described in Section 4.2. The left column of Figure 6
depicts the expectation of the true costJ(α̂) over 50 runs for LSIF and its estimate by 5-fold CV (25,
50, and 75 percentiles are plotted in the figure) as functions of the Gaussian widthσ for λ = 0.2, 0.5,
and 0.8. We used the regularization path tracking algorithm for computing the solutions of LSIF.
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(d) uLSIF with LOOCV (λ = 0.5).
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(e) LSIF with 5CV (λ = 0.8).
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(f) uLSIF with LOOCV (λ = 0.8).

Figure 6: The true costJ and its cross-validation estimate as functions of Gaussian widthσ for
different values ofλ. The solid line denotes the expectation of the true costJ over 50
runs, while ‘◦’ and error bars denote the 25, 50, and 75 percentiles of the cross-validation
score.
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The right column shows the expected true cost and its LOOCV estimates for uLSIF in the same
manner.

The graphs show that overall CV gives reasonably good approximations of the expected cost,
although CV for LSIF with smallλ and smallσ is rather inaccurate due to numerical problems—the
solution path of LSIF is computed fromλ = ∞ to λ = 0, and the numerical error is accumulated as
the tracking process approaches toλ = 0. This phenomenon seems problematic whenσ is small.

4.5 Difference between LSIF and uLSIF

In Section 3.3, we analyzed the approximation error of uLSIF against LSIF. Here we numerically
investigate the behavior of the approximation error (26) as well as the normbound (28) and the
bridge bound (31). We set the number of training and test samples atntr = 200 andnte = 1000,
respectively. The number of template points in the Gaussian kernel model (22) is set atb = 100.
The centers of the kernel functions are randomly chosen from the test points (see Section 4.2).

Figure 7 depicts the true approximation error as well as its upper bounds as functions of the reg-
ularization parameterλ; λ is varied from 0.001 to 10 and the three Gaussian widthsσ = 0.1,0.5,1.0
are tested. The graphs show that whenλ andσ are large, the approximation error tends to be small;
this is in good agreement with the theoretical analysis given in Section 3.3. Thebridge bound is
fairly tight in the entire range and is sharper than the norm bound except whenσ is small andλ is
large.

4.6 Summary

Through the numerical examples, we overall found that LSIF and uLSIFgive qualitatively similar
results. However, the computation of the solution-path tracking algorithm forLSIF tends to be
numerically unstable, which can result in unreliable model selection performance. On the other
hand, only a system of linear equations needs to be solved in uLSIF, whichturned out to be much
more stable than LSIF. Thus, uLSIF would be practically more reliable than LSIF.

Based on the above findings, we will focus on uLSIF in the rest of this paper.

5. Relation to Existing Methods

In this section, we discuss the characteristics of existing approaches in comparison with the pro-
posed methods.

5.1 Kernel Density Estimator

Thekernel density estimator(KDE) is a non-parametric technique to estimate a probability density
function p(x) from its i.i.d. samples{xk}nk=1. For the Gaussian kernel (21), KDE is expressed as

p̂(x) =
1

ntr(2πσ2)d/2

n

∑
k=1

Kσ(x,xk).

The performance of KDE depends on the choice of the kernel widthσ. The kernel widthσ can
be optimized bylikelihood cross-validation(LCV) as follows (Ḧardle et al., 2004): First, divide
the samples{xi}ni=1 into R disjoint subsets{Xr}Rr=1. Then obtain a density estimatêpXk(x) from
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Figure 7: The approximation error of uLSIF against LSIF as functions of the regularization param-
eterλ for different Gaussian widthσ. Its upper bounds are also plotted in the graphs.

{Xr}r 6=k (i.e., withoutXk) and compute its log-likelihood forXk:

1
|Xk| ∑

x∈Xk

log p̂Xk(x).

Repeat this procedure forr = 1,2, . . . ,Rand choose the value ofσ such that the average of the above
hold-out log-likelihood over allr is maximized. Note that the average hold-out log-likelihood is an
almost unbiased estimate of the Kullback-Leibler divergence fromp(x) to p̂(x), up to an irrelevant
constant.

KDE can be used for importance estimation by first obtaining density estimatorsp̂tr(x) and
p̂te(x) separately from{xtr

i }ntr
i=1 and {xte

j }nte
j=1, and then estimating the importance bŷw(x) =

p̂te(x)/p̂tr(x). A potential limitation of this approach is that KDE suffers from thecurse of dimen-
sionality(Vapnik, 1998; Ḧardle et al., 2004), that is, the number of samples needed to maintain the
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same approximation quality grows exponentially as the dimension of the domain increases. This is
critical when the number of available samples is limited. Therefore, the KDE-based approach may
not be reliable in high-dimensional problems.

5.2 Kernel Mean Matching

The kernel mean matching(KMM) method allows us to directly obtain an estimate of the impor-
tance values at training points without going through density estimation (Huanget al., 2007). The
basic idea of KMM is to find̂w(x) such that the mean discrepancy between nonlinearly transformed
samples drawn frompte(x) andptr(x) is minimized in auniversal reproducing kernel Hilbert space
(Steinwart, 2001). The Gaussian kernel (21) is an example of kernels that induce universal repro-
ducing kernel Hilbert spaces and it has been shown that the solution of the following optimization
problem agrees with the true importance:

min
w(x)

∥∥∥∥
Z

Kσ(x, ·)pte(x)dx−
Z

Kσ(x, ·)w(x)ptr(x)dx

∥∥∥∥
2

H

subject to
Z

w(x)ptr(x)dx= 1 and w(x)≥ 0,

where‖ ·‖H denotes the norm in the Gaussian reproducing kernel Hilbert space andKσ(x,x′) is the
Gaussian kernel (21).

An empirical version of the above problem is reduced to the following quadratic program:

min
{wi}ntr

i=1

[
1
2

ntr

∑
i,i′=1

wiwi′Kσ(xtr
i ,xtr

i′ )−
ntr

∑
i=1

wiκi

]

subject to

∣∣∣∣∣
ntr

∑
i=1

wi−ntr

∣∣∣∣∣≤ ntrε and 0≤ w1,w2, . . . ,wntr ≤ B,

where

κi =
ntr

nte

nte

∑
j=1

Kσ(xtr
i ,xte

j ).

B (≥ 0) and ε (≥ 0) are tuning parameters that control the regularization effects. The solution
{ŵi}ntr

i=1 is an estimate of the importance at the training points{xtr
i }ntr

i=1.
Since KMM does not involve density estimation, it is expected to work well evenin high dimen-

sional cases. However, the performance is dependent on the tuning parametersB, ε, andσ, and they
cannot be simply optimized, for example, by CV since estimates of the importance are available
only at the training points. A popular heuristic is to use the median distance between samples as
the Gaussian widthσ, which is shown to be useful (Schölkopf and Smola, 2002; Song et al., 2007).
However, there seems no strong justification for this heuristic. For the choice of ε, a theoretical
result given in Huang et al. (2007) could be used as guidance, although it is still hard to determine
the best value ofε in practice.

5.3 Logistic Regression

Another approach to directly estimating the importance is to use a probabilistic classifier. Let us
assign a selector variableη =−1 to training samples andη = 1 to test samples, that is, the training
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and test densities are written as

ptr(x) = p(x|η =−1),

pte(x) = p(x|η = 1).

Note thatη is regarded as a random variable.
Application of the Bayes theorem yields that the importance can be expressed in terms ofη as

follows (Qin, 1998; Cheng and Chu, 2004; Bickel et al., 2007):

w(x) =
p(η =−1)

p(η = 1)

p(η = 1|x)
p(η =−1|x) .

The probability ratio of test and training samples may be simply estimated by the ratio of the num-
bers of samples:

p(η =−1)

p(η = 1)
≈ ntr

nte
.

The conditional probabilityp(η|x) could be approximated by discriminating test samples from train-
ing samples using alogistic regression(LogReg) classifier, whereη plays the role of a class variable.
Below we briefly explain the LogReg method.

The LogReg classifier employs a parametric model of the following form for expressing the
conditional probabilityp(η|x):

p̂(η|x) =
1

1+exp(−η∑m
ℓ=1 ζℓφℓ(x))

,

wherem is the number of basis functions and{φℓ(x)}mℓ=1 are fixed basis functions. The parameterζ
is learned so that the negative regularized log-likelihood is minimized:

ζ̂ = argmin
ζ

[
ntr

∑
i=1

log

(
1+exp

(
m

∑
ℓ=1

ζℓφℓ(x
tr
i )

))

+
nte

∑
j=1

log

(
1+exp

(
−

m

∑
ℓ=1

ζℓφℓ(x
te)

))
+λζ⊤ζ

]
.

Since the above objective function is convex, the global optimal solution canbe obtained by standard
nonlinear optimization methods such as Newton’s method, the conjugate gradient method, and the
BFGS method (Minka, 2007). Then the importance estimate is given by

ŵ(x) =
ntr

nte
exp

(
m

∑
ℓ=1

ζℓφℓ(x)

)
. (34)

An advantage of the LogReg method is that model selection (that is, the choiceof the basis
functions{φℓ(x)}mℓ=1 as well as the regularization parameterλ) is possible by standard CV since the
learning problem involved above is a standard supervised classification problem.
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5.4 Kullback-Leibler Importance Estimation Procedure

TheKullback-Leibler importance estimation procedure(KLIEP) (Sugiyama et al., 2008a) also di-
rectly gives an estimate of the importance function without going through density estimation by
matching the two distributions in terms of the Kullback-Leibler divergence (Kullback and Leibler,
1951).

Let us model the importancew(x) by the linear model (1). An estimate of the test densitypte(x)
is given by using the model̂w(x) as

p̂te(x) = ŵ(x)ptr(x).

In KLIEP, the parametersα are determined so that the Kullback-Leibler divergence frompte(x) to
p̂te(x) is minimized:

KL [pte(x)‖p̂te(x)] =
Z

D
pte(x) log

pte(x)
ŵ(x)ptr(x)

dx

=
Z

D
pte(x) log

pte(x)
ptr(x)

dx−
Z

D
pte(x) logŵ(x)dx. (35)

The first term is a constant, so it can be safely ignored. Sincep̂te(x) (= ŵ(x)ptr(x)) is a probability
density function, it should satisfy

1 =
Z

D
p̂te(x)dx=

Z

D
ŵ(x)ptr(x)dx. (36)

Then the KLIEP optimization problem is given by replacing the expectations in Eqs. (35) and (36)
with empirical averages as follows:

max
{αℓ}bℓ=1

[
nte

∑
j=1

log

(
b

∑
ℓ=1

αℓϕℓ(x
te
j )

)]

subject to
b

∑
ℓ=1

αℓ

(
ntr

∑
i=1

ϕℓ(x
tr
i )

)
= ntr and α1,α2, . . . ,αb≥ 0.

This is a convex optimization problem and the global solution—which tends to be sparse (Boyd and
Vandenberghe, 2004)—can be obtained, for example, by simply performing gradient ascent and
feasibility satisfaction iteratively. Model selection of KLIEP is possible by LCV.

Properties of KLIEP-type algorithms have been theoretically investigated in Nguyen et al. (2008)
and Sugiyama et al. (2008b) (see also Qin, 1998; Cheng and Chu, 2004). Note that the importance
model of KLIEP is the linear model (1), while that of LogReg is the log-linear model (34). A variant
of KLIEP for log-linear models has been studied in Tsuboi et al. (2008).

5.5 Discussions

Table 1 summarizes properties of proposed and existing methods.
KDE is efficient in computation since no optimization is involved, and model selection is pos-

sible by LCV. However, KDE may suffer from the curse of dimensionality due to the difficulty of
density estimation in high dimensions.
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Methods
Density

estimation
Model

selection
Optimization

Out-of-sample
prediction

KDE Necessary Available Analytic Possible
KMM Not necessary Not available Convex quadratic program Not possible

LogReg Not necessary Available Convex non-linear Possible
KLIEP Not necessary Available Convex non-linear Possible
LSIF Not necessary Available Convex quadratic program Possible
uLSIF Not necessary Available Analytic Possible

Table 1: Relation between proposed and existing methods.

KMM can potentially overcome the curse of dimensionality by directly estimating the impor-
tance. However, there is no objective model selection method. Therefore, model parameters such as
the Gaussian width need to be determined by hand, which is highly unreliable unless we have strong
prior knowledge. Furthermore, the computation of KMM is rather demanding since a quadratic pro-
gramming problem has to be solved.

LogReg and KLIEP also do not involve density estimation, but different from KMM, they give
an estimate the entire importance function, not only the values of the importance at training points.
Therefore, the values of the importance at unseen points can be estimated by LogReg and KLIEP.
This feature is highly useful since it enables us to employ CV for model selection, which is a sig-
nificant advantage over KMM. However, LogReg and KLIEP are computationally rather expensive
since non-linear optimization problems have to be solved. Note that the LogRegmethod is slightly
different in motivation from other methods, but has some similarity in computation and implemen-
tation, for example, the LogReg method also involves a kernel smoother.

The proposed LSIF method is qualitatively similar to LogReg and KLIEP, that is, it can avoid
density estimation, model selection is possible, and non-linear optimization is involved. LSIF is
advantageous over LogReg and KLIEP in that it is equipped with a regularization path tracking
algorithm. Thanks to this, model selection of LSIF is computationally much more efficient than
LogReg and KLIEP. However, the regularization path tracking algorithm tends to be numerically
unstable.

The proposed uLSIF method inherits good properties of existing methods such as no density
estimation involved and a build-in model selection method equipped. In addition to these preferable
properties, the solution of uLSIF can be computed in an efficient and numerically stable manner.
Furthermore, thanks to the availability of the closed-form solution of uLSIF,the LOOCV score can
be analytically computed without repeating hold-out loops, which highly contributes to reducing
the computation time in the model selection phase.

In the next section, we experimentally show that uLSIF is computationally more efficient than
existing direct importance estimation methods, while its estimation accuracy is comparable to the
best existing methods.

6. Experiments

In this section, we compare the experimental performance of the proposedand existing methods.
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6.1 Importance Estimation

Let the dimension of the domain bed and

ptr(x) =N (x;(0,0, . . . ,0)⊤, Id),

pte(x) =N (x;(1,0, . . . ,0)⊤, Id).

The task is to estimate the importance at training points:

wi = w(xtr
i ) =

pte(xtr
i )

ptr(xtr
i )

for i = 1,2, . . . ,ntr.

We compare the following methods:

KDE(CV): The Gaussian kernel (21) is used, where the kernel widths of the training and test
densities are separately optimized based on 5-fold LCV.

KMM(med): The performance of KMM is dependent onB, ε, andσ. We setB = 1000 andε =
(
√

ntr−1)/
√

ntr following the original paper (Huang et al., 2007), and the Gaussian widthσ is
set at the median distance between samples within the training set and the test set (Scḧolkopf
and Smola, 2002; Song et al., 2007).

LogReg(CV): The Gaussian kernel model (22) are used as basis functions. The kernel widthσ and
the regularization parameterλ are chosen based on 5-fold CV.1

KLIEP(CV): The Gaussian kernel model (22) is used. The kernel widthσ is selected based on
5-fold LCV.

uLSIF(CV): The Gaussian kernel model (22) is used. The kernel widthσ and the regularization
parameterλ are determined based on LOOCV.

All the methods are implemented using theMATLABR© environment, where theCPLEXR© opti-
mizer is used for solving quadratic programs in KMM and theLIBLINEARimplementation is used
for LogReg (Lin et al., 2007).

We fixed the number of test points atnte = 1000 and consider the following two setups for the
numberntr of training samples and the input dimensionalityd:

(a) ntr is fixed atntr = 100 andd is changed asd = 1,2, . . . ,20,

(b) d is fixed atd = 10 andntr is changed asntr = 50,60, . . . ,150.

We run the experiments 100 times for eachd, eachntr, and each method, and evaluate the quality of
the importance estimates{ŵi}ntr

i=1 by thenormalized mean squared error(NMSE):

NMSE=
1
ntr

ntr

∑
i=1

(
ŵi

∑ntr
i′=1 ŵi′

− wi

∑ntr
i′=1wi′

)2

.

1. In Sugiyama et al. (2008b) where KLIEP has been proposed, the performance of LogReg has been experimentally
investigated in the same setup. In that paper, however, LogReg was notregularized since KLIEP was not also
regularized. On the other hand, we use a regularized LogReg method and choose the regularization parameter in
addition to the Gaussian kernel width by CV here. Thanks to the regularization effect, the results of LogReg in the
current paper tends to be better than that reported in Sugiyama et al. (2008b).
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In practice, the scale of the importance is not significant and the relative magnitude amongwi is
important. Thus the above NMSE would be a suitable error metric for evaluatingthe performance
of each method.

NMSEs averaged over 100 trials (a) as a function of input dimensionalityd and (b) as a function
of the training sample sizentr are plotted in log scale in Figure 8. Error bars are omitted for clear
visibility—instead, the best method in terms of the mean error and comparable ones based on the
t-test at the significance level 1% are indicated by ‘◦’; the methods with significant difference from
the best methods are indicated by ‘×’.

Figure 8(a) shows that the error of KDE(CV) sharply increases as theinput dimensionality
grows, while LogReg, KLIEP, and uLSIF tend to give much smaller errors than KDE. This would
be the fruit of directly estimating the importance without going through density estimation. KMM
tends to perform poorly, which is caused by an inappropriate choice of the Gaussian kernel width.
On the other hand, model selection in LogReg, KLIEP, and uLSIF seems to work quite well. Fig-
ure 8(b) shows that the errors of all methods tend to decrease as the number of training samples
grows. Again LogReg, KLIEP, and uLSIF tend to give much smaller errorsthan KDE and KMM.

Next we investigate the computation time. Each method has a different model selection strategy,
that is, KMM does not involve CV, KDE and KLIEP involve CV over the kernel width, and LogReg
and uLSIF involve CV over both the kernel width and the regularization parameter. Thus the naive
comparison of the total computation time is not so meaningful. For this reason, wefirst investigate
the computation time of each importance estimation method after the model parameters are fixed.

The average CPU computation time over 100 trials are summarized in Figure 9. Figure 9(a)
shows that the computation time of KDE, KLIEP, and uLSIF is almost independent of the input
dimensionality, while that of KMM and LogReg is rather dependent on the input dimensionality.
Note that LogReg ford≤ 3 is slow due to some convergence problem of the LIBLINEAR package.
Among them, the proposed uLSIF is one of the fastest methods. Figure 9(b)shows that the compu-
tation time of LogReg, KLIEP, and uLSIF is nearly independent of the number of training samples,
while that of KDE and KMM sharply increase as the number of training samplesincreases.

Both LogReg and uLSIF have high accuracy and their computation time after model selection
is comparable. Finally, we compare the entire computation time of LogReg and uLSIF including
CV, which is summarized in Figure 10. We note that the Gaussian widthσ and the regularization
parameterλ are chosen over the 9×9 grid in this experiment for both LogReg and uLSIF. Therefore,
the comparison of the entire computation time is fair. Figures 10(a) and 10(b) show that uLSIF is
approximately 5 times faster than LogReg.

Overall, uLSIF is shown to be comparable to the best existing method (LogReg) in terms of the
accuracy, but is computationally more efficient than LogReg.

6.2 Covariate Shift Adaptation in Regression and Classification

Next, we illustrate how the importance estimation methods could be used incovariate shift adap-
tation (Shimodaira, 2000; Zadrozny, 2004; Sugiyama and Müller, 2005; Huang et al., 2007; Bickel
and Scheffer, 2007; Bickel et al., 2007; Sugiyama et al., 2007). Covariate shift is a situation in
supervised learning where the input distributions change between the training and test phase but the
conditional distribution of outputs given inputs remains unchanged. Undercovariate shift, standard
learning techniques such as maximum likelihood estimation or cross-validation are biased—the bias
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Figure 8: NMSEs averaged over 100 trials in log scale for the artificial dataset. Error bars are
omitted for clear visibility. Instead, the best method in terms of the mean error and
comparable ones based on thet-testat the significance level 1% are indicated by ‘◦’; the
methods with significant difference from the best methods are indicated by ‘×’.

1421



KANAMORI , HIDO AND SUGIYAMA

5 10 15 20
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

A
ve

ra
ge

 C
om

pu
ta

tio
n 

T
IM

E
 o

ve
r 

10
0 

T
ria

ls
 [s

ec
]

d (Input Dimension)

 

 
KDE(CV)
KMM(med)
LogReg(CV)
KLIEP(CV)
uLSIF(CV)

(a) When input dimensionality is changed

50 100 150
0

0.05

0.1

0.15

A
ve

ra
ge

 C
om

pu
ta

tio
n 

T
IM

E
 o

ve
r 

10
0 

T
ria

ls
 [s

ec
]

n
tr
 (Number of Training Samples)

 

 
KDE(CV)
KMM(med)
LogReg(CV)
KLIEP(CV)
uLSIF(CV)

(b) When training sample size is changed

Figure 9: Average computation time (after model selection) over 100 trials forthe artificial data set.
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Figure 10: Average computation time over 100 trials for the artificial data set (including model
selection of the Gaussian widthσ and the regularization parameterλ over the 9× 9
grid).
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caused by covariate shift can be asymptotically canceled by weighting the loss function according
to the importance.

In addition to training input samples{xtr
i }ntr

i=1 drawn from a training input densityptr(x) and test
input samples{xte

j }nte
j=1 drawn from a test input densitypte(x), suppose that we are given training

outputsamples{ytr
i }ntr

i=1 at the training input points{xtr
i }ntr

i=1. The task is to predict the outputs for
test inputs{xte

j }nte
j=1 based on the input-output training samples{(xtr

i ,ytr
i )}ntr

i=1.
We use the following kernel model for function learning:

f̂ (x;θ) =
t

∑
ℓ=1

θℓKh(x,mℓ),

whereKh(x,x′) is the Gaussian kernel (21) andmℓ is a template point randomly chosen from{xte
j }nte

j=1
without replacement. We set the number of kernels att = 50. We learn the parameterθ by impor-
tance weighted regularized least-squares(IWRLS) (Evgeniou et al., 2000; Sugiyama and Müller,
2005):

θ̂IWRLS≡ argmin
θ

[
ntr

∑
i=1

ŵ(xtr
i )
(

f̂ (xtr
i ;θ)−ytr

i

)2
+ γ‖θ‖2

]
. (37)

It is known that IWRLS is consistent when the true importancew(xtr
i ) is used as weights—unweighted

RLS is not consistent due to covariate shift, given that the true learning target function f (x) is not
realizable by the model̂f (x) (Shimodaira, 2000).

The solution̂θIWRLS is analytically given by

θ̂IWRLS = (K⊤ŴK+ γIb)
−1K⊤Ŵytr,

where

Ki,ℓ = Kh(x
tr
i ,mℓ),

Ŵ = diag
(
ŵ(xtr

1), ŵ(xtr
2), . . . , ŵ(xtr

ntr
)
)
,

ytr = (ytr
1 ,ytr

2 , . . . ,ytr
ntr

)⊤.

diag(a,b, . . . ,c) denotes the diagonal matrix with the diagonal elementsa,b, . . . ,c.
The kernel widthh and the regularization parameterγ in IWRLS (37) are chosen byimportance

weighted CV(IWCV) (Sugiyama et al., 2007). More specifically, we first divide the training samples
{ztr

i | ztr
i = (xtr

i ,ytr
i )}ntr

i=1 into R disjoint subsets{Ztr
r }Rr=1. Then a functionf̂r(x) is learned using

{Ztr
j } j 6=r by IWRLS and its mean test error for the remaining samplesZtr

r is computed:

1
|Ztr

r | ∑
(x,y)∈Ztr

r

ŵ(x)loss
(

f̂r(x),y
)

,

where

loss(ŷ,y) =

{
(ŷ−y)2 (Regression),
1
2(1−sign{ŷy}) (Classification).

We repeat this procedure forr = 1,2, . . . ,R and choose the kernel widthh and the regularization
parameterγ so that the average of the above mean test error over allr is minimized. We set the
number of folds in IWCV atR= 5. IWCV is shown to be an (almost) unbiased estimator of the
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Data Uniform KDE
(CV)

KMM
(med)

LogReg
(CV)

KLIEP
(CV)

uLSIF
(CV)

kin-8fh 1.00(0.34) 1.22(0.52) 1.55(0.39) 1.31(0.39) 0.95(0.31) 1.02(0.33)
kin-8fm 1.00(0.39) 1.12(0.57) 1.84(0.58) 1.38(0.57) 0.86(0.35) 0.88(0.39)
kin-8nh 1.00(0.26) 1.09(0.20) 1.19(0.29) 1.09(0.19) 0.99(0.22) 1.02(0.18)
kin-8nm 1.00(0.30) 1.14(0.26) 1.20(0.20) 1.12(0.21) 0.97(0.25) 1.04(0.25)
abalone 1.00(0.50) 1.02(0.41) 0.91(0.38) 0.97(0.49) 0.94(0.67) 0.96(0.61)
image 1.00(0.51) 0.98(0.45) 1.08(0.54) 0.98(0.46) 0.94(0.44) 0.98(0.47)

ringnorm 1.00(0.04) 0.87(0.04) 0.87(0.04) 0.95(0.08) 0.99(0.06) 0.91(0.08)
twonorm 1.00(0.58) 1.16(0.71) 0.94(0.57) 0.91(0.61) 0.91(0.52) 0.88(0.57)
waveform 1.00(0.45) 1.05(0.47) 0.98(0.31) 0.93(0.32) 0.93(0.34) 0.92(0.32)
Average 1.00(0.38) 1.07(0.40) 1.17(0.37) 1.07(0.37) 0.94(0.35) 0.96(0.36)

Comp. time — 0.82 3.50 3.27 2.23 1.00

Table 2: Mean test error averaged over 100 trials for covariate shift adaptation in regression and
classification. The numbers in the brackets are the standard deviation. All the error values
are normalized by that of ‘Uniform’ (uniform weighting, or equivalently noimportance
weighting). For each data set, the best method in terms of the mean error and comparable
ones based on theWilcoxon signed rank testat the significance level 1% are described in
bold face. The upper half corresponds to regression data sets taken from DELVE (Ras-
mussen et al., 1996), while the lower half correspond to classification data sets taken from
IDA (Rätsch et al., 2001). All the methods are implemented using theMATLABR© environ-
ment, where theCPLEXR© optimizer is used for solving quadratic programs in KMM and
theLIBLINEARimplementation is used for LogReg (Lin et al., 2007).

generalization error, while unweighted CV with misspecified models is biased due to covariate shift
(Zadrozny, 2004; Sugiyama et al., 2007).

The data sets provided by DELVE (Rasmussen et al., 1996) and IDA (Rätsch et al., 2001)
are used for performance evaluation. Each data set consists of input/output samples{(xk,yk)}nk=1.
We normalize all the input samples{xk}nk=1 into [0,1]d and choose the test samples{(xte

j ,y
te
j )}nte

j=1
from the pool{(xk,yk)}nk=1 as follows. We randomly choose one sample(xk,yk) from the pool and

accept this with probability min(1,4(x(c)
k )2), wherex(c)

k is thec-th element ofxk andc is randomly
determined and fixed in each trial of the experiments. Then we removexk from the pool regardless
of its rejection or acceptance, and repeat this procedure untilnte samples are accepted. We choose
the training samples{(xtr

i ,ytr
i )}ntr

i=1 uniformly from the rest. Thus, in this experiment, the test input

density tends to be lower than the training input density whenx(c)
k is small. We set the number of

samples atntr = 100 andnte = 500 for all data sets. Note that we only use{(xtr
i ,ytr

i )}ntr
i=1 and{xte

j }nte
j=1

for training regressors or classifiers; the test output values{yte
j }nte

j=1 are used only for evaluating the
generalization performance.

We run the experiments 100 times for each data set and evaluate themean test error:

1
nte

nte

∑
j=1

loss
(

f̂ (xte
j ),y

te
j

)
.
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The results are summarized in Table 2, where ‘Uniform’ denotes uniform weights (or equivalently,
no importance weight). The numbers in the brackets are the standard deviation. All the error values
are normalized so that the mean error of Uniform is one. For each data set,the best method in terms
of the mean error and comparable ones based on theWilcoxon signed rank testat the significance
level 1% are described in bold face. The upper half of the table corresponds to regression data sets
taken from DELVE (Rasmussen et al., 1996), while the lower half correspond to classification data
sets taken from IDA (R̈atsch et al., 2001). All the methods are implemented using theMATLABR©

environment, where theCPLEXR© optimizer is used for solving quadratic programs in KMM and
theLIBLINEARimplementation is used for LogReg (Lin et al., 2007).

The table shows that the generalization performance of uLSIF tends to be better than that of
Uniform, KDE, KMM, and LogReg, while it is comparable to the best existing method (KLIEP).
The mean computation time over 100 trials is described in the bottom row of the table,where the
value is normalized so that the computation time of uLSIF is one. This shows that the computation
time of uLSIF is much shorter than KLIEP. Thus, uLSIF is overall shown to be useful in covariate
shift adaptation.

6.3 Outlier Detection

Finally, we apply importance estimation methods in outlier detection.

Here, we consider an outlier detection problem of finding irregular samplesin a data set (“eval-
uation data set”) based on another data set (“model data set”) that only contains regular samples.
Defining the importance over two sets of samples, we can see that the importance values for regular
samples are close to one, while those for outliers tend to be significantly deviated from one. Thus
the importance values could be used as an index of the degree of outlyingness in this scenario. Since
the evaluation data set has wider support than the model data set, we regard the evaluation data set
as the training set{xtr

i }ntr
i=1 (that is, the denominator in the importance) and the model data set as

the test set{xte
j }nte

j=1 (that is, the numerator in the importance). Then outliers tend to have smaller
importance values (that is, close to zero).

We again test KMM(med), LogReg(CV), KLIEP(CV), and uLSIF(CV) for importance estima-
tion; in addition, we include native outlier detection methods for comparison purposes. The outlier
detection problem that the native methods used below solve is to find outliers in asingle data set
{xk}nk=1—the native methods can be employed in the current scenario just by findingoutliers from
all samples:

{xk}nk=1 = {xtr
i }ntr

i=1∪{xte
j }nte

j=1.

One-class support vector machine (OSVM):Thesupport vector machine(SVM) (Vapnik, 1998;
Scḧolkopf and Smola, 2002) is one of the most successful classification algorithms in machine
learning. The core idea of SVM is to separate samples in different classesby the maximum
margin hyperplane in a kernel-induced feature space.

OSVM is an extension of SVM to outlier detection (Schölkopf et al., 2001). The basic idea
of OSVM is to separate data samples{xk}nk=1 into outliers and inliers by a hyperplane in a
Gaussian reproducing kernel Hilbert space. More specifically, the solution of OSVM is given
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as the solution of the following convex quadratic programming problem:

min
{wk}nk=1

1
2

n

∑
k,k′=1

wkwk′Kσ(xk,xk′)

subject to
n

∑
k=1

wk = 1 and 0≤ w1,w2, . . . ,wn≤
1

νn
,

whereν (0≤ ν≤ 1) is the maximum fraction of outliers.

We use the inverse distance of a sample from the separating hyperplane asan outlier score.
The OSVM solution is dependent on the outlier ratioν and the Gaussian kernel widthσ, and
there seems to be no systematic method to determine the values of these tuning parameters.
Here we use the median distance between samples as the Gaussian width, whichis a popular
heuristic (Scḧolkopf and Smola, 2002; Song et al., 2007). The value ofν is fixed at the true
output ratio, that is, the ideal optimal value. Thus the simulation results below should be
slightly in favor of OSVM.

Local outlier factor (LOF): LOF is the score to detect a local outlier which lies relatively far from
the nearest dense region (Breunig et al., 2000). For a prefixed natural numberk, the LOF value
of a samplex is defined by

LOFR(x) =
1
k

k

∑
i=1

imdk(nearesti(x))
imdk(x)

,

where nearesti(x) denotes thei-th nearest neighbor ofx and imdk(x) denotes the inverse mean
distance fromx to itsk nearest neighbors:

imdk(x) =
1

1
k ∑k

i=1‖x−nearesti(x)‖
.

If xalone is apart from a cloud of points, imdk(x) tends to become smaller than than imdk(nearesti(x))
for all i. Then the LOF value gets large and therefore such a point is regarded as an outlier.
The performance of LOF depends on the choice of the parameterk and there seems no sys-
tematic way to find an appropriate value ofk. Here we test several different values ofk.

Kernel density estimator (KDE’): A naive density estimation of all data samples{xk}nk=1 can also
be used for outlier detection since the density value itself could be regardedas an outlier score.
We use KDE with the Gaussian kernel (21) for density estimation, where the kernel width is
determined based on 5-fold LCV.

All the methods are implemented using the R environment—we use theksvmroutine in the
kernlabpackage for OSVM (Karatzoglou et al., 2004) and thelofactor routine in thedpreppackage
for LOF (Fernandez, 2005).

The data sets provided by IDA (Rätsch et al., 2001) are used for performance evaluation. These
data sets are binary classification data sets consisting of positive/negativeand training/test samples.
We allocate all positive training samples for the “model” set, while all positive test samples and a
fractionρ (= 0.01,0.02,0.05) of negative test samples are assigned in the “evaluation” set. Thus,
we regard the positive samples as regular and the negative samples as irregular.
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In the evaluation of the performance of outlier detection methods, it is importantto take into
account both the detection rate (the amount of true outliers an outlier detectionalgorithm can find)
and the detection accuracy (the amount of true inliers that an outlier detectionalgorithm misjudges
as outliers). Since there is a trade-off between the detection rate and the detection accuracy, we
adopt the area under the ROC curve (AUC) as our error metric (Bradley, 1997).

The mean AUC values over 20 trials as well as the computation time are summarized inTable 3,
showing that uLSIF works fairly well. KLIEP works slightly better than uLSIF, but uLSIF is com-
putationally much more efficient. LogReg overall works reasonably well, but it performs poorly for
some data sets and the average AUC performance is not as good as uLSIFor KLIEP. KMM and
OSVM are not comparable to uLSIF in AUC and they are computationally inefficient. Note that we
also tested KMM and OSVM with several different Gaussian widths and experimentally found that
the heuristic of using the median sample distance as the Gaussian kernel width works reasonably
well in this experiment. Thus the AUC values of KMM and OSVM are close to optimal. LOF with
largek is shown to work well, although it is not clear whether the heuristic of simply using largek
is always appropriate or not. The computational cost of LOF is high since nearest neighbor search
is computationally expensive. KDE’ works reasonably well, but its performance is not as good as
uLSIF and KLIEP.

Overall, uLSIF is shown to work well with low computational costs.

7. Conclusions

The importance is useful in various machine learning scenarios such as covariate shift adaptation
and outlier detection. In this paper, we proposed a new method of importanceestimation that can
avoid solving a substantially more difficult task of density estimation. We formulated the importance
estimation problem as least-squares function fitting and casted the optimization problem as a convex
quadratic program (we referred to it as LSIF). We theoretically elucidated the convergence property
of LSIF and showed that the entire regularization path of LSIF can be efficiently computed based
on a parametric optimization technique. We further developed an approximationalgorithm (we
called it uLSIF), which allows us to obtain the closed-form solution. We showed that the leave-one-
out cross-validation score can be computed analytically for uLSIF—this makes the computation of
uLSIF highly efficient. We carried out extensive simulations in covariate shift adaptation and outlier
detection, and experimentally confirmed that the proposed uLSIF is computationally more efficient
than existing approaches, while the accuracy of uLSIF is comparable to thebest existing methods.
Thanks to the low computational cost, uLSIF would be highly scalability to large data sets, which
is very important in practical applications.

We have given convergence proofs for LSIF and uLSIF. A possiblefuture direction to pursue
along this line is to show the convergence of LSIF and uLSIF in non-parametric cases, for example,
following Nguyen et al. (2008) and Sugiyama et al. (2008b). We are currently exploring various
possible applications of important estimation methods beyond covariate shift adaptation or outlier
detection, for example, feature selection, conditional distribution estimation, independent compo-
nent analysis, and dimensionality reduction—we believe that importance estimation could be used
as a new versatile tool in statistical machine learning.

1428



A L EAST-SQUARESAPPROACH TODIRECT IMPORTANCEESTIMATION

Data uLSIF KLIEP LogReg KMM OSVM LOF KDE’
Name ρ (CV) (CV) (CV) (med) (med) k = 5 k = 30 k = 50 (CV)

banana
0.01 0.851 0.815 0.447 0.578 0.360 0.838 0.915 0.919 0.934
0.02 0.858 0.824 0.428 0.644 0.412 0.813 0.918 0.920 0.927
0.05 0.869 0.851 0.435 0.761 0.467 0.786 0.907 0.909 0.923

b-cancer
0.01 0.463 0.480 0.627 0.576 0.508 0.546 0.488 0.463 0.400
0.02 0.463 0.480 0.627 0.576 0.506 0.521 0.445 0.428 0.400
0.05 0.463 0.480 0.627 0.576 0.498 0.549 0.480 0.452 0.400

diabetes
0.01 0.558 0.615 0.599 0.574 0.563 0.513 0.403 0.390 0.425
0.02 0.558 0.615 0.599 0.574 0.563 0.526 0.453 0.434 0.425
0.05 0.532 0.590 0.636 0.547 0.545 0.536 0.461 0.447 0.435

f-solar
0.01 0.416 0.485 0.438 0.494 0.522 0.480 0.441 0.385 0.378
0.02 0.426 0.456 0.432 0.480 0.550 0.442 0.406 0.343 0.374
0.05 0.442 0.479 0.432 0.532 0.576 0.455 0.417 0.370 0.346

german
0.01 0.574 0.572 0.556 0.529 0.535 0.526 0.559 0.552 0.561
0.02 0.574 0.572 0.556 0.529 0.535 0.553 0.549 0.544 0.561
0.05 0.564 0.555 0.540 0.532 0.530 0.548 0.571 0.555 0.547

heart
0.01 0.659 0.647 0.833 0.623 0.681 0.407 0.659 0.739 0.638
0.02 0.659 0.647 0.833 0.623 0.678 0.428 0.668 0.746 0.638
0.05 0.659 0.647 0.833 0.623 0.681 0.440 0.666 0.749 0.638

satimage
0.01 0.812 0.828 0.600 0.813 0.540 0.909 0.930 0.896 0.916
0.02 0.829 0.847 0.632 0.861 0.548 0.785 0.919 0.880 0.898
0.05 0.841 0.858 0.715 0.893 0.536 0.712 0.895 0.868 0.892

splice
0.01 0.713 0.748 0.368 0.541 0.737 0.765 0.778 0.768 0.845
0.02 0.754 0.765 0.343 0.588 0.744 0.761 0.793 0.783 0.848
0.05 0.734 0.764 0.377 0.643 0.723 0.764 0.785 0.777 0.849

thyroid
0.01 0.534 0.720 0.745 0.681 0.504 0.259 0.111 0.071 0.256
0.02 0.534 0.720 0.745 0.681 0.505 0.259 0.111 0.071 0.256
0.05 0.534 0.720 0.745 0.681 0.485 0.259 0.111 0.071 0.256

titanic
0.01 0.525 0.534 0.602 0.502 0.456 0.520 0.525 0.525 0.461
0.02 0.496 0.498 0.659 0.513 0.526 0.492 0.503 0.503 0.472
0.05 0.526 0.521 0.644 0.538 0.505 0.499 0.512 0.512 0.433

twonorm
0.01 0.905 0.902 0.161 0.439 0.846 0.812 0.889 0.897 0.875
0.02 0.896 0.889 0.197 0.572 0.821 0.803 0.892 0.901 0.858
0.05 0.905 0.903 0.396 0.754 0.781 0.765 0.858 0.874 0.807

waveform
0.01 0.890 0.881 0.243 0.477 0.861 0.724 0.887 0.889 0.861
0.02 0.901 0.890 0.181 0.602 0.817 0.690 0.887 0.890 0.861
0.05 0.885 0.873 0.236 0.757 0.798 0.705 0.847 0.874 0.831

Average 0.661 0.685 0.530 0.608 0.596 0.594 0.629 0.622 0.623

Comp. time 1.00 11.7 5.35 751 12.4 85.5 8.70

Table 3: Mean AUC values for outlier detection over 20 trials for the benchmark data sets. All the
methods are implemented using the R environment, where quadratic programs in KMM
are solved by theipop optimizer (Karatzoglou et al., 2004), theksvmroutine is used for
OSVM (Karatzoglou et al., 2004), and thelofactor routine is used for LOF (Fernandez,
2005).
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Appendix A. Existence of the Inverse Matrix ofĜ

Here we prove Lemma 1.
Let us consider the following system of linear equations:

(
Ĥ −Ê

⊤

−Ê O|Â |×|Â|

)(
x
y

)
=

(
0b

0|Â |

)
, (38)

wherex andy areb- and|Â |-dimensional vectors, respectively. From the upper half of Eq. (38),we
have

x = Ĥ
−1

Ê
⊤

y.

Substituting this into the lower half of Eq. (38), we have

ÊĤ
−1

Ê
⊤

y = 0|Â |.

From the definition, the rank of the matrix̂E is |Â |, that is,Ê is a row-full rank matrix. As a result,

the matrixÊĤ
−1

Ê
⊤

is invertible. Therefore, Eq. (38) has the unique solutionx = 0b andy = 0|Â |.

This implies that̂G is invertible.

Appendix B. Active Set of LSIF

Here, we prove Theorem 2.
We prove that the active setA does not change under the infinitesimal shift ofH andh if the

strict complementarity condition is satisfied. We regard the pair of a symmetric matrixand a vector
(H ′,h′) as an element in the(b(b+1)

2 +b)-dimensional Euclidean space. We consider the following
linear equation: (

α′
ξ′
)

=

(
H ′ −E⊤

−E O|A |×|A |

)−1(
h′−λ1b

0|A |

)
,

whereE is the |A | ×b indicator matrix determined from the active setA (see Section 2.3 for the
detailed definition). IfH ′ = H andh′ = h hold, the solution(α′,ξ′) = (α∗(λ),ξ∗(λ)) satisfies

α′ℓ = 0, ξ′ℓ > 0, ∀ℓ ∈ A ,
α′ℓ > 0, ξ′ℓ = 0, ∀ℓ 6∈ A ,

(39)

because of the strict complementarity condition. On the other hand, if the normof (H ′,h′)− (H,h)
is infinitesimal, the solution(α′,ξ′) also satisfies Eq. (39) because of the continuity of the relation
between(H ′,h′) and(α′,ξ′).
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As a result, there exists anε-ball Bε in R
b(b+1)

2 +b such that the equalityA = {ℓ | α′ℓ = 0} holds
for any (H ′,h′) ∈ Bε. Therefore, we haveP(A 6= Â) ≤ P((Ĥ, ĥ) 6∈ Bε). Due to the large deviation
principle (Dembo and Zeitouni, 1998), there is a positive constantc such that

− 1
min{ntr,nte}

logP((Ĥ, ĥ) 6∈ Bε) > c > 0,

if min{ntr,nte} is large enough. Thus, asymptoticallyP(Â 6= A) < e−cmin{ntr,nte} holds.

Appendix C. Learning Curve of LSIF

Here, we prove Theorem 3.
Let us consider the ideal problem (7). Letα∗(λ) andξ∗(λ) be the optimal parameter and La-

grange multiplier (that is, the KKT conditions are fulfilled; see Section 2.3) andlet ξ∗′(λ) be the
vector of non-zero elements ofξ∗(λ) defined in the same way as Eq. (11). Thenα∗(λ) andξ∗′(λ)
satisfy

G

(
α∗(λ)

ξ∗′(λ)

)
=

(
h−λ1b

0|A |

)
, (40)

where

G =

(
H −E⊤

−E O|A |×|A |

)
.

From the central limit theorem and the assumption (18), we have

ĥ = h+Op

(
1√
nte

)
= h+op

(
1
ntr

)
, (41)

whereOp andop denote the asymptotic order in probability. The assumption (a) implies that the
equality

Ê = E (42)

holds with exponentially high probability due to Theorem 2. Note thatĜ is the same size asG if
Ê = E. Thus we have

Ĝ = G+δG,

where

δG =

(
δH Ob×|A |

O|A |×b O|A |×|A |

)
,

δH = Ĥ−H. (43)

Combining Eqs. (12), (40), (41), and (42), we have
(

α̂(λ)

ξ̂
′
(λ)

)
= Ĝ

−1
G

(
α∗(λ)

ξ∗′(λ)

)
+op

(
1
ntr

)
. (44)

The matrix Taylor expansion (Petersen and Pedersen, 2007) yields

Ĝ
−1

= G−1−G−1δGG−1 +G−1δGG−1δGG−1−·· · , (45)
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and the central limit theorem asserts that

δH = Op

(
1√
ntr

)
. (46)

Combining Eqs. (44), (45), (14), and (46), we have

δα = α̂(λ)−α∗(λ) (47)

=−AδHα∗(λ)+AδHAδHα∗(λ)+o

(
1
ntr

)
. (48)

Through direct calculation, we can confirm that

AHA= A. (49)

Similar to Eq. (15), it holds that
α∗(λ) = A(h−λ1b). (50)

From Eqs. (49) and (50), we have

A(Hα∗(λ)−h) =−λA1b. (51)

Eqs. (43), (4), and (3) imply
E[δH] = Ob×b. (52)

From Eqs. (2) and (47), we have

J(α̂(λ)) = J(α∗(λ))+
1
2

δα⊤Hδα+(Hα∗(λ)−h)⊤δα. (53)

From Eqs. (46), (48), and (49), we have

E

[
δα⊤Hδα

]
= tr(H E

[
δαδα⊤

]
)

= tr(AHAE

[
(δHα∗(λ))(δHα∗(λ))⊤

]
)+o

(
1
ntr

)

= tr(A E

[
(δHα∗(λ))(δHα∗(λ))⊤

]
)+o

(
1
ntr

)
. (54)

From Eqs. (48), (51), and (52), we have

E

[
δα⊤(Hα∗(λ)−h)

]
=−E

[
(δHα∗(λ)−δHAδHα∗(λ))⊤A(Hα∗(λ)−h)

]
+o

(
1
ntr

)

=E

[
(δHα∗(λ)−δHAδHα∗(λ))⊤λA1b

]
+o

(
1
ntr

)

=−λtr(A E

[
(δHα∗(λ))(δHA1b)

⊤
]
)+o

(
1
ntr

)
. (55)
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Combining Eqs. (53), (54), and (55), we have

E [J(α̂(λ))] =J(α∗(λ))+
1

2ntr
tr(A E

[
(
√

ntrδHα∗(λ))(
√

ntrδHα∗(λ))⊤
]
)

− λ
ntr

tr(A E

[
(
√

ntrδHα∗(λ))(
√

ntrδHA1b)
⊤
]
)+o

(
1
ntr

)
.

According to the central limit theorem,
√

ntrδHi, j asymptotically follows the normal distribution
with mean zero and variance

Z

ϕ2
i (x)ϕ

2
j (x)ptr(x)dx−H2

i, j ,

and the asymptotic covariance between
√

ntrδHi, j and
√

ntrδHi′, j ′ is given by

Z

ϕi(x)ϕ j(x)ϕi′(x)ϕ j ′(x)ptr(x)dx−Hi, jHi′, j ′ .

Then we have

lim
ntr→∞

E

[
(
√

ntrδHα∗(λ))(
√

ntrδHα∗(λ))⊤
]

= Cw∗,w∗ ,

lim
ntr→∞

E

[
(
√

ntrδHα∗(λ))(
√

ntrδHA1b)
⊤
]

= Cw∗,v,

whereCw,w′ is theb×b covariance matrix with the(ℓ,ℓ′)-th element being the covariance between
w(x)ϕℓ(x) andw′(x)ϕℓ′(x) underptr(x). Then we obtain Eq. (19).

Appendix D. Regularization Path of LSIF

Here, we derive the regularization path tracking algorithm given in Figure1.
When λ is greater than or equal to maxk ĥk, the solution of the KKT conditions (9)–(10) is

provided asα = 0b, ξ = λ1b− ĥ≥ 0b. Therefore, the initial value ofλ0 is maxk ĥk, and the corre-
sponding optimal solution iŝα(λ0) = 0b.

Sinceξ̂
′
(λ) corresponds to non-zero elements ofξ̂(λ) as shown in Eq. (11), we have

ξ̂ j(λ) =

{
ξ̂′i(λ) if j = ĵ i ,

0 otherwise.
(56)

Whenλ is decreased, the solutionsα̂(λ) andξ̂(λ) still satisfy Eqs. (12) and (56) as long as the
active set̂A remains unchanged. Change points of the active set can be found by examining the non-
negativity conditions of̂α(λ) and ξ̂(λ) as follows. Supposeλ is decreased and the non-negativity
condition

(
α̂(λ)

ξ̂(λ)

)
≥ 02b

is violated atλ = λ′. That is, bothα̂(λ′) ≥ 0b and ξ̂(λ′) ≥ 0b hold, and either̂α(λ′− ε) ≥ 0b or
ξ̂(λ′− ε)≥ 0b is violated for anyε > 0. If α̂ j(λ′) = 0 for j 6∈ Â , j should be added to the active set
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Â ; on the other hand, if̂ξ j(λ′) = 0 for somej ∈ Â , α̂ j(λ′) will take a positive value and therefore
j should be removed from the active setÂ . Then, for the updated active set, we compute the
solutions by Eqs. (12) and (56). Iterating this procedure untilλ reaches zero, we can obtain the
entire regularization path.

Note that we omitted some minor exceptional cases for the sake of simplicity—treatments for all
possible exceptions and the rigorous convergence property are exhaustively studied in Best (1982).

Appendix E. Negative Index Set ofβ◦(λ)

Here we prove Theorem 4.
As explained in Appendix B, we regard the pair of a symmetric matrix and a vector (H ′,h′) as

an element in the(b(b+1)
2 +b)-dimensional Euclidean space.

We consider the linear equation

β′ = (H ′+λIb)
−1h′.

Due to the assumption, forH ′ = H andh′ = h, we have

β′ℓ 6= 0, ℓ = 1,2, . . . ,b. (57)

On the other hand, if the norm of(H ′,h′)− (H,h) is infinitesimal, the solutionβ′ also satisfies
Eq. (57), and the sign ofβ′ℓ is same as that ofβℓ for ℓ = 1,2, . . . ,b, because of the continuity of the
relation between(H ′,h′) andβ′.

As a result, there exists anε-ball Bε in R
b(b+1)

2 +b such that the equalityB = B̃ holds for any
(H ′,h′) ∈ Bε. Therefore, we haveP(B 6= B̃)≤ P((Ĥ, ĥ) 6∈ Bε). Due to the large deviation principle
(Dembo and Zeitouni, 1998), there is a positive constantc such that

− 1
min{ntr,nte}

logP((Ĥ, ĥ) 6∈ Bε) > c > 0,

if min{ntr,nte} is large enough. Thus, asymptoticallyP(B 6= B̃) < e−cmin{ntr,nte} holds.

Appendix F. Learning Curve of uLSIF

Here, we prove Theorem 5.
Let

B̂λ = Ĥ +λIb.

The matrix Taylor expansion (Petersen and Pedersen, 2007) yields

B̂
−1
λ = B−1

λ −B−1
λ δHB−1

λ +B−1
λ δHB−1

λ δHB−1
λ −·· · . (58)

Let B̃ ⊂ {1,2, . . . ,b} be the set of negative indices ofβ̃(λ), that is,

B̃ = {ℓ | β̃ℓ(λ) < 0, ℓ = 1,2, . . . ,b}.

Let D̂ be theb-dimensional diagonal matrix with theℓ-th diagonal element

D̂ℓ,ℓ =

{
0 ℓ ∈ B̃,

1 otherwise.
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The assumption (a) implies that the equality

D̂ = D (59)

holds with exponentially high probability due to Theorem 4. Combining Eqs. (59), (41), (58), and
(24), we have

δβ = β̂(λ)−β∗(λ)

= D̂B̂
−1
λ ĥ−DB−1

λ h

=−DB−1
λ δHβ◦(λ)+DB−1

λ δHB−1
λ δHβ◦(λ)+o

(
1
ntr

)
. (60)

From Eqs. (46) and (60), we have

E

[
δβ⊤Hδβ

]
= tr(B−1

λ DHDB−1
λ E

[
(δHβ◦(λ))(δHβ◦(λ))⊤

]
)+o

(
1
ntr

)
. (61)

From Eqs. (52) and (24), we have

E

[
δβ⊤(Hβ∗(λ)−h)

]
=E

[
(−δHβ◦(λ)+δHB−1

λ δHβ◦(λ))⊤B−1
λ D(Hβ∗(λ)−h)

]

+o

(
1
ntr

)

=E

[
tr(B−1

λ (δHβ◦(λ))(δHB−1
λ D(Hβ∗(λ)−h))⊤)

]

+o

(
1
ntr

)
. (62)

Combining Eqs. (53), (61), and (62), we have

E

[
J(β̂(λ))

]
=J(β∗(λ))+

1
2ntr

tr(B−1
λ DHDB−1

λ E[(
√

ntrδHβ◦(λ))(
√

ntrδHβ◦(λ))⊤)

+
1
ntr

tr(B−1
λ E[(

√
ntrδHβ◦(λ))(

√
ntrδHB−1

λ D(Hβ∗(λ)−h))⊤)+o

(
1
ntr

)
.

According to the central limit theorem, we have

lim
ntr→∞

E[(
√

ntrδHβ◦(λ))(
√

ntrδHβ◦(λ))⊤] = Cw◦,w◦ ,

lim
ntr→∞

E[(
√

ntrδHβ◦(λ))(
√

ntrδHB−1
λ D(Hβ∗(λ)−h))⊤] = Cw◦,u.

Then we obtain Eq. (25).

Appendix G. ‘Norm’ Upper Bound of Approximation Error for uLSIF

Here we prove Theorem 6.
Using the weighted norm (27), we can express diff(λ) as

diff(λ) =
infλ′≥0‖α̂(λ′)− β̂(λ)‖Ĥ

∑ntr
i=1 ŵ(xtr

i ; β̂(λ))
.
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As shown in Appendix D,̂α(λ′) = 0b holds for some largeλ′. Then we immediately have

diff(λ)≤ ‖β̂(λ)‖Ĥ
∑ntr

i=1 ŵ(xtr
i ; β̂(λ))

,

which proves Eq. (28). Letκmaxbe the largest eigenvalue ofĤ. Then‖β̂(λ)‖Ĥ can be upper bounded
as

‖β̂(λ)‖Ĥ ≤
√

κmax‖β̂(λ)‖2≤
√

κmax‖β̃(λ)‖2,

where the first inequality may be confirmed by eigen-decomposingĤ and the second inequality is
clear from the definitions of̂β(λ) andβ̃(λ). Let κmin be the smallest eigenvalue ofĤ. Then an upper
bound of‖β̃(λ)‖22 is given as

‖β̃(λ)‖22 = ĥ
⊤
(Ĥ +λIb)

−2ĥ≤ 1
(κmin +λ)2‖ĥ‖

2
2≤

1
λ2‖ĥ‖

2
2,

where the last inequality follows fromκmin > 0 .
Now we have

‖β̂(λ)‖Ĥ
∑ntr

i=1w(xtr
i ; β̂(λ))

≤ 1

∑ntr
i=1w(xtr

i ; β̂(λ))

√
κmax‖ĥ‖2

λ

=
1

∑ntr
i=1 ∑b

ℓ=1 ϕℓ(xtr
i )β̂ℓ(λ)/‖β̂(λ)‖1

√
κmax‖ĥ‖2

λ‖β̂(λ)‖1
.

For the denominator of the above expression, we have

ntr

∑
i=1

b

∑
ℓ=1

ϕℓ(x
tr
i )

β̂ℓ(λ)

‖β̂(λ)‖1
≥ min

ℓ′
(

ntr

∑
i=1

ϕℓ′(x
tr
i )) ·

b

∑
ℓ=1

β̂ℓ(λ)

‖β̂(λ)‖1
= min

ℓ

ntr

∑
i=1

ϕℓ(x
tr
i ),

where the last equality follows from the non-negativity ofβ̂ℓ(λ). The reciprocal of‖ĥ‖2/‖β̂(λ)‖1 is
lower bounded as follows:

‖β̂(λ)‖1
‖ĥ‖2

=

∥∥∥∥∥max

{
β̃(λ)

‖ĥ‖2
, 0

}∥∥∥∥∥
1

≥
∥∥∥∥∥max

{
β̃(λ)

‖ĥ‖2
, 0

}∥∥∥∥∥
∞

= max
ℓ

β̃ℓ(λ)

‖ĥ‖2
,

where the last equality follows from the fact that there is anℓ such that̃βℓ(λ) > 0; otherwise, we
have∑ntr

i=1w(xtr
i ; β̂) = 0 which contradicts to the assumption of the theorem. Let us put

κe=
β̃(λ)

‖ĥ‖2
,

whereκ > 0 ande∈ R
b such that‖e‖2 = 1. Then we have

(κmax+λ)−1≤ κ ande⊤ĥ > 0.
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Note that there exists anℓ such thateℓ > 0. Then, we have

max
ℓ

β̃ℓ(λ)

‖ĥ‖2
= max

ℓ
κeℓ = κmax

ℓ
eℓ ≥

1
κmax+λ

max
ℓ

eℓ

≥ 1
κmax+λ

min
e
{max

ℓ
eℓ | e⊤e= 1, e⊤ĥ/‖ĥ‖1 > 0}.

Now we prove the following lemma.

Lemma 8 Let p1, p2, . . . , pb(b≥ 2) be positive numbers such that

b

∑
ℓ=1

pℓ = 1,

and let

ε =
1√
b

min
ℓ

pℓ

1− pℓ
.

Then, there exists no e= (e1,e2, . . . ,eb) ∈ R
b such that the three conditions,

b

∑
ℓ=1

e2
ℓ = 1,

b

∑
ℓ=1

pℓeℓ > 0, and eℓ < ε for ℓ = 1,2, . . . ,b

are satisfied at the same time.

Proof We suppose thate∈ R
b satisfies the three conditions. If minℓ pℓ/(1− pℓ) > 1, we have

pℓ > 1/2 for all ℓ. However, this is contradictory to∑b
ℓ=1 pℓ = 1. Therefore, we have

min
ℓ

pℓ/(1− pℓ)≤ 1,

from which we have
ε≤ 1/

√
b.

The equality constraint∑b
ℓ=1e2

ℓ = 1 implies the condition that there exists anei such that|ei | ≥ 1/
√

b.
Moreover, we havee1,e2, . . . ,eb < ε≤ 1/

√
b, and thus there is anei such thatei ≤−1/

√
b. Hence,

we have

pi√
b
≤ − piei < ∑

ℓ6=i

pℓeℓ < ∑
ℓ6=i

pℓ
1√
b

min
k

pk

1− pk
= (1− pi)

1√
b

min
k

pk

1− pk
≤ pi√

b
.

This results in contradiction.

Let pℓ = ĥℓ/‖ĥ‖1 and we use Lemma 8. Note that any element ofĥ is positive. Then, we have

‖β̂(λ)‖1
‖ĥ‖2

≥ 1
κmax+λ

· 1√
b

min
ℓ

pℓ

∑i 6=ℓ pi
.

Moreover, we have

min
ℓ

pℓ

∑i 6=ℓ pi
≥ minℓ ĥℓ

∑b
ℓ′=1 ĥℓ′

=
minℓ ∑nte

j=1 ϕℓ(xte
j )

∑b
ℓ′=1 ∑nte

j=1 ϕℓ′(xte
j )
≥

minℓ ∑nte
j=1 ϕℓ(xte

j )

nteb
,
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where the last inequality follows from the assumption 0< ϕℓ(x) ≤ 1. Therefore, we have the in-
equality

1

∑n
i=1w(xtr

i ; β̂(λ))

√
κmax‖ĥ‖2

λ

≤ b
√

bκmax

(
1+

κmax

λ

) 1
minℓ ∑ntr

i=1 ϕℓ(xtr
i )
· nte

minℓ′ ∑nte
j=1 ϕℓ′(xte

j )
. (63)

An upper bound ofκmax is given as follows. For alla∈ R
b, the inequality

−
b

∑
ℓ=1

|aℓ|ϕℓ(x)≤
b

∑
ℓ=1

aℓϕℓ(x)≤
b

∑
ℓ=1

|aℓ|ϕℓ(x) (64)

holds because of the positivity ofϕℓ(x). Let us define ¯a∈ R
b for givena∈ R

b as

ā = (|a1|, |a2|, . . . , |ab|)⊤.

Note that‖ā‖2 = ‖a‖2 holds. Then, using Eq. (64), we obtain the inequality

a⊤Ĥa =
1
ntr

ntr

∑
i=1

(
b

∑
ℓ=1

aℓϕℓ(x
tr
i )

)2

≤ 1
ntr

ntr

∑
i=1

(
b

∑
ℓ=1

|aℓ|ϕℓ(x
tr
i )

)2

= ā⊤Ĥā,

for anya∈ R
b. Therefore, we obtain

max
‖a‖2=1

a⊤Ĥa≤ max
‖a‖2=1

ā⊤Ĥā = max
‖a‖2=1, a≥0b

a⊤Ĥa, (65)

where the last equality is derived from the relation,

{ā | ‖a‖2 = 1, a∈ R
b} = {a | ‖a‖2 = 1, a≥ 0b, a∈ R

b}.
On the other hand, due to the additional constrainta≥ 0b, the inequality

max
‖a‖2=1, a≥0b

a⊤Ĥa ≤ max
‖a‖2=1

a⊤Ĥa (66)

holds. From Eqs. (65) and (66), we have

κmax = max
‖a‖2=1

a⊤Ĥa = max
‖a‖2=1,a≥0b

a⊤Ĥa = max
‖a‖2=1, a≥0b

1
ntr

ntr

∑
i=1

(
b

∑
ℓ=1

aℓϕℓ(x
tr
i )

)2

.

Using the assumption 0< ϕℓ(x)≤ 1, we have

κmax = max
‖a‖2=1, a≥0b

1
ntr

ntr

∑
i=1

(
b

∑
ℓ=1

aℓϕℓ(x
tr
i )

)2

≤ max
‖a‖2=1, a≥0b

1
ntr

ntr

∑
i=1

(
b

∑
ℓ=1

aℓ

)2

= max
‖a‖2=1, a≥0b

(
b

∑
ℓ=1

aℓ

)2

≤ max
‖a‖2=1, a≥0b

b·
b

∑
ℓ=1

a2
ℓ

= b, (67)

where the Schwarz inequality fora and 1b is used in the last inequality. The inequalities (63) and
(67) lead to the inequality (29).

It is clear that the upper bound (29) is a decreasing function ofλ (> 0). For the Gaussian basis
function,ϕℓ(x) is an increasing function with respect to the Gaussian widthσ. Thus, Eq. (29) is a
decreasing function ofσ.
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Appendix H. ‘Bridge’ Upper Bound of Approximation Error for uLSI F

Here we prove Theorem 7.
From the triangle inequality, we obtain

diff(λ)≤ infλ′≥0‖α̂(λ′)− γ̂(λ)‖Ĥ +‖γ̂(λ)− β̂(λ)‖Ĥ
∑ntr

i=1 ŵ(xtr
i ; β̂(λ))

. (68)

We derive an upper bound of the first term.
First, we show that the LSIF optimization problem (6) is equivalently expressed as

min
α∈Rb

[
1
2

α⊤Ĥα− ĥ
⊤

α
]

subject toα≥ 0b, 1⊤b α≤ c,

which we refer to as LSIF′. The KKT conditions of LSIF (6) are given as

{
Ĥα− ĥ+λ1b−µ= 0b,

α≥ 0b, µ≥ 0b, α⊤µ= 0,

whereµ is the Lagrange multiplier vector. Similarly, the KKT conditions of LSIF′ are given as





Ĥα− ĥ+µ01b−µ= 0b,

α≥ 0b, µ≥ 0b, α⊤µ= 0,

1⊤b α−c≤ 0, µ0≥ 0, (1⊤b α−c)µ0 = 0,

(69)

whereµ andµ0 are the Lagrange multipliers. Let(α̂(λ), µ̂(λ)) be the solution of the KKT conditions
of LSIF. Then, we find that(α,µ,µ0) = (α̂(λ), µ̂(λ),λ) is the solution of Eq. (69) withc = 1⊤b α̂(λ).
Note that LSIF′ is a strictly convex optimization problem, and thusα̂(λ) is the unique optimal
solution. Conversely, when the solution of Eq. (69) is provided as(α̂, µ̂,µ0), LSIF with λ = µ0 has
the same optimal solution̂α.

When the optimal solution of LSIFq iŝγ(λ), the KKT conditions of LSIFq (30) are given as

Ĥ γ̂(λ)− ĥ+λγ̂(λ)− η̂ = 0b, (70)

γ̂(λ)≥ 0b, η̂≥ 0b, γ̂(λ)⊤η̂ = 0, (71)

whereη̂ is the Lagrange multiplier vector.
Let α̂(λ1) be the optimal solution of LSIF′ with c= 1⊤b γ̂(λ), and suppose that the solutionα̂(λ1)

coincides with that of LSIF withλ = λ1. Then, from Eq. (69), we have

Ĥα̂(λ1)− ĥ+λ11b− µ̂(λ1) = 0b, (72)

α̂(λ1)≥ 0b, µ̂(λ1)≥ 0b, α̂(λ1)
⊤µ̂(λ1) = 0, (73)

1⊤b α̂(λ1)−1⊤b γ̂(λ)≤ 0, λ1≥ 0, (1⊤b α̂(λ1)−1⊤b γ̂(λ))λ1 = 0. (74)

From Eqs. (70) and (72), we obtain

Ĥ(α̂(λ1)− γ̂(λ)) =−λ11b +λγ̂(λ)+ µ̂(λ1)− η̂. (75)
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Applying Eqs. (71), (73), (74), and (75), we have

inf
λ′≥0
‖α̂(λ′)− γ̂(λ)‖2

Ĥ
≤ (α̂(λ1)− γ̂(λ))⊤Ĥ(α̂(λ1)− γ̂(λ))

= −λ1(α̂(λ1)− γ̂(λ))⊤1b +λ(α̂(λ1)− γ̂(λ))⊤γ̂(λ)

+(α̂(λ1)− γ̂(λ))⊤(µ̂(λ1)− η̂)

= λ(α̂(λ1)
⊤γ̂(λ)−‖γ̂(λ)‖22)− α̂(λ1)

⊤η̂− γ̂(λ)⊤µ̂(λ1)

≤ λ(α̂(λ1)
⊤γ̂(λ)−‖γ̂(λ)‖22). (76)

Fromα̂(λ1)≥ 0b, γ̂(λ)≥ 0b, and 1⊤b α̂(λ1)≤ 1⊤b γ̂(λ), we have

‖α̂(λ1)‖1 = 1⊤b α̂(λ1)≤ 1⊤b γ̂(λ)≤ ‖γ̂(λ)‖1.

Then we have the following inequality:

α̂(λ1)
⊤γ̂(λ)≤ α̂(λ1)

⊤(‖γ̂(λ)‖∞1b)

= ‖α̂(λ1)‖1 · ‖γ̂(λ)‖∞ ≤ ‖γ̂(λ)‖1 · ‖γ̂(λ)‖∞. (77)

For p andq such that 1/p+1/q = 1 and 1≤ p,q≤ ∞, Hölder’s inequality states that

‖α∗β‖1≤ ‖α‖p · ‖β‖q,

whereα∗β denotes the element-wise product ofα andβ. Settingp = 1, q = ∞, andα = β = γ̂(λ)
in Hölder’s inequality, we have

‖γ̂(λ)‖1 · ‖γ̂(λ)‖∞−‖γ̂(λ)‖22≥ 0. (78)

Combining Eqs. (68), (76), (77), and (78), we obtain

diff(λ) ≤

√
λ(‖γ̂(λ)‖1 · ‖γ̂(λ)‖∞−‖γ̂(λ)‖22)+‖γ̂(λ)− β̂(λ)‖Ĥ

∑ntr
i=1 ŵ(xtr

i ; β̂(λ))
.

Appendix I. Closed Form of LOOCV Score for uLSIF

Here we derive a closed form expression of the LOOCV score for uLSIF (see Figure 2 for the
pseudo code).

Let
ϕ(x) = (ϕ1(x),ϕ2(x), . . . ,ϕb(x))

⊤.

Then the matrix̂H and the vector̂h are expressed as

Ĥ =
1
ntr

ntr

∑
i=1

ϕ(xtr
i )ϕ(xtr

i )⊤,

ĥ =
1

nte

nte

∑
j=1

ϕ(xte
j ),
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and the coefficients̃β(λ) can be computed by

β̃(λ) = B̂
−1
λ ĥ.

Let β̂
(i)

be the estimator obtained without thei-th training samplextr
i and thei-th test samplexte

i .
Then the estimator has the following closed form:

β̂
(i)

(λ) = max(0b, β̃
(i)

(λ)),

β̃
(i)

(λ) =

(
1

ntr−1
(ntrĤ−ϕ(xtr

i )ϕ(xtr
i )⊤)+λIb

)−1 1
nte−1

(ntêh−ϕ(xte
j )).

Let B̂ = Ĥ + λ(ntr−1)
ntr

Ib andβ̃ = B̂
−1

ĥ in the following calculation. Using the Sherman-Woodbury-

Morrison formula (33), we can simplify the expression ofβ̃
(i)

(λ) as follows:

β̃
(i)

(λ) =
ntr−1

ntr

(
B̂− 1

ntr
ϕ(xtr

i )ϕ(xtr
i )⊤
)−1( nte

nte−1
ĥ− 1

nte−1
ϕ(xte

i )

)

=
ntr−1

ntr

(
B̂
−1

+
1

ntr−ϕ(xtr
i )⊤B̂

−1
ϕ(xtr

i )
B̂
−1

ϕ(xtr
i )ϕ(xtr

i )⊤B̂
−1
)

×
(

nte

nte−1
ĥ− 1

nte−1
ϕ(xte

i )

)

=
(ntr−1)nte

ntr(nte−1)

(
β̃+

ϕ(xtr
i )⊤β̃

ntr−ϕ(xtr
i )⊤B̂

−1
ϕ(xtr

i )
B̂
−1

ϕ(xtr
i )

)

− (ntr−1)

ntr(nte−1)

(
B̂
−1

ϕ(xte
i )+

ϕ(xtr
i )⊤B̂

−1
ϕ(xte

i )

ntr−ϕ(xtr
i )⊤B̂

−1
ϕ(xtr

i )
B̂
−1

ϕ(xtr
i )

)
.

Thus the matrix inversion required for computingβ̃
(i)

(λ) for all i = 1,2, . . . . ,ntr is only B̂. Applying
this to Eq. (32) and rearrange the formula, we can compute the LOOCV score analytically.
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