
Journal of Machine Learning Research 10 (2009) 977-996 Submitted 2/08; Revised 9/08; Published 4/09

On Uniform Deviations of General Empirical Risks with
Unboundedness, Dependence, and High Dimensionality

Wenxin Jiang WJIANG@NORTHWESTERN.EDU

Department of Statistics
Northwestern University
Evanston, IL 60208, USA

Editor: Gábor Lugosi

Abstract
The statistical learning theory of risk minimization depends heavily on probability bounds for uni-
form deviations of the empirical risks. Classical probability bounds using Hoeffding’s inequality
cannot accommodate more general situations with unboundedloss and dependent data. The current
paper introduces an inequality that extends Hoeffding’s inequality to handle these more general sit-
uations. We will apply this inequality to provide probability bounds for uniform deviations in a very
general framework, which can involve discrete decision rules, unbounded loss, and a dependence
structure that can be more general than either martingale orstrong mixing. We will consider two
examples with high dimensional predictors: autoregression (AR) with ℓ1-loss, and ARX model
with variable selection for sign classification, which usesboth lagged responses and exogenous
predictors.
Keywords: dependence, empirical risk, probability bound, unboundedloss, uniform deviation

1. Introduction

In machine learning, a problem of central importance is to bound a probabilityof uniform deviation
P[supb∈B |n−1 ∑n

t=1 ρ(ωt ,b)−n−1∑n
t=1Eρ(ωt ,b)| > δ], whereδ > 0 is a positive deviation (which

can be allowed to depend onn and characterize a convergence rate),b is a parameter in a parameter
spaceB (which is typically a Borel measurable subset of an Euclidean space),D = (ω1, ...,ωn) form
the data set ofn random observations,ρ(·, ·) is a loss function (measurable to a certain product
σ-field), R̂(b) = n−1 ∑n

t=1 ρ(ωt ,b) is an empirical risk, andR(b) = n−1 ∑n
t=1Eρ(ωt ,b) is its expec-

tation.1

Such a probability is of interest since it is well known to bound the performance R(b̂) of an
empirical risk minimizer̂b = argminb∈B R̂(b), relative to the optimal performance infb∈BR(b) over
B:

P[R(b̂)− inf
b∈B

R(b) > 2δ] ≤ P[sup
b∈B

|R̂(b)−R(b)| > δ],

due to, for example, Lemma 8.2 (Devroye, Györfi and Lugosi, 1996). Recently, Jiang and Tanner
(2007, 2008) indicate that the probability of uniform deviation is also of central importance in

1. In this paper, we will not be concerned about the measurability problem that may be involved in quantities such
as supb∈B |R̂(b)−R(b)|. Works on ‘universal measurability’ described in, for example, Yu (1994, Appendix) and
Davidson (1994, Section 21.1) imply that this is not a problem for all our examples later whereB is a Borel measurable
subset of a compact metric space. Alternatively we could considerP as the ‘outer probability’ as in Newey (1991).
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studying the performance of a Bayesian approach of empirical risk minimization considered in, for
example, Zhang (2006), whenb is generated randomly according to a Gibbs posteriorπb|D(db) ∝
e−nψR̂(b)πb(db) whereπb(db) is a prior distribution onB andψ−1 > 0 is a ‘temperature parameter’.
This includes the usual Bayesian posterior as a special case whenψ = 1 and when−nR̂ is the
log-likelihood function. A straightforward application of Jiang and Tanner(2008, Proposition 6)
renders

P[R(b)− inf
b∈B

R(b) > 5δ] ≤ P[sup
b∈B

|R̂(b)−R(b)| > δ]+e−2nψδ/πb[R(b)− inf
b∈B

R(b) < δ],

whenb|D ∼ πb|D andD is generated from a true distribution. This again shows the dependence of
the risk performance on the probability of uniform deviation.

The probability of uniform deviation is treated in the standard machine learningtext such as De-
vroye, Gÿorfi and Lugosi (1996) by the Vapnik-Chervonenkis theory using a Hoeffding’s inequality
on the probability of pointwise deviationP[|n−1∑n

t=1 ρ(ωt ,b)−n−1∑n
t=1Eρ(ωt ,b)|> δ], which typ-

ically assumes thatωt ’s are iid (independent and identically distributed), and that the loss function ρ
is bounded. The goal of this paper is to generalize in several directions,so thatρ can be unbounded
andωt ’s can be dependent. In addition, we will allowb to have a possibly high dimension that can
increase withn in certain ways. Whenρ has sufficiently thin tail in the distribution and whenωt ’s
have certain kind of decaying dependence overt, we derive bounds of the form

P[sup
b∈B

|n−1
n

∑
t=1

ρ(ωt ,b)−n−1
n

∑
t=1

Eρ(ωt ,b)| > n−0.5+γ1] = O(e−c1nc2
),

for any small positiveγ1, wherec1, c2 are some positive constants depending onγ1. Such a result
indicates uniform convergence of the empirical risk at a near ‘parametric’ rate (close toOP(n−0.5))
despite high dimensionality inb, dependence inωt , and unbounded loss functionρ.

Such results are obtained using a very general ‘pointwise’ inequality thatgeneralizes Hoeffd-
ing’s inequality, which will be introduced in Section 2. This allows unboundedloss and a framework
of dependence that is more general than strong mixing, which is thereforemore general than pre-
vious works using strong mixing (e.g., Vidyasagar, 2005; Zou and Li, 2007) or β-mixing (e.g.,
Yu, 1994; Lozano, Kulkarni and Schapire, 2006). The ‘uniform aspect’ is then treated in a very
general framework in Section 3 allowing both continuity and discontinuity ofρ in b. Examples of
applications of this general framework are given in Sections 4 and 5.

2. An Inequality

We first introduce an inequality that is more general than Hoeffding’s inequality (Hoeffding, 1963).
This inequality may be called a ‘triplex inequality’ since its right hand side has three parts. In
addition to a term that is of an exponential form as in the Hoeffding’s inequality, it also includes a
term to gauge the dependence, and a term to control the unboundednessof the random variables. The
result is therefore almost assumption free and generally applicable: it does not assume independence
or boundedness of the random variables.

Theorem 1 (A triplex inequality.) let{Ft}∞
−∞ be an increasing sequence ofσ-fields andρt be a

random variable that isFt-measurable for each t. Then for anyε,C > 0 and positive integers n,m,
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we have

P[|
n

∑
t=1

(ρt −Eρt)| > nε] ≤ 2me−nε2/(288m2C2)

+(6/ε)n−1
n

∑
t=1

E|E(ρt |Ft−m)−Eρt |

+(15/ε)n−1
n

∑
t=1

E|ρt |I(|ρt | > C),

as long as the right hand side exists and does not exceed one.

2.1 Remarks

1. The bound is not necessarily very tight; the constants appearing in the theorem may be im-
proved. However, these typically do not affect the convergence rates in the later applications
of this inequality.

2. In later applications, the choices ofmandC can be made to depend onn so that the combina-
tion of all three terms converge to zero asn→ ∞.

3. The last term will be called the ‘tail term’ since it is related to the tail behavior of ρt .
This often can be bounded by techniques similar to the Markov inequalities. Note that for
nonnegativeX = |ρt |, EXI(X > C) ≤ EXk+1C−k andEXI(X > C) ≤

√
EX2

√

P(X > C) ≤√
EX2

√
EeθXe−θC/2, for k,θ > 0. So existence of moments ofX will imply a power law

and existence of the moment generating function in a neighborhood of zerowill imply an
exponential law for the decay of the ‘tail term’ inC.

4. The second term will be called the ‘dependence term’ since it is related to the dependence
described in the framework ofL1-mixingale (see, e.g., Chapter 16, Davidson, 1994), which is
more general than either martingale or strong mixing. When{ρt} is a sequence of martingale
differences, the dependence term vanishes. If{ρt} is strong mixing with coefficientsαm, and
has boundedLq norms (q > 1), then Theorem 14.2 of Davidson (1994) would imply that the

dependence term decreases according to orderO(α1−1/q
m ) asm increases.

5. The mixingale formulation of the dependence term can also handle a processρt that isnot
strong mixing. We will provide an example below whenρt is not strong mixing but is
approximableto a strong mixing process, where we can still make the dependence term
small for largem. Such an extension from ‘strong mixing’ to ‘approximable by strong mix-
ing’, although seemingly a small improvement, is very significant. The problem of strong
mixing is that a function of a mixing sequence (even an independent sequence) that depends
on an infinite number of lags is not generally mixing. This is regarded as a ‘serious draw-
back from the viewpoint of applications in time-series modelling’ (Davidson, 1994, p.261),
and has led to the ‘approximability’ framework summarized in Davidson (1994,Chapter 17),
which is popular in modern time series study but has not been paid much attentionto by the
machine learning society. Our work can incorporate this approximability concept and provide
a ‘bridge’ introducing this framework to our field.
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2.2 An Example for the Dependence Term

Suppose that{ρt}∞
t=−∞ can be approximated in anL1-sense by a strong mixing sequence{ρt,k}∞

t=−∞
ask increases (whereρt,k is measurable -Ft for eacht):

n−1
n

∑
t=1

E|ρt −ρt,k| ≤ c1νk,

wherec1 > 0 andνk > 0 are nonstochastic andνk decreases to zero ask → ∞. Suppose theqth
moment||ρt,k||q ≡ (E|ρt,k|q)1/q ≤ c2 for some constantsq > 1, c2 > 0. Then Theorem 14.2 of
Davidson (1994) implies that

n−1
n

∑
t=1

E|E(ρt,k|Ft−m)−Eρt,k| ≤ 6c2αm({ρt,k}∞
t=−∞)1−1/q.

Then apply the triangular inequality and note that the dependence term is proportional to

n−1
n

∑
t=1

E|E(ρt |Ft−m)−Eρt | ≤ n−1
n

∑
t=1

E|E(ρt,k|Ft−m)−Eρt,k|+2n−1
n

∑
t=1

E|ρt −ρt,k|

≤ 6c2αm({ρt,k}∞
t=−∞)1−1/q +2c1νk.

We may be able to choosek = k(m) to increase withmsomehow so that both terms above are small
for largem. Such a choicek(m) depends on the mechanism of approximation. Whenk indicates the
number of lags involved as in the following example, one can choosek(m) ≈ m/2.

For example, consider anMA(∞) processρt = ∑∞
j=0 θ jVt− j where{Vt}∞

−∞ is a zero-mean,Lq-
bounded sequence (i.e., supt ||Vt ||q < ∞) for someq> 1. (We can takeFt to be theσ-field generated
by {Vs}t

s=−∞.) Thenρt is not necessarily strong mixing even whenVt ’s are independent innovations,
even when|θ j | decreases very rapidly, due to the infinitely many lags involved (see, e.g., Section
14.3, Davidson 1994). On the other hand, when|θ|1 ≡ ∑∞

1 |θ j | < ∞, we can define ‘finite-lag’
approximatorsρt,k = ∑k

j=0 θ jVt− j so thatE|ρt −ρt,k|= E|∑∞
k+1 θ jVt− j | ≤ supt ||Vt ||1 ∑∞

k+1 |θ j | which
is of the formc1νk whereνk = ∑∞

k+1 |θ j | → 0 ask→ ∞.
SupposeVt is strong mixing (e.g., when innovations are independent) with mixing coefficient

αm({Vt}∞
−∞). Then the strong mixing coefficient ofρt,k satisfies

αm({ρt,k}∞
t=−∞) ≤ αm−k({Vt}∞

−∞),

since theρt,k depends on lagsVt ,Vt−1, ...,Vt−k. Note that ||ρt,k||q ≤ ∑k
j=0 |θ j |supt ||Vt−k||q ≤

|θ|1supt ||Vt ||q which can be taken as the constantc2.
Now note that the dependence term of interest is proportional to

n−1
n

∑
t=1

E|E(ρt |Ft−m)−Eρt |

≤ 6c2αm({ρt,k}∞
t=−∞)1−1/q +2c1νk

≤ 6c2αm−k({Vt}∞
−∞)1−1/q +2c1νk.

Then one can take, for example,k = ⌈m/2⌉ (the integer part ofm/2) and make the upperbound
small for largem.

This shows that the current formulation of the inequality can handle dependence that is more
general than strong mixing.
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2.3 Proving the Triplex Inequality

The idea behind an upperbound with a decomposition into such three terms hasappeared in econo-
metric literature. For example, de Jong and Woutersen (2004) used this ideato treat an unbounded
sum appearing in the binary choice models. The idea of our proof is relatedto a mixingale treatment
seen in, for example, Chapter 16 of Davidson (1994). Since the specificform of the current inequal-
ity is not seen in these literatures, we will provide a proof below for completeness. The following
Lemma will be used in the proof.

Lemma 1 let {Ft}∞
−∞ be an increasing sequence ofσ-fields. Let Xt be a random variable that is

Ft-measurable and is bounded so that|Xt | ≤C for some constant C for each t. Then for anyε > 0
and positive integers n,m, we have

P[|
n

∑
t=1

Xt −E
n

∑
t=1

Xt | > nε] ≤ 2me−nε2/(32m2C2) +(2/ε)n−1
n

∑
t=1

E|E(Xt |Ft−m)−EXt |, (1)

as long as the right hand side exists.

Proof for Lemma 1 ConsiderUn ≡ ∑n
t=1Xt −E∑n

t=1Xt , which can be ‘telescoped’ intoUn =
U1,n +U2,n + ... +Um,n +Vn whereU1,n = {X1 −E(X1|F1−1)}+ ... + {Xn −E(Xn|Fn−1)}, U2,n =
{E(X1|F1−1) − E(X1|F1−2)} + ... + {E(Xn|Fn−1) − E(Xn|Fn−2)},..., Um,n = {E(X1|F1−(m−1))−
E(X1|F1−m)} + ... + {E(Xn|Fn−(m−1)) − E(Xn|Fn−m)}, Vn = {E(X1|F1−m) − EX1} + ...+
{E(Xn|Fn−m)−EXn}. Then a union bound leads to

P[|Un| > nε]
≤ P[|U1,n| > nε/(2m)]+P[|U2,n| > nε/(2m)]+ ....+P[|Um,n| > nε/(2m)]

+P[|Vn| > nε/2]. (2)

Note thatU1,n is a sum ofn martingale differences each bounded in magnitude by 2C. SoP[|U1,n|>
nε/(2m)] ≤ 2e−nε2/(32m2C2) by applying a generalization of the Hoeffding’s inequality to the mar-
tigale differences (see, e.g., Theorem 15.20, Davidson, 1994, or Theorem 9.1, Devroye, Gÿorfi
and Lugosi, 1996). Similarly isP[|U j,n| > nε/(2m)] ≤ 2e−nε2/(32m2C2) for all j = 1, ...,m. Now
P[|Vn|> nε/2]≤ (2/ε)n−1E|Vn| ≤ (2/ε)n−1 ∑n

t=1E|E(Xt |Ft−m)−EXt | using the Markov inequality
and the triangular inequalities. Combining these upperbounds for the terms onthe right hand side
of (2) leads to the proof. Q.E.D.

The inequality appearing in the current lemma holds without assumption of a dependence struc-
ture. It still assumes a boundedXt . Next we remove the boundedness assumption by incorporating
a term related to the ‘tail behavior’ of a random variableρt , which is now possibly unbounded.

Proof for Theorem 1 We will decomposeρt = Xt +Yt whereXt = ρt I [|ρt | ≤C] andYt = ρt I [|ρt |>
C]. Then|∑(ρt −Eρt)| ≤ |∑(Xt −EXt)|+ ∑ |Yt |+ ∑E|Yt | by using triangular inequalities. Then
P[∑n

1(ρt −Eρt)| > nε] ≤ P[|∑n
1(Xt −EXt)| > nε/3] + P[∑n

1 |Yt | > nε/3] + P[∑n
1E|Yt | > nε/3] The

first term is bounded by the preceding lemma by

2me−nε2/(288m2C2) +(6/ε)n−1
n

∑
t=1

E|E(Xt |Ft−m)−EXt |.
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The second term is bounded above by(3/ε)n−1 ∑n
1E|Yt |. The third term is a probability of a deter-

ministic event, which is zero if the righthand side of the triplex inequality in Theorem 1 does not
exceed one. ThereforeP[∑n

1(ρt −Eρt)| > nε] ≤ 2me−nε2/(288m2C2) +(6/ε)n−1∑n
t=1E|E(Xt |Ft−m)−

EXt | + (3/ε)n−1 ∑n
1E|Yt |. Now note that |E|E(Xt |Ft−m) − EXt | − E|E(ρt |Ft−m) − Eρt || ≤

E|E(Yt |Ft−m)−EYt | ≤ 2E|Yt | using the triangular inequalities and the Jensen’s inequality. Then
E|E(Xt |Ft−m)−EXt | ≤E|E(ρt |Ft−m)−Eρt |+2E|Yt | andP[∑n

1(ρt −Eρt)|> nε]≤2me−nε2/(288m2C2)

+(6/ε)n−1 ∑n
t=1{E|E(ρt |Ft−m)−Eρt |+2E|Yt |}+(3/ε)n−1∑n

1E|Yt | which leads to the proof of the
theorem. Q.E.D.

3. Uniform Deviation

The above inequality (in Theorem 1) can be used to bound the probability ofa large (pointwise) devi-
ationTn(b) = R̂(b)−R(b), whereb is a parameter,̂R(b) is a sample averagêR(b) = n−1 ∑n

t=1 ρ(ωt ,b)
(where for eacht, ωt is measurable -Ft from an increasing sequence ofσ-fields), andR(b) is its ex-
pectationR(b) = ER̂(b). It is often of interest to bound the probability of a largeuni f ormdeviation
supb∈B |Tn(b)| over a parameter spaceB for b.

The connection between the pointwise and uniform deviations can be obtained by coveringB
with many (say,Γ) smaller setsBi ’s, so thatB⊂ ∪Γ

i=1Bi . Choosebi to be some parameter located
in Bi for eachi. Note that supb∈B |Tn(b)| ≤ maxΓ

i=1 |Tn(bi)|+maxΓ
i=1supb∈Bi

|Tn(b)−Tn(bi)|. Then
a union bound leads to:

Proposition 1 For any nonstochasticδ > 0 and any positive integer n,

P[sup
b∈B

|Tn(b)| > 2δ] ≤
Γ

∑
i=1

P[|Tn(bi)| > δ]+
Γ

∑
i=1

P[sup
b∈Bi

|Tn(b)−Tn(bi)| > δ]. (3)

This is the basis for us to bound the probability of uniform large deviation. The first term involves
pointwise deviations and can be bounded by the inequality derived before. The second term can be
bounded whenTn(b) ‘often changes little’ in a small setBi . This can often achieved by assuming a
Lipshitz condition for the summandρ(ωt ,b) in argumentb (see, e.g., Newey, 1991).

In machine learning, however, we often encounter summandρ(ωt ,b) that is discontinuous in
b. For example, the classification error can be written asρ(ωt ,b) = |yt − I [x′tb > 0]|, which is
discontinuous inb, when a linear boundary (in predictorxt) is used to classify a{0,1} valued label
yt . (Hereωt = (yt ,xt).)

We will use a quite general framework that allows some continuous cases and some discon-
tinuous cases as well as some ‘mixed’ cases. Letρ(ωt ,b) be of the formρ(ωt ,b) = ft(b,At(b))
where ft(·, ·) is continuous in the first argument, but the second argumentAt(b) = I [g(ωt ,b) > 0]
for some fixed functiong that determines a decision boundary. The functionft depends ont through
observationωt . This framework can then include the following examples:

• (continuous)L1-loss:ρ = |yt −x′tb| (when ft(b, ·) is constant);

• (discontinuous) classification loss:ρ = |yt − I [x′tb > 0]| (when ft(·,At(b)) is constant);

• ‘mixed’ loss such asρ = (1−yt)α(x′tb)I [α(x′tb) > 0], which may result from a loan decision
of lending out amountα(x′tb) (according to a continuous parametric modelα) when 100yt%
of the loan is paid back.
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Under this framework we will bound the deviation supb∈Bi
|Tn(b)−Tn(bi)|. This is summarized

in the following Proposition, the proof of which is included in the Appendix.

Proposition 2 For each parameter b in a convex set Bi that contains bi , denote Tn(b) = R̂(b)−
ER̂(b), whereR̂(b) = n−1 ∑n

t=1 ρ(ωt ,b) and for each t,ωt is measurable -Ft (from an increasing
sequence ofσ-fields). Assume thatρ has the formρ(ωt ,b) = ft(b,At(b)) where At(b) = I [g(ωt ,b) >
0] for some fixed function g that determines a decision boundary.

Define Si as the ‘boundary set’ Si = ∪b∈Bi{ωt : g(ωt ,b) = 0}. Assume that:
(A1): g(ωt ,b) is continuous in b and measurable inωt ;
(A2): (Lipshitz condition)supa=0,1 | ft(b,a)− ft(b∗,a))| ≤ Nit |b−b∗|q for some q> 0, for any

b,b∗ ∈ Bi ;2

(A3): (Small boundary condition) The boundary set Si is measurable and n−1 ∑n
t=1EI(ωt ∈

Si) ≤ δ/(12C) for some constantsδ,C > 0.
Denoteλ = supb,b∗∈Bi

|b−b∗|q and Mit = | ft(bi ,1)− ft(bi ,0)|.
For any constantsδ,C > 0 and positive integers n,m, if (A3) holds, then we have:

P[sup
b∈Bi

|Tn(b)−Tn(bi)| > δ]

≤ (6λ/δ)n−1
n

∑
t=1

E(Nit +ENit )I [Nit +ENit > δ/(6λ)]

+(6/δ)n−1
n

∑
t=1

EMit I(Mit > C)

+2me−nδ2/(1152m2C2) +(12C/δ)n−1
n

∑
t=1

E|E(I(ωt ∈ Si)|Ft−m)−EI(ωt ∈ Si)|,

as long as the right hand side exists.

3.1 Remarks

6. In the ‘continuous case’,ft(b,a) is constant ina ∈ {0,1}. We can then drop the last three
terms in the above bound. This is becauseMit = 0 in this case and we can takeC → 0. In
the ‘discontinuous case’,ft(b,a) is constant inb and we can drop the first term in the above
bound, since the Lipshitz constantNit can be taken as 0. The result above holds also for the
more general ‘mixed case’ whenft(b,a) varies with bothb anda.

7. Assumption A2 can often be validated by bounding the partial derivativeof ft(b,a) on the first
argument. In a later example withL1 loss we will use a triangular inequality to validate this
assumption.

8. Assumption A3 is related toP(ωt ∈Si), the probability of an observation falling in the ‘boundary
set’ Si corresponding to a parameter setBi . WhenBi is small enough, we expect that the
‘boundary set’ will have small probability and A3 can be satisfied. The situation is clarified
whenωt = (yt ,xt), g(ωt ,b) depends onωt only through predictorxt , andxt = (wt ,v′t)

′ has a

2. For a vectorv with componentv j ’s, define theℓq norm as|v|q = (∑dim(v)
j=1 |v j |q)1/q for q ∈ (0,∞), and |v|∞ =

supdim(v)
j=1 |v j |. We will also formally denote|v|0 = ∑dim(v)

j=1 I [|v j | > 0].
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scalar componentwt and other componentsvt , so that the decision boundary[g(ωt ,b) = 0]
‘can be solved’ as[wt = w(vt ,b)] for some fixed functionw. In this case the boundary setSi =
{(wt ,vt) : wt = w(vt ,b),b∈Bi}= [infb∈Bi w(vt ,b)≤wt ≤ supb∈Bi

w(vt ,b)] if Bi is compact and
w(vt ,b) is continuous inb. Suppose we use theℓ∞ norm and defineλ = supb,b∗∈Bi

|b−b∗|∞.
Denoted0 = supb,b∗∈Bi

|b−b∗|0. Then in the Appendix we will show that

P(ωt ∈ Si) ≤ EVt
{sup

wt

p(wt |Vt) sup
b∈Bi

|∂bw(vt ,b)|∞}λd0. (4)

Here ∂bw(vt ,b) denotes a partial derivative ofw, Vt is someσ-field such thatvt is mea-
surable -Vt for eacht, and p(wt |Vt) denotes the conditional density. In the ‘linear case’3

assumingλ < 2, g(ωt ,b) = ±wt + v′tbv (so A1 is satisfied), we can takew(vt ,b) = ∓v′tbv

and supb∈Bi
|∂bw(vt ,b)|∞ = |vt |∞. If the conditional density is bounded above by constantc,

then (4) becomesP(ωt ∈ Si) ≤ cE|vt |∞λd0. The assumption A3 will be satisfied for choosing
λ ≤ δ/(12Ccsupt E|vt |∞d0), which restricts the size ofBi .

9. It is also noted that in this paper, we will consider ‘boundary sets’ of the ‘solvable’ form
Si = [infb∈Bi w(vt ,b) ≤ wt ≤ supb∈Bi

w(vt ,b)] which is assumed to be measurable. In our later
examples we will focus on ‘linear solvable type’ described above, with decision boundary
[wt = ∓v′tbv], andBi being a closedℓ∞ ball centered atbi and with radiush = λ/2 > 0. Then
Si = [∓v′t(bi)v−h|vt |1 ≤wt ≤∓v′t(bi)v+h|vt |1] which is indeed measurable. [More generally,
when supb∈Bi

w(vt ,b) and infb∈Bi w(vt ,b) are both continuous invt , Si is measurable.]

We will analyze the bound in Proposition 2 term by term in the later examples. Theterms
E(Nit +ENit )I [Nit +ENit > δ/(6λ)] andEMit I(Mit > C) are tail terms. We can choose sufficiently
smallλ and sufficiently largeC to make them small.

The dependence termE|E(I(ωt ∈ Si)|Ft−m)−EI(ωt ∈ Si)| will be small for largem whenωt

can be approximated by strong mixing sequences in some sense.
The exponential term 2me−nδ2/(1152m2C2) can be made small by choosingm andC to depend on

n in certain ways. We can allowδ to depend onn also, which will lead to convergence rates.

4. A Continuous Example

Considerρt = ρ(ωt ,b) = |Yt −b1Yt−1− ...−brYt−r | (whereωt = (Yt , ...,Yt−r) andb = (b1, ...,br)),
which represents predictingYt by r of its own lags under anL1 loss. We will allowr to increase with
n later to allow high dimensionality. We will bound the probability of a large uniform deviation
supb∈B |n−1 ∑n

t=1 ρt −n−1 ∑n
t=1Eρt | over anℓ∞ ball B = [|b|∞ ≤Cb] with a constant radiusCb > 0.

Suppose the true model forYt follows anMA(∞) modelYt = ∑∞
j=0 θ jZt− j , whereθ j ’s are fixed

coefficients with a finiteℓ1 norm|θ|1 = ∑∞
0 |θ j | < ∞, andZ j ’s are ‘innovations’, which are assumed

to be iid (independent and identically distributed) with zero mean and finite variance. Although we
have assumedYt to be centered to have mean zero and that there is no intercept term used in the L1

loss, this is only for convenience and similar results can be obtained without this assumption.
We will consider a case of exponentially decayingθ j ’s, but eachθ j can be nonzero:

3. In the ‘linear case’ the decision rule[g(ωt ,b) > 0] has the form[wtbw + v′tbv > 0]. We can always rescale the
coefficientsb= (bw,b′v)

′ by a scalar multiple. One such standardization used in Horowitz (1992) is such that|bw|= 1
or bw ∈ {−1,+1}. Note that for small enough setBi with λ = supb,b′∈Bi

|b−b′|∞ < 2, bw is constant inBi and takes
a common sign. We can pick either sign to proceed.
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Condition (B1):∑∞
j=k |θ j | < νk for all large enough k, for someν ∈ (0,1).

This is a situation whenYt can have a dependence structure that is not strong mixing, since it
involves the infinite past ofZt− j ’s (see, e.g., Davidson, 1994, Section 14.3). On the other hand, the
dependence term in Theorem 1 can be bounded byL1 approximation of strong mixing and we have
the following result (proved in Appendix, whereFt is theσ-field generated by{Zs}t

s=−∞ for each
t):

E|E(ρt |Ft−m)−Eρt | ≤ 2(r +1)(Cb +1)E|Z1|
∞

∑
j=k+1

|θ j | for any positive integerk < m− r. (5)

In order to bound the tail term in Theorem 1, we use, for some finite constantsu,Cu > 0,

E|ρt |I(|ρt | > C) ≤ (r +1)2(Cb +1)||Z1||2|θ|1Cue−uC(Cb+1)−1(r+1)−1/2, (6)

which is proved in the Appendix assuming an additional condition:
Condition (B2): For innovation Z1, the cumulant generating function K(u) = lnEeZ1u is continu-
ously differentiable at0. (E.g., Z1 can be a Gaussian innovation.)

Now we apply Proposition 2, where only the first term of the bound is relevant in this continuous
case due to Remark 6. The Lipshitz constantNit can be obtained from the triangular inequality
|ρ(ωt ,b)−ρ(ωt ,b∗)| ≤ |b1−b∗1||Yt−1|+ ...+ |br −b∗r ||Yt−r | ≤ (|Yt−1|+ ...+ |Yt−r |)|b−b∗|∞. So we
can takeNit = |Yt−1|+ ...+ |Yt−r | (usingℓ∞ norm). We have

E(Nit +ENit )I(Nit +ENit > δ/(6λ)) ≤ (2r2|θ|1||Z1||2)Cue−uψ/2, (7)

for some finite constantsu,Cu > 0, whereψ = δ/(6rλ)−E|Z1||θ|1, which is proved in the Appendix.
Now we apply (3), Theorem 1 and Proposition 2 and combine all terms together (using (5), (6)

and (7)) to obtain:
For any positive integersk < m− r, m, n, and positiveC, δ, we have

P[sup
b∈B

|n−1
n

∑
t=1

(ρn−Eρt)| > 2δ]

≤ Γ2me−nδ2/(288m2C2)

+Γ(6/δ)2(r +1)(Cb +1)E|Z1|
∞

∑
j=k+1

|θ j |

+Γ(15/δ)(r +1)2(Cb +1)||Z1||2|θ|1Cue−uC(Cb+1)−1(r+1)−1/2

+Γ(6λ/δ)(2r2|θ|1||Z1||2)Cue−u(δ/(6rλ)−E|Z1||θ|1)/2. (8)

HereB = [|b|∞ ≤ Cb] = [−Cb,Cb]
r for some constant radiusCb > 0. We will consider a high

dimensional case where the number of lags can increase with sample sizen:
Condition (B3): r= O((lnn)M) for some power M> 0.

Note that we can takeB1, ...,BΓ to beΓ closedℓ∞ balls of radiusλ/2 to coverB, whereΓ ≤
(2Cb/λ+1)r .

We will let δ = n−0.5+γ1/2 for some smallγ1 > 0, m= C = ⌈nγ1/4⌉, λ = n−1, k = m−2r. Then
under conditions (B1) to (B3), lnΓ = O((lnn)M1) for someM1 > 0 and all four terms in the above
inequality (8) areO(e−c1nc2) for somec1,c2 > 0 dependent onγ1. Therefore we have:
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Proposition 3 Under Conditions (B1) to (B3), for any smallγ1 > 0,

P[sup
b∈B

|n−1
n

∑
t=1

(ρt −Eρt)| > n−0.5+γ1] = O(e−c1nc2
).

The rate of uniform convergence remains nearly ‘parametric’OP(n−0.5) in this case, despite the
high dimensionality of setB.

5. A Discontinuous Example

Let ωt = (yt ,xt), whereyt is a real-valued response att andxt = (1,yt−1, ...,yt−r ,z′t)
′ is a vector of

predictors that can includer lags ofy as well as a vector of exogenous variablezt . Suppose we are
interested in predicting the sign ofyt by using a discontinuous lossρt = |I(yt > 0)− I(x′tb > 0)|.
We will bound the probability of a large uniform deviation supb∈B |n−1 ∑n

t=1(ρt −Eρt)| over a set of

‘variable selection’B = [|b|0 ≤ v, |b|∞ ≤ Cb, |br+2| = 1], where|b|0 ≡ ∑dim(b)
j=1 I |b j | > 0] counts the

number of selectedx-components,|b|∞ ≤Cb bounds the parameter space, and|br+2| = 1 is due to a
standardization for the coefficient of the first component ofzt (see Footnote 2). Later we will allow
v (maximal number of selected variables),r (number of lags allowed) andK ≡ dim(zt) to increase
with n in certain ways for high dimensional variable selection.

The true model ofyt is assumed to be anMA(∞) transform of a strong mixing process:yt =

∑∞
j=0 θ j f j(zt− j ,εt− j), where f j is some fixed measurable function for eachj so that

supt, j || f j(zt ,εt)||1 < ∞, andεt is a stochastic sequence independent ofzt called the ‘innovation’.
We assume that:
Condition (C1):{zt ,εt} is strong mixing with mixing coefficientαm decreasing exponentially fast in
m.
Condition (C2):∑∞

j=k+1 |θ j | decreases exponentially fast in k.
Note thatyt itself may no longer be strong mixing due to its dependence on the infinite past.

These assumptions are satisfied in many situations. For example, in an ARX model yt = ϕyt−1 +
z′tβ+εt (|ϕ|< 1), anMA(∞) representation givesyt = ∑∞

j=0 ϕ j(z′t− jβ+εt− j). Here,εt does not have
to be iid; it can be an ‘exponential’ strong (orβ-) mixing process such as a GARCH process (see,
e.g., Francq and Zakoı̈an, 2006) whenyt follows an ARX-GARCH model.

In the Appendix, we show that under some additional conditions (C3 and C4) on the underlying
process{zt ,εt}, we have, for any positive integerk < m− r,

E|E(ρt |Ft−m)−Eρt | ≤ 6αm−r−k +8(
√

2My +
√

2MxrCb)
√

sup
t,l

|| fl (zt ,εt)||1 ∑
j>k

|θ j |. (9)

HereMx,My are constants appearing in these additional conditions:
Condition (C3): yt follows a model of the form yt = Ft + εt where Ft depends on the history
({zs}t

∞,{εs}t−1
−∞}) andεt is an innovation that has a conditional density p(εt |{zs}t

∞,{εs}t−1
−∞}) bounded

above by a constant My (which is satisfied, for example, by N(0,σ2) innovations).
Condition (C4): The conditional density p(zt,1|zt,2, ...,zt,K,{zs,εs}t−1

−∞ ) is bounded above by a con-
stant Mx.

We can coverB by Γ setsBi ⊂ B, i = 1, ...,Γ, with eachBi being a closedℓ∞ ball centered
at somebi , with radiush = λ/2 > 0, and with dimension at mostv−1. This is explained in the
Appendix, where we also show that we can take

Γ ≤ 2v(K + r)v−1(2Cb/λ+1)v−1 (10)
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as an upperbound obtained from a combinatorial argument. Now we try to apply Proposition 2.
Assumption (A1) is obviously satisfied sinceg(ωt ,b) = x′tb. We will show that assumption (A3)

holds for all largen in the Appendix, with an additional condition (C5) and with suitable choices of
δ, λ (theℓ∞ diameter ofBi), r (the number of lags) andv (the maximal number of selected variables)
to be specified later. This additional condition is:
Condition (C5): The exogenous variables are bounded above by a finiteconstant:|zt |∞ ≤Cz.

Assumption (A2) is satisfied withNit = 0 due to this ‘discrete’ situation (see Remark 6). So
the first term of the bound in Proposition 2 is zero. We can takeMit = ||I(yt > 0)− 1| − |I(yt >
0)−0|| = 1 andC = 1 so the second term of the bound is zero also.

In the Appendix we evaluate the last term which is determined byE|E(I(ωt ∈ Si)|Ft−m)−
EI(ωt ∈ Si)|. Assuming (C4), we have, for any positive integerk < m− r,

E|E(I(ωt ∈ Si)|Ft−m)−EI(ωt ∈ Si)| ≤ 6αm−r−k+4
√

r ∑
j>k

|θ j |sup
t,l

|| fl (zt ,εt)||1(2Mx2(1+Cb +h)).

(11)
Now combine the applications of (3), Theorem 1 (withC = 1, or just use Lemma 1), and Propo-

sition 2, apply Equations (9) and (11) and we obtain:
For any positive integersk < m− r, m, n, and positiveδ,

P[∑
b∈B

|n−1
n

∑
t=1

(ρt −Eρt)| > 2δ]

≤ Γ2me−nδ2/(32m2)

+Γ(2/δ)

{

6αm−r−k +8(
√

2My +
√

2MxrCb)
√

sup
t,l

|| fl (zt ,εt)||1 ∑
j>k

|θ j |
}

+Γ2me−nδ2/(1152m2)

+Γ(12/δ)

{

6αm−r−k +4
√

r ∑
j>k

|θ j |sup
t,l

|| fl (zt ,εt)||1(2Mx2(1+Cb +λ/2))

}

. (12)

Now choose parameters to make the bound small. Note that we can takeΓ ≤ 2v(K + r)v−1(2Cb/λ+
1)v−1. We have assumed exponential decay forαk and∑ j>k |θ j | in k.

LetCb > 0 be a constant inn. Assume the following condition on the various dimension param-
eters:
Condition (C6): The number of lags r= O((lnn)M1) for some power M1 > 0; the number of ex-
ogenous variables K= O(nM2) for some power M2 > 0, which can form a very-high dimensional
candidate predictor, with dimension possibly large than sample size n; the number of selected vari-
ables v= O((lnn)M3) for some power M3 > 0 .

We will let δ = n−0.5+γ1/2 for some smallγ1 > 0, m= ⌈nγ1/4⌉, λ = n−1, k = ⌈(m− r)/2⌉. Then
lnΓ = O((lnn)M4) for someM4 > 0 and all four terms in the above inequality (12) areO(e−c1nc2)
(for somec1,c2 > 0 dependent onγ1), when Conditions (C1) to (C6) are assumed. Therefore we
have:

Proposition 4 Under conditions (C1) to (C6), for any smallγ1 > 0,

P[sup
b∈B

|n−1
n

∑
t=1

(ρn−Eρt)| > n−0.5+γ1] = O(e−c1nc2
).
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The rate of uniform convergence remains nearly ‘parametric’OP(n−0.5) in this case, despite the
high dimensionality of setB.

6. Discussion

This paper presents a very general inequality that generalizes Hoeffding’s inequality to dependent
and unbounded summands. The inequality may not be very tight, but it involves few assumptions
and can be very useful in deriving convergence rates of pointwise and uniform deviations in a
number of situations that cannot be dealt with before. We gave two exampleshere, one withL1 loss
and another on sign classification. There are other examples that may be worked out (e.g., withL2

loss or with log-likelihood) which are not considered here. We hope that the current work can serve
as a probablistic foundation to the theory of empirical risk minimization for many situations with
dependent data and unbounded loss.

The current results involve a high dimensional parameterb; near-parametric convergence rates
are obtained in examples with exponentially small ‘unboundedness’ (characterized by existence
of some moment generating function) and with certain kinds of exponentially decaying temporal
dependence. We expect that slower convergence rates may be obtained with more severe ‘unbound-
edness’, or with a slower decay of temporal dependence, using the sametechniques.

Although the number of selected variables is restricted toO((logn)M), we can allow these vari-
ables to be selected from a much higher number of candidate regressors of dimension up tonM for
any finite positiveM, and still maintain a near-parametric convergence rate. This is demonstrated
in Section 5 and is also true if we add in regressors and make an ARX model forSection 4. (In fact
it is also possible to allow a higher number of selected variables such asna for somea∈ (0,1), but
this will correspond to a slower convergence rate.)

It is noted that there exists much previous work in addressing the problems considered in this
paper, in addition to the related work mentioned in the Introduction (we thank thereviewers for
bringing our attention to these additional references). In the direction of unbounded loss, Meir and
Zhang (2003) consider uniform deviations for iid data using a bound of the Rademaker complexity.
Various ratios of empirical processes can also be used to handle unboundedness (see, e.g., Haussler,
1992; Pollard, 1995; Bartlett and Lugosi, 1999; Bercu, Gassiat and Rio, 2002). Bercu, Gassiat and
Rio (2002) present a ratio-type result that can relax the assumption on the‘unboundedness’ while
proving exponential concentration for iid data. In the direction of dependence, McDiarmid (1998,
e.g., Theorem 3.8) uses the method of bounded differences and includesa term related to a ‘bad set’
of events involving a large variance. Uniform inequalities have also been obtained for martingales
(see, e.g., van de Geer, 2000, Theorem 8.13). In the direction of high dimensionality, typical uni-
form deviation results deal with infinite-dimensional function space (see, e.g, good summaries in
Bousquet, Boucheron, and Lugosi, 2003 and van de Geer, 2000).

In comparison, our method addresses the three aspects (unboundedness, dependence, high di-
mensionality) simultaneously with a relative simple approach. While the additional references can
sometimes handle one aspect better, they typically do not address the other aspects in the same time.
For example, McDiarmid (1998, e.g., Theorem 3.8) can potentially handle datathat are dependent
‘in multi-dimensions’ (such as random graph or spatial dependence), while our method only ad-
dresses ‘one-dimensional’ dependence (i.e., a time series). On the other hand, McDiarmid’s method
also requires bounded differences which would require some kind of boundedness (e.g., bounded
summands in the case of an iid average) while we do not need this assumption. In addition, we
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note that the ‘bad set’ term bounding the probability of a large variance will often require applying
a large deviation inequality again, while our triplex inequality is one in closed form.

Many of these additional references do not treat dependence to the same degree of generality as
the current paper. For example, traditional treatments with symmetrization and Rademaker average
such as Meir and Zhang (2003) are suitable only for iid data. Ratio-type results such as Bercu,
Gassiat, Rio (2002) can relax the assumption on the ‘unboundedness’ while proving exponential
concentration for iid data, but it is not clear how this can be extended to general dependent sit-
uations. The chaining technique described in, for example, van de Geer (2000, Section 3.2) and
Bousquet, Boucheron and Lugosi (2003, Section 5) may be used to improve the convergence rate
by a logn factor in the finite dimensional case. However, most applications of this technique are for
independent data or martingales. Our dependence term, on the other hand, is put in the framework
of mixingale, which is more general than martingales as discussed in Remark 4.

Typical uniform deviation results deal with infinite-dimensional function spaces. Our formula-
tion is for a somewhat less general situation where the functions are parameterized, and we formu-
lated uniform convergence on a high dimensional parameter space. Although it may be possible to
formulate uniform convergence on function spaces directly for dependent data (see, e.g., Yu, 1994
for beta-mixing and Vidyasagar, 2005 for alpha-mixing), we choose the parametric covering frame-
work which is less abstract and easier to understand, and demonstrates the convergence rates more
clearly. The result of such a formulation is that a reader with an elementary background on proba-
bility and real analysis can follow the development easily, and arrive at such advanced results as the
convergence rates with high dimensional variable selection. Although the formulation is deliber-
ately elementary, the results are powerful enough to handle such complicated dependent situations
as the sign prediction for an ARX process with GARCH error in Section 5.
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Appendix A.

Proof of Proposition 2 Note that for anyb ∈ Bi , |Tn(b)− Tn(bi)| = |n−1 ∑n
t=1{ ft(b,At(b))−

ft(bi ,At(bi))}−n−1∑n
t=1E{ ft(b,At(b))− ft(bi ,At(bi))}|. We therefore investigate the differences

of the form ft(b,At(b)) − ft(bi ,At(bi)) = { ft(b,At(b)) − ft(bi ,At(b))} + { ft(bi ,At(b))−
ft(bi ,At(bi))}.

Note that| ft(bi ,At(b))− ft(bi ,At(bi))| = Mit |At(b)−At(bi)| whereMit = | ft(bi ,1)− ft(bi ,0)|,
and | ft(b,At(b)) − ft(bi ,At(b))| ≤ supb,b∗∈Bi

supa=0,1 | ft(b,a) − ft(b∗,a))| ≤ Nit λ, where
λ ≡ supb,b∗∈Bi

|b−b∗|q, if we assume a Lipshitz condition supa=0,1 | ft(b,a)− ft(b∗,a))| ≤ Nit |b−
b∗|q under anℓq-norm for someq > 0.

We then combine the statements before and apply the triangular inequalities to obtain
|Tn(b) − Tn(bi)| ≤ n−1 ∑n

t=1Nit λ + n−1 ∑n
t=1Mit |At(b) − At(bi)| + n−1 ∑n

t=1ENit λ
+n−1 ∑n

t=1EMit |At(b)−At(bi)|.
Now note that|At(b)− At(bi)| ≤ I(ωt ∈ Si) where Si is the ‘boundary setSi = ∪b∈Bi{ωt :

g(ωt ,b) = 0}. This is true when we assume thatg(ωt ,b) is continuous inb and Bi is convex.
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[The difference|At(b)−At(bi)| is {0,1} valued and takes value 1 only when only one ofg(ωt ,b)
andg(ωt ,bi) is positive. This would implyg(ωt ,b∗) = 0 at some intermediate pointb∗ on the line
segment betweenb andbi , which must fall inBi due to its convexity. A similar technique is used in
Jiang and Tanner (2007) for a binary choice model withg(ωt ,b) linear inb.]

The above statements hold for anyb∈ Bi . Therefore

sup
b∈Bi

|Tn(b)−Tn(bi)|

≤ n−1
n

∑
t=1

Nit λ+n−1
n

∑
t=1

Mit I(ωt ∈ Si)+n−1
n

∑
t=1

ENit λ+n−1
n

∑
t=1

EMit I(ωt ∈ Si)

≤ n−1
n

∑
t=1

(Nit +ENit )λ+n−1
n

∑
t=1

CI(ωt ∈ Si)+n−1
n

∑
t=1

CEI(ωt ∈ Si)

+n−1
n

∑
t=1

{Mit I(Mit > C)+EMit I(Mit > C)},

by noting thatMit I(ωt ∈ Si) ≤CI(ωt ∈ Si)+Mit I(Mit > C) for any constantC > 0.
Then

P[sup
b∈Bi

|Tn(b)−Tn(bi)| > δ]

≤ P[n−1
n

∑
t=1

(Nit +ENit )λ > δ/3]

+P[n−1
n

∑
t=1

CI(ωt ∈ Si)+n−1
n

∑
t=1

CEI(ωt ∈ Si) > δ/3]

+P[n−1
n

∑
t=1

{Mit I(Mit > C)+EMit I(Mit > C)} > δ/3]

≤ P[n−1
n

∑
t=1

(Nit +ENit )λ > δ/3]

+(6/δ)n−1
n

∑
t=1

EMit I(Mit > C)

+P[n−1
n

∑
t=1

{I(ωt ∈ Si)−EI(ωt ∈ Si)} > δ/(3C)−2n−1
n

∑
t=1

EI(ωt ∈ Si)]

≤ (6λ/δ)n−1
n

∑
t=1

E(Nit +ENit )I [Nit +ENit > δ/(6λ)]

+(6/δ)n−1
n

∑
t=1

EMit I(Mit > C)

+P[n−1
n

∑
t=1

{CI(ωt ∈ Si)−CEI(ωt ∈ Si)} > δ/6],

where in the last step we assume thatn−1 ∑n
t=1EI(ωt ∈Si)≤ δ/(12C) and have usedP[n−1 ∑n

t=1Xt >
2Q] ≤ Q−1n−1 ∑n

t=1EXt I [Xt > Q] for nonnegativeX = Nit +ENit and constantQ = δ/(6λ). [Note
thatn−1 ∑n

t=1Xt = n−1 ∑n
t=1Xt I [Xt > Q]+n−1 ∑n

t=1Xt I [Xt ≤ Q] ≤ Q+n−1 ∑n
t=1Xt I [Xt > Q] and use

Markov inequality.]
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Now apply the pointwise inequality (1) on the last term and we obtain Proposition2. Q.E.D.

Proof of Equation (4) in Remark 8

P(ωt ∈ Si) = P[wt ∈ [ inf
b∈Bi

w(vt ,b), sup
b∈Bi

w(vt ,b)]]

≤ EVt
sup
wt

p(wt |Vt)| sup
b∈Bi

w(vt ,b)− inf
b∈Bi

w(vt ,b)|

≤ EVt
sup
wt

p(wt |Vt) sup
b,b∗∈Bi

|w(vt ,b)−w(vt ,b
∗)|

≤ EVt
{sup

wt

p(wt |Vt) sup
b∈Bi

|∂bw(vt ,b)|∞} sup
b,b∗∈Bi

|b−b∗|∞ sup
b,b∗∈Bi

|b−b∗|0

= EVt
{sup

wt

p(wt |Vt) sup
b∈Bi

|∂bw(vt ,b)|∞}λd0.

Q.E.D.

Proof of Equation (5) DefineYt,k = ∑k
j=0 θ jZt− j andρt,k = |Yt,k−b1Yt−1,k− ...−brYt−r,k|, which

are strong mixing due to dependence on finite number of lags. We then have the L1 approximation
error E|ρt − ρt,k| ≤ (Cb + 1)E(|Yt −Yt,k|+ ...+ |Yt−r −Yt−r,k|) ≤ (r + 1)(Cb + 1)E|Z1|∑∞

j=k+1 |θ j |.
Then the technique in Section 2.2 implies thatE|E(ρt |Ft−m)−Eρt | ≤6supt,k ||ρt,k||2αm−k−r({Zt})1/2

+2(r +1)(Cb +1)E|Z1|∑∞
j=k+1 |θ j |.

Note thatαm−k−r({Zt}) = 0 for m> k+ r, We have (5). Q.E.D.

Proof of Equation (6) We note that|ρt | ≤ (Cb +1)(|Yt |+ ...+ |Yt−r |) and thereforeE|ρt |I(|ρt | >
C) ≤ (Cb + 1)E(|Yt | + ... + |Yt−r |)∑r

s=0 I(|Yt−s| > C(Cb + 1)−1(r + 1)−1) ≤
(1+ r)2(Cb+1)supt,sE|Yt |I(|Ys|> C(Cb+1)−1(r +1)−1). Note that forη = C(Cb+1)−1(r +1)−1,
we have

E|Yt |I(|Ys| > η)

≤ ||Yt ||2||I(|Ys| > η)||2

≤ (
∞

∑
j=0

|θ j |||Zt− j ||2)
√

(Eeu|Ys|)e−uη

= ||Z1||2|θ|1
√

(Eeu|Y1|)e−uη/2

≤ ||Z1||2|θ|1Cue−uη/2

for some positiveu andCu such thatEeu|Ys| ≤ C2
u < ∞. This is achieved for some small enoughu

since

Ee±uYs = exp{
∞

∑
j=0

lnEe±uθ j Z1} = exp{
∞

∑
j=0

K(±uθ j)}

≤ exp{
∞

∑
j=0

sup
|v|≤u|θ|1

|K′(v)||uθ j |} ≤ exp{ sup
|v|≤u|θ|1

|K′(v)|u|θ|1}.
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Then

Eeu|Ys| ≤ EeuYs +Ee−uYs ≤ 2exp{ sup
|v|≤u|θ|1

|K′(v)|u|θ|1} ≡C2
u < ∞

for some small enoughu, due to continuous differentiability ofK(·) at 0, which is assumed in Con-
dition (B2). These lead to (6). Q.E.D.

Proof of Equation (7) Note thatENit = rE|Y1| ≤ rE|Z1||θ|1, and

E(Nit +ENit )I(Nit +ENit > δ/(6λ))

≤ E(|Yt−1|+ ...+ |Yt−r |+ rE|Y1|)I(|Yt−1|+ ...+ |Yt−r | > δ/(6λ)− rE|Z1||θ|1)

≤ E(|Yt−1|+ ...+ |Yt−r |+ rE|Y1|)
r

∑
s=1

I(|Yt−s| > δ/(6rλ)−E|Z1||θ|1)

≤ |||Yt−1|+ ...+ |Yt−r |+ rE|Y1|||2||
r

∑
s=1

I(|Yt−s| > δ/(6rλ)−E|Z1||θ|1)||2

≤ (2r||Y1||2)r
√

Eeu|Y1|e−uψ/2

≤ (2r2|θ|1||Z1||2)Cue−uψ/2

for some small enoughu> 0, whereψ = δ/(6rλ)−E|Z1||θ|1, andCu is defined in Proof of Equation
(6). Q.E.D.

Proof of Equation (9) We notice the process(yt ,xt) can be approximated by strong mixing pro-
cesses. This is because if we defineyt,k = ∑k

j=0 θ j f j(zt− j ,εt− j), andxt,k = (1,yt−1,k, ...,yt−r,k,z′t)
′

then||yt −yt,k||1≤∑ j>k |θ j |supt,l || fl (zt ,εt)||1 and||xt −xt,k||1≡E|xt −xt,k|1 = ∑t−r
s=t−1 ||ys−ys,k||1≤

r ∑ j>k |θ j |supt,l || fl (zt ,εt)||1, both of which will decrease exponentially fast withk. On the other
hand, (yt,k,xt,k) is a measurable transform of(zt , ...,zt−r−k,εt , ...,εt−r−k) and is therefore strong
mixing with mixing coefficientαm−r−k for m> r +k.

Now defineρt,k = |I(yt,k > 0) − I(x′t,kb > 0)|. The technique in Section 2.2 implies that
E|E(ρt |Ft−m)−Eρt | ≤ E|E(ρt,k|Ft−m)−Eρt,k|+2E|ρt −ρt,k| whereFt represents theσ-field gen-
erated by(zs,εs)

t
−∞. The first term is bounded by 6αm−r−k by using Theorem 14.2, Davidson (1994).

Applying the triangular inequalities, the second term is at most 2||I(yt > 0)− I(yt,k > 0)||1 +
2||I(x′tb > 0)− I(x′t,kb > 0)||1. We will assume that (†)P[|yt | ≤ ∆] ≤ My(2∆) for any small∆ > 0,
for some constantMy < ∞. This is true under Condition (C3).

We will also assume that (‡)P[|x′tb| ≤ ∆] ≤ Mx(2∆) for any small∆ > 0, for some constant
Mx < ∞. Notice thatx′tb is of the form “±zt,1+ a linear combination of yt−1, ...,yt−r ,zt,2, ...,zt,K”
due to the standardization of the coefficient ofzt,1. Then it is obvious that (‡) holds under Condition
(C4).

Now notice that for two random variablesW andW∗,

||I(W > 0)− I(W∗ > 0)||1 ≤ 4
√

2M
√

||W−W∗||1, (13)

if P(|W| ≤ ∆) ≤ M(2∆) for ∆ =
√

||W−W∗||1/
√

2M. This is proved by noting

EI(W > 0,W∗ ≤ 0)
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≤ EI(W > 0,W∗ ≤ 0, |W−W∗| ≤ ∆)+EI(|W−W∗| > ∆)

≤ P[|W| ≤ ∆]+E|W−W∗|/∆
≤ M(2∆)+E|W−W∗|/∆
= 2

√
2M

√

||W−W∗||1.

Similarly EI(W∗ > 0,W ≤ 0) ≤ 2
√

2M
√

||W−W∗||1. Now ||I(W > 0)− I(W∗ > 0)||1 = EI(W >
0,W∗ ≤ 0)+EI(W∗ > 0,W ≤ 0) leads to (13).

Now apply (13) and we obtain

2||I(yt > 0)− I(yt,k > 0)||1 +2||I(x′tb > 0)− I(x′t,kb > 0)||1
≤ 8

√

2My

√

||yt −yt,k||1 +8
√

2Mx

√

||x′tb−x′t,kb||1

≤ 8
√

2My

√

||yt −yt,k||1 +8
√

2Mx|b|∞
√

||xt −xt,k||1

≤ 8
√

2My

√

∑
j>k

|θ j |sup
t,l

|| fl (zt ,εt)||1 +8
√

2MxCb

√

r ∑
j>k

|θ j |sup
t,l

|| fl (zt ,εt)||1,

and therefore we have (9). Q.E.D.

Proof of Equation (10) Note that theB = B+ ∪B− whereB± = {b ∈ B : br+1 = ±1} repre-
sents the two halfs ofB with br+1 = ±1, respectively. Note thatB± can be written as a union
B± =∪γB±(γ), whereγ represents the subset of ‘selected indices’ in addition tor +2, and the union
is taken over all subsetsγ of {1, ...,K + r + 1}\{r + 2} with card(γ) ≤ v−1. HereB±(γ) = {b ∈
ℜK+r+1 : br+2 = ±1, |b j | ≤Cb,∀ j ∈ γ; |b j | = 0,∀ j 6∈ γ∪{r +2}}. EachB±(γ) can be covered by at
most(2Cb/λ+1)card(γ) setsBi ’s of the formBi = {b∈ ℜK+r+1 : br+2 =±1, |b j − (bi) j | ≤ λ/2,∀ j ∈
γ; |b j − (bi) j |= 0,∀ j 6∈ γ∪{r +2}} for somebi ∈ B±(γ), where card(γ)≤ v−1. So a combinatorial
argument leads to upperbound (10). Q.E.D.

Proof of Assumption (A3) for the example in Section 5 Assume Condition (C5), so that|zt |∞ ≤
Cz < ∞.

We can apply the arguments in Remark 8 by identifyingwt = zt,1, vt = (1,yt−1, ...,yt−r ,zt,2, ...,
zt,K)′. Note thatd0 ≤ v and we can chooseVt as theσ-field generated by{zs,εs}t−1

−∞ andzt,2, ...,zt,K.
Then A3 is satisfied if (C4) holds [the conditional densityp(wt |Vt) is bounded above byc (=Mx)]
and if

λ ≤ δ/(12vCc(1+Cz+ r|θ|1sup
t,l

|| fl (zt ,εt)||1)), (14)

which would then be≤ δ/(12vCc(1+Cz+ r supt ||yt ||1)) ≤ δ/(12d0Ccsupt E|vt |∞). This inequality
(14) is satisfied for all largen, when we takeδ = n−0.5+γ1/2 for anyγ1 > 0, andλ = n−1 (the ℓ∞-
diameter ofBi), and assume that the number of lagsr and the maximal number of selected variables
v follow condition (C6). Q.E.D.

Proof of Equation (11) Similar to the approximation argument used before in Proof of Equation
(9), we defineωt,k = (yt,k,xt,k) and obtainE|E(I(ωt ∈ Si)|Ft−m)−EI(ωt ∈ Si)| ≤ E|E(I(ωt,k ∈
Si)|Ft−m)−EI(ωt,k ∈ Si)|+2E|I(ωt ∈ Si)− I(ωt,k ∈ Si)|, where the first term is bounded above by
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6αm−r−k for m> r +k, due to a treatment similar to the one used in Proof of Equation (9). Now we
try to boundE|I(ωt ∈ Si)− I(ωt,k ∈ Si)| ≡ ED in the second term, whereSi ≡ ∪b∈Bi [x

′
tb = 0] will

be computed below.
For our vectorxt = (1,yt−1, ...,yt−r ,zt,1,zt,2, ...,zt,K)′, we here identifywt = zt,1 = (xt)r+2, and

vt = (1,yt−1, ...,yt−r ,zt,2, ...,zt,K)′ including all{(xt) j} j 6=r+2, for applying Remarks 8 and 9. Note
that according to Remark 9,Si = [w−(vt) ≤ wt ≤ w+(vt)] wherew±(vt) = v′t(bi)v ± h|vt |1. [We
have picked a signbr+2 = −1 to proceed. The other sign is similar. To be more precise, here
|vt |1 = ∑ j∈γ |(xt) j | whereγ is a subset of ‘selected indices’ in addition tor + 2, whenBi is as
described in Proof of Equation (10).]

Now D ≡ |I(ωt ∈ Si)− I(ωt,k ∈ Si)| = 1 implies that only one of the two points{xt ,xt,k} =
{(v′t ,wt)

′, (v′t,k,wt,k)
′} can lie inSi , so there must be an intermediate point lying on a boundary of

Si , either on the upper boundary and denoted asx+ = ((v+)′,w+(v+))′, or on the lower boundary
and denoted asx− = ((v−)′,w−(v−))′. [Here we have re-ordered the components of the vectors.
For examples, for vectorxt , its component(xt)r+2 = wt is now placed behind other components
(denoted asvt).]

If in addition, we also have a small distance|xt −xt,k|1 ≤ η, then one of the following two events
must happen (with± option depending on whether the intermediate point falls on the upper or lower
boundary ofSi):

|wt −w±(vt)|
≤ |wt −w±(v±)|+ |w±(v±)−w±(vt)|
≤ |wt −w±(v±)|+(Cb +h)|vt −v±|1
≤ |(1+Cb +h)|xt −x±|1
≤ (1+Cb +h)|xt −xt,k|1 ≤ (1+Cb +h)η.

Now we can bound

ED≤ P[D = 1, |xt −xt,k|1 ≤ η]+P[|xt −xt,k|1 > η]

≤ P[∪|wt −w±(vt)| ≤ (1+Cb +h)η]+P[|xt −xt,k|1 > η]

(a)

≤ 2c2(1+Cb +h)η+E|xt −xt,k|1/η
≤ 2c2(1+Cb +h)η+ r ∑

j>k

|θ j |sup
t,l

|| fl (zt ,εt)||1/η.

Now takeη =
√

r ∑ j>k |θ j |supt,l || fl (zt ,εt)||1/(2c2(1+Cb +h)) and obtain

ED≤ 2
√

r ∑
j>k

|θ j |sup
t,l

|| fl (zt ,εt)||1(2c2(1+Cb +h)).

As in the previous Proof of Assumption (A3), we identifyc = Mx. We have assumed Condition
(C4) for the inequality(a) above. Therefore we have (11). Q.E.D.
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