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Abstract

We address the problem of estimating the ratio of two prdlgliensity functions, which is often
referred to as thémportance The importance values can be used for various succeedikg ta
such agovariate shift adaptationr outlier detection In this paper, we propose a new importance
estimation method that has a closed-form solution; thesl@me-out cross-validation score can also
be computed analytically. Therefore, the proposed methedmputationally highly efficient and
simple to implement. We also elucidate theoretical pragef the proposed method such as the
convergence rate and approximation error bounds. Numesiperiments show that the proposed
method is comparable to the best existing method in accuveltie it is computationally more
efficient than competing approaches.

Keywords: importance sampling, covariate shift adaptation, novd#jection, regularization
path, leave-one-out cross validation

1. Introduction

In the context oimportance samplingFishman, 1996), the ratio of two probability density func-
tions is called thémportance The problem of estimating the importance is attracting a great deal of
attention these days since the importance can be used for various sngdasks such asovariate

shift adaptatioror outlier detection

Covariate Shift Adaptation: Covariate shift is a situation in supervised learning where
the distributions of inputs change between the training and test phasesburth
ditional distribution of outputs given inputs remains unchanged (Shimodz®Q);
Quiflonero-Candela et al., 2008). Covariate shift is conceivable in mayweld

x. A  MATLAB® or R implementation of the proposed importance estimation algo-
rithm, unconstrained Least-Squares Importance Fitting (ULSIF), is available from
http://sugiyama-www.cs.titech.ac.jp/ ~sugi/software/uLSIF/
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applications such as bioinformatics (Baldi and Brunak, 1998; Borgvedral., 2006),
brain-computer interfaces (Wolpaw et al., 2002; Sugiyama et al., 208139t control
(Sutton and Barto, 1998; Hachiya et al., 2008), spam filtering (Bickel 3cheffer,
2007), and econometrics (Heckman, 1979). Under covariate shifgastiearning
techniques such as maximum likelihood estimation or cross-validation are laiaded
therefore unreliable—the bias caused by covariate shift can be coatpdiy weight-

ing the loss function according to the importance (Shimodaira, 2000; Zagra@04;
Sugiyama and Mller, 2005; Sugiyama et al., 2007; Huang et al., 2007; Bickel et al.,
2007).

Outlier Detection: The outlier detection task addressed here is to identify irregular
samples in a validation data set based on a model data set that only congailas re
samples (Sablkopf et al., 2001; Tax and Duin, 2004; Hodge and Austin, 2004; Hido
et al., 2008). The values of the importance for regular samples are close tavhile
those for outliers tend to be significantly deviated from one. Thus the valute
importance could be used as an index of the degree of outlyingness.

Below, we refer to the two sets of samples astthaing set and theestset.

A naive approach to estimating the importance is to first estimate the training armf sy
functions from the sets of training and test samples separately, and tleethéakatio of the esti-
mated densities. However, density estimation is known to be a hard probléoufzaly in high-
dimensional cases if we do not have simple and good parametric density njdajefsk, 1998;
Hardle et al., 2004). In practice, such an appropriate parametric modehatde available and
therefore this naive approach is not so effective.

To cope with this problem, direct importance estimation methods which do not enda-
sity estimation have been developed recently. Kémel mean matchinKMM) method (Huang
et al., 2007) directly gives estimates of the importance at the training inputs topimg the two
distributions efficiently based on a special propertyniversal reproducing kernel Hilbert spaces
(Steinwart, 2001). The optimization problem involved in KMM is a convex gatc program, so
the unique global optimal solution can be obtained using a standard optimizafiomu®. How-
ever, the performance of KMM depends on the choice of tuning parasnateh as the kernel pa-
rameter and the regularization parameter. For the kernel parametemlampoguristic of using the
median distance between samples as the Gaussian width could be useful iceseséSadablkopf
and Smola, 2002; Song et al., 2007). However, there seems no straifiggtien for this heuristic
and the choice of other tuning parameters is still open.

A probabilistic classifier that separates training samples from test sampldse agsed for di-
rectly estimating the importance, for exampldogistic regressior{LogReg) classifier (Qin, 1998;
Cheng and Chu, 2004; Bickel et al., 2007). Maximum likelihood estimationogfReg models
can be formulated as a convex optimization problem, so the unique global opblutibn can be
obtained. Furthermore, since the LogReg-based method only involvesdasiasupervised clas-
sification problem, the tuning parameters such as the kernel width and thiariegtion parameter
can be optimized based on the standard cross-validation procedures &hisry useful property
in practice.

TheKullback-Leibler importance estimation proced(iLIEP) (Sugiyama et al., 2008b; Nguyen
et al., 2008) also directly gives an estimate of the importance function by matttanwo distribu-
tions in terms of the Kullback-Leibler divergence (Kullback and Leible§1)9 The optimization
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problem involved in KLIEP is convex, so the unique global optimal solutiorhietv tends to be
sparse—can be obtained, when linear importance models are useditioradide tuning parame-
ters in KLIEP can be optimized based on a variant of cross-validation.

As reviewed above, LogReg and KLIEP are more advantageous thayl Kikte the tuning
parameters can be objectively optimized based on cross-validation. EQvegtimization proce-
dures of LogReg and KLIEP are less efficient in computation than KMMtdlegh non-linearity
of the objective functions to be optimized—more specifically, exponentiatioms induced by the
LogReg model or the log function induced by the Kullback-Leibler diveoge The purpose of
this paper is to develop a new importance estimation method that is equipped wilti-enlmoodel
selection procedure as LogReg and KLIEP and is computationally moreefftban LogReg and
KLIEP.

Our basic idea is to formulate the direct importance estimation problem as a deases
function fitting problem. This formulation allows us to cast the optimization problera aon-
vex quadratic program, which can be efficiently solved using a standedratic program solver.
Cross-validation can be used for optimizing the tuning parameters such kertte width or the
regularization parameter. We call the proposed metkadt-squares importance fitting. SIF).
We further show that the solutions of LSIF is piecewise linear with respebetéy-regularization
parameter and the entire regularization path (that is, all solutions for efiffeegularization pa-
rameter values) can be computed efficiently based opdhemetric optimization technigudest,
1982; Efron et al., 2004; Hastie et al., 2004). Thanks to this regulanzptith tracking algorithm,
LSIF is computationally efficient in model selection scenarios. Note that irethdarization path
tracking algorithm, we can trace the solution path without a quadratic progwhuer—we just need
to compute matrix inverses.

LSIF is shown to be efficient in computation, but it tends to share a commokness of reg-
ularization path tracking algorithms, that &;cumulation of numerical erroréScheinberg, 2006).
The numerical problem tends to be severe if there are many change pothts riegularization
path. To cope with this problem, we develop an approximation algorithm in the Isastesquares
framework. The approximation version of LSIF, which we eadtonstrained LSIFULSIF), allows
us to obtain the closed-form solution that can be computed just by solvingtensyf linear equa-
tions. Thus uLSIF is numerically stable when regularized properly. Mamredhe leave-one-out
cross-validation score for uLSIF can also be computed analytically (efaba, 1990; Cawley and
Talbot, 2004), which significantly improves the computational efficiency inghselection scenar-
ios. We experimentally show that the accuracy of uLSIF is comparable taegtaskisting method
while its computation is faster than other methods in covariate shift adaptaticutiet detection
scenarios.

Our contributions in this paper are summarized as follows. A proposedtyleaso estima-
tion method, LSIF, is equipped with cross-validation (which is an advantage KiMM) and is
computationally efficient thanks to regularization path tracking (which is aargege over KLIEP
and LogReg). Furthermore, uLSIF is computationally even more efficiané sts solution and
leave-one-out cross-validation score can be computed analytically ibla stanner. The proposed
methods, LSIF and uLSIF, are similar in spirit to KLIEP, but the loss funsteme different: KLIEP
uses the log loss while LSIF and uLSIF use the squared loss. The didted# the log functions
allows us to improve computational efficiency significantly.

The rest of this paper is organized as follows. In Section 2, we propgs®=v importance
estimation procedure based on least-squares fitting (LSIF) and showategtibel properties. In
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Section 3, we develop an approximation algorithm (uLSIF) which can be stadgfficiently. In
Section 4, we illustrate how the proposed methods behave using a toy dateSsttion 5, we dis-
cuss the characteristics of existing approaches in comparison with thespemethods and show
that uLSIF could be a useful alternative to the existing methods. In Sectiae &xperimentally
compare the performance of uLSIF and existing methods. Finally in Sectiwa Summarize our
contributions and outline future prospects. Those who are intereste@dctigad implementation
may skip the theoretical analyses in Sections 2.3, 3.2, and 3.3.

2. Direct Importance Estimation

In this section, we propose a new method of direct importance estimation.

2.1 Formulation and Notation
Let D c (RY) be the data domain and suppose we are given independent and identitaltyited
(i.i.d.) training sample$x!" }*; from a training distribution with densitgt (x) and i.i.d. test samples
{xte}”‘e from a test distribution with densitge(x):

{th' ntr I,I\/ ptl’(x)a

DY pre().
We assume that the training density is strictly positive, that is,

pr(X) > 0 for allx € D.

The goal of this paper is to estimate theportance wx) from {x{'}*, and{x‘e}nte ;
Pre(X)
w(x) = ,
0= %

which is non-negative by definition. Our key restriction is that we want édde@stimating densities
pre(X) and py (x) when estimating the importanegx).

2.2 Least-squares Approach to Direct Importance Estimation
Let us model the importanag(x) by the following linear model:

b

W(x) = ; Arde(x), 1)
=]
wherea = (ay,d»,...,0p) " are parameters to be learned from data sampldsnotes the transpose
of a matrix or a vector, anfib,(x)}2_, are basis functions such that
¢¢(X) >0forallxe Dandfor{=1,2,...,b.

Note thatb and{¢,(x)}>_, could be dependent on the sampfe} ™, and{xte}J 1» for example,

kernel models are also allowed. We explain how the basis functigngx)}2_, are chosen in
Section 2.5.
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We determine the parametefis, }2_; in the model(x) so that the following squared errdy
iS minimized:

@) = 5 [ @0 —wi()* (dx
2/w 2 by (X)dx— /w X) Prr (X dx+2/W 2y (x)dx

=5 [ @02 (0ax— [ @) metxide 5 [ wio?pu(xdx

where in the second term the probability dengity(x) is canceled with that included iw(x).
The squared losg(a) is defined as the expectation under the probability of training samples. In
covariate shift adaptation (see Section 6.2) and outlier detection (seerS@&)othe importance
values on the training samples are used. Thus, the definitids{@f well agrees with our goal.

The last term oflg(a) is a constant and therefore can be safely ignored. Let us denotesthe fir
two terms byJ:

= ;/W(X)Zptr(x)dX—/W(x)pte(x)dx
- ;M,ilwwf ([ o0omian) - 3 o [ aipuoen)

— %GTHG—I’\TG, 2)
whereH is theb x b matrix with the(¢,¢')-th element
Hie = [ 00006 00pu(x)c ©
andh is theb-dimensional vector with thé-th element
he= [ 009 pex)ax

Approximating the expectations ihby empirical averages, we obtain

j\(d) — i il VTI(X")Z 1 & W(Xte)
C2ng iZl I e = )

Ny b Nte
=3 ; oy ( o Izlfl)z X (X" ) 10(z (nte Z bo(X )

—aTHa—h a,

I\J

whereH is theb x b matrix with the(¢, ¢')-th element
Nir

Ao = 0400 (), @

tr =
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andh is theb-dimensional vector with théth element
1 Nte

hy= =3 0:(). (5)
e 2,20
Taking into account the non-negativity of the importance functiox), we can formulate our opti-
mization problem as follows.

. 1 -~ ~T
min |Za'Ha—-h a+Al)a
acRrb

subject toot > Op, (6)

where @ and %} are theb-dimensional vectors with all zeros and ones, respectively; the vector
inequalitya > Oy is applied in the element-wise manner, thatis> Ofor¢=1,2,...,b. In Eq. (6),

we included a penalty termil, o for regularization purposes, wheke(> 0) is a regularization
parameter. The above is a convex quadratic programming problem aeébtiegihe unique global
optimal solution can be computed efficiently by a standard optimization packafecall this
methodLeast-Squares Importance FittirfgSIF).

We can also use the-regularizera " o instead of the/;-regularizer J o without changing the
computational property. However, using theregularizer would be more advantageous since the
solution tends to be sparse (Williams, 1995; Tibshirani, 1996; Chen et 88)18urthermore, as
shown in Section 2.6, the use of theregularizer allows us to compute the entire regularization
path efficiently (Best, 1982; Efron et al., 2004; Hastie et al., 2004). /3hregularization method
will be used for theoretical analysis in Section 3.3.

2.3 Convergence Analysis of LSIF

Here, we theoretically analyze the convergence property of the solutafrthe LSIF algorithm;
practitioners may skip this theoretical analysis.

Letd (M) be the solution of the LSIF algorithm with regularization paramateand leta*(\)
be the optimal solution of the ‘ideal’ problem:

. 1
min [Za'Ha—hTa+A1a
acRP

subject too > Op,. @)

Below, we theoretically investigate tHearning curve(Amari et al., 1992) of LSIF, that is, we
elucidate the relation betweeka(A)) andJ(a*(A)) in terms of the expectation over all possible
training and test samples as a function of the number of samples.

Let E be the expectation over all possible training samples ofrgjznd all possible test sam-
ples of sizene. Let 4 C {1,2,...,b} be the set ofctiveindices (Boyd and Vandenberghe, 2004),
that is,

A={¢|a;(A\)=0,¢=1,2,...,b}.

For the active sefl = {ju, j2,. .., jja/} With j1 < j2 <--- < j 4/, |letE be the| 4| x bindicator matrix
with the (i, j)-th element

1 J = ji>
Eij= .
0 otherwise
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Similarly, let 2 be the active set a@()):
A={¢|d,A)=0,¢=12...b}

For the active sefl = {j1, Jz,..., ﬂﬁ‘} withji < jo<--- < ﬂﬁ‘, letE be the| 4| x bindicator matrix
with the (i, j)-th element similarly defined by

_ 1 j=1ji,
Ej= J =i - (8)
0 otherwise
First, we show the optimality condition of (6) which will be used in the following tie¢ical
analyses. Theagrangianof the optimization problem (6) is given as

1 ~ ~
LCLE%ZEGTHa—hTa+A1Qa—ETa

where¢ is the b-dimensionalLagrange multipliervector. Then thé&Karush-Kuhn-Tucker (KKT)
conditions(Boyd and Vandenberghe, 2004) are expressed as follows:

Ho —h+Alp— & = O, (9)
a > Oy,
& > Op,
&ia,=0fort=1,2,....b. (10)

Let?(A) be the]fél]—dimensional vector with thieth element being th@-th element of()\):

N =80, i=1...4| (11)

~ ~ ~
We assume thdt (A) only contains non-zero elements&i). Let G be

( ~ ~ )
|’Al|><“/\”

\ﬂlIXﬁI is the\ﬁ] X |ﬁ| matrix with all zeros. Then Egs. (9) and (10) are together expressed

in a matrix form as N
~ (a(A) h—A1p
Gl ~ = . 12
(E W) ( % ) .

Regarding the matri®, we have the following lemma:

o

Lemma 1 The matrixG is invertible ifH is invertible.

The proof of the above lemma is given in Appendix A. Below, we assumerthatnvertible.
Then the inverse ob exists and multiplying?‘;1 from the left-hand side of Eq. (12) yields

EO\) -1 @—Alb
(E ()\)) =G O\,q| > . (13)
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The following inversion formula holds for block matrices (Petersen anéiRed, 2007):

-1 _ _ _ _ _ _
M1 M\ " _ (Mp'+M"MaMg MMyt My MM (14)
Mz My —Mg MMt Mgt ’
where
Mo = Mg —M3M[ M,
Applying Eg. (14) to Eq. (13), we have
G(A) = A(h—Aly), (15)
whereA is defined by
A=A'-AE'EBAENHEA (16)
When the Lagrange multiplier vector satisfies
&(N)>0forallle 4, (17)

we say that thetrict complementarity conditiois satisfied (Bertsekas et al., 2003). An important
consequence of strict complementarity is that the optimal solution and therigegnaultipliers of
convex quadratic problems are uniquely determined. Then we have theifgltheorem.

Theorem 2 Let P be the probability over all possible training samples of sizand test samples of
size Re. Let&€"(\) be the Lagrange multiplier vector of the probléi) and supposé®(\) satisfies
the strict complementarity conditidd 7). Then, there exists a positive constant 6 and a natural
number N such that famin{ny, ne} > N,

P(4 # 4) < e cminne e},

The proof of the above theorem is given in Appendix B. Theorem 2 shibat the probability
that the active sefd of the empirical problem (6) is different from the active getof the ideal
problem (7) is exponentially small. Thus we may regﬁrd: A in practice.

Let A be the ‘ideal’ counterpart ok:

A=H'-HET(EHE")EH,
and letC,, be theb x b covariance matrix with the/, ¢')-th element being the covariance between
w(x)d,(x) andw (x)d, (x) underpy (x). Let
b

W (X) = /Zlaif(?\)d)e(x),

b

V(X) = /z [Alp]ede(X).
=

Let
f(n) = w(g(n))
denote thatf (n) asymptotically dominateg(n); more precisely, for alC > 0, there exist$;y such
that
|ICg(n)| < |f(n)| foralln>ng.

Then we have the following theorem.
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Theorem 3 Assume that

(a) The optimal solution of the proble() satisfies the strict complementarity conditidr).

(b) ny and ne satisfy
Mee = (). (18)

Then, for anyA > 0, we have

~ . 1 1
E@))] = @' (8) + 5o tr(ACor ~ DCu) +0 (). (19
Zntr ntl’
The proof of the above theorem is given in Appendix C. This theoremdzltes the learning
curve of LSIF up to the order af;!. In Section 2.4.1, we discuss practical implications of this
theorem.

2.4 Model Selection for LSIF

The practical performance of LSIF depends on the choice of the mizatlan parametek and

basis functiong¢,(x)}2_, (which we refer to as anode). Since our objective is to minimize the

cost function] defined in Eqg. (2), it is natural to determine the model suchdtigminimized.
However, the value of the cost functidns inaccessible since it includes the expectation over

unknown probability density functiongy (x) and pe(X). The value of the empirical codtmay be

regarded as an estimate &fbut this is not useful for model selection purposes since it is heavily

biased—the bias is caused by the fact that the same samples are usedrtigamfog the parameter

a and estimating the value df Below, we give two practical methods of estimating the valug of

in more precise ways.

2.4.1 INFORMATION CRITERION

In the same way as Theorem 3, we can obtain an asymptotic expansion ahplikcal cost
E [JA(G()\))] as follows:

~

EIG(0))] = (@ () - zﬁﬂtr<A<cW+zxcw,v>>+o(nt) . (20)

Combining Egs. (19) and (20), we have

N o~ 1 1
B@)] = E@O)] + 5 r(AGar) 01 )
r r
From this, we can immediately obtain axformation criterion(Akaike, 1974; Konishi and Kita-
gawa, 1996) for LSIF:
3 = J@M)) + - tr(ACqs),
tr

whereA is defined by Eq. (16)E is defined by Eq. (8) anﬁww is theb x b covariance matrix with
the (¢,¢')-th element being the covariance betwe&®)¢,(x) andw'(x)¢, (x) over {x'},. Since
AandCy are consistent estimators AfandC,- v+, the above information criterion is unbiased up
to the order ofy; 2.
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Note that the term (ﬁéw,w) may be interpreted as tledfective dimensioaf the model (Moody,
1992). Indeed, whew(x) = 1, we haveH = Cy,5 and thus

tr(ACaa) = tr(lu) —tr(ECaE T (ECqwE ) ™) = b— |4l
which is the dimension of thiaceon whichad (M) lies.

2.4.2 (ROSSVALIDATION

Although the information criterion derived above is more accurate than jusva empirical estima-
tor, its accuracy is guaranteed only asymptotically. Here, we employ eedistation for estimating
J(d), which has an accuracy guarantee for finite samples.

First, the training sampleSd"} ™, and test samplefpéje}’j“i1 are divided intdR disjoint subsets
{X"}IR, and {X}} ,, respectively. Then an importance estimétgr y«(x) is obtained using
{X"}jzr and {X[*} 4 (that is, withoutX" and X{¢ ), and the cosf is approximated using the
held-out samples;" and x'® as

1
| Xl

j‘fCV) _ 1 z er”y)qe(xtr)z

N te
o vie W tr le(X )
A7 Z‘Xrtl'| XUE.)Q" Z A

Xtee xfte

This procedure is repeated foe=1,2,... ,Rand its averagé(CV) is used as an estimate &if

qev _ 1 S Fv

R

We can show that®V) gives an almost unbiased estimate of the true &oshere the ‘almost’-ness

comes from the fact that the number of samples is reduced in the crosaticaligrocedure due to
data splitting (Luntz and Brailovsky, 1969; Wahba, 1990;&kbpf and Smola, 2002).

Cross-validation would be more accurate than the information criterion fte §amples. How-

ever, it is computationally more expensive than the information criterion sircke#iining proce-

dure should be repeaté&ttimes.

2.5 Heuristics of Basis Function Design for LSIF

A good model may be chosen by cross-validation or the information critagieen that a family of
promising model candidates is prepared. As model candidates, we progiog a Gaussian kernel
model centered at thestpoints{xtje}’j“:el, that is,

Nte

W(X) = ; aKg(x,XF),
=]
whereKg(x,X) is the Gaussian kernel with kernel width

Ko (X, X) = exp(—’X_X,”2> ) (21)

202

The reason why we chose the test poi{nﬁ‘ﬁ}?‘il as the Gaussian centers, not the training points

{xXr},  is as follows (Sugiyama et al., 2008b). By definition, the importampg tends to take
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large values if the training densiiy(x) is small and the test densifye(X) is large; conversely,
w(X) tends to be small (that is, close to zeropif(x) is large andpie(x) is small. When a function

is approximated by a Gaussian kernel model, many kernels may be neededegitin where the
output of the target function is large; on the other hand, only a small nuafbd@rnels would be
enough in the region where the output of the target function is close toZellowing this heuristic,

we allocate many kernels at higgstdensity regions, which can be achieved by setting the Gaussian
centers at the test poinfsi®}"*¢,.

Alternatively, we may locatén +nie) Gaussian kernels at boft"} ™ and{xtje}?fil. However,
in our preliminary experiments, this did not further improve the performamagjust slightly in-
creased the computational cost. Whngnis large, just using all the test poin{tsﬁe}g“il as Gaussian
centers is already computationally rather demanding. To ease this problgmaetieally propose
using a subset oﬂ‘xtje}?il as Gaussian centers for computational efficiency, that is,

b
W(x) = /z arKo(X,Cr), (22)
=1

wherec,, £ =1,2,...,b are template points randomly chosen erw‘f}?‘;l without replacement
andb (< ng) is a prefixed number. In the rest of this paper, we usually fix the numbengilate
points at

b = min(100, n),

and optimize the kernel widttr and the regularization parametemby cross-validation with grid
search.

2.6 Entire Regularization Path for LSIF

We can show that the LSIF solutionis piecewise linear with respect to the regularization parameter
A (see Appendix D). Therefore, tiiegularization paththat is, solutions for alk) can be computed
efficiently based on thparametric optimization techniqu@est, 1982; Efron et al., 2004; Hastie
et al., 2004).

A basic idea of regularization path tracking is to check violation of the KKTdagsns—which
are necessary and sufficient for optimality of convex programs—wteretjularization parameter
A is changed. The KKT conditions of LSIF are summarized in Section 2.3. lwe somple-
mentarity condition (17) assures the uniqueness of the optimal solution faedfi and thus the
uniqueness of the regularization path. A pseudo code of the regulanizetib tracking algorithm
for LSIF is described in Figure 1—its detailed derivation is summarized in AgigeD. Thanks to
the regularization path algorithm, LSIF is computationally efficient in model sefestienarios.

The pseudo code implies that we no longer need a quadratic programmieg feolebtaining
the solution of LSIF—just computing matrix inverses is enough. Furtherntioeeregularization
path algorithm is computationally more efficient when the solution is sparseisthabst of the
elements are zero since the number of change points tends to be smallfepsise solutions.

Even though the regularization path tracking algorithm is computationally effjagteends to
be numerically unreliable, as we experimentally show in Section 4. This nurherstability is
caused by near singularity of the matfx WhenG is nearly singular, it is not easy to accurately
obtain the solutions, v in Figure 1, and therefore the change paint; cannot be accurately com-
puted. As a result, we cannot accurately update the active set of thelitggonstraints and thus
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Input: H andh % see Eqs. (4) and (5) for the definitions
Output: entire regularization path(A\) for A >0

T+—0;
k — argmax{h | i=1,2,...,b};
At ‘_/ﬁk;
4—{1,2,....bI\{k};
d(A) < 0p; % the vector with all zeros
While A >0
E— Olﬁlxb; A% the matrix with all zeros
Fori=1,2,...,|4|
E\LJA.(_ 1; %/’Zl:{j{;_,j{\z,...,j{\‘ﬁ‘ ’ ]\1< j\2< e < ﬂm}

If v< ObH;” % the final interval
Avy1<—0;
O(Ap1) «— (U, Up,....Up) " ;
else % an intermediate interval
k—— argmax{ui/vi |vi >0,i=1,2,...,b+|4|};
Ari1 «— max{0, ux/Vk};

O(Arr1) < (ug, .. ~7Ub)T —Arga(ve,ve,. .. ,Vb)T;
If1<k<b
4 — 42U{k};
else
A — A\{jk-b};
end
end
T«—T1+1;
end
N Op if A>Ag
TN T 2t d a4 A2 G (ya) i Arss <A <A
'[+l_)\'[a( T)+ )\r+1—)\ra( T+l) ! ™l = =

Figure 1: Pseudo code for computing the entire regularization path of WBiEn the computation
~—1, ) . ) ~ e
of G " is numerically unstable, we may add small positive diagonatsfiar stabilization
purposes.
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the obtained solutioni(A\) becomes unreliable; furthermore, such numerical error tends to be accu
mulated through the path-tracking process. This instability issue seems toolen@oa pitfall of
solution path tracking algorithms in general (see Scheinberg, 2006).

When the Gaussian widthis very small or very large, the matrfx tends to be nearly singular
and thus the matri& also becomes nearly singular. On the other hand, when the Gaussiamwvgdth
not too small or too large compared with the dispersion of samples, the rGdfriwell-conditioned
and therefore the path-following algorithm would be stable and reliable.

3. Approximation Algorithm

Within the quadratic programming formulation, we have proposed a new imger&stimation

procedure LSIF and showed its theoretical properties. We also gagukarization path tracking
algorithm that can be computed efficiently. However, as we experimentaily shSection 4, it

tends to suffer from a numerical problem and therefore is not practiedigble. In this section, we
give a practical alternative to LSIF which gives an approximate solutiorsié in a computation-
ally efficient and reliable manner.

3.1 Unconstrained Least-squares Formulation

The approximation idea we introduce here is very simple: we ignore the egattigity constraint
of the parameters in the optimization problem (6). This results in the followingnsimined
optimization problem.
. 1 TS ~T A T

min [=B ' HB—h B+ =B B|. (23)

BeRb | 2 2
In the above, we included a quadratic regularization lﬁﬁﬁi\/z, instead of the linear ong B since
the linear penalty term does not work as a regularizer without the noatimidg constraint. Eq. (23)
is an unconstrained convex quadratic program, so the solution can lgéaatly computed as

~ —~

B(A) = (H+Alp)~*h,

wherely, is theb-dimensional identity matrix. Since we dropped the non-negativity consfaint
0, some of the learned parameters could be negative. To compensate &progimation error,
we modify the solution by

B(A) = max(Op, B(A)),

where the ‘max’ operation for a pair of vectors is applied in the element-wissmenaThis is the
solution of the approximation method we propose in this section.

An advantage of the above unconstrained formulation is that the solutidnecemmputed just
by solving a system of linear equations. Therefore, its computation is stakle\is not too small.
We call this methodunconstrained LSIKULSIF). Due to thel, regularizer, the solution tends to
be close to Pto some extent. Thus, the effect of ignoring the non-negativity constregtnot be
so strong—Ilater, we analyze the approximation error both theoreticallyxqedimentally in more
detail in Sections 3.3 and 4.5.

Note that LSIF and uLSIF differ only in parameter learning. Thus, theslziesign heuristic of
LSIF given in Section 2.5 is also valid for uLSIF.
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3.2 Convergence Analysis of uLSIF

Here, we theoretically analyze the convergence property of the solﬁ@o)nof the uLSIF algo-
rithm; practitioners may skip Sections 3.2 and 3.3.
Let B°(A) be the optimal solution of the ‘ideal’ version of the problem (23):

e Tp, NaT
o 5B HB—Nh'B+5B B|.

Then the ideal solutioff* () is given by

B*(A) = max0p, B°(A)),
B°(\) =B, h, (24)
By =H +Alp.

Below, we theoretically investigate the learning curve of uLSIF.
Let B C {1,2,...,b} be the set of negative indices@f()), that is,

B={l|B;(A\)<0,¢=12,...,b},
andB C {1,2,...,b} be the set of negative indicesﬁ;@), that is,

B={0|B(A) <0, £=1,2... Db}
Then we have the following theorem.

Theorem 4 Assume thafj(A) # O0for £ =1,2,...,b. Then, there exists a positive constant ¢ and
a natural number N such that fonin{ny, ne} > N,

P(B # B) < g cminimene},

The proof of the above theorem is given in Appendix E. The assumptidrfia) # O for
¢=1,2,...,bcorresponds to the strict complementarity condition (17) in LSIF. Theorstrods
that the probability thaB is different from<3 is exponentially small. Thus we may regaBd= B in
practice.

Let D be theb-dimensional diagonal matrix with theth diagonal element

0 (e B,
Do = .
1 otherwise

Let
b
W (x) = ; By (M) o (X),
=1
b

u(x) = /Z [B, 'D(HB"(A) —h)]epe(X).
=1
Then we have the following theorem.

1404



A LEAST-SQUARESAPPROACH TODIRECT IMPORTANCE ESTIMATION

Theorem 5 Assume that
(@) By(A) #0for¢=1,2,...,b.
(b) ny and ne satisfy Eq(18).

Then, for anyA > 0, we have

BII@))] = (B () + 5rtr(B; "DHDB; *Cur +28, cwau>+o<lt). (25)

The proof of the above theorem is given in Appendix F. Theorem 5 etesdthe learning curve
of uLSIF up to the order oht‘rl. An information criterion may be obtained in the same way as
Section 2.4.1. However, as shown in Section 3.4, we can have a clasedkpression of the
leave-one-out cross-validation score for uLSIF, which would betjmaly more useful. For this
reason, we do not go into the detail of information criterion.

3.3 Approximation Error Bounds for uLSIF

The uLSIF method is introduced asan approximation of LSIF. Here, wesdtieally evaluate the
difference between the uLSIF soluti@\) and the LSIF solutiom(A\). More specifically, we use

the following normalized.,-norm on the training samples as the difference measure and derive its
upper bounds:

infy-oy/ & 50 (W56 00) w0450 )
diff (A) = = : (26)
P"lmK B(A))

where the importance functio®k(x; a) is given by

b

WX a) = /Zlaetbz(x)-

In the theoretical analysis below, we assume

Forpe NU{o}, let|| - ||p be theL,-norm, and letja||; be
lallg = VaTHa, (27)
whereH is theb x b matrix defined by Eq. (4). Then we have the following theorem.
Theorem 6 (Norm bound) Assume that all basis functions satisfy
0<d,(x)<1

1405



KANAMORI, HIDO AND SUGIYAMA

Then we have

diff(A) < WHE()‘I)F”E (28)
i WX B(A))
2 b> 1 ) Nte
=0 (“A min ST 6008 ming 3 6,(<°)’ (29)

where b is the number of basis functions. The upper bq@ajlis reduced as the regularization
parametef\ increases. For the Gaussian basis function m@ag), the upper bound (29) is reduced
as the Gaussian widtty increases.

The proof of the above theorem is given in Appendix G. We call Eq. {f@8)orm boundsince
it is governed by the norm cﬁ Intuitively, the approximation error of uLSIF would smallxfis
large since3 > 0 may not be severely violated due to the strong regularization effect. {Fjer u
bound (29) justifies this intuitive claim since the error bound tends to be sntla$ fegularization
parameted is large. Furthermore, the upper bound (29) shows that for the Gausssss function
model (22), the error bound tends to be small if the Gaussian widktHarge. This is also intuitive
since the Gaussian basis functions are nearly flat when the Gaussiarovisgddrge—a difference
in parameters does not cause a significant change in the learned impduaotonw(x). From
the above theorem, we expect that uLSIF is a nice approximation of LSérR dwis large ando is
large. In Section 4.5, we numerically investigate this issue.

Below, we give a more sophisticated bound on(diff To this end, let us introduce an interme-
diate optimization problem defined by

I B N N W
min |2V Hy—hy+35y'y

subject toy > Oy, (30)

which we refer to a& SIF with quadratic penaltyLSIFq). LSIFq bridges LSIF and uLSIF since
the ‘goodness-of-fit’ part is the same as LSIF but the ‘regularizatiart'ip the same as uLSIF. Let
Y() be the optimal solution of LSIFq (30). Based on the solution of LSIFq, we kize following
upper bound.

Theorem 7 (Bridge bound) For anyA > 0, the following inequality holds:

T
dift ) < VATl [Tl = [F0)13) + 17 - BVl o

it WO B(A))

The proof of the above theorem is given in Appendix H. We call the abouand thebridge
boundsince the bridged estimatg(A) plays a central role in the bound. Note that, in the bridge
bound, the inside of the square root is assured to be non-negative tlidder’s inequality (see
Appendix H for detail). The bridge bound is generally much sharper treandhm bound (28), but
not always (see Section 4.5 for numerical examples).
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3.4 Efficient Computation of Leave-one-out Cross-validation Sca for uLSIF

A practically important advantage of uLSIF over LSIF is that the score afdene-out cross-
validation (LOOCV) can be computed analytically—thanks to this property, tmepatational
complexity for performing LOOCYV is the same order as just computing a singlé@o

In the current setup, we are given two sets of samgs}™, and {xtje}?ﬁl, which generally
have different sample size. For simplicity, we assumethat n, and thei-th training sampled"
and thei-th test sampled® are held out at the same time; the test samr{ﬂ«%‘é?‘;“ntr 41 are always
used for importance estimation. Note that this assumption is only for the sakepbicity; we can
change the order of test samples without sacrificing the computationaitades.

Letw() (x) be an estimate of the importance obtained withouttetraining sampled" and the
i-th test samplef®. Then the LOOCYV score is expressed as

Loocv =+ zl S0 62— )| (32)

Nir i

Our approach to efficiently computing the LOOCYV score is to us&tieman-Woodbury-Morrison
formula (Golub and Loan, 1996) for computing matrix inverses: for an invertiblesg matrixA
and vectorsi andv such thav"A~u £ —1,

AluvAal

A+ v )y t=pt 2 0
( ) 1+viA 1y

(33)

Efficient approximation schemes of LOOCV have often been investigatddruasymptotic
setups (Stone, 1974; Hansen and Larsen, 1996). On the othentapdovide the exact LOOCV
score of uLSIF, which follows the same line as that of ridge regressioer{tdnd Kennard, 1970;
Wahba, 1990).

A pseudo code of uLSIF with LOOCV-based model selection is summarizeyine=2—its
detailed derivation is described in Appendix I. Note that the basis-fundésign heuristic given
in Section 2.5 is used in the pseudo code, but the analytic form of the LOO@¥ & available for
any basis functions.

4. lllustrative Examples

In this section, we illustrate the behavior of LSIF and uLSIF using a toy ddta s

4.1 Setup

Let the dimension of the domain lbe= 1 and the training and test densities be

pr(X) = N(x 1,(1/2)?),
Pre(X) = A((% 2, (1/4)?),

whereA((x; 1, 2) denotes the Gaussian density with mgeand variances?. These densities are
depicted in Figure 3. The task is to estimate the importav(e® = pre(X)/ Pir(X).
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Input: {X"}j; and {x?} 7,
Output: W(X)

b —— min(100,ne); N «— min(ny, Nee);
Randomly choosb centers{c,}?_; from {xtje}'j‘tj1 without replacement;
For each candidate of Gaussian width

o 18 ( R e i

>for£,€’:1,2,...,b;

Hy o — e
e ri; P 20'2
ﬁw—igexp —M fore=12 b;
! Me & 202 VT
X ex fM f de = b:
7, p 552 ori=12,....nand¢=12,...,b;
X —ce]|? - :

thﬁ‘_exp —X'ZT fori=1,2,...,nand¢(=1,2,...,b;
For each candidate of regularization paramater

= ~ Ay —1

B<—H+M|b;

Nir

1~ 1 h'B X
Bo«— B 'hl] +B x”diag< > ;
Nyl) — 1T(xtr «B x”)
1T (Xte* B Xtr) .
nely — 10 (XT%B~ x")
Ny —1
— — _(neBo—B
ntr(nte — 1) ( teD0 l)

Wi <— (1g (X"%B2)) s Whe —— (15 (X®xB2)) ;
Wt-rrWtr 1nTWte .

Bi«— B 'X*°1B 'X'"diag (

B, «+— max (Obxn,

LOOCV(0,\) «—

2n n '’
end
end
(0,A) «— argming ,) LOOCV(a, A);
SRS Sy G o
HM%Zexp( ! 5 >for€€’ 12,...,b;
’ Nt (& 20

1 fe [1X® — ¢
hé%fze JzT fort=1,2,...,b;

teJ
a— max(obv(H +Mlp)~th);

&;a exp( Ix _C62>,

Figure 2: Pseudo code of uLSIF algorithm with LOO@A B’ denotes the element-wise multi-
plication of matriced8 andB’ of the same size, that is, tlig j)-th element is given by
Bi,;B] ;. Forn-dimensional vectorb andb, diag() denotes the x n diagonal matrix
with i- th diagonal elemertt; /b{. A MATLAB ® or R implementation of uLSIF is avail-
able fromhttp://sugiyama-www.cs.titech.ac.jp/ ~sugi/software/uLSIF/
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4.2 Importance Estimation

First, we illustrate the behavior of LSIF and uLSIF in importance estimation. aléhe number
of training and test samples at = 200 andn, = 1000, respectively. We use the Gaussian kernel
model (22), and the number of basis functions is sét-at100. The centers of the kernel function
are randomly chosen from the test poi@X&}?ﬁl without replacement (see Section 2.5).

We test different Gaussian widtlessand different regularization parametérs The following
two setups are examined:

(A) Aisfixed ath = 0.2 ando is changed as.0 <0 < 1.0,
(B) ois fixed ato = 0.3 andA is changed as & A <0.5.

Figure 4 depicts the true importance and its estimates obtained by LSIF ani, wi&ire all
importance functions are normalized so thiat(x)dx = 1 for better comparison. Figures 4(a) and
4(b) show that the estimated importanegx) tends to be too peaky when the Gaussian wilth
is small, while it tends to be overly smoothed wheris large. If the Gaussian width is chosen
appropriately, both LSIF and uLSIF seem to work reasonably well. Asvehin Figures 4(c)
and 4(d), the solutions of LSIF and uLSIF also significantly change wdiféegrent regularization
parameterd are used. Again, given that the regularization parameter is choseopaigpely, both
LSIF and uLSIF tend to perform well.

From the graphs, we also observe that model selection based orvatiosdgion works rea-
sonably well for both LSIF (5-fold) and uLSIF (leave-one-out) to @b®m appropriate values of the
Gaussian width or the regularization parameter; this will be analyzed in mtaitideSection 4.4.

4.3 Regularization Path

Next, we illustrate how the regularization path tracking algorithm for LSIFakek. We set the
number of training and test samplesnat= 50 andn, = 100, respectively. For better illustration,
we set the number of basis functions at a small value-as30 in the Gaussian kernel model (22)
and use the Gaussian kernels centered at equidistant po[AtSjims basis functions.

We use the algorithm described in Figure 1 for regularization path tracKingoretically, the
inequalityA 1 < A¢ is assured. In numerical computation, however, the inequality is occégiona
violated. In order to avoid this numerical problem, we slightly regulaﬁzﬁ)r stabilization (see
also the caption of Figure 1).

Figure 5 depicts the values of the estimated coefficidntg?_, as functions off|a||, for
0 =0.1,0.3, and 05. Note that small||a|[1 corresponds to largk. The figure indicates that the
regularization paramet@rworks as a sparseness controlling factor of the solution, that is, the large
(smaller) the value ok (||al|1) is, the sparser the solution is.

The path following algorithm is computationally efficient and therefore prdbtivary attrac-
tive. However, as the above experiments illustrate, the path following algoigmumerically
rather unstable. Modification ¢i can ease to solve this problem, but this in turn results in accu-
mulating numerical errors through the path tracking process. Consiyguke solutions for small
A tend to be inaccurate. This problem becomes prominent if the number ojelpamnts in the
regularization path is large.
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Figure 3: The solid line is the probability density of training data, and the ddsiesis the proba-
bility density of test data.

— true importan.ceA — true importance
1| 0=01 1| 0=01
- 0 =0.4 (chosen by cross validation) - 0 =0.3(chosen by cross validation)
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(c) LSIF foro =0.3,A =0,0.2,0.5. (d) uLSIF foro =0.3,A =0,0.09,0.5.

Figure 4: True and estimated importance functions obtained by LSIF anidr di&uSvarious differ-
ent Gaussian widths and regularization parameteys
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Figure 5: Regularization path of LSIF: the values of the estimated coet&cﬁe@}?zl are depicted
as functions of thé.;-norm of the estimated parameter vector doe= 0.1,0.3, and 05.
Small||a||1 corresponds to large.

4.4 Cross-validation

Here we illustrate the behavior of the cross-validation scores of LSIkiBStF. We set the number
of training and test samples st = 200 andny, = 1000, respectively. The number of template
points isb = 100 and the Gaussian kernel model (22) is used. The centers of tel kamctions
are randomly chosen from the test points as described in Section 4.2. flbellenn of Figure 6
depicts the expectation of the true cd&t) over 50 runs for LSIF and its estimate by 5-fold CV (25,
50, and 75 percentiles are plotted in the figure) as functions of the Gawssid o for A = 0.2, 0.5,
and 08. We used the regularization path tracking algorithm for computing the satubibhSIF.
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Figure 6: The true cosl and its cross-validation estimate as functions of Gaussian vaidtr
different values of\. The solid line denotes the expectation of the true doster 50
runs, while o’ and error bars denote the 25, 50, and 75 percentiles of the crbdatien
score.
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The right column shows the expected true cost and its LOOCV estimates &Fuh the same
manner.

The graphs show that overall CV gives reasonably good approxinsatibthe expected cost,
although CV for LSIF with smalk and small is rather inaccurate due to numerical problems—the
solution path of LSIF is computed from= o to A = 0, and the numerical error is accumulated as
the tracking process approacheate 0. This phenomenon seems problematic whiés small.

4.5 Difference between LSIF and uLSIF

In Section 3.3, we analyzed the approximation error of uLSIF againgt.lk8re we numerically
investigate the behavior of the approximation error (26) as well as the hotnd (28) and the
bridge bound (31). We set the number of training and test samplas-at200 andn,e = 1000,
respectively. The number of template points in the Gaussian kernel modas (@ atb = 100.
The centers of the kernel functions are randomly chosen from thedieds [fsee Section 4.2).

Figure 7 depicts the true approximation error as well as its upper boundscaiohs of the reg-
ularization parametek; A is varied from 0001 to 10 and the three Gaussian widths 0.1,0.5,1.0
are tested. The graphs show that wheando are large, the approximation error tends to be small;
this is in good agreement with the theoretical analysis given in Section 3.3bridge bound is
fairly tight in the entire range and is sharper than the norm bound exdemavis small andh is
large.

4.6 Summary

Through the numerical examples, we overall found that LSIF and ug&k-qualitatively similar
results. However, the computation of the solution-path tracking algorithnh $&F tends to be
numerically unstable, which can result in unreliable model selection perfm@naOn the other
hand, only a system of linear equations needs to be solved in uLSIF, wiiedd out to be much
more stable than LSIF. Thus, uLSIF would be practically more reliable th#ia LS

Based on the above findings, we will focus on uLSIF in the rest of thisipap

5. Relation to Existing Methods

In this section, we discuss the characteristics of existing approachemipacison with the pro-
posed methods.

5.1 Kernel Density Estimator

Thekernel density estimatqdkKDE) is a non-parametric technique to estimate a probability density
function p(x) fromits i.i.d. samplegx};_,. For the Gaussian kernel (21), KDE is expressed as

1 % Ko (X, Xk)-

- Ny (2n02)9/2 &

P(x)

The performance of KDE depends on the choice of the kernel waidifhe kernel widtho can
be optimized bylikelihood cross-validatior(LCV) as follows (Hardle et al., 2004): First, divide
the samplegx }I', into R disjoint subset{X; }R ;. Then obtain a density estimafi, (x) from
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Figure 7: The approximation error of uLSIF against LSIF as functidriseoregularization param-
eterA for different Gaussian width. Its upper bounds are also plotted in the graphs.

{X }rk (i-e., withoutXi) and compute its log-likelihood foxi:

1 ~
57 XGZXK|09 P (X)-

Repeat this procedure foe= 1,2, ..., Rand choose the value ofsuch that the average of the above
hold-out log-likelihood over alt is maximized. Note that the average hold-out log-likelihood is an
almost unbiased estimate of the Kullback-Leibler divergence fipoxyto p(x), up to an irrelevant
constant.

KDE can be used for importance estimation by first obtaining density estimptéx$ and
Pre(X) separately from{x"}*  and {the ?‘;1, and then estimating the importance fyx) =
Pre(X)/ Prr(X). A potential limitation of this approach is that KDE suffers from these of dimen-
sionality (Vapnik, 1998; Hardle et al., 2004), that is, the number of samples needed to maintain the
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same approximation quality grows exponentially as the dimension of the domadases. This is
critical when the number of available samples is limited. Therefore, the K3Eebapproach may
not be reliable in high-dimensional problems.

5.2 Kernel Mean Matching

The kernel mean matchinKMM) method allows us to directly obtain an estimate of the impor-
tance values at training points without going through density estimation (Heisadg 2007). The
basic idea of KMM is to findv(x) such that the mean discrepancy between nonlinearly transformed
samples drawn frome(X) and py(X) is minimized in auniversal reproducing kernel Hilbert space
(Steinwart, 2001). The Gaussian kernel (21) is an example of kerratlinttuce universal repro-
ducing kernel Hilbert spaces and it has been shown that the solutioe @ltbwing optimization
problem agrees with the true importance:

2
mln

]/ Ko, )0 [ KO ()l

subject to/w(x) pr(X)dx=1 and w(x) > 0,

H

where|| - || 4 denotes the norm in the Gaussian reproducing kernel Hilbert spad&énd’) is the
Gaussian kernel (21).
An empirical version of the above problem is reduced to the following cqiadprogram:

) 1 Nir Nir
{m}lnrtl Z Wiwy Ko (X", XF) — ZW,K,
Wi i:rl

||’

Nir

subject to lei —Ny| <nge and 0< wy,Wo, ..., Wy, < B,
i=
where n
K-—n"iK (" xtey.
=
nte J:]_ ' J

B (> 0) ande (> 0) are tuning parameters that control the regularization effects. The solution
{w; }™, is an estimate of the importance at the training po{sfg ™,

Since KMM does not involve density estimation, it is expected to work well @veigh dimen-
sional cases. However, the performance is dependent on the tumarggiars, €, ando, and they
cannot be simply optimized, for example, by CV since estimates of the importanavailable
only at the training points. A popular heuristic is to use the median distance dxetveenples as
the Gaussian widthy, which is shown to be useful (Sétkopf and Smola, 2002; Song et al., 2007).
However, there seems no strong justification for this heuristic. For the elubic, a theoretical
result given in Huang et al. (2007) could be used as guidance, ahlhbiggstill hard to determine
the best value of in practice.

5.3 Logistic Regression

Another approach to directly estimating the importance is to use a probabilistsifielasLet us
assign a selector variabte= —1 to training samples amgl= 1 to test samples, that is, the training
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and test densities are written as

Pr(X) = p(xIn = —1),
Pre(X) = p(xIn = 1).

Note thatn is regarded as a random variable.
Application of the Bayes theorem yields that the importance can be exgressgms ofn as
follows (Qin, 1998; Cheng and Chu, 2004, Bickel et al., 2007):

p(n=-1) p(n=1Jx)

~p(n
Wi = p(n=1) p(n=-1x)

The probability ratio of test and training samples may be simply estimated by the fr#ti® mum-
bers of samples:

ph=-1) ny

p(n=1) ~ Nee’

The conditional probability(n|x) could be approximated by discriminating test samples from train-
ing samples usinglagistic regressiorfLogReq) classifier, wheng plays the role of a class variable.
Below we briefly explain the LogReg method.

The LogReg classifier employs a parametric model of the following form Xpressing the
conditional probabilityp(n|x):

p(n(x) = =
pn - 1_~_exp(—l’] zzn:]_Zf(pZ(X))’

wheremis the number of basis functions afigl(x) }}" ; are fixed basis functions. The parameter
is learned so that the negative regularized log-likelihood is minimized:

)
14 i= =1

+ntel 1+ -3 SIRERYS
J; 09( exn( glzetpz(x ))) (¢

Since the above objective function is convex, the global optimal solutiobeabtained by standard
nonlinear optimization methods such as Newton’s method, the conjugate gnaditvod, and the
BFGS method (Minka, 2007). Then the importance estimate is given by

W(X) = % exp< Zg(Dg(X)) . (34)

An advantage of the LogReg method is that model selection (that is, the dabfoilbe basis
functions{q,(x)}] ; as well as the regularization parameXgis possible by standard CV since the
learning problem involved above is a standard supervised classificatiblem.
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5.4 Kullback-Leibler Importance Estimation Procedure

The Kullback-Leibler importance estimation procedLIEP) (Sugiyama et al., 2008a) also di-
rectly gives an estimate of the importance function without going throughitgesstimation by
matching the two distributions in terms of the Kullback-Leibler divergence (l&ckband Leibler,
1951).

Let us model the importana(x) by the linear model (1). An estimate of the test denpijtyx)
is given by using the mode¥(x) as

Pre(X) = W(X) ptr(X).
In KLIEP, the parameters are determined so that the Kullback-Leibler divergence frutx) to
Pre(X) is minimized:
KL [pre(X) || Pre(X) /pte IogA Pre(X) 4
X) Prr (X)

— /27 Pre(X) log Ette(x)dx /@ Pre(X) logW(x)dx. (35)

r

The first term is a constant, so it can be safely ignored. Sucg) (= W(X) py(X)) is a probability
density function, it should satisfy

1= [ Petdx= [ W(0py(x)dx (36)

Then the KLIEP optimization problem is given by replacing the expectationg$n B5) and (36)
with empirical averages as follows:

Nte b
| ‘-e
25 31 (B o)

b Ngr
subject to; oy (Zlq)g(x}r)) =Ny and oq,05,...,0, > 0.
=] i=

This is a convex optimization problem and the global solution—which tends tpdyses(Boyd and
Vandenberghe, 2004)—can be obtained, for example, by simply parfgrgradient ascent and
feasibility satisfaction iteratively. Model selection of KLIEP is possible byV.C

Properties of KLIEP-type algorithms have been theoretically investigateduy@h et al. (2008)
and Sugiyama et al. (2008b) (see also Qin, 1998; Cheng and Chy, 208# that the importance
model of KLIEP is the linear model (1), while that of LogReg is the log-linear eh¢@4). A variant
of KLIEP for log-linear models has been studied in Tsuboi et al. (2008).

5.5 Discussions

Table 1 summarizes properties of proposed and existing methods.

KDE is efficient in computation since no optimization is involved, and model seteipos-
sible by LCV. However, KDE may suffer from the curse of dimensionalitg twthe difficulty of
density estimation in high dimensions.
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Methods Density Model Optimization Out-of-sample
estimation selection prediction
KDE Necessary Available Analytic Possible
KMM Not necessary| Not available| Convex quadratic program Not possible
LogReg || Not necessary| Available Convex non-linear Possible
KLIEP | Not necessary| Available Convex non-linear Possible
LSIF Not necessary| Available | Convex quadratic program Possible
uLSIF || Not necessary| Available Analytic Possible

Table 1: Relation between proposed and existing methods.

KMM can potentially overcome the curse of dimensionality by directly estimating therimp
tance. However, there is no objective model selection method. Therefodel parameters such as
the Gaussian width need to be determined by hand, which is highly unrelidbkswme have strong
prior knowledge. Furthermore, the computation of KMM is rather demandimg & quadratic pro-
gramming problem has to be solved.

LogReg and KLIEP also do not involve density estimation, but differehfKMM, they give
an estimate the entire importance function, not only the values of the importamaaing points.
Therefore, the values of the importance at unseen points can be estipdtegieg and KLIEP.
This feature is highly useful since it enables us to employ CV for modeltsabeavhich is a sig-
nificant advantage over KMM. However, LogReg and KLIEP are cdatmnally rather expensive
since non-linear optimization problems have to be solved. Note that the LagRibpd is slightly
different in motivation from other methods, but has some similarity in computatidriraplemen-
tation, for example, the LogReg method also involves a kernel smoother.

The proposed LSIF method is qualitatively similar to LogReg and KLIEP, thdit ésn avoid
density estimation, model selection is possible, and non-linear optimization is élvolSIF is
advantageous over LogReg and KLIEP in that it is equipped with a regatimn path tracking
algorithm. Thanks to this, model selection of LSIF is computationally much momdesftithan
LogReg and KLIEP. However, the regularization path tracking algorithmdg¢o be numerically
unstable.

The proposed uLSIF method inherits good properties of existing methatisasuno density
estimation involved and a build-in model selection method equipped. In additioege greferable
properties, the solution of ULSIF can be computed in an efficient and ncatigrstable manner.
Furthermore, thanks to the availability of the closed-form solution of uLiBE-|. OOCV score can
be analytically computed without repeating hold-out loops, which highly darg&s to reducing
the computation time in the model selection phase.

In the next section, we experimentally show that uLSIF is computationally nificeent than
existing direct importance estimation methods, while its estimation accuracy is Gt the
best existing methods.

6. Experiments

In this section, we compare the experimental performance of the proposleskisting methods.
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6.1 Importance Estimation
Let the dimension of the domain loeand
Pr(X) = AL(X;(0,0,...,0) ", 14),
Pre(X) = A(X;(1,0,...,0) ", 14).
The task is to estimate the importance at training points:

iy pte(xitr)
50 = e x)

We compare the following methods:

Wi = Wi fori=1,2,....ny.

KDE(CV): The Gaussian kernel (21) is used, where the kernel widths of the waamd test
densities are separately optimized based on 5-fold LCV.

KMM(med): The performance of KMM is dependent &€, ando. We setB = 1000 ance =
(v —1)//y following the original paper (Huang et al., 2007), and the Gaussian width
set at the median distance between samples within the training set and thé (8stid&opf
and Smola, 2002; Song et al., 2007).

LogReg(CV): The Gaussian kernel model (22) are used as basis functions. Tried Wédtho and
the regularization parametgrare chosen based on 5-fold &V.

KLIEP(CV): The Gaussian kernel model (22) is used. The kernel wadih selected based on
5-fold LCV.

ULSIF(CV): The Gaussian kernel model (22) is used. The kernel wadéimd the regularization
parameteh are determined based on LOOCV.

All the methods are implemented using MATLAB® environment, where th€PLEX® opti-
mizer is used for solving quadratic programs in KMM and ithBLINEARimplementation is used
for LogReg (Lin et al., 2007).

We fixed the number of test points@t = 1000 and consider the following two setups for the
numbemy of training samples and the input dimensionatity

(a) ny is fixed atny = 100 andd is changed ad = 1,2,...,20,
(b) dis fixed atd = 10 andny is changed as; = 50,60, ...,150.

We run the experiments 100 times for eakleachn,, and each method, and evaluate the quality of
the importance estimatesy; {‘gl by thenormalized mean squared err@dMSE):

1 Nir W Wi 2
NMSE:Z( e — = )
M S \ s W sy Wi

1. In Sugiyama et al. (2008b) where KLIEP has been proposed ettiermance of LogReg has been experimentally
investigated in the same setup. In that paper, however, LogReg wasquiarized since KLIEP was not also
regularized. On the other hand, we use a regularized LogReg metkiochanse the regularization parameter in
addition to the Gaussian kernel width by CV here. Thanks to the regulanzsffiect, the results of LogReg in the
current paper tends to be better than that reported in Sugiyama etG8hj20
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In practice, the scale of the importance is not significant and the relativeitndg amongwy; is
important. Thus the above NMSE would be a suitable error metric for evaludngerformance
of each method.

NMSEs averaged over 100 trials (a) as a function of input dimensiomgdihd (b) as a function
of the training sample sizey, are plotted in log scale in Figure 8. Error bars are omitted for clear
visibility—instead, the best method in terms of the mean error and comparalddased on the
t-test at the significance level 1% are indicated &iythe methods with significant difference from
the best methods are indicated by .

Figure 8(a) shows that the error of KDE(CV) sharply increases asnfhé dimensionality
grows, while LogReg, KLIEP, and uLSIF tend to give much smaller erras KDE. This would
be the fruit of directly estimating the importance without going through densiijmason. KMM
tends to perform poorly, which is caused by an inappropriate choiceedb#ussian kernel width.
On the other hand, model selection in LogReg, KLIEP, and uLSIF seemertoquite well. Fig-
ure 8(b) shows that the errors of all methods tend to decrease as themohittaining samples
grows. Again LogReg, KLIEP, and uLSIF tend to give much smaller etfas KDE and KMM.

Next we investigate the computation time. Each method has a different modgisektrategy,
that is, KMM does not involve CV, KDE and KLIEP involve CV over the kerwidth, and LogReg
and uLSIF involve CV over both the kernel width and the regularizatioarpater. Thus the naive
comparison of the total computation time is not so meaningful. For this reasdirsiiavestigate
the computation time of each importance estimation method after the model paramefessdar

The average CPU computation time over 100 trials are summarized in Figure e Bi@)
shows that the computation time of KDE, KLIEP, and uLSIF is almost indepgrafethe input
dimensionality, while that of KMM and LogReg is rather dependent on thetidjpuensionality.
Note that LogReg fod < 3 is slow due to some convergence problem of the LIBLINEAR package.
Among them, the proposed uLSIF is one of the fastest methods. Figurst@ilvs that the compu-
tation time of LogReg, KLIEP, and uLSIF is nearly independent of the nummbiaining samples,
while that of KDE and KMM sharply increase as the number of training saniptesases.

Both LogReg and uLSIF have high accuracy and their computation time afeelreelection
is comparable. Finally, we compare the entire computation time of LogReg ané uiuding
CV, which is summarized in Figure 10. We note that the Gaussian widthd the regularization
parametel are chosen over thex@9 grid in this experiment for both LogReg and uLSIF. Therefore,
the comparison of the entire computation time is fair. Figures 10(a) and 1) that uLSIF is
approximately 5 times faster than LogReg.

Overall, uLSIF is shown to be comparable to the best existing method (LygRegms of the
accuracy, but is computationally more efficient than LogReg.

6.2 Covariate Shift Adaptation in Regression and Classification

Next, we illustrate how the importance estimation methods could be usmvariate shift adap-
tation (Shimodaira, 2000; Zadrozny, 2004; Sugiyama andl&f, 2005; Huang et al., 2007; Bickel
and Scheffer, 2007; Bickel et al., 2007; Sugiyama et al., 2007). @gashift is a situation in
supervised learning where the input distributions change between thiagraimd test phase but the
conditional distribution of outputs given inputs remains unchanged. Wwariate shift, standard
learning techniques such as maximum likelihood estimation or cross-validatitiesed—the bias
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Average NMSE over 100 Trials (in Log Scale)
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Figure 8: NMSEs averaged over 100 trials in log scale for the artificial sieita Error bars are

omitted for clear visibility.

Instead, the best method in terms of the mean error and

comparable ones based on thestat the significance level 1% are indicated by; the
methods with significant difference from the best methods are indicated’by
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Figure 9: Average computation time (after model selection) over 100 triatedaartificial data set.
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caused by covariate shift can be asymptotically canceled by weighting théulostion according
to the importance.

In addition to training input samplesd’ 1™, drawn from a training input density (x) and test
input samples{x‘e}nte drawn from a test |nput densityie(X), suppose that we are given training
outputsamples{y”}”‘r at the training input point§x"}™,. The task is to predict the outputs for
test mputs{x‘e}”te based on the input-output training sampfés”’, yi) 1™,

We use the following kernel model for function learning:

Nr

t
f(x;8) = ; 8:Kn(x,my),
=1

whereKy(x,X) is the Gaussian kernel (21) amd is a template point randomly chosen frc{uje}rj“;l
without replacement. We set the number of kernels=a60. We learn the paramet@rby impor-
tance weighted regularized least-squa(@&/RLS) (Evgeniou et al., 2000; Sugiyama andillér,
2005):

ray : mr»\ YV r 2
BIwRLs = r'i"gem'n[izlw(xit ) (f(xit 16) —yi ) +y|]6||2] . (37)

Itis known that IWRLS is consistent when the true importane") is used as weights—unweighted
RLS is not consistent due to covariate shift, given that the true learniggttamctionf (x) is not
realizable by the modd/1\(x) (Shimodaira, 2000).

The squtiorﬂWRLs is analytically given by

Biwres = (K WK+ylp) 1K Wy,
where

Kie = Kn(x",my),
W = dlag(vAv(thr),VAV(thr), s ,V/\\/(Xg")) ’
ytr = (ygll.’7yt2r7 e ’ytnrtr)T

diag(a,b,...,c) denotes the diagonal matrix with the diagonal elemartts.. ., c

The kernel widtth and the regularization parametan IWRLS (37) are chosen hynportance
weighted C\,(IWCV) (Sugiyama et al., 2007). More specifically, we first divide theireg samples
{Z" | 2" = (X', yi")}, into R disjoint subsets{Z}r}r .. Then a functionf, (x) is learned using
{Zt i by IWRLS and its mean test error for the remaining samgléss computed:

W(x)loss(ﬂ(x),y) ,

t
12 fle

where
loss(y,y) = (y-y)* (Regression),
’ 3(1—sign{yy}) (Classification).

We repeat this procedure for=1,2,...,R and choose the kernel widthand the regularization
parametel so that the average of the above mean test error overisliminimized. We set the
number of folds in IWCV aR = 5. IWCV is shown to be an (almost) unbiased estimator of the
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Data

Uniform

KDE
(CV)

KMM
(med)

LogReg
(CV)

KLIEP
(CV)

uLSIF
(CV)

kin-8fh

kin-8fm
kin-8nh
kin-8nm

1.00(0.34)
1.00(0.39)
1.00(0.26)
1.00(0.30)

1.22(0.52)
1.12(0.57)
1.09(0.20)
1.14(0.26)

1.55(0.39)
1.84(0.58)
1.19(0.29)
1.20(0.20)

1.31(0.39)
1.38(0.57)
10901@
1.12(0.21)

0.95(0.31)
0.86(0.35)
0.99(0.22)
0.97(0.25)

1.02(0.33)
0.88(0.39)
10&01&

abalone
image
ringnorm
twonorm
waveform

1.00(0.51)
1.00(0.04)
1.00(0.58)
1.00(0.45)

(
(
(

(
1.00(0.50)
(

(

(

0.98(0.45)
0.87(0.04)
1.16(0.71)
1.05(0.47)

(
(

(
1.02(0.41)
(

(

(

0.91(0.38)
1.08(0.54)
0.87(0.04)
0.94(0.57)
0.98(0.31)

0.98(0.46)
0.95(0.08)
0.91(0.61)
0.93(0.32)

(

(
(0.2
0.97(0.49)
(

(

(

0.94(0.44)
0.99(0.06)
0.91(0.52)
0.93(0.34)

(
(

(
0.94(0.67)
(

(

(

0.96(0.61
0.98(0.47
0.91(0.08
0.88(0.57)
0.92(0.32)

1.04(0.25)
)
)
)

Average

1.00(0.38

1.07(0.40

1.17(0.37

1.07(0.37

0.94(0.35

0.96(0.36

(Comp.timg] — |

Table 2: Mean test error averaged over 100 trials for covariate shafptation in regression and
classification. The numbers in the brackets are the standard deviatione #&lirthr values
are normalized by that of ‘Uniform’ (uniform weighting, or equivalently ingportance
weighting). For each data set, the best method in terms of the mean errarrapdrable
ones based on th&flcoxon signed rank tesit the significance level 1% are described in
bold face. The upper half corresponds to regression data sets takeDELVE (Ras-
mussen et al., 1996), while the lower half correspond to classification elsttaken from
IDA (Ratsch et al., 2001). All the methods are implemented usinlytNELAB® environ-
ment, where th€PLEX® optimizer is used for solving quadratic programs in KMM and
the LIBLINEARimplementation is used for LogReg (Lin et al., 2007).

082 | 350 | 327 | 223 | 100

generalization error, while unweighted CV with misspecified models is biasetbdiovariate shift
(Zadrozny, 2004; Sugiyama et al., 2007).

The data sets provided by DELVE (Rasmussen et al., 1996) and I#s¢R et al., 2001)
are used for performance evaluation. Each data set consists of irtput/samples (X, Y«) }_1-
We normalize all the input samplésy}j_; into [0,1]° and choose the test samplg!®,y!) }e,
from the pool{ (x«, Yk) }r_, as follows. We randomly choose one samfpig y) from the pool and
accept this with probability mifi, 4(xl(<c))2), Wherexff) is thec-th element ofk andc is randomly
determined and fixed in each trial of the experiments. Then we remdvem the pool regardless
of its rejection or acceptance and repeat this procedurengtbmples are accepted. We choose
the training sample$§(x",y")} ™, uniformly from the rest. Thus, in this experiment, the test input
density tends to be lower than the training input density vwk,i@ns small. We set the number of
samples afty: = 100 andhe = 500 for all data sets. Note that we only yg&", yi") ', and{x}*} 7'
for training regressors or classifiers; the test output va{yE§s”‘e are used only for evaluatlng the
generalization performance.

We run the experiments 100 times for each data set and evaluatestiretest errar

1 e R
e Jleoss(f (xtje),y‘je> .
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The results are summarized in Table 2, where ‘Uniform’ denotes uniforighige(or equivalently,
no importance weight). The numbers in the brackets are the standard devadtithe error values
are normalized so that the mean error of Uniform is one. For each dathesbest method in terms
of the mean error and comparable ones based olMlo®xon signed rank testt the significance
level 1% are described in bold face. The upper half of the table camnelsto regression data sets
taken from DELVE (Rasmussen et al., 1996), while the lower half coora$po classification data
sets taken from IDA (Btsch et al., 2001). All the methods are implemented using/tAELAB®
environment, where th€PLEX® optimizer is used for solving quadratic programs in KMM and
the LIBLINEARiIimplementation is used for LogReg (Lin et al., 2007).

The table shows that the generalization performance of uLSIF tends tettes than that of
Uniform, KDE, KMM, and LogReg, while it is comparable to the best existing metKLIEP).
The mean computation time over 100 trials is described in the bottom row of the watdee the
value is normalized so that the computation time of uLSIF is one. This shows ¢habtiputation
time of uLSIF is much shorter than KLIEP. Thus, uLSIF is overall showngaigeful in covariate
shift adaptation.

6.3 Outlier Detection

Finally, we apply importance estimation methods in outlier detection.

Here, we consider an outlier detection problem of finding irregular sampbedata set (“eval-
uation data set”) based on another data set (“model data set”) that ariBirtdregular samples.
Defining the importance over two sets of samples, we can see that the imgorédnes for regular
samples are close to one, while those for outliers tend to be significantly dkfriate one. Thus
the importance values could be used as an index of the degree of outlsgrigrikis scenario. Since
the evaluation data set has wider support than the model data set, we tlegyawaluation data set
as the training sefx"}™, (that is, the denominator in the importance) and the model data set as
the test se(x‘je}?il (that is, the numerator in the importance). Then outliers tend to have smaller
importance values (that is, close to zero).

We again test KMM(med), LogReg(CV), KLIEP(CV), and uLSIF(C\¥ importance estima-
tion; in addition, we include native outlier detection methods for comparisguoges. The outlier
detection problem that the native methods used below solve is to find outliersirigla data set
{x}r_,—the native methods can be employed in the current scenario just by fiodilgrs from
all samples:

{xcer = P U e

One-class support vector machine (OSVM):Thesupport vector machinggVM) (Vapnik, 1998;
Schblkopf and Smola, 2002) is one of the most successful classificatiorithlgarin machine
learning. The core idea of SVM is to separate samples in different claggbg maximum
margin hyperplane in a kernel-induced feature space.

OSVM is an extension of SVM to outlier detection ($ttopf et al., 2001). The basic idea
of OSVM is to separate data sampleg},_, into outliers and inliers by a hyperplane in a
Gaussian reproducing kernel Hilbert space. More specifically, thi@o of OSVM is given
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as the solution of the following convex quadratic programming problem:

.12
min = g WiWie Ko (X, Xk )
Wity

n
. 1
subject toz wg = 1 and 0< wyp, Wy, ..., Wy < o

wherev (0 <v < 1) is the maximum fraction of outliers.

We use the inverse distance of a sample from the separating hyperplaneasier score.
The OSVM solution is dependent on the outlier ratiand the Gaussian kernel width and
there seems to be no systematic method to determine the values of these tuningt@a.a
Here we use the median distance between samples as the Gaussian widtlis whiopular
heuristic (Scblkopf and Smola, 2002; Song et al., 2007). The value wffixed at the true
output ratio, that is, the ideal optimal value. Thus the simulation results beloulcshe
slightly in favor of OSVM.

Local outlier factor (LOF): LOF is the score to detect a local outlier which lies relatively far from
the nearest dense region (Breunig et al., 2000). For a prefixecahatumbek, the LOF value
of a samplex is defined by

imdy( neares(x))
LOFR(x "k Z imdy(x ’

where nearegix) denotes théth nearest neighbor afand imd(x) denotes the inverse mean
distance fronx to its k nearest neighbors:

1
1ok TR
k 2ic1 [[x—nearestx)|

imdy(X) =

If xalone is apart from a cloud of points, ip{d) tends to become smaller than than jfrearestx))

for all i. Then the LOF value gets large and therefore such a point is regasdatdautlier.
The performance of LOF depends on the choice of the pararketed there seems no sys-
tematic way to find an appropriate valuelofHere we test several different valueskof

Kernel density estimator (KDE’): A naive density estimation of all data sampf{eg};_, can also
be used for outlier detection since the density value itself could be regasdedoutlier score.
We use KDE with the Gaussian kernel (21) for density estimation, wherectimelkwidth is
determined based on 5-fold LCV.

All the methods are implemented using the R environment—we us&straroutine in the
kernlabpackage for OSVM (Karatzoglou et al., 2004) andltsfactor routine in thedpreppackage
for LOF (Fernandez, 2005).

The data sets provided by IDA #&sch et al., 2001) are used for performance evaluation. These

data sets are binary classification data sets consisting of positive/nemadivaining/test samples.
We allocate all positive training samples for the “model” set, while all positivesasiples and a

fractionp (= 0.01,0.02 0.05) of negative test samples are assigned in the “evaluation” set. Thus,

we regard the positive samples as regular and the negative samplegalsairre
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In the evaluation of the performance of outlier detection methods, it is impddaake into
account both the detection rate (the amount of true outliers an outlier detatgimmithm can find)
and the detection accuracy (the amount of true inliers that an outlier detafgiotithm misjudges
as outliers). Since there is a trade-off between the detection rate andtéutiaeaccuracy, we
adopt the area under the ROC curve (AUC) as our error metric (Brabtid&y).

The mean AUC values over 20 trials as well as the computation time are summarizdarB,
showing that uLSIF works fairly well. KLIEP works slightly better than uESbut uLSIF is com-
putationally much more efficient. LogReg overall works reasonably wdliit pperforms poorly for
some data sets and the average AUC performance is not as good asanll@IFEEP. KMM and
OSVM are not comparable to uLSIF in AUC and they are computationally ineficNote that we
also tested KMM and OSVM with several different Gaussian widths andraxgntally found that
the heuristic of using the median sample distance as the Gaussian kernel wittthreasonably
well in this experiment. Thus the AUC values of KMM and OSVM are close to optib@F with
largek is shown to work well, although it is not clear whether the heuristic of simplygulsirgek
is always appropriate or not. The computational cost of LOF is high sieaeest neighbor search
is computationally expensive. KDE’ works reasonably well, but its perfogeas not as good as
uLSIF and KLIEP.

Overall, uLSIF is shown to work well with low computational costs.

7. Conclusions

The importance is useful in various machine learning scenarios suctvasate shift adaptation
and outlier detection. In this paper, we proposed a new method of imporatioeation that can
avoid solving a substantially more difficult task of density estimation. We formaithimportance
estimation problem as least-squares function fitting and casted the optimizatidepras a convex
quadratic program (we referred to it as LSIF). We theoretically eluaibiiie convergence property
of LSIF and showed that the entire regularization path of LSIF can baesffly computed based
on a parametric optimization technique. We further developed an approxinagorithm (we
called it uLSIF), which allows us to obtain the closed-form solution. We gtbtat the leave-one-
out cross-validation score can be computed analytically for uLSIF—thigsidde computation of
uLSIF highly efficient. We carried out extensive simulations in covariafeateptation and outlier
detection, and experimentally confirmed that the proposed uLSIF is commatitionore efficient
than existing approaches, while the accuracy of uLSIF is comparable begtexisting methods.
Thanks to the low computational cost, ULSIF would be highly scalability to laage skets, which
is very important in practical applications.

We have given convergence proofs for LSIF and uLSIF. A possililee direction to pursue
along this line is to show the convergence of LSIF and uLSIF in non-pdrancases, for example,
following Nguyen et al. (2008) and Sugiyama et al. (2008b). We areently exploring various
possible applications of important estimation methods beyond covariate hftadidon or outlier
detection, for example, feature selection, conditional distribution estimatidapandent compo-
nent analysis, and dimensionality reduction—we believe that importance estiroatitd be used
as a new versatile tool in statistical machine learning.
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Data

uLSIF

Name |

p

(CV)

KLIEP
(CV)

LogReg
(CV)

KMM
(med)

OSVM
(med)

LOF

KDE’

k=5 [k=30[k="50

(CV)

0.01

0.851

0.815

0.447

0.578

0.360

0.838

0.915

0.919

0.934

banana

0.02

0.858

0.824

0.428

0.644

0.412

0.813

0.918

0.920

0.927

0.05

0.869

0.851

0.435

0.761

0.467

0.786

0.907

0.909

0.923

0.01

0.463

0.480

0.627

0.576

0.508

0.546

0.488

0.463

0.400

b-cancer

0.02

0.463

0.480

0.627

0.576

0.506

0.521

0.445

0.428

0.400

0.05

0.463

0.480

0.627

0.576

0.498

0.549

0.480

0.452

0.400

0.01

0.558

0.615

0.599

0.574

0.563

0.513

0.403

0.390

0.425

diabetes

0.02

0.558

0.615

0.599

0.574

0.563

0.526

0.453

0.434

0.425

0.05

0.532

0.590

0.636

0.547

0.545

0.536

0.461

0.447

0.435

0.01

0.416

0.485

0.438

0.494

0.522

0.480

0.441

0.385

0.378

f-solar

0.02

0.426

0.456

0.432

0.480

0.550

0.442

0.406

0.343

0.374

0.05

0.442

0.479

0.432

0.532

0.576

0.455

0.417

0.370

0.346

0.01

0.574

0.572

0.556

0.529

0.535

0.526

0.559

0.552

0.561

german

0.02

0.574

0.572

0.556

0.529

0.535

0.553

0.549

0.544

0.561

0.05

0.564

0.555

0.540

0.532

0.530

0.548

0.571

0.555

0.547

0.01

0.659

0.647

0.833

0.623

0.681

0.407

0.659

0.739

0.638

heart

0.02

0.659

0.647

0.833

0.623

0.678

0.428

0.668

0.746

0.638

0.05

0.659

0.647

0.833

0.623

0.681

0.440

0.666

0.749

0.638

0.01

0.812

0.828

0.600

0.813

0.540

0.909

0.930

0.896

0.916

satimage

0.02

0.829

0.847

0.632

0.861

0.548

0.785

0.919

0.880

0.898

0.05

0.841

0.858

0.715

0.893

0.536

0.712

0.895

0.868

0.892

0.01

0.713

0.748

0.368

0.541

0.737

0.765

0.778

0.768

0.845

splice

0.02

0.754

0.765

0.343

0.588

0.744

0.761

0.793

0.783

0.848

0.05

0.734

0.764

0.377

0.643

0.723

0.764

0.785

0.777

0.849

0.01

0.534

0.720

0.745

0.681

0.504

0.259

0.111

0.071

0.256

thyroid

0.02

0.534

0.720

0.745

0.681

0.505

0.259

0.111

0.071

0.256

0.05

0.534

0.720

0.745

0.681

0.485

0.259

0.111

0.071

0.256

0.01

0.525

0.534

0.602

0.502

0.456

0.520

0.525

0.525

0.461

titanic

0.02

0.496

0.498

0.659

0.513

0.526

0.492

0.503

0.503

0.472

0.05

0.526

0.521

0.644

0.538

0.505

0.499

0.512

0.512

0.433

0.01

0.905

0.902

0.161

0.439

0.846

0.812

0.889

0.897

0.875

twonorm

0.02

0.896

0.889

0.197

0.572

0.821

0.803

0.892

0.901

0.858

0.05

0.905

0.903

0.396

0.754

0.781

0.765

0.858

0.874

0.807

0.01

0.890

0.881

0.243

0.477

0.861

0.724

0.887

0.889

0.861

waveform

0.02

0.901

0.890

0.181

0.602

0.817

0.690

0.887

0.890

0.861

0.05

0.885

0.873

0.236

0.757

0.798

0.705

0.847

0.874

0.831

Average

0.661

0.685

0.530

0.608

0.596

0.594

0.629

0.622

0.623

[ Comp. time

[ 1.00] 11.7] 535 | 751 | 12.4 |

85.5

[ 8.70]

Table 3: Mean AUC values for outlier detection over 20 trials for the bendkofegta sets. All the
methods are implemented using the R environment, where quadratic prograrivivn K
are solved by thépop optimizer (Karatzoglou et al., 2004), thevmroutine is used for
OSVM (Karatzoglou et al., 2004), and thafactor routine is used for LOF (Fernandez,

2005).
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Appendix A. Existence of the Inverse Matrix of G

Here we prove Lemma 1.
Let us consider the following system of linear equations:

A £ ) (x) <ob>
L - , 38
<E Oaxa) VY Oz 9

wherex andy areb- and|?4\-dimensional vectors, respectively. From the upper half of Eq. (88),
have

X = ﬁ_lETy.

Substituting this into the lower half of Eq. (38), we have

A 1T
EHE y=0p

From the definition, the rank of the matrikis \fél\, that is,E is a row-full rank matrix. As a result,
the matrixEA 'E ' is invertible. Therefore, Eq. (38) has the unique solutien 0, andy = 05
This implies thaG is invertible.

Appendix B. Active Set of LSIF

Here, we prove Theorem 2.

We prove that the active set does not change under the infinitesimal shiftbaindh if the
strict complementarity condition is satisfied. We regard the pair of a symmetric raattia vector
(H’,h’) as an element in thw + b)-dimensional Euclidean space. We consider the following

whereE is the|4| x b indicator matrix determined from the active sef(see Section 2.3 for the
detailed definition). IH’ = H andh’ = h hold, the solutior(a’,&") = (a*(A),&"(A)) satisfies

a,=0,& >0, V€A,
a,>0,&,=0, ¢4, (39)
because of the strict complementarity condition. On the other hand, if theafoti, h') — (H, h)

is infinitesimal, the solutioria’, &) also satisfies Eq. (39) because of the continuity of the relation
betweenH’,h) and(a’,&").
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As a result, there exists anball B in R*7+b such that the equalitfl = {¢ | a}, = 0} holds
for any (H’,) € B. Therefore, we hav®(4 # 4) < P((H,h) ¢ B;). Due to the large deviation
principle (Dembo and Zeitouni, 1998), there is a positive constanth that

A~ A~

—————logP((H,h) € B¢) > ¢ > 0,
ey 09P(F.R) ¢ By)

if min{ny, N} is large enough. Thus, asymptoticaly4 # 4) < e cMin{fee} holds.

Appendix C. Learning Curve of LSIF

Here, we prove Theorem 3.

Let us consider the ideal problem (7). Leet(A) and&*(A) be the optimal parameter and La-
grange multiplier (that is, the KKT conditions are fulfilled; see Section 2.3)Ienfj*’()\) be the
vector of non-zero elements &f(\) defined in the same way as Eq. (11). ThetiA) and&*'(\)

satisfy
a*(A)\ _ [h—AL,
GQWM>_<0ﬂ » (40)

_ET
G:(H E >.
—E  Og)«a

From the central limit theorem and the assumption (18), we have

- 1 1
m:mu%(w%):h+%<m), (41)

where Op ando, denote the asymptotic order in probability. The assumption (a) implies that the
equality

where

E=E (42)

rAloIds with exponentially high probability due to Theorem 2. Note thas the same size a8 if
E = E. Thus we have R
G=G+0G,

where

3H 0O
3G = nm))
<0ﬂw Oa)x|4]

3H=H—H. (43)
Combining Egs. (12), (40), (41), and (42), we have

an) ~-1 <a*()\)> < 1 >
=G G| .« +op| — |- 44
(E’m) ') % g (49
The matrix Taylor expansion (Petersen and Pedersen, 2007) yields

o~

G loG -GGG 1+G GG GG 1, (45)
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and the central limit theorem asserts that

8H = 0, (&) . (46)

Combining Egs. (44), (45), (14), and (46), we have
da =ad(A)—a*(A) (47)
— _ASHA* (A) + ASHASHA* (A) +0 (:ﬂ) . (48)

Through direct calculation, we can confirm that

AHA=A. (49)
Similar to Eq. (15), it holds that
a*(\) = A(h—Alp). (50)
From Egs. (49) and (50), we have
A(Ha*(A) —h) = —AAL,, (51)
Egs. (43), (4), and (3) imply
E[8H] = Opxb. (52)
From Egs. (2) and (47), we have
J@A)) = J(a*(\) + %mTHaa + (Ho*(A\) —h) " &a. (53)

From Eqgs. (46), (48), and (49), we have
E [60(TH60(] =trHE [60(60(?)

= tr(AHAE [(EHG*(A))@H“*(}‘))T} J+o (é)

— tr(AE [(5Ha*(A))(5Ha*(A))T} )+0 (1> . (54)

Nty

From Egs. (48), (51), and (52), we have

E[3a"(Ha*(\)—h)| =~ E |(8Ha*(A) — SHASHa" (A)) TA(Ha (A) ~h)]| +o <ri>

—E [(8Hor' (\) —~ BHABH " (1)) "M + 0 <ri)
= —Mr(AE [(5Ha*(>\))(6HA1b)T})+o<1). (55)

My
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Combining Egs. (53), (54), and (55), we have

BLI@())] =J(a” (V) + 5 (AR [ (VSHa" ) (vArdHa* (1))
_ A (AR [(VeSHo (1) (/BHALY)]) + 0 (;) ,

Nty r

According to the central limit theorem,/n,0H; ; asymptotically follows the normal distribution
with mean zero and variance

[ 9200200 (x1dx—H3,
and the asymptotic covariance betwggm,dH; j and,/ngdHy j/ is given by

[ 010081000 (9 (9 P () x— H b .
Then we have

lim E [(\/nTreSHa*(A))(\/mHa*@))T} —Cuw

Nty —0

lim E [(\/nTraHa*(A))(maHAlb)T} = Cuwu,

r*}DO

whereC,,y is theb x b covariance matrix with thé/, ¢')-th element being the covariance between
w(X)9,(x) andw (x)d (x) underpy (x). Then we obtain Eq. (19).

Appendix D. Regularization Path of LSIF

Here, we derive the regularization path tracking algorithm given in Figure

WhenA is greater than or equal to max, the solution of the KKT conditions (9)—(10) is
provided asx = Oy, § = A1y — h > 0p. Therefore, the initial value ofg is max hk, and the corre-
sponding optimal solution i&(A\g) = Op.

Since?(A) corresponds to non-zero eIementiA(?f) as shown in Eqg. (11), we have

£ - {w) it =i (56)

0 otherwise
WhenA) is decreased, the solutionog\) andg()\) still satisfy Egs. (12) and (56) as long as the

active setZ remains unchanged. Change points of the active set can be foundrynéxg the non-
negativity conditions ofi(A) and&(A) as follows. Supposg is decreased and the non-negativity

condition
a)
(EO\)> > O2p

is violated ath = A’. That is, botha(\') > Op andg()\’) > Op hold, and eithed(\ —¢€) > 0, or
&(N —¢€) > 0y is violated for anye > 0. If @j(A") =0 for j ¢ 4, j should be added to the active set
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4; on the other hand, EJ- (\) =0 for somej € a, a;(N) will take a positive value and therefore

j should be removed from the active s@t Then, for the updated active set, we compute the
solutions by Eqgs. (12) and (56). Iterating this procedure untiéaches zero, we can obtain the
entire regularization path.

Note that we omitted some minor exceptional cases for the sake of simplicity—treatimeall
possible exceptions and the rigorous convergence property arestixiedy studied in Best (1982).

Appendix E. Negative Index Set of3°())

Here we prove Theorem 4.

As explained in Appendix B, we regard the pair of a symmetric matrix and awv@dtoh') as
an elementin thé b” ) 4 b)-dimensional Euclidean space.

We consider the linear equation

B’ = (H +Alp)'H.
Due to the assumption, fét’ = H andh’ = h, we have
B,#0,¢=1,2...,b. (57)
14

On the other hand, if the norm ¢H’,h') — (H,h) is infinitesimal, the solutio’ also satisfies
Eq. (57), and the sign ¢, is same as that @, for ¢ = 1,2, ..., b, because of the continuity of the
relation betweeriH’, ') andp'.

As a result, there exists amball Be in R+ ' such that the equalitg = B holds for any
(H’ ) € B¢. Therefore, we havB(B # Q%) < P((H, h) ¢ Bg). Due to the large deviation principle
(Dembo and Zeitouni, 1998), there is a positive constasutch that

~ ey 109P((H.) £B) > ¢> 0,

if min{ny, e} is large enough. Thus, asymptoticalyB £ B) < e Min{eMe} holds,

Appendix F. Learning Curve of uLSIF

Here, we prove Theorem 5.
Let R R
By =H +Alp.

The matrix Taylor expansion (Petersen and Pedersen, 2007) yields
By =B, '~ B, '6HB; B, 1oHB, 1HB - (58)
Let B C {1,2,...,b} be the set of negative indicesﬁ(ﬂ), that is,
B={l|B(N\) <0, (=12,...b}

Let D be theb-dimensional diagonal matrix with theth diagonal element

_ 0 (cB,
Do = .
1 otherwise
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The assumption (a) implies that the equality
D=D (59)

holds with exponentially high probability due to Theorem 4. Combining Eq9, (82), (58), and
(24), we have

3B =B —B(A)
— DB, 'h—DB;h

. 1
= —DB, '8HB°()) + DB, *3HB, *6HP ()\)+o(ntr>. (60)

From Egs. (46) and (60), we have

E [6BTH6|3} = tr(B; 'DHDB; 1 E [(6H B°(A))(BHB° (A))T} )+0 (nltr> . (61)

From Egs. (52) and (24), we have

E[387(HB'(\) — )| =E | (~8HB"(A) + SHB; "3HB*(A)) "By 'D(HB"(A) — )|

(=)
4o —
Nty

—F |tr(B; {(SHP (M) (BHB; 'D(HB"(\) —h)) ) |

+°(n1tr> | (62)

Combining Egs. (53), (61), and (62), we have
E [3(BN)| =3(B" () + 5 tr(B; DHDE,  E[(VABHB (1)) (v SHB'(A)) )
- 1tr(B;1 E[(y/NgdHPB"(A))(y/NgdHB, 'D(HB*(A) —h)) ") +0 <1> .

N Nty
According to the central limit theorem, we have
lim_E[(/Air8HB"(A)) (/BHB (1)) 7] = Curr
im E[(v/nu8HB*(A)) (vedH B, 'D(HB"(\) —h))"] = Cue u-

Then we obtain Eq. (25).

Appendix G. ‘Norm’ Upper Bound of Approximation Error for uLSIF

Here we prove Theorem 6.
Using the weighted norm (27), we can express(difas

dift ) — Me0l83) Bl

1 WX B(A))
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As shown in Appendix Dai(A") = Oy holds for some larga’. Then we immediately have

ditt ) < — POl
I We BOY)

)

which proves Eq. (28). Latmax be the largest eigenvalue it ThenHE(A) | can be upper bounded
as

IBOg < vKmaxllBOV 12 < vKmad B |12,

where the first inequality may be confirmed by eigen- decompdﬂuagld the second inequality is
clear from the definitions q3( ) andB( ). Letkmin be the smallest eigenvalueldf Then an upper
bound of{|B(A)||3 is given as

B = (A Moy 2R < o il < 5 il
where the last inequality follows fromy,, > 0 .
Now we have
BN 1 emadlfl
WG BO)) Ty wdB)) A
_ 1 \/m(HhHZ

S 32 0B/ IBA) 1 MBIl
For the denominator of the above expression, we have

Nir

Zuzq” IIB Ziq’ b IIB Zq’ +)

where the last equality follows from the non—negativit;@@()\). The reciprocal of|ﬁH2/HE()\) |1 is

lower bounded as follows:
B B0 ol P2}
[h[2 [hl2 1 [hll2

where the last equality follows from the fact that there isauch thaﬁg()\) > 0; otherwise, we
havez”" w(x"; B) = 0 which contradicts to the assumption of the theorem. Let us put

)
¢l

o)

B)

Ke= "2,
[h][2

wherek > 0 ande € R such that|e||, = 1. Then we have

(Kmax+ )\) < K ande "h>0.

1436



A LEAST-SQUARESAPPROACH TODIRECT IMPORTANCE ESTIMATION

Note that there exists afsuch thae, > 0. Then, we have

B,(A
BA) _ maxke; = Kmaxe; >

max

= maxey
¢ 2

Kmax+A ¢

i T am
min{maxe, | e' e=1,e h/|h||; > 0}.
> 5 min{maxe, | e'e=1,e"h/ |1 > 0}

Now we prove the following lemma.

Lemma 8 Let pi, pz,. .., pp (b > 2) be positive numbers such that

and let

Then, there exists no-e (e, &, . ..,&,) € RP such that the three conditions,
b b
[Zefz 1, /Z pe, >0 ande <efort=12,....b
=1 =1

are satisfied at the same time.
Proof We suppose that ¢ RP satisfies the three conditions. If mioy/(1— p;) > 1, we have
p¢ > 1/2 for all £. However, this is contradictory t°_; p; = 1. Therefore, we have
minp,/(1-p) <1,
from which we have
e<1/vh.

The equality constrairt®_; € = 1 implies the condition that there existsasuch thate | > 1/+/b.
Moreover, we havey, e, ..., < €< 1/\/6, and thus there is a® such thag < —1/\@. Hence,
we have

Pi 1 . R o Pi
— < —pEe < e < —min = (1-pj)—=min < .
This results in contradiction. [ |

Letp, = ﬁg/||ﬂ||1 and we use Lemma 8. Note that any elemerit isfpositive. Then, we have

|||3(A)\)||1 > 11 P
[[hll2 Kmax+A Vb ¢ Yz P

Moreover, we have

i P minshy MNP do(XF) - min, 37, ¢¢(X°)
= = T b e =
¢ Zi#é Pi 2?/:1 h@/ 21{7:1 Z?l:]_ q)é/ (thE) nteb

i
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where the last inequality follows from the assumptior @,(x) < 1. Therefore, we have the in-
equality

1 \/KmaXHHHZ
S WX B(A)) A
Kmax 1 Nte
< byv/bKrm (1 . - . 63
< bv/Bimax (14 75) o i 5 (63)

An upper bound okmax is given as follows. For ath € RP, the inequality

b b b
—[Zl|az|¢f(x) < /Z adi(x) < ; [ay|de(x) (64)

holds because of the positivity ¢f(x). Let us definea € RP for givena € RP as

a (|a1’7|a2|7"‘7|ab|) .
Note that||a]|> = ||al|2 holds. Then, using Eq. (64), we obtain the inequality

a'Ha= nltrfr (éla[q)g( xr ) = 2(; a0 (X ) _ _

QJ

Ha
for anya e RP. Therefore, we obtain
e Has pax@Has mey 2 Ha )
where the last equality is derived from the relation,
{a||lalz=1, ac R’} = {a||all2=1, a>0p, acR"}.
On the other hand, due to the additional constrairtQy, the inequality
max a'Ha < maxa'Ha (66)

[all=1, a>0p lall=1
holds. From Egs. (65) and (66), we have
TGO TG 1 < 0 ’
Kmax= Maxa Ha= max a Ha= max — agq)g(xi”) .
llall=1 llall2=1,a>0p lall2=1, a>0 Ntr 59 \ &4

Using the assumption @ ¢,(x) < 1, we have

1M /b ) 2 v /b2
r
Kmax = max — ad(x') < =Y
lall=1, a>0p Nr 53 \ A& HaHz 1 a>0b ntr a\4A
b\ b
=  max a| < max b-Ya
lall2=1, a>0p \ & lall=1, a>0p A

= b, (67)

where the Schwarz inequality farand 4, is used in the last inequality. The inequalities (63) and
(67) lead to the inequality (29).

It is clear that the upper bound (29) is a decreasing function(of 0). For the Gaussian basis
function, ¢,(x) is an increasing function with respect to the Gaussian wadtfihus, Eq. (29) is a
decreasing function ad.
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Appendix H. ‘Bridge’ Upper Bound of Approximation Error for uLSI F

Here we prove Theorem 7.
From the triangle inequality, we obtain

dift ) < M0 [G) —¥N) g + 1Y) ~ Bl
B 1 W04 BA))

(68)

We derive an upper bound of the first term.
First, we show that the LSIF optimization problem (6) is equivalently expaeas

A SN ~
min | ZaTHa—h a
aeRb | 2

subject toa > 0p, 1) a <c,

which we refer to as LSIF The KKT conditions of LSIF (6) are given as

Ha—h-+Al,—pu=0p,
a>0y, >0, o pu=0,

wherep is the Lagrange multiplier vector. Similarly, the KKT conditions of LS#Fe given as

Ho —h+ polp — P = Op,
>0y U>0p, a p=0, (69)
Ja—-c<0, >0, (IJa—c)u =0,

wherep andpyp are the Lagrange multipliers. L&di(A),{i(A)) be the solution of the KKT conditions
of LSIF. Then, we find thata, i, to) = (G(A),fi(A),A) is the solution of Eq. (69) witlke = 1) a()).
Note that LSIF is a strictly convex optimization problem, and thaé\) is the unique optimal
solution. Conversely, when the solution of Eq. (69) is provide(tag, 1), LSIF with A = o has
the same optimal solutiom.

When the optimal solution of LSIFq ig\), the KKT conditions of LSIFq (30) are given as

HY(A) —h+AY(A) — 7 = Oy, (70)
YO\) >0, H>0p, YA) 'R =0, (71)

wheren is the Lagrange multiplier vector.
Letd (A1) be the optimal solution of LSIRwvith c = 1) y(A), and suppose that the solutidifi;)
coincides with that of LSIF witih = A;. Then, from Eq. (69), we have

HA(A1) —h+A1dp —fi(A1) = Op, (72)
G(A1) > 0p, (A1) >0p, G(A1) (A1) =0, (73)
1, G(A1) —15Y(A\) <0, A1 >0, (1,G(A1) —1pY(A)AL=0. (74)
From Egs. (70) and (72), we obtain
H(G(A\) —Y(N) = —Malo+AY) + A1) — 7. (75)
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Applying Egs. (71), (73), (74), and (75), we have

inf [A() V)3 < @A) —Y) TH@AL) —YON)

N>0 H —
= —A1(@(A1) —VN)) "L+ A @A) —VA) YA
+(@A1) —YA) " (f(A) — 1)
= A@M1) 'Y = [YA)[15) = G(A) "R —YA) "R(N)
< A@AD) TN — [V [15). (76)

Fromd (A1) > Op, Y(A) > 0y, and L d(A1) < 1)Y(A), we have
[G@AD)[[1 = 1p8 (A1) < 1Y) < VA1
Then we have the following inequality:

a(A1) 'YV < @(A1) " (V) [l 1)
= [aA) |2+ V) lleo < V) |2+ V) [|eo- (77)

For pandg such that Ip+1/q=1 and 1< p,q < «, Holder’s inequality states that

lockBlla < flalfp-[1Bllq,

wherea 3 denotes the element-wise productooéndp. Settingp = 1, q = o, anda = 3 =Y(})
in Holder’s inequality, we have

N2+ ) [l = VA 13 > ©. (78)

Combining Egs. (68), (76), (77), and (78), we obtain

diff(n) < VAT 12 [Vl — [V B) + V) — B g

it WO B(A))

Appendix I. Closed Form of LOOCV Score for uLSIF

Here we derive a closed form expression of the LOOCV score forkil(See Figure 2 for the
pseudo code).
Let

(%) = (91(%), 02(x),..., Pp(x)) "

Then the matriXd and the vectoh are expressed as

0_ - tr tr\T
H= ;cb(& JO()
- 1 e o

h: nitejflq)(th )7
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and the coeﬁicientE(A) can be computed by

~ A~

B(\) =B, h.

Let [ASO) be the estimator obtained without théh training sampled” and thei-th test sampled®.
Then the estimator has the following closed form:

B =maxos, B )
~(i =N -1
B0 = (e - 0000 )+ A1)

ntr—l

LetB=H -+ (”" Uy and[3 B 'hin the following calculation. Using the Sherman-Woodbury-

Morrison formula (33), we can simplify the expressiorﬁo%()\) as follows:

B0 =" (5 Zooeo)” ) (egh- o)

Ny Ny Nte —

Ny —1 <A—1 n 1
e e — O(4) B0 (4)

Nte 1 e
‘ (nte — 1<|><xf >)

h—
I'1tr Dnee )TE Bl
ntr Nte — < Xtr TB ¢(Xtr) B q)(X, )>

L= (g e, ODTBOKE) a1
Mr(Me — 1) (B ¢(X')+ntr—¢(x%“>T§‘l¢<x-”>B o )>'

EB\_l tr

Thus the matrix inversion required for computﬁ((_lzj) (AN foralli=1,2,.....,nyis onIy@. Applying
this to Eq. (32) and rearrange the formula, we can compute the LOOCY¥ anatytically.
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