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Abstract

The statistical learning theory of risk minimization degeiineavily on probability bounds for uni-
form deviations of the empirical risks. Classical probiépibounds using Hoeffding'’s inequality
cannot accommodate more general situations with unbouondeénd dependent data. The current
paper introduces an inequality that extends Hoeffdinggsg|irality to handle these more general sit-
uations. We will apply this inequality to provide probatyilbounds for uniform deviations in a very
general framework, which can involve discrete decisioesulnbounded loss, and a dependence
structure that can be more general than either martingad&ramg mixing. We will consider two
examples with high dimensional predictors: autoregres§ikR) with ¢1-loss, and ARX model
with variable selection for sign classification, which ugegh lagged responses and exogenous
predictors.
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1. Introduction

In machine learning, a problem of central importance is to bound a probatfilityiform deviation
Plsupeg N S, p(wx,b) —n~1s  Ep(wx,b)| > 8], whered > 0 is a positive deviation (which
can be allowed to depend orand characterize a convergence raba$, a parameter in a parameter
spaceB (which is typically a Borel measurable subset of an Euclidean space)wy, ..., wy,) form
the data set of random observationg(-,-) is a loss function (measurable to a certain product
o-field), R(b) = n~1 57, p(wx,b) is an empirical risk, an®(b) = n~1 5", Ep(wy, b) is its expec-
tation?

Such a probability is of interest since it is well known to bound the perfocmﬁ&(lf)) of an
empirical risk minimizeb = argmin,cg R(b), relative to the optimal performance jng R(b) over
B:

P[R(b) — inf R(b) > 23] < P[sup|R(b) — R(b)| > &,
beB beB

due to, for example, Lemma 8.2 (Devroye, @fy and Lugosi, 1996). Recently, Jiang and Tanner
(2007, 2008) indicate that the probability of uniform deviation is also otreéimmportance in

1. In this paper, we will not be concerned about the measurability probhat may be involved in quantities such
as sup.g |R(b) — R(b)|. Works on ‘universal measurability’ described in, for example, Y894, Appendix) and
Davidson (1994, Section 21.1) imply that this is not a problem for all an®les later wherB is a Borel measurable
subset of a compact metric space. Alternatively we could conBidsrthe ‘outer probability’ as in Newey (1991).
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studying the performance of a Bayesian approach of empirical risk minimizesiosidered in, for
example, Zhang (2006), whemnis generated randomly according to a Gibbs postetigy(db) [

e "WRO) 1y, (db) wherem,(db) is a prior distribution orB andy—! > 0 is a ‘temperature parameter’.
This includes the usual Bayesian posterior as a special case ket and when—nR is the
log-likelihood function. A straightforward application of Jiang and Tan{2808, Proposition 6)
renders

P[R(b) — inf R(b) > 53] < P[sup|R(b) — R(b)| > 8] + e 2% /m,[R(b) — inf R(b) < &,
beB beB beB

whenb|D ~ 1,p andD is generated from a true distribution. This again shows the dependence of
the risk performance on the probability of uniform deviation.

The probability of uniform deviation is treated in the standard machine learexbguch as De-
vroye, Gyorfi and Lugosi (1996) by the Vapnik-Chervonenkis theory using effding’s inequality
on the probability of pointwise deviatid®{|n~1y_; p(ox,b) —n~157 , Ep(ox,b)| > 8], which typ-
ically assumes thaty’s are iid (independent and identically distributed), and that the loss fungtio
is bounded. The goal of this paper is to generalize in several direcsortisatp can be unbounded
anduy’s can be dependent. In addition, we will allimto have a possibly high dimension that can
increase witm in certain ways. Whep has sufficiently thin tail in the distribution and whex's
have certain kind of decaying dependence ayere derive bounds of the form

n n
Plsupin~t le(oot, b)—n~t ZlEp((q, b)| > n~0%1) = O(e~ "),
beB t= t=

for any small positivey;, wherecy, ¢, are some positive constants depending/onSuch a result
indicates uniform convergence of the empirical risk at a near ‘pararhettéc(close toOp(n~°9°))
despite high dimensionality in, dependence inx, and unbounded loss functign

Such results are obtained using a very general ‘pointwise’ inequalitygtvadralizes Hoeffd-
ing’s inequality, which will be introduced in Section 2. This allows unbourided and a framework
of dependence that is more general than strong mixing, which is therafme general than pre-
vious works using strong mixing (e.g., Vidyasagar, 2005; Zou and Li7p0® 3-mixing (e.g.,
Yu, 1994; Lozano, Kulkarni and Schapire, 2006). The ‘uniformpeas’ is then treated in a very
general framework in Section 3 allowing both continuity and discontinuity iof b. Examples of
applications of this general framework are given in Sections 4 and 5.

2. An Inequality

We first introduce an inequality that is more general than Hoeffding'sualiy (Hoeffding, 1963).
This inequality may be called a ‘triplex inequality’ since its right hand side hasetparts. In
addition to a term that is of an exponential form as in the Hoeffding’s indguid also includes a
term to gauge the dependence, and a term to control the unboundefithessndom variables. The
resultis therefore almost assumption free and generally applicable sindbassume independence
or boundedness of the random variables.

Theorem 1 (A triplex inequality.) let{ 7}, be an increasing sequence offields andp; be a
random variable that igfi-measurable for each t. Then for amyC > 0 and positive integers,m,
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UNIFORM DEVIATION OF GENERAL EMPIRICAL RISKS

we have

P Zl(Pt —Ept)| > nel < ome "€’/ (28817C?)
t=
+(6/e)n"* ZE]E(pt]ftfm) _Ep|
t=
+(15/g)n "t ZE\Q!I(\M >0Q),
t=

as long as the right hand side exists and does not exceed one.

2.1 Remarks

1. The bound is not necessarily very tight; the constants appearing ingdbeeth may be im-
proved. However, these typically do not affect the convergence inathe later applications
of this inequality.

2. In later applications, the choicesmafandC can be made to depend orso that the combina-
tion of all three terms converge to zeroras- .

3. The last term will be called the ‘tail term’ since it is related to the tail behavifop;0
This often can be bounded by techniques similar to the Markov inequalitiete tNat for
nonnegativeX = |pt|, EXI(X > C) < EX¥IC® andEXI(X > C) < VEX2,/P(X >C) <
VEX2VEXe /2 for k,8 > 0. So existence of moments ¥f will imply a power law
and existence of the moment generating function in a neighborhood ofazkiionply an
exponential law for the decay of the ‘tail term’ @

4. The second term will be called the ‘dependence term’ since it is relate@ tefendence

described in the framework &f -mixingale (see, e.g., Chapter 16, Davidson, 1994), which is

more general than either martingale or strong mixing. W4 is a sequence of martingale
differences, the dependence term vanishe§pilf is strong mixing with coefficienta,, and
has boundetly norms ¢ > 1), then Theorem 14.2 of Davidson (1994) would imply that the

dependence term decreases according to @(ieﬂ’nfl/q) asmincreases.

5. The mixingale formulation of the dependence term can also handle aspmdbat isnot
strong mixing. We will provide an example below whepis not strong mixing but is

approximableto a strong mixing process, where we can still make the dependence term

small for largem. Such an extension from ‘strong mixing’ to ‘approximable by strong mix-
ing’, although seemingly a small improvement, is very significant. The problestrang
mixing is that a function of a mixing sequence (even an independent segjubat depends
on an infinite number of lags is not generally mixing. This is regarded asriausedraw-
back from the viewpoint of applications in time-series modelling’ (Davids®941 p.261),
and has led to the ‘approximability’ framework summarized in Davidson (1G84pter 17),
which is popular in modern time series study but has not been paid much attenkiprithe
machine learning society. Our work can incorporate this approximabilityegarand provide
a ‘bridge’ introducing this framework to our field.

979



JIANG

2.2 An Examplefor the Dependence Term

Suppose thafp; };~ _,, can be approximated in dn-sense by a strong mixing sequerf@ex }>_
ask increases (wherg; x is measurable’, for eacht):

n
nt ZE\Pt — Prk| < C1vk,
t=

wherec; > 0 andvy > 0 are nonstochastic angt decreases to zero &s— «. Suppose theth
moment||ptk||q = (E|ptx|%)Y9 < ¢, for some constantg > 1, c; > 0. Then Theorem 14.2 of
Davidson (1994) implies that

n
n-1 ZLEIE(Pt.kI?Lm) — Epri] < 6C20m({Peu}e o)t e,
t=

Then apply the triangular inequality and note that the dependence ternpsrfiooal to

n n n
n 1S EIE(pt|Fom) —Ept| <n 1S E|E(Pek] Fm) —Eptk| +2n 1S Elpt — pr
t;|(t|tm) | t;|(t,\tm) | t;|t |

< 6C20m({ﬁ,k}f°:7m)171/q + 2C1 k.

We may be able to chooge= k(m) to increase witim somehow so that both terms above are small
for largem. Such a choic&(m) depends on the mechanism of approximation. Wignlicates the
number of lags involved as in the following example, one can chk@se~ m/2.

For example, consider aA(«) procesp; = z‘f:oej\/t,j where{\}?, is a zero-meanl, 4-
bounded sequence (i.e., slt||q < ) for someq > 1. (We can take# to be theo-field generated
by {Vs}__..) Thenp is not necessarily strong mixing even wh¢is are independent innovations,
even when8;| decreases very rapidly, due to the infinitely many lags involved (see, ecips
14.3, Davidson 1994). On the other hand, whéjh = $7(0;| < », we can define ‘finite-lag’
approximatorgy = $¥_o8;Vi_; 50 thatE|pt — pri| = E| 7. 1 8;Vt—j| < sup M |11 37,4 (8;| which
is of the formcyvk wherevg = 5, 116j| — 0 ask — co.

Suppose is strong mixing (e.g., when innovations are independent) with mixing coefficien
am({M}%). Then the strong mixing coefficient of « satisfies

am({pt,k}ﬁo:foo) < am*k({vt}iooo)?

since thepyx depends on lags,Vi—1,....Vi—k. Note that||pti/lq < Y5_o16j|suR [[Mllq <
|8]1suR ||\ ||q which can be taken as the constast
Now note that the dependence term of interest is proportional to

n
Ny E|E(pt| Fi-m) —Ept|
t; t-m

< 6C20m({Prachi o)t Y9+ 201V,
< 6C20mk({V1} 7)Y+ 2¢1 vy
Then one can take, for example== [m/2] (the integer part ofn/2) and make the upperbound
small for largem.

This shows that the current formulation of the inequality can handle depeedhat is more
general than strong mixing.
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2.3 Proving the Triplex Inequality

The idea behind an upperbound with a decomposition into such three termpgesed in econo-
metric literature. For example, de Jong and Woutersen (2004) used thi®itteat an unbounded
sum appearing in the binary choice models. The idea of our proof is retsechixingale treatment
seen in, for example, Chapter 16 of Davidson (1994). Since the spiecifiof the current inequal-
ity is not seen in these literatures, we will provide a proof below for compésinThe following
Lemma will be used in the proof.

Lemmal let {%}®,, be an increasing sequence offields. Let Xbe a random variable that is
F-measurable and is bounded so t4t < C for some constant C for each t. Then for &y 0
and positive integers,m, we have

IS X _ES >ns<2me’”€2/(32mzcz)+an’lnEE Foom) —EX|, 1
[It;Xt t;Xt\ ] < (2/¢) t;!(xtlt) e (1)

as long as the right hand side exists.

Proof for Lemma 1 ConsiderU, = 51" ;% — E {1 X, which can be ‘telescoped’ intd, =
Uin+Uzn+ ... +Unn + Vo whereUy p = {X1 — E(Xq| F1-1) } + ... + {Xn — E(Xn| Fn-1) }, U2p =
{EX|F11) — ECA]F2)} + oo +{ECG]Fa1) — E(Kn|Fn-2)}es Umn = {EX1 | Fr—m-1))—
EXu|F1-m)} + .. + {Ea|Fom-1)) — EQalFn-m)}, Vo = {E(X1|F1-m) — EXa} + ..+
{E(Xn|Fn—m) — EX;}. Then a union bound leads to

P[|Un| > ne]
< P[|Ugn| > ne/(2m)] 4+ P[|Uzn| > ne/(2m)] + ... + P[[Umn| > ne/(2m)]
+P[[Vn| > ne/2]. 2

Note thatJy , is a sum of martingale differences each bounded in magnitude®ySdP[|Uy n| >
ne/(2m)] < 26 "€*/(327C%) by applying a generalization of the Hoeffding’s inequality to the mar-
tigale differences (see, e.g., Theorem 15.20, Davidson, 1994, ardine9.1, Devroye, Gyfi
and Lugosi, 1996). Similarly i®[|U; | > ne/(2m)] < 2e™"*/(327C*) for all j = 1,....m. Now
P[[Val > ne/2] < (2/e)n"1E|Vh| < (2/e)n~ 1S E[E(X| % -m) — EX| using the Markov inequality
and the triangular inequalities. Combining these upperbounds for the terthe oight hand side
of (2) leads to the proof. Q.E.D.

The inequality appearing in the current lemma holds without assumption oesmdepce struc-
ture. It still assumes a bound&gl Next we remove the boundedness assumption by incorporating
a term related to the ‘tail behavior’ of a random variapdewhich is now possibly unbounded.

Proof for Theorem1 We will decompose; = X +Y; whereX; = pil [|pt| < C] andY; = pil [|pt] >
Cl. Then|S(pt —Ept)| < |5 (% —EX)|+ 3 |Y| + 3 E|Y;| by using triangular inequalities. Then
P[37(pt — Epy)| > ne| < Pl 35X — EX)| > ne/3 + P39 M| > ne/3] + P[31EY| > ne/3] The
first term is bounded by the preceding lemma by

n
ome e/ (281PC%) | (g /ey ZLE|E(Xt’,¢t7m) —EXJ.
t=
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The second term is bounded above(Bye)n~1 ST E|Y;|. The third term is a probability of a deter-
ministic event, which is zero if the righthand side of the triplex inequality in Thaatedoes not
exceed one. TherefoR{S"(p; — Epy)| > ne| < 2me"e*/(28817C) L (6/e)n150  E|E(X|F_m) —

EX| + (3/e)n"'SIEN|.  Now note that|E[E(X| % m) — EX| — E[E(pt|%-m) — Epil| <
EIE(Y|%i—m) — EX| < 2E|Y;| using the triangular inequalities and the Jensen’s inequality. Then
E|E(X| Fim) ~EX| < EIE(pt| i-m) ~ Ept| + 2E|%| andP[5(py — Epy)| > ne] < 2me "/ (26877C
+(6/e)n" ST {EIE(pt| Fi-m) — Ept| +2E| Y|} + (3/€)n"1 STE|Y;| which leads to the proof of the
theorem. Q.E.D.

3. Uniform Deviation

The above inequality (in Theorem 1) can be used to bound the probabéitwaje (pointwise) devi-
ationT,(b) = R(b) — R(b), whereb is a parameteR(b) is a sample averag&b) =n-1 51 p(w,b)
(where for each, wx is measurable’k from an increasing sequence®fields), andR(b) is its ex-
pectatiorR(b) = ER(b). It is often of interest to bound the probability of a lang f ormdeviation
sup,cg | Tn(b)| over a parameter spa8dor b.

The connection between the pointwise and uniform deviations can be abtainsoveringB
with many (sayl") smaller set®;’s, so thatB C Ul_;B;. Chooseb; to be some parameter located
in B; for eachi. Note that sup.g|Ta(b)| < maX_; [Ta(bi)| + max_; sup,cg, [Ta(b) — Tn(bi)|. Then
a union bound leads to:

Proposition 1 For any nonstochastid > 0 and any positive integer n,

r r
Plsup|Tn(b)| > 298] < ZlPHTn(bi)| > 0]+ ZP[SupITn(b) — Ta(bi)[ > 8]. 3)
beB = i= beB;

This is the basis for us to bound the probability of uniform large deviatiom firkt term involves
pointwise deviations and can be bounded by the inequality derived bdfloeesecond term can be
bounded wheff,(b) ‘often changes little’ in a small s&;. This can often achieved by assuming a
Lipshitz condition for the summarml wx, b) in argumenb (see, e.g., Newey, 1991).

In machine learning, however, we often encounter sumnpgngl, b) that is discontinuous in
b. For example, the classification error can be writterp@s;,b) = |y: — I[x(b > 0]|, which is
discontinuous irb, when a linear boundary (in predictay) is used to classify 40,1} valued label
¥t (Hereax = (i, %).)

We will use a quite general framework that allows some continuous casesoame discon-
tinuous cases as well as some ‘mixed’ cases. d(et,b) be of the formp(w,b) = fi(b,A (b))
where f;(-,-) is continuous in the first argument, but the second arguigb) = 1[g(wx,b) > 0]
for some fixed functiomy that determines a decision boundary. The funcfiatepends onthrough
observatiorwy. This framework can then include the following examples:

e (continuous) ;-loss:p = |y —xb| (whenfi(b,-) is constant);
e (discontinuous) classification logs:= |y; — | [x(b > 0]| (when f;(-,A;(b)) is constant);

e ‘mixed’ loss such ap = (1—y)a(xb)l[a(xb) > 0], which may result from a loan decision
of lending out amounti(xb) (according to a continuous parametric modgwhen 108;%
of the loan is paid back.
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Under this framework we will bound the deviation gug [Ta(b) — Ta(bi)|. This is summarized
in the following Proposition, the proof of which is included in the Appendix.

Proposition 2 For each parameter b in a convex settBat contains b denote f(b) = ﬁ(b) —
ER(b), whereR(b) = n"1 5, p(x,b) and for each toy is measurable % (from an increasing
sequence df-fields). Assume thathas the fornp(uwx,b) = fi(b, A((b)) where A(b) = 1[g(wx, b) >
0] for some fixed function g that determines a decision boundary.

Define $as the ‘boundary set’iS= Upeg {tx : g(ux,b) = 0}. Assume that:

(Al1): g(ux,b) is continuous in b and measurableds;

(A2): (Lipshitz conditionsup,_q 4 | ft(b,a) — fi(b*,a))| < Nit|b— b*[q for some g> O, for any
b,b* € B;;?

(A3): (Small boundary condition) The boundary setisSmeasurable andﬁz{‘zlEl(wt €
S) <8/(12C) for some constant§ C > 0.

Denotel = sup, g, |[b—b*[q and My = [fi(bi, 1) — fi(bi, 0)].

For any constant$,C > 0 and positive integers,m, if (A3) holds, then we have:

P[E:BPITn(b) — Tn(bi)| > 9]

< (6A/5)n "t iE(Nit L ENINe +EN; > 5/(6V)]
t=
+(6/3)nt iEMitl (Mg >C)
+2me ™/ (1153FC) | (150 /5)n iErEu (@ €S)|%-m) —El(ex €9)|,
t=

as long as the right hand side exists.

3.1 Remarks

6. In the ‘continuous case'f;(b,a) is constant ina € {0,1}. We can then drop the last three
terms in the above bound. This is becalie= 0 in this case and we can take— 0. In
the ‘discontinuous casef;(b,a) is constant irb and we can drop the first term in the above
bound, since the Lipshitz constadt can be taken as 0. The result above holds also for the
more general ‘mixed case’ whep(b, a) varies with bothb anda.

7. Assumption A2 can often be validated by bounding the partial derivafifgb, a) on the first
argument. In a later example with loss we will use a triangular inequality to validate this

assumption.

8. Assumption A3 is related ®(wx € S), the probability of an observation falling in the ‘boundary
set’ § corresponding to a parameter &t WhenB; is small enough, we expect that the
‘boundary set’ will have small probability and A3 can be satisfied. The thitaas clarified
whenwx = (y,%), g(wx,b) depends ory only through predictok;, andx = (w,Vv;)’ has a

2. For a vectorv with componentvj’s, define thelq norm as|v|q = (z?izml(v) Vi |9/ for q € (0,), and [V =

sup™” |v;|. We will also formally denotévlo = 31 I{]v;| > 0].

983



JIANG

scalar component; and other components, so that the decision boundajy(w,b) = Q]
‘can be solved’ agn = w(v;, b)] for some fixed functionv. In this case the boundary sgt=
{(we, vt) - wy = wi(w, b), b€ Bi} = [infpeg w(w, b) <wp < sup,eg W(w, b)] if Bj is compact and
w(\,b) is continuous irb. Suppose we use thg, norm and defind = sup, g, |b— b*[e.
Denotedy = SUR, g, [P — b*|o. Then in the Appendix we will show that '

P(w €S) <Ey {Supp(Wt|th)Equ|abW(Vtab)’°°})\d0~ 4
W B

Here dpw(v,b) denotes a partial derivative @f, 1} is someo-field such thaty is mea-
surable 4/ for eacht, and p(w;|%{) denotes the conditional density. In the ‘linear case’
assuming\ < 2, g(ux,b) = +w +v{by (so Al is satisfied), we can take(v,b) = Fviby,
and sup.g, [0pW(W,b)|» = |W|w. If the conditional density is bounded above by constant
then (4) becomeB(wx € §) < CE|w|~Ado. The assumption A3 will be satisfied for choosing
A <9/(12Ccsup E|w|»do), which restricts the size d;.

9. It is also noted that in this paper, we will consider ‘boundary sets’ ef‘sbblvable’ form
S = [infpep W\, b) < W < sup,cg W(W,b)] which is assumed to be measurable. In our later
examples we will focus on ‘linear solvable type’ described above, witlsgetboundary
W = Fviby], andB; being a closed., ball centered a; and with radiushr=A/2 > 0. Then
S = [Fv(b)y—hvt|1 <wt < Fv(bi)y+h|w|1] which is indeed measurable. [More generally,
when sug.g W(W,b) and infeg; W(\,b) are both continuous i, § is measurable.]

We will analyze the bound in Proposition 2 term by term in the later examples. téfires
E(Nit + EN¢)I [Nt + ENt > 8/(6A)] andEM; I (Mjy > C) are tail terms. We can choose sufficiently
smallA and sufficiently larg€ to make them small.

The dependence terB|E(I(«x € §)|%-m) — El(wx € S)| will be small for largem when oy
can be approximated by strong mixing sequences in some sense.

The exponential termrae %"/ (1152¥C?) can pe made small by choosingandC to depend on
nin certain ways. We can allo&vto depend om also, which will lead to convergence rates.

4. A Continuous Example

Considerp; = p(ux,b) = Yy —b1Yi—1 — ... — byYi—¢| (Wherewx = (¥, ...,Yi—r) andb = (by, ..., by)),
which represents predicting by r of its own lags under ab; loss. We will allowr to increase with
n later to allow high dimensionality. We will bound the probability of a large uniforewidtion
supeg NSt pr— N1, Ept| over ands ball B = [|b|. < Cy] with a constant radiug, > 0.
Suppose the true model f¥ follows anMA(e) modelY; = 37 ,0;Zj, whereb’s are fixed
coefficients with a finit¢y norm|6|1 = $¢'|8;| < », andZ;’s are ‘innovations’, which are assumed
to be iid (independent and identically distributed) with zero mean and finitencaialthough we
have assumey to be centered to have mean zero and that there is no intercept term usetin th
loss, this is only for convenience and similar results can be obtained withsastsumption.
We will consider a case of exponentially decayfs, but eactB; can be nonzero:

3. In the ‘linear case’ the decision rulg(wx,b) > 0] has the formwtby + viby > 0]. We can always rescale the
coefficientsh = (b, b})’ by a scalar multiple. One such standardization used in Horowitz (199 2listisat|by| = 1
orby € {—1,41}. Note that for small enough sBf with A = sup, jycg, |b—b'|w < 2, by is constant irBj and takes
a common sign. We can pick either sign to proceed. '
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Condition (B1):3 74 |8;] < vk for all large enough k, for some < (0,1).

This is a situation whely; can have a dependence structure that is not strong mixing, since it
involves the infinite past of;_’s (see, e.g., Davidson, 1994, Section 14.3). On the other hand, the
dependence term in Theorem 1 can be bounddd, @approximation of strong mixing and we have
the following result (proved in Appendix, wherg is theo-field generated byZs}. ., for each
t):

EIE(pt| Fi—m) —Ept| < 2(r +1)(Co+ 1)E|Z4]| 18| for any positive integek < m—r. (5)
j=k+1

In order to bound the tail term in Theorem 1, we use, for some finite casstah, > 0,
Elpe/l (ot > C) < (r +2)%(Co+ 1)||Za|o[B1Cye G+ 0 7/2, 6)

which is proved in the Appendix assuming an additional condition:
Condition (B2): For innovation Z the cumulant generating function() = InEe”Y is continu-
ously differentiable ad. (E.g., 4 can be a Gaussian innovation.)

Now we apply Proposition 2, where only the first term of the bound is rateémahis continuous
case due to Remark 6. The Lipshitz constiptcan be obtained from the triangular inequality
Ip(6x,b) — p(ex, b*)| < by — bf|[%i 1] + .. [ — b5 [¥er| < ([Yia| + ...+ [Yie])[p— b*[s. SO We
can takeN; = [Yi_1| + ...+ [Yi—r| (using/, norm). We have

E(Nig +ENt)! (Ng +ENg > 8/(6X)) < (2r?|6]]|Za]|2)Cue ¥/, (7)

for some finite constants C, > 0, wherep = 8/(6rA) — E|Z1||0|1, which is proved in the Appendix.
Now we apply (3), Theorem 1 and Proposition 2 and combine all terms todesiag (5), (6)
and (7)) to obtain:
For any positive integetls< m—r, m, n, and positiveC, §, we have

n

P[supin~* Zl(pn —Ep)| > 28]
beB t=

< r2me—n52/(288nzc2)
+T(6/8)2(r +1)(Co+ 1)E|Z4| Z CH
=K1

+T(15/8)(r + 1)%(Cp + 1)]|Za|2[6]1Cue G+ (1772
+I (61 /) (2r?|8]1]|Z1||2)CyeU(®/ (BN ~ElZ1l81)/2 ®)

HereB = [|ble < Cp] = [-Ch,Cp]" for some constant radius, > 0. We will consider a high
dimensional case where the number of lags can increase with sampte size
Condition (B3): r= O((Inn)M) for some power M> 0.

Note that we can takBy,...,Br to bel closed/., balls of radius\ /2 to coverB, wherel" <
(2Cp/A+1)".

We will let 8 = n~05+¥1/2 for some smaly; > 0,m=C = [n*/4],A=n"1, k=m—2r. Then
under conditions (B1) to (B3), = O((Inn)M:) for someM; > 0 and all four terms in the above
inequality (8) areO(e‘Clncz) for somecy, c; > 0 dependent og. Therefore we have:
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Proposition 3 Under Conditions (B1) to (B3), for any smail > O,

n
Plsupin™* 3 (b~ Epy)| > n %) = Ofe ™)
beB t=
The rate of uniform convergence remains nearly ‘parame®jg’n—%%) in this case, despite the
high dimensionality of seB.

5. A Discontinuous Example

Let ax = (W, %), wherey; is a real-valued responsetaandx = (1,Vi—1,...,¥t—r,%)’ is a vector of
predictors that can includelags ofy as well as a vector of exogenous variahleSuppose we are
interested in predicting the sign gf by using a discontinuous logs = |l (y; > 0) — I (b > 0)|.
We will bound the probability of a large uniform deviation gupin~1 ST, (pt — Ept)| over a set of
‘variable selectionB = [|blp <V, |b|e < Cp, |bri2| = 1], where|bjp = E?E(b) I|bj| > O] counts the
number of selecteg-componentsib|., < C, bounds the parameter space, dnd,| = 1 is due to a
standardization for the coefficient of the first componerg; ¢éee Footnote 2). Later we will allow
v (maximal number of selected variables\number of lags allowed) and = dim(z) to increase
with nin certain ways for high dimensional variable selection.

The true model ofy; is assumed to be adA(«) transform of a strong mixing procesg: =
Yi=09jfj(z-j,&-j), where f; is some fixed measurable function for eagh so that
sup ;|| fj(z,&)[|1 < «, andg; is a stochastic sequence independerg; @falled the ‘innovation’.
We assume that:

Condition (C1):{z, &} is strong mixing with mixing coefficient, decreasing exponentially fast in
m.
Condition (C2):y 71 (6;| decreases exponentially fast in k.

Note thaty; itself may no longer be strong mixing due to its dependence on the infinite past.
These assumptions are satisfied in many situations. For example, in an ARX yned@y; 1 +
ZB+& (J¢| < 1), anMA() representation giveg = z‘fzoq)i (%_jB+&-j). Here,g does not have
to be iid; it can be an ‘exponential’ strong (Bf) mixing process such as a GARCH process (see,
e.g., Francq and Zakan, 2006) whely; follows an ARX-GARCH model.

In the Appendix, we show that under some additional conditions (C3 ahdrCéhe underlying
process z, & }, we have, for any positive integkr< m—r,

E[E(pt] Fi-m) —Ept| < 60m-r—k+8(y/2My + ZMerb)\/Slprfl(Zusr)l1Zk|91\- )
) J>

t

HereMy, My are constants appearing in these additional conditions:
Condition (C3): y follows a model of the form;y= Fk + & where k depends on the history
({zs}%,, {es}'21}) ande is an innovation that has a conditional densityeg{zs}%,, {es}' %1 1) bounded
above by a constant Mwhich is satisfied, for example, by®c?) innovations).
Condition (C4): The conditional density($1|z 2, ...,z k,{Zs, ss}t:o}) is bounded above by a con-
stant M.

We can coveB by I setsB; € B, i =1,...,I", with eachB; being a closed,, ball centered
at someby;, with radiush =A/2 > 0, and with dimension at most— 1. This is explained in the
Appendix, where we also show that we can take

< 2v(K+r)"12C,/A+1)"1 (10)
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as an upperbound obtained from a combinatorial argument. Now we trytp Rpposition 2.
Assumption (A1) is obviously satisfied singéw, b) = xb. We will show that assumption (A3)
holds for all largen in the Appendix, with an additional condition (C5) and with suitable choices of
0, A (the/, diameter oB;), r (the number of lags) and(the maximal number of selected variables)
to be specified later. This additional condition is:
Condition (C5): The exogenous variables are bounded above by adonistant:|z|. < C,.
Assumption (A2) is satisfied withl; = 0 due to this ‘discrete’ situation (see Remark 6). So
the first term of the bound in Proposition 2 is zero. We can tdke= ||l (y; > 0) — 1| — | (y; >
0) — 0|| = 1 andC = 1 so the second term of the bound is zero also.
In the Appendix we evaluate the last term which is determine® B/l (wx € S)|%-m) —
El(wx € S§)|. Assuming (C4), we have, for any positive integget m—r,

E|E(I (@ € S)| % m) —El(@ € §)| < eamrk+4\/r 3 [83l5up] 12,80l 1(2M2(1+Co ).
> )

(11)
Now combine the applications of (3), Theorem 1 (With= 1, or just use Lemma 1), and Propo-
sition 2, apply Equations (9) and (11) and we obtain:
For any positive integetlis< m—r, m, n, and positived,
n

P[Y IS (pi—Epy)| > 23]
2" 2
S r2mefn62/(32mz)

+1(2/9) {6am—r—k+8(\/2My+ ¢2Merb)\/stlpr fi(z.&)ll2 Ek\ej I}
) >

+|—2mefn<>32/(1152m2)

+F(12/6){GO(m_r_k+4\/rzkye,-\supuﬁ(zt,st)!1(2Mx2(1+Cb+>\/2))}. (12)
>

)

Now choose parameters to make the bound small. Note that we can take(K +r)V=1(2Cy/A +
1)¥~1. We have assumed exponential decaydfpandy ;- [6; in k.

LetC, > 0 be a constant in. Assume the following condition on the various dimension param-
eters:
Condition (C6): The number of lags= O((Inn)M:) for some power M> 0; the number of ex-
ogenous variables K= O(n™2) for some power > 0, which can form a very-high dimensional
candidate predictor, with dimension possibly large than sample size n; théeof selected vari-
ables v= O((Inn)Ms) for some power M> 0.

We will let & = n~95t¥1 /2 for some smaly; > 0, m= [n"/4], A =n"1, k= [(m—r)/2]. Then
InT = O((Inn)M4) for someM, > 0 and all four terms in the above inequality (12) & ")
(for somecy, ¢, > 0 dependent oiy), when Conditions (C1) to (C6) are assumed. Therefore we
have:

Proposition 4 Under conditions (C1) to (C6), for any smail > 0O,

n

P[supjn* Zl(Pn —Epy)| > n %] = O(e "),
beB t=
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The rate of uniform convergence remains nearly ‘parame®jgn—%°) in this case, despite the
high dimensionality of seB.

6. Discussion

This paper presents a very general inequality that generalizes Hagffihequality to dependent
and unbounded summands. The inequality may not be very tight, but it isvidweassumptions
and can be very useful in deriving convergence rates of pointwideuaiform deviations in a
number of situations that cannot be dealt with before. We gave two exahwresone with.; loss
and another on sign classification. There are other examples that maykedveoit (e.g., with.,
loss or with log-likelihood) which are not considered here. We hope tleatulrent work can serve
as a probablistic foundation to the theory of empirical risk minimization for manwgtaitos with
dependent data and unbounded loss.

The current results involve a high dimensional paramigtelear-parametric convergence rates
are obtained in examples with exponentially small ‘unboundedness’ (tkared by existence
of some moment generating function) and with certain kinds of exponentiatiyyttey temporal
dependence. We expect that slower convergence rates may be dbt@menore severe ‘unbound-
edness’, or with a slower decay of temporal dependence, using thesamejues.

Although the number of selected variables is restricted(tdogn)™), we can allow these vari-
ables to be selected from a much higher number of candidate regresdarsasion up ta for
any finite positiveM, and still maintain a near-parametric convergence rate. This is demonstrated
in Section 5 and is also true if we add in regressors and make an ARX mod&sdton 4. (In fact
it is also possible to allow a higher number of selected variables sughfassomea € (0,1), but
this will correspond to a slower convergence rate.)

It is noted that there exists much previous work in addressing the problemsglered in this
paper, in addition to the related work mentioned in the Introduction (we thankethewers for
bringing our attention to these additional references). In the directiontmfwunded loss, Meir and
Zhang (2003) consider uniform deviations for iid data using a boundedRtidemaker complexity.
Various ratios of empirical processes can also be used to handle wduness (see, e.g., Haussler,
1992; Pollard, 1995; Bartlett and Lugosi, 1999; Bercu, Gassiat amd?B02). Bercu, Gassiat and
Rio (2002) present a ratio-type result that can relax the assumption amtheundedness’ while
proving exponential concentration for iid data. In the direction of depeod, McDiarmid (1998,
e.g., Theorem 3.8) uses the method of bounded differences and inaltetes related to a ‘bad set’
of events involving a large variance. Uniform inequalities have also bb&ined for martingales
(see, e.g., van de Geer, 2000, Theorem 8.13). In the direction of imigdndionality, typical uni-
form deviation results deal with infinite-dimensional function space (sgegeod summaries in
Bousquet, Boucheron, and Lugosi, 2003 and van de Geer, 2000).

In comparison, our method addresses the three aspects (unbowsjetkmendence, high di-
mensionality) simultaneously with a relative simple approach. While the additiefeaences can
sometimes handle one aspect better, they typically do not address thesptbetsan the same time.
For example, McDiarmid (1998, e.g., Theorem 3.8) can potentially handldltztare dependent
‘in multi-dimensions’ (such as random graph or spatial dependencdle air method only ad-
dresses ‘one-dimensional’ dependence (i.e., a time series). On the atigeMcDiarmid’s method
also requires bounded differences which would require some kindwideziness (e.g., bounded
summands in the case of an iid average) while we do not need this assumptiaddition, we
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note that the ‘bad set’ term bounding the probability of a large variance figlhaequire applying
a large deviation inequality again, while our triplex inequality is one in closed.for

Many of these additional references do not treat dependence tantieedsgyree of generality as
the current paper. For example, traditional treatments with symmetrizationaadehiker average
such as Meir and Zhang (2003) are suitable only for iid data. Ratio-tyqétsesuch as Bercu,
Gassiat, Rio (2002) can relax the assumption on the ‘unboundedness’patbiving exponential
concentration for iid data, but it is not clear how this can be extended tergledependent sit-
uations. The chaining technique described in, for example, van de &@@0,(Section 3.2) and
Bousquet, Boucheron and Lugosi (2003, Section 5) may be used tovefite convergence rate
by a logn factor in the finite dimensional case. However, most applications of thisitpadare for
independent data or martingales. Our dependence term, on the otheishauidin the framework
of mixingale, which is more general than martingales as discussed in Remark 4.

Typical uniform deviation results deal with infinite-dimensional functioncgiga Our formula-
tion is for a somewhat less general situation where the functions are araed, and we formu-
lated uniform convergence on a high dimensional parameter space. giitltomay be possible to
formulate uniform convergence on function spaces directly for degrerdhta (see, e.g., Yu, 1994
for beta-mixing and Vidyasagar, 2005 for alpha-mixing), we choosedhanpetric covering frame-
work which is less abstract and easier to understand, and demonsteatestergence rates more
clearly. The result of such a formulation is that a reader with an elemengakgbound on proba-
bility and real analysis can follow the development easily, and arrivecit advanced results as the
convergence rates with high dimensional variable selection. Although theuFation is deliber-
ately elementary, the results are powerful enough to handle such conglitsgiendent situations
as the sign prediction for an ARX process with GARCH error in Section 5.
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Appendix A.

Proof of Proposition 2 Note that for anyb € B;, |Ty(b) — Ta(bi)| = [n"151 {fi(b,A(b)) —
fe(bi, Ac(bi)} — =ty E{fi(b,A(b)) — fi(bi, A(bi))}|. We therefore investigate the differences
of the form fi(bA(b)) — fi(bi,A(b)) = {f(b,A(b) — fi(bi,Ab)} + {fi(bi,A(b))—
fe(bi, Ac(bi)) }.

Note that| fi (b, Ac(b)) — fi(bi, Ac(bi))| = Mit |Ac(b) — Ac(bi)| whereMy = |fi(bi, 1) — fi(bi, 0)],
and |[fi(b,A(b)) — fi(bi,A(b))| < SUR p-cp SUR-01lft(b,@) — fi(b*,@))] < NtA, where
A = sup, - cq [D—b*[q, if we assume a Lipshitz condition sup , [ fi(b,a) — fi(b*,a))| < Ni|[b—
b*|q under ar/q-norm for someg > 0.

We then combine the statements before and apply the triangular inequalities fo obta
M) — Ta(d)l < niSLiNed + noi3RoMelAcb) — Adb)| + nolyl EN
+n s E M A(b) — A(by).

Now note that|A((b) — Ac(bi)| < I(wx € §) where S is the ‘boundary se§ = Upeg {ux :
g(ux,b) = 0}. This is true when we assume thg{ty,b) is continuous inb and B; is convex.
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[The differencelA(b) — Ac(by)| is {0,1} valued and takes value 1 only when only ongy@d, b)
andg(ux,by) is positive. This would implyg(w,b*) = 0 at some intermediate poiht on the line
segment betweenandb;, which must fall inB; due to its convexity. A similar technique is used in
Jiang and Tanner (2007) for a binary choice model i, b) linear inb.]

The above statements hold for amy B;. Therefore

sup|Tn(b) — Tn(by)|
beB;
<n” ZiN.t)\Jrn ZM.tIooteS ziENn)an ZEM.t (x €9)
<n IS (Nt +ENA+NTS Cl +n 1Y CEI
<n t;(t Ni)A +n t; (x €8§)+n t; (x €89)
+nt Z{Mitl(Mit > C) +EMl (Mg >C)},
t=

by noting thatMitl (wx € §) < Cl(wx € §) + Mitl (Miz > C) for any constan€ > 0.
Then

Plsup|Tn(b) — Tn(bi)| > 3]
beB;
< P[n_lti(Nit +EN¢)A > 5/3]
nt ZCI weS)+nt ZCEI w €S)>d/3
nt Z{Mﬂ (Mg >C)+EMgl (Mg >C)} > &/3]
t=
< P[n—lia\m FENOA>8/3
+(6/3)nt iEMitI (Mi >C)
‘1Z{I (eS)—El(wes)}>8/(3C _1ZE'“€S)]
< (6A/3)n* ZE(Nn +EN)I[Ni +ENt > 3/(6N)]
t=
+(6/8)nt iEMitI (M >C)
+P[n? i{CI(w[ €S)-CEl(wx €S)} > 8/6],
t=

where in the last step we assume it 1, El(wx € S) < 8/(12C) and have useB[n~151 , X >
2Q] < Q In"1yl EXI[X > Q] for nonnegativeX = N + EN; and constan@ = 8/(6)). [Note

thatn 15 X =n"15P X[ X% >Q+n 13 XIX <Q <Q+n~tyl  XI[X% > Q] and use
Markov inequality.]
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Now apply the pointwise inequality (1) on the last term and we obtain Propo&itiGne.D.

Proof of Equation (4) in Remark 8

P(wx € §) = P[w [lnf w(vt, b), supw(v, b)]]
beB beB;
< Ey supp(wt|'V)] supw(v,b) — inf w(w,b)|
beB beB;
<Ey SUPP(Wt|'Vt) sup [w(w,b) —w(v,b")|
W b,b*eB;
< Eq; {supp(w| 1) sup|dsw(wt, b) e } Sup Ib—Db*le sup |b—b*[o
W beB; b,bre ,b*€B;
= Eqy{supp(w| 1) sup|opw(vt, b)|e } Ado.
Wt beB;
Q.E.D.
Proof of Equation (5) DefineYix = 5*_46;Z_j andptk = Yk — b1¥—1k — ... — br¥i_rx], which

are strong mixing due to dependence on finite number of lags. We then ledvedhproximation
error E|py — pril < (Co+ DE(Y — ikl + ..+ [Yor = Yeork]) < (F +1)(Co+ DE[Za] T i1 18-
Then the technique in Section 2.2 implies tB#E (pt| —m) — Ept| < 6 SUR | Ptk [20m-k—r ({Z}) /2
+2(r +1)(Co+ 1)E[Za] 3 T iy 1185 .

Note thatom_k_r({Z}) = 0 form> k+r, We have (5). Q.E.D.

Proof of Equation (6) We note thatp;| < (C + (Y| + ...+ [Yi—r]) and thereforé |pt|l (|pt| >
C) < (G + DE(M| + . + Mr)¥iol(Ysl > CG + D7Hr + 1Y) <
(141)2(Co+1)sup sE[Y[I ([Ys| > C(Co+1)"*(r +1)1). Note that fom = C(Cp+ 1) *(r+1)*
we have

EM[1([Ys| >n)
< ||Yt||2H (IYs| > n)l[2

Z)\ejlllzt ill2)y/ (E€¥l)g=un
= ||Z4]|2/6]1y/ (EeiMI)e /2
< [|Z4[2]6]1Cue™2

for some positivas andC, such thatE ¢!l < C2 < w. This is achieved for some small enough
since

E6% _ expy ilnEeﬂeizl} — expf iK(iuej)}
2

<exp{;Msup IK'(V)||uBj|} <exp{ sup |K'(v)u|B|i}.

<u|8|1 [V|<ul6|1
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Then

Eell < E™+Ee v <2exp| sup |K'(V)[ulB|1} =C2 < w

Iv[<ul8l1

for some small enough, due to continuous differentiability ¢(-) at 0, which is assumed in Con-
dition (B2). These lead to (6). Q.E.D.

Proof of Equation (7) Note thatEN; = rE|Y;| < rE|Z;||6|1, and

E(Nit +EN¢)I (N +EN¢ > 8/(61))
< E(Me—af + -+ Mr [+ FEI)H([Ye—a| 4 ..+ Vs > 8/(6N) — E|Z1[[6]1)

)
< E(Maf+ . 4 Mer |+ TE V1)) Z' (IYi—s| > &/(6rA) — E[Z4]|8]1)
S=

r
<IMe-af o+ Mer |+ TE Y]] le(!Yt—s! > 8/(6rA) — E|Z4/[6]1) |2
S=

(2r(|Ye||2)r V EgiMilg~w/2

<
< (2r%6]1]|Ze|2)Cue ¥/

for some small enough> 0, wherep = &/(6rA\) — E|Z1/|6]1, andC, is defined in Proof of Equation
(6). Q.E.D.

Proof of Equation (9) We notice the processt, %) can be approximated by strong mixing pro-
cesses. This is because if we defing = 2‘}:06]- fi(z—j,&—j), andx x = (1, Yt—1k:--s Y—rk: &)’
then|lys — el < 3 j-« 18 SUR, 11 i (21, &)][1.2nd[x — X i1 = Elx — Xkl = S5y [lys—Yakllz <
ryi-k|8jlsun, || fi(z,&)[|1, both of which will decrease exponentially fast wih On the other
hand, (yt x,% k) is @ measurable transform 0%, ...,z_,_,&,...,&_r—k) and is therefore strong
mixing with mixing coefficientom__x form>r +k.

Now definepix = [I(ytk > 0) — (b > 0)]. The technique in Section 2.2 implies that
E|E(pt| Fi—m) — Ept| < E|E(ptx| Fti—m) — Ept x| + 2E|pt — prk| WhereF; represents the-field gen-
erated by(z, &)! .. The firstterm is bounded byo&, ;_« by using Theorem 14.2, Davidson (1994).

Applying the triangular inequalities, the second term is at m@sty2 > 0) — I (yix > 0)||1+
2|[1(xb > 0) —1(x b > 0)[|1. We will assume that (T[|yi| < A] < My(24) for any smallA > 0,
for some constarily < . This is true under Condition (C3).

We will also assume that (I[|xb| < A] < My(24) for any smallA > 0, for some constant
My < o. Notice thatxb is of the form “tz 1+ a linear combination of .1, ....Vt—r, %2, ...z k"
due to the standardization of the coefficienzof. Then it is obvious that (+) holds under Condition
(C4).

Now notice that for two random variablgg andw*,

W > 0) 1 (W* > 0|1 < 4v2M /[W — W[y, (13)
if P(JW| <A) <M(24) for A= /||W—W*||1/v2M. This is proved by noting
EI(W > 0,W* <0)
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<EI(W > 0,W* <0, W —W*| <A)+EI(W—W|>A)
< P[W] < A] + E[W —W*|/A
< M(2A) + E|W —W*| /A

= 2v2M /W — W[

Similarly EI(W* > 0,W < 0) < 2v2M/||W —W*||1. Now ||l (W > 0) — I (W* > 0)||1 = EI(W >
0,W* < 0)+EI(W* > 0,W < 0) leads to (13).
Now apply (13) and we obtain

2[[1(yt > 0) = (yk > 0)[]1+2|[I (b > 0) — 1 (X b > 0)||1

< 8y/2My /[yt — Ykl |1 +8v/2Mx [Ixtb— ¢ bl[1

< 8y/2Myy/[|¥t — Y.kl |1 +8v/ 2Mx[bleoy /% — Xkl [1
<8y 2'V|y\/zk|ej |supl| fi(z,&)[|1+8v/ 2'lecb\/f zk|ejfsup\|fl (2, &)1,
1> tl > tl

and therefore we have (9). Q.E.D.

Proof of Equation (10) Note that theB = B, UB_ whereB, = {b € B: br;1 = +1} repre-
sents the two halfs dB with by, 1 = £1, respectively. Note thaB. can be written as a union
B: = UyB. (Y), whereyrepresents the subset of ‘selected indices’ in additiont@, and the union
is taken over all subsetsof {1,...,K+r+ 1}\{r + 2} with cardy) <v—1. HereB.(y) ={b e
0K+ L by o = £1, |bj| < Cp,Vj € y;|bj| =0,V & yu {r +2}}. EachB. (y) can be covered by at
mMost(2C,/A + 1)¢@4Y) setsB;’s of the formB; = {bc 0K+ 1 b o = 41, |bj — (by)j| <N\/2,V] €

Y; |bj — ()| =0,Vj € yu{r+2}} for someb; € B, (y), where cardly) <v— 1. So a combinatorial
argument leads to upperbound (10). Q.E.D.

Proof of Assumption (A3) for theexamplein Section 5 Assume Condition (C5), so thig|. <
C; < oo,
We can apply the arguments in Remark 8 by identifyg=z 1, i = (L, Yt—1, ..., Yt—r, %2, -,
z k). Note thatdy < vand we can choos®{ as theo-field generated byz, as}t:o} andz,...,z k.
Then A3 is satisfied if (C4) holds [the conditional dengiyv|74) is bounded above by (=My)]
and if
N < 8/(1/C 1+ C;-+ 10l sup| (2,81 11). (14)
t7

which would then be< §/(12vCq1+C,+rsup||yt||1)) < &/(12dsCcsup E|w ). This inequality
(14) is satisfied for all large, when we taked = n=05V1/2 for anyy; > 0, andA = n~? (the (-
diameter ofB;), and assume that the number of lagsd the maximal number of selected variables
v follow condition (C6). Q.E.D.

Proof of Equation (11) Similar to the approximation argument used before in Proof of Equation
(9), we definewx x = (Vi k, % k) and obtainE|E(l (wx € §)|F-m) —El(ax € §)| < E|E(I(wxk €
S)|%-m) —El(xk € S)|+2E[l (ux € §) — | (tx x € §)|, where the first term is bounded above by
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60m_r—k for m>r +k, due to a treatment similar to the one used in Proof of Equation (9). Now we
try to boundE|l (x € §) — I (txx € S)| = ED in the second term, whel® = Upcg, [Xb = 0] will
be computed below.

For our vectorx = (1,¥t—1,...,Yt—r,Z,1,%.2, ..., % k), We here identifysy = 7 1 = (X )r42, and
Vi = (LYt—1,.-, Yt—r, %2, -, Zk)’ including all {(x);} 412, for applying Remarks 8 and 9. Note
that according to Remark & = [w (%) < w < w'(w)] wherew® (w) = V{(bj)y £ hjw|1. [We
have picked a sigty,,.» = —1 to proceed. The other sign is similar. To be more precise, here
]t = ¥ jeyl(%)j| wherey is a subset of ‘selected indices’ in additionrta-2, whenB; is as
described in Proof of Equation (10).]

Now D = |I(wx € §) — I (xk € S)| = 1 implies that only one of the two pointse,x k} =
{(v,w)’, (v Wek)'} can lie in§, so there must be an intermediate point lying on a boundary of
S, either on the upper boundary and denoteatas- ((v")’,w(v"))’, or on the lower boundary
and denoted as~ = ((v)’,w (v))’. [Here we have re-ordered the components of the vectors.
For examples, for vectox, its componentx);2 = W; is now placed behind other components
(denoted ast).]

If in addition, we also have a small distan&e— x k|1 < n, then one of the following two events
must happen (with- option depending on whether the intermediate point falls on the upper or lower
boundary ofS):

W — W ()]

< W — W (VE)| 4 (W (V) —wE (w) |

< [ — W (V)[4 (Co+ h) v — V¥4
<|(14Cp+h)x —x5|1

< (1+Co+h)x —xkl1 < (1+Co+h)n.

Now we can bound

ED<PD =1, % —%xl1 <n]+P[[%—Xxkl1>n]
< PlUlw — W (W)| < (14Cp+h)n] + P[|¥ — X k|1 > N

(a)

< 2¢2(1+Cp+h)n+E[x — Xx|1/n

< 2c2(1+Co+h)n +r Z{\Gj!Slprfl (z,&)|[1/n.
ta

1>

Now taken = \/r > i>k|0jlsun, |Ifi(z,&)|]1/(2c2(1+Cp +h)) and obtain

ED < 2w 3 163]supll iz 0] 1(262(1+ Co-+ ).
1> t7|

As in the previous Proof of Assumption (A3), we identify= My. We have assumed Condition
(C4) for the inequalitya) above. Therefore we have (11). Q.E.D.
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