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Abstract

Finite structures such as point patterns, strings, trees, and graphs occur as ”natural” representations
of structured data in different application areas of machine learning. We develop the theory of
structure spacesand derive geometrical and analytical concepts such as the angle between struc-
tures and the derivative of functions on structures. In particular, we show that the gradient of a
differentiable structural function is a well-defined structure pointing in the direction of steepest
ascent. Exploiting the properties of structure spaces, it will turn out that a number of problems
in structural pattern recognition such as central clustering or learning in structured output spaces
can be formulated as optimization problems with cost functions that are locally Lipschitz. Hence,
methods from nonsmooth analysis are applicable to optimizethose cost functions.
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1. Introduction

In pattern recognition and machine learning, it is common practice to represent data by feature
vectors living in a Banach space, because this space provides powerful analytical techniques for
data analysis, which are usually not available for other representations.A standard technique to
solve a learning problem in a Banach space is to set up a smooth error function, which is then
minimized by using local gradient information.

But often, the data we want to learn about have no natural representation as feature vectors and
are more naturally represented in terms of finite combinatorial structures such as, for example, point
patterns, strings, trees, lattices or graphs. Such learning problems arisein a variety of applications,
which range from predicting the biological activity of a given chemical structure over finding fre-
quent substructures of a data set of chemical compounds, and predicting the 3D-fold of a protein
given its amino sequence, to natural language parsing, to name just a few.

In many applications, the setX of finite combinatorial structures is equipped with a distance
functiond : X ×X → R+, which is often provided by external knowledge. An example of such a
distance function is the edit distance on string, trees, or graphs (Levenshtein, 1966; Sanfeliu and Fu,
1983; Shapiro and Haralick, 1985; Shasha and Zhang, 1989; Zhang, 1996). The edit distance is ap-
plied to sequence alignment in bioinformatics (Gusfield, 1997), in chemoinformatics (Raymond and
Willett, 2002) by means of the maximum common subgraph isomorphism, and in computer vision
(Eshera and Fu, 1986; Myers, Wilson, and Hancock, 2000; Robles-Kelly and Hancock, 2005). Since
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distance spaces(X ,d) of structures often have less mathematical structure than Banach spaces,sev-
eral standard statistical pattern recognition techniques cannot be easily applied to(X ,d).

There are two main approaches that apply standard statistical pattern recognition techniques to a
given distance space(X ,d). The first approach directly operates on the space(X ,d). Examples are
the k-nearest neighbor classifier, the linear programming machine (Graepel, Herbrich, Bollmann-
Sdorra, and Obermayer, 1999), and pairwise clustering (Hofmann andBuhmann, 1997; Graepel and
Obermayer, 1999). These methods can cope with setsX that possess an arbitrary distance function
d as the sole mathematical structure onX . The problem is that many pattern recognition methods
require a spaceX with a richer mathematical structure. For example, large margin classifiers require
as mathematical structure a complete vector space in which distances and angles can be measured.
From an algorithmic point of view, many pattern recognition methods use local gradient information
to minimize some cost function. For these methods, Banach spaces are endowed with enough
structure to define derivatives and gradients.

The aim of the second approach is to overcome the lack of mathematical structure by embed-
ding a given distance space(X ,d) into a mathematically richer space(X ′,d′). Several methods
have been proposed, which mainly differ in the choice of the target spaceX ′ and to which ex-
tent the original distance functiond is preserved. Typical examples are embeddings into Euclidean
spaces (Cox and Cox, 2000; Luo, Wilson, and Hancock, 2003; Minh and Hofmann, 2004), Hilbert
spaces (G̈artner, 2003; Hochreiter and Obermayer, 2004, 2006; Kashima, Tsuda, and Inokuchi,
2003; Lodhi, Saunders, Shawe-Taylor, Cristianini, and Watkins, 2002), Banach spaces (Hein, Bous-
quet, and Scḧolkopf, 2005; von Luxburg and Bousquet, 2004), and Pseudo-Euclidean spaces (Her-
brich, Graepel, Bollmann-Sdorra, and Obermayer, 1998; Goldfarb, 1985; Pekalska, Paclik, and
Duin, 2001).

During this transformation, one has to ensure that the relevant information of the original prob-
lem is preserved. Under the assumption thatd is a reasonable distance function onX provided
by some external knowledge, we can preserve the relevant information by isometrically embed-
ding the original space(X ,d) into some target space(X ′,d′). Depending on the choice of the
target space this is only possible if the distance functiond satisfies certain properties. Suppose that
S = {x1, . . . ,xk} ⊆ X is a finite set andD = (di j ) is a distance matrix with elementsdi j = d(xi ,x j).
If d is symmetric and homogeneous, we can isometrically embedD into a Pseudo-Euclidean space
(Goldfarb, 1985). In the case thatd is a metric, the elements ofD can be isometrically embedded
into a Banach space. An isometric embedding ofS into a Hilbert or Euclidean space is possible
only if the matrixD2 is of negative type (Schoenberg, 1937).1

Most standard learning methods have been developed in a Hilbert space or in a Euclidean space
equipped with a Euclidean distance. But distance matrices of a finite set of combinatorial structures
are often not of negative type and therefore an isometric embedding into a Hilbert space or Euclidean
space is not possible. Another common problem of most isometric embeddings isthat they only
preserve distance relations and disregard knowledge about the inherent nature of the elements from
the original space. For example the inherent nature of graphs is that theyconsist of a finite set of
vertices together with a binary relation on that set. These information is lost, once we have settled
in the target space for solving a pattern recognition problem. But for some methods in pattern
recognition it is necessary to either directly access the original data or to recover the effects of the
operations performed in the target space. One example is the sample mean of aset of combinatorial

1. A symmetric matrixM is of negative type ifxTMx <= 0 for all x with xT1 = 0.
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structures (Jain and Obermayer, 2008; Jiang, Münger, and Bunke, 2001), which is a fundamental
concept for several methods in pattern recognition such as principal component analysis and central
clustering (Gold, Rangarajan, and Mjolsness, 1996; Günter and Bunke, 2002; Lozano and Escolano,
2003; Jain and Wysotzki, 2004; Bonev, Escolano, Lozano, Suau, Cazorla, and Aguilar, 2007; Jain
and Obermayer, 2008). The sample mean of a set of vectors is the vector of sample means of
each component of those vectors. Similarly, a sample mean of a set of combinatorial structures
is a combinatorial structure composed of the sample means of the constituents parts the structure
is composed of. Another example is finding frequent substructures in a given set of combinatorial
structures (Dehaspe, Toivonen, and King, 1998; Yan and Han, 2002). For such problems a principled
framework is missing.

In this contribution, we present a theoretical framework that isometrically and isostructurally
embeds certain metric spaces(X ,d) of combinatorial structures into a quotient space(X ′,d′) of a
Euclidean vector space. Instead of discarding information about the inherent nature of the original
data, we can weaken the requirement that the embedding of(X ,d) into (X ′,d′) should be isometric
for all metrics. Here, we focus on metricsd that are related to the pointwise maximum of a set of
Euclidean distances. This restriction is acceptable from an application pointof view, because we
can show that such metrics on combinatorial structures and their related similarity functions are a
common choice of proximity measure in a number of different applications (Gold, Rangarajan, and
Mjolsness, 1996; Holm and Sander, 1993; Caprara, Carr, Istrail, Lancia, and Walenz, 2004).

The quotient space(X ′,d′) preserves the distance relations and the nature of the original data.
The related Euclidean space provides the mathematical structure that givesrise to a rich arsenal
of learning methods. The goal of the proposed approach is to adopt standard learning methods
based on local gradient information to learning on structures in the quotientspaceX ′. In order to
do so, we need an approach that allows us to formally adopt geometrical and analytical concepts
for finite combinatorial structures. The proposed approach maps combinatorial structures to equiv-
alence classes of vectors, where the elements of the same equivalence class are different vector
representations of the same structure. Mapping a combinatorial structure toan equivalence class of
vectors rather than to a single vector provides a link to the geometry of Euclidean spaces and at the
same time preserves the nature of the original data. The resulting quotient set (the set of equiva-
lence classes) leads to the more abstract notion ofT -space. Formally, aT -spaceXT over a vector
spaceX is a quotient set ofX , where the equivalence classes are the orbits of the group action of
a transformation groupT on X . We show thatT -spaces encompass a variety of different classes
of combinatorial structures, which also includes vectors. Thus, the theory of T -spaces generalizes
the vector space concept to cope with combinatorial structures and aims at retaining the geometrical
and algebraic properties of a vector space to a certain extent.

We present case studies to illustrate that the theoretical framework can be applied to machine
learning applications.

This paper is organized as follows: Section 2 provides an overview about the basic idea of the
proposed approach. In Section 3, we studyT -spacesXT over metric, normed, and inner product
vector spacesX . We show that the gradient of a smooth function on structures satisfies the necessary
condition of optimality and is a well-defined structure pointing in direction of steepest ascent. In
Section 4, we use the theory ofT -spaces to formulate selected problems in structural pattern recog-
nition as continuous optimization problems. We show that the proposed cost functions are locally
Lipschitz and therefore nonsmooth on a set of Lebesgue measure zero.For this class of functions,
we can apply methods from nonsmooth optimization. As a case study, we discuss in Section 5 the
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Figure 1: Illustration of a sample meanX of the three graphsD = {X1,X2,X3}. Vertices and edges
of X that occur in all of the three example graphs fromD are highlighted with bold
lines. All other vertices and edges ofX are annotated with the relative frequency of their
occurrence inD. By annotating the highlighted vertices and edges ofX with 1, we obtain
a weighted graph.

problem of determining a sample mean of a set of structures including its application to central
clustering. As structures we consider point patterns and attributed graphs. Section 6 concludes.
Technical parts and proofs have been delegated to the appendix.

2. An Example

The purpose of this section is to provide an overview about the basic idea of the proposed approach.
To this end, we consider the (open) problem of determining the sample mean ofgraphs as a sim-
ple introductory example. The concept of a sample mean is the theoretical foundation for central
clustering algorithms (see Section 4.3 and references therein).

A directed graphis a pairX = (V,E) consisting of a finite setV of verticesand a setE =
{(i, j) ∈V ×V : i 6= j} of edges.

By G we denote the set of all directed graphs. Suppose that

D = (X1, . . . ,Xk)

is a collection ofk not necessarily distinct graphs fromG . Our goal is to determine a sample mean of
X . Intuitively, a sample mean averages the occurrences of vertices and edges within their structural
context as illustrated in Figure 1.

As the sample mean of integers is not necessarily an integer, the sample mean ofD is not
necessarily a directed graph fromG (see Figure 1). Therefore, we extend the setG of directed
graphs to the setG [R] of weighted directed graphs. Aweighted directed graphis a triple X =
(V,E,α) consisting of a directed graph(V,E) and aweight functionα : V ∪V → R such that each
edge has nonzero weight. A weighted directed graphX of order|V| = n is completely specified by
its weight matrix X= (xi j ) with elementsxi j = α(i, j) for all i, j ∈ {1, . . . ,n}.

The standard method

X =
1
k

k

∑
i=1

Xi

to determine the sample meanX of D fails, because a well-defined addition of directed graphs
is unknown as indicated by Figure 2. Therefore, we consider an equivalent characterization of
the standard notion of sample mean. Following Jiang, Münger, and Bunke (2001), we adopt the
optimization formulation of the standard sample mean. For vectors, the sample meanminimizes the
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sum of squared Euclidean distances from the data points. In line with this formulation, we define a
sample mean ofD as a global minimum of the cost function

F(X) =
k

∑
i=1

D(X,Xi)
2, (1)

whereD is some appropriate distance function onG [R] that measures structural consistent and
inconsistent parts of the graphs under consideration.

In principle, we could use any ”well-behaved” distance function.2 Here, we first consider dis-
tance functions on structures that generalize the Euclidean metric, because Euclidean spaces have a
rich repository of analytical tools. To adapt at least parts of these tools for structure spaces, it seems
to be reasonable to relate the distance functionD in Equation (1) to the Euclidean metric. From an
application point of view, this restriction is acceptable for the following reasons: (i) Geometric dis-
tance functions on graphs and their related similarity functions are a common choice of proximity
measure in a number of different applications (Gold, Rangarajan, and Mjolsness, 1996; Holm and
Sander, 1993); and (ii) it can be shown that a number of structure-based proximity measures like,
for example, the maximum common subgraph (Raymond and Willett, 2002) or maximumcontact
map overlap problem for protein structure comparison (Goldman, Istrail, and Papadimitriou, 1999)
can be related to an inner product and therefore to the Euclidean distance.

The geometric distance functionsD we consider here are usually defined as the maximum of a
set of Euclidean distances. This definition implies that (i) the cost functionF is neither differentiable
nor convex; (ii) the sample mean of graphs is not unique as shown in Figure2; and (iii) determining
a sample mean of graphs is NP-complete, because evaluation ofD is NP-complete. Thus, we are
faced with an intractable combinatorial optimization problem, where, at a first glance, a solution has
to be found from an uncountable infinite set. In addition, multiple local minima of thecost function
F complicates a characterization of a structural mean.

To deal with these difficulties, we embed graphs into aT -space as we will show shortly. The
basic idea is to view graphs as equivalence classes of vectors via their weight matrices, where the
elements of the same equivalence class are different vector representations of the same structure.
The resulting quotient set (the set of equivalence classes) leads to the more abstract notion ofT -
space. Formally, aT -spaceXT over a vector spaceX is a quotient set ofX , where the equivalence
classes are the orbits of the group action of a transformation groupT onX . The theory ofT -spaces
generalizes the vector space concept to cope with combinatorial structures and aims at retaining the
geometrical and algebraic properties of a vector space to a certain extent.In doing so, theT -space
concept not only clears the way to approach the structural version of the sample mean in a principled
way, but also generalizes standard techniques of learning in structureddomains.

2.1 The Basic Approach

To constructT -spaces, we demand that all graphs are of bounded ordern, where the boundn can
be chosen arbitrarily large. For a pattern recognition application this is not aserious restriction,
because we can assume that the data graphs of interest are of boundedorder. In the second step, we
align each weighted directed graphX of orderm< n to a graphX′ of ordern by addingp = n−m

2. As we will see later, a distance function is well-behaved if it is locally Lipschitz.
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Figure 2: Illustration of one key problem in the domain of graphs: the lack ofa well-defined ad-
dition. The graphX1 can be added toX2 with respect toD(X1,X2) in two different ways
as indicated by the highlighted subgraphs ofY andZ. As a consequence,Y andZ can be
regarded as two distinct sample means ofX1 andX2.

isolated vertices. The weighted adjacency matrix of the aligned graphX′ is then of the form

X′ =

(
X 0m,p

0p,m 0p,p

)
,

whereX is the weighted adjacency matrix ofX, and 0m,p, 0p,m, 0p,p are padding zero matrices. By
G [R,n] we denote the set of weighted directed graphs of bounded ordern.

For practical issues, it is important to note that restricting to structures of bounded ordern and
alignment of structures are purely technical assumptions to simplify mathematics.For machine
learning problems, these limitations should have no practical impact, because neither the boundn
needs to be specified nor an alignment of all graphs to an identical order needs to be performed.
In a practical setting, we cancel out both technical assumptions by considering structure preserving
mappings between the vertices ofX andY. Thus, when applying the theory, all we actually require
is that the graphs are finite. We will return to this issue later, when we have provided the necessary
technicalities.

The positions of the diagonal elements ofX determine an ordering of the vertices. Conversely,
different orderings of the vertices may result in different matrices. Since we are interested in the
structure of a graph, the ordering of its vertices does not really matter. Therefore, we consider two
matricesX andX′ as being equivalent, denoted byX ∼ X′, if they can be obtained from one another
by reordering the vertices. Mathematically, the equivalence relation can bewritten as

X ∼ X′ ⇔ ∃P∈ T : PTXP= X′,

whereT denotes the set of all(n×n)-permutation matrices.3 The setT together with the function
compositionT ◦T ′ for all T,T ′ ∈ T forms an algebraic group. By[X] we denote the equivalence
class of all matrices equivalent toX. Occasionally, we also refer to[X] as the equivalence class of
the graphX.

There aren! different orderings of the vertices for an arbitrary graphX with n vertices. Each
of then! orderings determines a weighted adjacency matrix. The equivalence class of X consist of
all its different matrix representation. Note that different orderings of the vertices may result in the
same matrix representation of the graph.

3. The letterT stands for transformation.
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Figure 3: Illustration of two graphs with all possible orderings of their vertices. The number at-
tached to the vertices represents their order (and arenot attributes). The ordered graphs
are grouped together according to their matrix representations. All ordered graphsX1-
X6 yield the same weighted adjacency matrix. In the second row, the pairs(Y1,Y2),
(Y3,Y4), and(Y5,Y6) result in identical matrices.

Example 1 Consider the graphs X= X1 and Y= Y1 depicted in the first column of Figure 3.
The numbers annotated to the vertices represent an arbitrarily chosen ordering. Suppose that all
vertices and edges have attribute1. Then the weighted adjacency matrices of X and Y given the
chosen ordering of their vertices are of the form

X =




1 1 1
1 1 1
1 1 1



 and Y=




1 0 1
0 1 1
1 1 1





The first and second row of Figure 3 show the3! = 6 different orderings of X and Y, respectively.
The matrix representation of X is independent of its ordering, that is, each reordering of the

vertices of X results in the same matrix representation. Hence, the equivalence class of X consists
of the singleton X.

The6 different orderings of graph Y result in three different matrix representations. The equiv-
alence class of Y is of the form

[Y] =









1 0 1
0 1 1
1 1 1



 ,




1 1 1
1 1 0
1 0 1



 ,




1 1 0
1 1 1
0 1 1








,

where the first matrix refers to the ordering of Y= Y1 and Y2, the second to Y3 and Y4, and the
third to Y5 and Y6.

Since we may regard matrices as vectors, we can embedX into the vector spaceX = R
n×n as

the set[X] of all vector representations ofX. We call the quotient set

XT = X /∼ =
[

X∈X
[X]

consisting of all equivalence classesT -spaceover therepresentation spaceX . Figure 4 depicts an
embedding of a graph into a vector space.
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x’ = (4, 1, 1, 2)      T
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Figure 4: Illustration of an embedding of a graph of order 2. The attributesof the vertices are 2
and 4, and the attribute of the bidirectional edge is 1. Depending on the ordering of the
vertices, we obtain two different matrix representations. Stacking the columns of the
matrix to a 4-dimensional vector yields the vector representationsx andx′. The plot in
the last column depicts both representation vectors by considering their first and fourth
dimension. Thus a graph is represented as a set of vectors in some vectorspace.

3. T -spaces

In this section, we formalize the ideas onT -spaces of the previous section. We consider a more
general setting in the sense that we include classes of finite structures other than directed graphs
with attributes from arbitrary vector spaces rather than weights fromR. The chosen approach that
allows to formally adopt geometrical and analytical concepts makes use of thenotion ofr-structures.
We introducer-structures in Section 3.1. Based on the notion ofr-structures, we develop the theory
of T -spaces in Sections 3.2 and 3.3. For a detailed technical treatment ofT -spaces we refer to
Appendix A and B. Finally, Section 3.4 considers optimization of locally Lipschitzfunctions on
T spaces.

3.1 Attributed r-Structures

A r-structure is a pairX = (P ,R ) consisting of a finite setP 6= /0, and a subsetR ⊆ P r . The
elements ofP are thepointsof the r-structureX, the elements ofR are itsr-ary relations. A r-
structure with pointsP is said to be ar-structureonP . For convenience, we occasionally identify
the structureX onP with its relationR .

The following examples serve to indicate that several types of combinatorialstructures can be
regarded asr-structures. We first show that graphs are 2-structures. For this, weuse the following
notation: Given a finite setP of points, let

P [2] = {(p,q) : p,q∈ P , p 6= q}

be the set of tuples fromP 2 without diagonal elements(p, p).

Example 2 (Graphs) Let P be a finite set of points, and let X= (P ,R ) be a 2-structure with
R ⊆ P 2.
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1. X is adirected graphif R ⊆ P [2].

2. X is asimple graphif R ⊆ P [2] such that(p,q) ∈ R implies(q, p) ∈ R .

3. X is asimple graph with loopsif R ⊆ P 2 such that(p,q) ∈ R implies(q, p) ∈ R . Loops are
edges(p, p) with the same endpoints.

In a similar way, we can define further types of graphs such as, for example, trees, directed
acyclic graphs, complete graphs, and regular graphs as 2-structuresby specifying the corresponding
properties onR .

The next example shows that elements of a set are 1-structures.

Example 3 (Set of Elements)Let P be a finite set of points. TheelementsE(P ) = (P ,R ) is a
1-structure withR = P , that is its relations are the elements ofP .

To introduce analytical concepts to functions onr-structures, we shift from discrete to contin-
uous spaces by introducing attributes. LetA = R d denote the set of attributes. AnA-attributed
r-structure is a triple Xα = (P ,R ,α) consisting of ar-structureX = (P ,R ) and anattribution
α : P r → A with α(p) 6= 0 if, and only if, p∈ R . Besides the technical argument, attributions also
have a practical relevance, because they are often used to enhance descriptions of structured objects.
The next example collects some attributed structures.

Example 4 LetP be a finite set of order n.

• Attributed graphs: Let A = R
d. An attributed graphis anA-attributed 2-structure Gα =

(P ,R ,α), where G= (P ,R ) is a simple graph with loops andα : R → A is an attribution
that assigns each vertex (loop) and each edge a non-zero feature vector.

• Point patterns: Let A = R
2. A point patternis anA-attributed1-structure Pα = (P ,R ,α),

where E(P ) = (P ,R ) are the elements ofP and α : R → A is an attribution that assigns
each element p∈ P its coordinatesα(p).

The next example shows that vectors are attributed 1-structures. Hence, all results onr-structures
are also valid in vector spaces.

Example 5 LetA be a vector space. Suppose thatP is of order n= 1. A vectoris anA-attributed
1-structure xα = (P ,R ,α), where E(P ) = (P ,R ) is the single element ofP and α : R → A is
an attribution that maps a singleton to a vector. Hence, the set of all possiblestructures xα on P
reproduces the vector spaceA .

Note that we may assume without loss of generality that the attributes ofr-relations fromR are
nonzero, that isα(R ) ⊆ A \{0}. If the zero vector 0 is required as a valid attribute of ar-relation,
we can always change, for example, to the vector spaceA ′ = A×R and redefineα as

α′ : P r → A×R, p 7→
{

(0,0) : p∈ P r \R
(α(p),1) : p∈ R

.

An A-attributedr-structureX = (P ,R ,α) is completely specified by itsmatrix representation
X = (xp1...pr ) with elements

xp1...pr = α(p1, . . . , pr)
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for all p= (p1, . . . , pr)∈P r . For example, the matrix representation of a simple graph is its ordinary
adjacency matrix.

Neither the ”nature” of the pointsP nor the particular form of ther-relationsR of a givenr-
structureX = (P ,R ,α) do really matter. What matters is the structure described byR . Suppose
that X is of order|P | = n. To abstract from the ”nature” of points, we chooseZn = {1, . . . ,n} as
our standard set of points. The particular form ofR depends on the numbering of the points from
Zn. To abstract from the particular form ofR , we identify sets ofr-relations that can be obtained
from one another by renumbering the points. Mathematically, we can express these sets by means
of isomorphism classes. Two A-attributedr-structuresX = (P ,R ,α) and X′ = (P ′,R ′,α′) are
isomorphic, written asX ≃ X′ if there is a bijective mappingφ : P → P ′ satisfying

1. p = (p1, . . . , pr) ∈ R ⇔ φ(p) = (φ(p1), . . . ,φ(pr)) ∈ R ′

2. α(p) = α′ (φ(p)) for all p∈ R .

The isomorphismclass[X] of X consists of allA-attributedr-structures onP = Zn that are isomor-
phic toX. By Sn,r

A we denote the set of allA-attributedr-structures onP = Zn and by
[
Sn,r
A

]
the set

of all isomorphism classes of structures fromSn,r
A .

We can identify anyr-structureX = (Zm,R ,α) of orderm< n with a structure of ordern by
addingq = n−m isolated points. The aligned structure is then of the formX′ = (Zn,R ,α′), where

α′ (p) =

{
α(p) : p∈ R

0 : otherwise
.

Using alignment, we can regardSn,r
A as the set ofA-attributedr-structures of bounded ordern.

Similarly, we may think of
[
Sn,r
A

]
as the set of abstractA-attributedr-structures of bounded order

n. Again recall that specifying a boundn and aligning smaller structures to structures of ordern are
purely technical assumptions to simplify mathematics.

3.2 T -Spaces

Let X = R
n be then-dimensional Euclidean vector space, and letT be a subgroup of the group of

all n×n permutation matrices. Then the binary operation

· : T ×X → X , (T,x) 7→ Tx

is a group action ofT onX . Forx∈ X , theorbit of x is denoted by

[x]T = {Tx : T ∈ T } .

If no misunderstanding can occur, we write[x] instead of[x]T .
A T -spaceoverX is the orbit spaceXT = X /T of all orbits ofx ∈ X under the action ofT .

We callX therepresentation spaceof XT . By

µ : X → XT

we denote themembership functionthat sends vector representations to the structure they describe.
T -spaces are a convenient abstraction ofr-structures in order to adopt geometrical and analytical

concepts. To see this, letA = R
d and letX = AN, whereN = nr . Via the matrix representations,
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we can identifyr-structures fromSn,r
A as vectors fromX . Obviously, we have a relaxation in the

sense thatSn,r
A ⊆ X and

[
Sn,r
A

]
⊆ XT such thatµ restricted onSn,r

A sends vector representations to the
structures they represent. Note that there are structures inXT that are not well-definedr-structures
from

[
Sn,r
A

]
. Hence, care must be taken when applyingT -spaces.

The following notations, definitions, and results are useful to simplify technicalities. We use
capital lettersX,Y,Z, . . . to denote the elements ofXT . Suppose thatX = µ(x) for somex∈ X . Then
we identifyX with [x] and make use of sloppy notations like, for example,x∈ X to denotex∈ [x].4

Let f : X ×X → R be a symmetric function satisfyingf (x,y) = f (y,x) for all x,y∈ X . Then f
induces symmetric functions

F∗ : XT ×XT → R, (X,Y) 7→ max{ f (x,y) : x∈ X,y∈Y},
F∗ : XT ×XT → R, (X,Y) 7→ min{ f (x,y) : x∈ X,y∈Y} .

SinceT is finite, the orbits[x] of x are finite. Hence,F∗ andF∗ assume an extremal value. We call
F∗ maximizerandF∗ minimizerof f onXT ×XT .

An inner product〈·, ·〉 onX gives rise to a maximizer of the form

〈·, ·〉∗ : XT ×XT → R, (X,Y) 7→ max{〈x,y〉 : x∈ X,y∈Y} .

We call 〈·, ·〉∗ inner T -product induced by〈·, ·〉. The innerT -product isnot an inner product,
because the maximum-operator in the definition of〈·, ·〉∗ does not preserve the bilinearity property
of an inner product. But we can show that an innerT -product satisfies some weaker properties.

1

3

1

1

2

4

3     1

1     1

1     1

1     3

embedding

x

x’

y’

y

x  = (2, 1, 1, 4)      T

x’ = (4, 1, 1, 2)

y  = (3, 1, 1, 1)      T

y’ = (1, 1, 1, 3)      T

matrices vectorsgraphs

Y

      T

2     1

1     4

4     1

1     2
X

Figure 5: Illustration of two example graphs and their embeddings in a vector space (see Figure 4
for a detailed description).

Example 6 Consider the graphs X and Y from Figure 5. We have

〈X,Y〉∗ =
〈
x,y′
〉

=
〈
x′,y
〉

= 16.

4. The notation is sloppy, becauseX is an element inXT and not a set, whereas[x] is a set of equivalent elements from
X .
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Thus, to determine〈X,Y〉∗, we select vector representationsx̃ of X andỹ of Y that have closest
angle and then evaluate〈x̃, ỹ〉.

Any inner product spaceX is a normed space with norm‖x‖ =
√
〈x,x〉 and a metric space with

metricd(x,y) = ‖x−y‖. The norm‖·‖ and the metricd onX give rise to minimizers‖·‖∗ of ‖·‖
andD∗ of d onXT .

Since elements fromT preserve lengths and angles, we have

‖Tx‖ = ‖Tx−0‖ = ‖Tx−T0‖ = ‖x−0‖ = ‖x‖

for all T ∈ T . Hence,‖X‖∗ is independent from the choice of vector representation. We call the
minimizer‖·‖∗ theT -norm induced by the norm‖·‖. A T -norm is related to an innerT -product in
the same way as a norm to an inner product. We have

1. 〈X,X〉∗ = 〈x,x〉 for all x∈ X.

2. ‖X‖∗ =
√
〈X,X〉∗.

Note that aT -norm isnot a norm, because aT -space has no well defined addition. But we can
show that aT -norm has norm-like properties.

Example 7 Consider the graphs X and Y from Figure 5. To determine theirT -norm, it is sufficient
to compute the standard norm of an arbitrarily chosen vector representation. Hence, we have

‖X‖∗ = ‖x‖ =
∥∥x′
∥∥=

√
22,

‖Y‖∗ = ‖y‖ =
∥∥y′
∥∥=

√
12.

The minimizerD∗ of the Euclidean metricd(x,y) = ‖x−y‖ is also a metric. To distinguish from
ordinary metrics, we call the minimizerD∗ of a Euclidean metricd onX theT -metric induced by
d. We can express the metricD∗ in terms of〈·, ·〉∗ as follows:

D∗(X,Y)2 = ‖X‖2
∗ −2〈X,Y〉∗+ ‖Y‖2

∗ .

Example 8 Consider the graphs X and Y depicted in Figure 5. To determine D∗(X,Y), we select
vector representations̃x of X andỹ of Y that have minimal distance d(x̃, ỹ). Then we find that

D∗(X,Y) = d(x,y′) = d(x′,y) =
√

2.

3.3 Functions onT -Spaces

A T -functionis a function of the form

F : XT → R,

whereXT is aT-space overX . Instead of considering theT -functionF , it is often more convenient
to consider itsrepresentation function

f : X → R, x 7→ F ◦µ(x),
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which is invariant under transformations from elements ofT .

Here, the focus is onT -functions that are locally Lipschitz. AT -function is locally Lipschitz
if, and only if, its representation function is locally Lipschitz. We refer to Appendix C for basic
definitions and properties from nonsmooth analysis of locally Lipschitz functions.

Suppose thatF is a locally Lipschitz function with representation functionf . By Rademacher’s
Theorem 23,f is differentiable almost everywhere. In addition, at non-differentiable points, f
admits the concept of generalized gradient. The concepts differentiability and gradient can be trans-
fered toT -spaces in a well-defined way. Assume thatf is differentiable at some pointx∈ X with
gradient∇ f (x). Then f is differentiable at all pointsTx∈ X with T ∈ T and the gradient off atTx
is of the form

∇ f (Tx) = T∇ f (x).

We sayF is T -differentiable atX, if its representation functionf is differentiable at an arbitrary
vector representationx∈ X. The well-defined structure

∇F(X) = µ( f (x))

is theT -gradientof F atX pointing in direction of steepest ascent.

3.4 Optimization of Locally Lipschitz T -Functions

A standard technique in machine learning and pattern recognition is to pose a learning problem as
an optimization problem. Here, we consider the problem of solving optimization problems of the
form

(P1)
minimize F : XT → R, X 7→ ∑k

i=1Fi(X)

subject to X ∈UT

where the component functionsFi are locally LipschitzT -functions andUT ⊂ XT is the feasible
set of admissible solutions. Then according to Prop. 21, the cost functionF is also locally Lipschitz,
and we can rewrite (P1) to an equivalent optimization problem

(P2)
minimize f : X → R, x 7→ ∑k

i=1 fi(x)
subject to x∈U

where the component functionsfi are the representation functions ofFi andU ⊆ X is the feasible
set withµ(U) =UT . Hence,f is the representation function of the locally LipschitzT -functionF
and therefore also locally Lipschitz.

To minimize locally Lipschitz functions, the field of nonsmooth optimization offers a number
of techniques. A survey of classical methods can be found in Mäkel̈a and Neittaanm̈aki (1992);
Shor (1985). As an example, we describe subgradient methods, which are easy to implement and
well-suited to identify the difficulties arising in nonsmooth optimization. Algorithm 1 outlines the
basic procedure:
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Algorithm 1 (Basic Incremental Algorithm)

choose starting pointx1 ∈U and sett := 0
repeat

setx̃t,1 := x1

for i = 1, . . . ,k do
direction finding:

determinedt,i ∈ X andη > 0 s.t.x̃t,i +ηdt,i ∈U and

fi(x̃t,i +ηdt,i) < fi(x̃t,i)

line search:
find step sizeηt,i > 0 such that ˜xt,i +ηt,idt,i ∈U and

ηt,i ≈ argmin
η>0

fi(x̃t,i +ηdt,i)

updating:
setx̃t,i+1 := x̃t,i +ηt,idt,i

Setxt+1 := x̃t,k+1

Sett := t +1
until some termination criterion is satisfied

To explain the algorithm, we first consider the case thatf is smooth andU = X . In the step
direction finding, we generate a descent direction by exploiting the fact that the direction opposite
to the gradient is locally the steepest descent direction. Line search usually employs some efficient
univariate smooth optimization method or polynomial interpolation. The necessary condition for
a local minimum yields a termination criterion. Now suppose thatf is locally Lipschitz. Thenf
admits a generalized gradient at each point. The generalized gradient coincides with the gradient
at differentiable points and is a convex set of subgradients at non-differentiable points. For more
details, we refer to Appendix C.

Subgradients, the elements of a generalized gradient, play a very importantrole in algorithms
for non-differentiable optimization. The basic idea of subgradient methodsis to generalize the
methods for smooth problems by replacing the gradient by an arbitrary subgradient. In the direction
finding step, Algorithm 1 computes an arbitrary subgradientd ∈ ∂ f (x) at the current pointx. If
f is differentiable atx, then the subgradientd coincides with the gradient∇ f (x). If in addition
d 6= 0, then the opposite direction−d is the direction of steepest descent. On the other hand, iff
is not differentiable atx, then−d is not necessarily a direction of descent off at x. But sincef is
differentiable almost everywhere by Rademacher’s Theorem 23, the set of non-differentiable points
is a set of Lebesgue measure zero.

Line search uses predetermined step sizesηt,i , instead of an exact or approximate line search
as in the gradient method. One reason for this is that the direction−d computed in the direction
finding step is not necessarily a direction of descent. Thus, the viability of subgradient methods
depend critically on the sequence of step sizes. One common choice are stepsizes that satisfy

∞

∑
t=0

ηt = ∞ and
∞

∑
t=0

η2
t < ∞,
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whereηt = ηt,1.
To formulate a termination criterion, we could—in principle—make use of the following nec-

essary condition of optimality.

Theorem 1 Let f : X → R be locally Lipschitz at its minimum (maximum) x∈ R . Then

0∈ ∂ f (x).

At non-differentiable points, however, an arbitrary subgradient provides no information about the
existence of the zero in the generalized gradient∂ f (x). Therefore, when assuming an instantly
decreasing step size, one reliable termination criterion stops the algorithm as soon as the step size
falls below a predefined threshold.

Since the subgradient method is not a descent method, it is common to keep track of the best
point found so far, which is the one with smallest function value. For further advanced and more so-
phisticated techniques to minimize locally Lipschitz functions, we refer to Mäkel̈a and Neittaanm̈aki
(1992); Shor (1985).

We conclude this section with a remark on determining intractable subgradients ina practical
setting.

3.4.1 APPROXIMATING SUBGRADIENTS

Nonsmooth optimization as discussed in Mäkel̈a and Neittaanm̈aki (1992); Shor (1985) assumes
that at each pointx we can evaluate at least one subgradienty∈ ∂ f (x) and the function valuef (x).
In principle, this should be no obstacle for the class of problems we are interested in. In a practical
setting, however, evaluating a subgradient as descent direction can becomputationally intractable.
For example, the pattern recognition problems described later in Section 4.2-4.5 are all computa-
tionally efficient for structures like point patterns, but NP-hard for structures like graphs. A solution
to this problem is to approximate a subgradient by using polynomial time algorithms.An approx-
imated subgradient corresponds to a direction that is no longer a subgradient of the cost function.
In particular, at smooth points, an approximated (sub)gradient (hopefully) corresponds to a descent
direction close to the direction of steepest descent. We call Algorithm 1 anapproximate incremen-
tal subgradient methodsif the direction finding step produces directions that are not necessarily
subgradients of the corresponding component functionfi .

We replace the subgradient by a computationally cheaper approximation as adirection of de-
scent. In a computer simulation, we show that determining a sample mean of weighted graph is
indeed possible when using approximate subgradient methods.

Suppose thatXT is theT -space of simple weighted graphs overX = R
n×n, and letUT ⊆ XT

be the subset of weighted graphs with attributes from the interval[0,1]. Our goal is to determine a
sample mean of a collection of simple weighted graphsD = {X1, . . . ,Xk} ⊆UT .

Given a representationx of X, the computationally intractable task is to find a representationxi

of Xi such that(x,xi) ∈ supp
(
d2

Xi
|x
)
. This problem is closely related to the problem of computing

the distanceD∗(X,Xi), which is known to be an NP-completegraph matching problem. Hence,
in a practical setting, exact algorithms that guarantee to find a subgradientas descent direction are
useless for all but the smallest graphs. A solution to this problem is to approximate a subgradi-
ent by using polynomial time algorithms. An approximated subgradient corresponds to a direction
that is no longer a subgradient of the cost function. In particular, at smooth points, an approxi-
mated (sub)gradient (hopefully) corresponds to a descent direction close to the direction of steepest
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descent. We call Algorithm 1 anapproximate incremental subgradient methodsif the direction find-
ing step produces directions that are not necessarily subgradients of the corresponding component
function fi .

4. Pattern Recognition inT -Spaces

This section shows how the framework ofT -spaces can be applied to solve problems in structural
pattern recognition. We first propose a generic scheme for learning in distance spaces. Based on
this generic scheme, we derive cost functions for determining a sample mean, central clustering,
learning large margin classifiers, supervised learning in structured inputand/or output spaces, and
finding frequent substructures. Apart from the last problem, all othercost functions presented in this
section extend standard cost functions from the vector space formalism toT -spaces in the sense that
we recover the standard formulations when regarding vectors asr-structures.

4.1 A Generic Approach: Learning in Distance Spaces

Without loss of generality, we may assume that(XT ,D) is a distance space, whereD is either
the metricD∗ induced by the Euclidean metric onX or another (not necessarily metric) distance
function that is more appropriate for the problem to hand. A generic approach to solve a learning
problem(P) in XT is as follows:

1. Transform(P) to an optimization problem, where the cost functionF is a function defined on
XT .

2. Show thatF is locally Lipschitz.

3. OptimizeF using methods from nonsmooth optimization.

SinceXT is a metric space over an Euclidean vector space, we can apply subgradient methods or
other techniques from nonsmooth optimization to minimize locally LipschitzT -functions onXT .
If the cost functionF depends on a distance measureD, we demand thatD is locally Lipschitz to
ensure the locally Lipschitz property forF .

4.2 The Sample Mean ofk-Structures

The sample mean of structures is a basic concept for a number of methods in statistical pattern
recognition. Examples include visualizing or comparing two populations of chemical graphs, and
central clustering of structures (Section 4.3).

We define a sample mean of thek elementsX1, . . . ,Xk ∈ XT as a minimizer of

minimize F(X) = ∑k
i=1D(X,Xi)

2

subject to X ∈ XT
,

whereD is a distance function onXT . If D is locally Lipschitz, thenF is also locally Lipschitz by
Prop. 21.

First approaches to study averages of graphs have been pursued by Jiang, M̈unger, and Bunke
(2001). They considered the set median and generalized median of a sample of graphs as a discrete
optimization problem with a similar cost function as for the sample mean. To minimize the cost
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function, they applied a genetic algorithm to graphs with a small number of discrete attributes. In
this contribution, we shift the problem of determining a sample mean from discrete to continuous
optimization.

4.3 Central Clustering of k-Structures

Suppose that we are given a training sampleX = {X1, . . . ,Xm} consisting ofm structuresXi drawn
from the structure spaceXT . The aim of central clustering is to findk cluster centersY = {Y1, . . . ,Yk}
⊆ XT such that the following cost function

F(M,Y ,X ) =
1
m

k

∑
j=1

m

∑
i=1

mi j D(Xi ,Yj),

is minimized with respect to a given distortion measureD. The matrixM = (mi j ) is a (m× k)-
membership matrix with elementsmi j ∈ [0,1] such that∑ j mi j = 1 for all i = 1, . . . ,m.

If the distortion measure is locally Lipschitz, thenF as a function of the cluster centersYj is
locally Lipschitz by Prop. 21.

A number of central clustering algorithms for graphs have been devised recently (Gold, Ran-
garajan, and Mjolsness, 1996; Günter and Bunke, 2002; Lozano and Escolano, 2003; Jain and
Wysotzki, 2004; Bonev, Escolano, Lozano, Suau, Cazorla, and Aguilar, 2007). In experiments
it has been shown that the proposed methods converge to satisfactory solutions, although neither the
notion of cluster center nor the update rule of the cluster centers is well-defined. Because of these
issues one might expect that central clustering algorithm could be prone tooscillations halfway be-
tween different cluster centers of the same cluster. An explanation why thisrarely occurs can now
be given. As long as the cost function is locally Lipschitz, almost all points aredifferentiable. For
these points the update rule is well-defined. Hence, it is very unlikely that theaforementioned oscil-
lations occur over a longer period of time, when using an optimization algorithm that successively
decreases the step size.

4.4 Large Margin Classifiers

Consider the function
hW,b : XT → R, X 7→ 〈W,X〉∗+b,

whereW ∈ XT is theweight structureandb ∈ R the bias. The discriminanthW,b implements a
two-category classifier in the obvious way: Assign an input structureX to the class labeled+1 if
hW,b(X) ≥ 0 and to−1 if hW,b(X) < 0.

Suppose thatZ = {(X1,y1), . . . ,(Xk,yk)} is a training sample consisting ofk training structures
Xi ∈ XT together with corresponding labelsyi ∈ {±1}. We say,Z is T -separableif there exists a
W0 ∈ XT andb0 ∈ R with

h∗(X) = 〈W0,X〉∗+ b0 = y

for all (X,y) ∈ Z.
To find an ”optimal” discriminant that correctly classifies the training examples,we construct

the cost function

F(W,b,α) =
1
2
‖W‖2

∗−
k

∑
i=1

αi (yi (〈W,Xi〉∗+ b)−1),
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where theαi ≥ 0 are the Lagrangian multipliers. The representation function ofF is of the form

f (w,b,α) =
1
2
‖w‖2−

k

∑
i=1

αiyi (si (w,b)−1),

wheresi(w,b) = maxT∈T 〈w,Txi〉+ b. The elementsw∈W andxi ∈ Xi are arbitrary. The first term
of f is smooth and convex (and therefore locally Lipschitz). The locally Lipschitzproperty and
convexity of the second term follows from the rules of calculus for locally Lipschitz functions (see
Section C) and Prop. 20. Hence,f is locally Lipschitz and convex.

The structurally linear discriminants sets the stage to (i) explore large margin classifiers in struc-
ture spaces and (ii) construct neural learning machines for adaptive processing of finite structures.
Subgradient methods for maximum margin learning has been applied in Ratliff, Bagnell, and Zinke-
vich (2006) for predicting structures rather than classes. Finally note that the innerT -product as a
maximizer of a set of similarities is not a kernel (Gärtner, 2005).

4.5 Supervised Learning

The next application example generalizes the problem of learning large margin classifiers fork-
structures by allowingT -spaces as input and as output space. Note that the in- and output spaces
may consist of different classes ofk-structures, for example, the input patterns can be feature vectors
and the output space can be the domain of graphs.

Assume that we are given a a training sampleZ = {(X1,Y1), . . . ,(Xk,Yk)} consisting ofk training
structuresXi drawn from someT -spaceXT overX together with corresponding output structuresYi

from aT ′-spaceYT ′ overY . Given the training dataZ, our goal is to find an unknown functional
relationship (hypothesis)

H : XT → YT

from a hypothesis spaceH that best predicts the output structures of unseen examples(X,Y) ∈
XT ×YT according to some cost function

F(H,Z) =
1
k

k

∑
i=1

L(H(Xi),Yi),

whereL : YT ×YT → R denotes the loss function.
The representation function ofF is of the form

f (h,Z) =
1
k

k

∑
i=1

ℓ(h(xi),yi),

whereℓ : Y ×Y → R is the representation function ofL, h : X → Y the representation function of
H, andxi ∈ Xi , yi ∈ Yi . We assume that the functionsh have a parametric form and are therefore
uniquely determined by the value of their parameter vectorθh. We make this dependence ofh onθh

explicit by writing f (θh,Z) instead off (h,Z).
The function f is locally Lipschitz if ℓ andh (as a function ofθh) are locally Lipschitz. As

an example for a locally Lipschitz functionf , we extend supervised neural learning machines to
k-structures:
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• Loss function: The loss
ℓ(x,y) = D∗ (µ(x),µ(y))2

is locally Lipschitz as a function ofx.

• Hypothesis space: Consider the setHNN of all functionsg : X → Y that can be implemented
by a neural network. Suppose that all functions fromHNN are smooth. If dim(VY ) = M, then
g is of the formg = (g1, . . . ,gM), where thegi are the component functions ofg. For each
componentgi , the pointwise maximizer

hi(x) = max
T∈T

gi(Tx)

is locally Lipschitz. Hence,h = (h1, . . . ,hM) is locally Lipschitz.

Compared to common models in predicting structures as applied by Taskar (2004); Tsochan-
taridis, Hofmann, Joachims, and Altun (2004), the proposed approach differs in two ways: First,
the proposed cost function requires no indirection via a score functionf : X ×Y → R to select the
prediction fromY by maximizing f for a given input fromX . Second, the proposed approach sug-
gests a formulation that can be exploited to approximately solve discrete and continuous prediction
problems.

4.6 Frequent Substructures

Our aim is to find the most frequent substructure occurring in a finite data set D of k-structures. To
show how to apply the theory ofT -spaces to this problem, we consider a simplified setting.

First we define what we mean by a substructure. Ak-structureX′ = (Zm,R ′,α′) is said to be a
substructureof ak-structureX = (Zn,R ,α), if there is an isomorphic embeddingφ : Zm → Zn.

Next, we restrict ourselves tok-structures with attributes from[0,1]⊆R for the sake of simplic-
ity. Let

BT =
{

X = (Zn,Ri ,α) ∈ XT : α(X) ⊆ {0,1}
}
,

UT =
{

X = (Zn,Ri ,α) ∈ XT : α(X) ⊆ [0,1]
}

be the set of allA-attributedk-structuresX ∈ XT with attributes from{0,1} and[0,1], respectively.
Suppose thatD = {X1, . . . ,Xk} ⊆ BT is a set ofk-structures.

The characteristic function of thei-th structureXi ∈D

χi(X) =

{
1 : X is a substructure ofXi

0 : otherwise
.

indicates whether thek-structureX is a substructure ofXi . We sayX∗ is amaximal frequent sub-
structureof orderm if it solves the following discrete problem

maximize F(X) = ∑k
i=1 χi(X)

subject to |X| = m
X ∈ BT .

We cast the discrete to a continuous problem. For this, we define

Fi(X) =
〈X,Xi〉∗

‖X‖2
∗

.
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for all X ∈ UT . We haveFi(X) ∈ [0,1] with Fi(X) = 1 if, and only if, X is a substructure ofXi .
Consider for a moment the problem to maximize the criterion function

G(X) =
k

∑
i=1

Fi(X).

The problem with this criterion function is that a maximizerX ∈ UT of G could be ak-structure
not occurring as a substructure in any of thek-structures fromD. To fix this problem, we use the
soft-max function exp(β(Fi(X)−1)) with control parameterβ. In the limitβ→∞, thei-th soft-max
function reduces to the characteristic functionχi . Given a fixedβ > 0, the soft-max formulation of
the frequent subgraph problem is of the form

maximize Fβ(X) = ∑k
i=1exp{β(Fi(X)−1)}

subject to |X| = m
X ∈UT .

The representation function ofFβ is of the form

fβ(x) =
k

∑
i=1

exp

{
β
(

si(x)
‖x‖ −1

)}
,

wheresi(x) = maxT∈T 〈x,Txi〉. Applying the rules of calculus yields thatfβ is locally Lipschitz.
The common approach casts the frequent subgraph mining problem to a search problem in a

state space, which is then solved by a search algorithm (Dehaspe, Toivonen, and King, 1998; Han,
Pei, and Yin, 2000; Inokuchi, Washio, and Motoda, 2000; Kuramochi and Karypis, 2001; Yan and
Han, 2002). Here, we suggest a continuous cost function for the frequent subgraph mining problem
that can be solved using optimization based methods (see Section 3.4).

5. Experimental Results

To demonstrate the effectiveness and versatility of the proposed framework, we applied it to the
problem of determining a sample mean of randomly generated point patterns and weighted graphs
as well as to central clustering of letters and protein structures represented by graphs.

5.1 Sample Mean

To assess the performance and to investigate the behavior of the subgradient and approximated sub-
gradient method for determining a sample mean, we conducted an experiments on random graphs,
letter graphs, and chemical graphs. For computing approximate subgradients we applied the gradu-
ated assignment (GA) algorithm (see Appendix D). For data sets consisting of small graphs, wealso
applied a depth first search (DF) algorithm that guarantees to return an exact subgradient.

5.1.1 DATA

Random Graphs.The first data set consists of randomly generated graphs. We sampledk graphs
by distorting a given initial graph according to the following scheme: First, werandomly generated
an initial graphM0 with 6 vertices and edge density 0.5. Next, we assigned a feature vector to
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depth-first graduated set
search assignment mean

Random Graphs 29.6 (± 5.3) 34.5 (± 6.6) 43.0 (± 7.5)
Letter Graphs 42.3 (± 10.1) 43.9 (± 11.1) 60.5 (± 16.6)
Molecules 262.2 (± 113.6) 338.0 (± 115.0)

Table 1: Average SSD of sample mean approximated by depth-first searchand graduated assign-
ment. As reference value the average SSD of the set mean is shown in the last column.
Standard deviations are given in parentheses.

each vertex and edge ofM0 drawn from a uniform distribution over[0,1]d (d = 3). GivenM0, we
randomly generatedk distorted graphs as follows: Each vertex and edge was deleted with 20%
probability. A new vertex was inserted with 10% probability and randomly connected to other
vertices with 50% probability. Uniform noise from[0,1]d with standard deviationσ ∈ [0,1] was
imposed to all feature vectors. Finally, the vertices of the distorted graphs were randomly permuted.

We generated 500 samples each consisting ofk = 10 graphs. For each sample the noise level
σ ∈ [0,1] was randomly prespecified.

Letter Graphs. The letter graphs were taken from the IAM Graph Database Repository.5 The
graphs represent distorted letter drawings from the Roman alphabet thatconsist of straight lines
only. Lines of a letter are represented by edges and ending points of linesby vertices. Each vertex is
labeled with a two-dimensional vector giving the position of its end point relative to a reference co-
ordinate system. Edges are labeled with weight 1. We considered the 150 letter graphs representing
the capital letterA at a medium distortion level.

We generated 100 samples each consisting ork = 10 letter graphs drawn from a uniform distri-
bution over the data set of 150 graph letters representing letterA at a medium distortion level.

Chemical Graphs.The chemical compound database was taken from the gSpan site6. The data set
contains 340 chemical compounds, 66 atom types, and 4 types of bonds. On average a chemical
compound consists of 27 vertices and 28 edges. Atoms are represented by vertices and bonds
between atoms by edges. As attributes for atom types and type of bonds, weused a 1-to-k binary
encoding, wherek = 66 for encoding atom types andk = 4 for encoding types of bonds.

We generated 100 samples each consisting ofk = 10 chemical graphs drawn from a uniform
distribution over the data set of 340 chemical graphs.

5.1.2 EVALUATION PROCEDURE

As performance measure, we used the average sum-of-squared distances (SSD) of the sample mean
described in Section 4.2 averaged over all samples. The average SSD ofthe set mean graph serves
as our reference value. The set mean is an element from the setD itself that minimizes the SSD
over all structures fromD.
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Algorithm 2 (K-Means for Structures)

initialize numberk of clusters
initialize cluster centersY1, . . . ,Yk

repeat
classify structuresXi according to nearestYj

recomputeYj

until some termination criterion is satisfied

5.1.3 RESULTS

Table 1 shows the average SSD and its standard deviation. The results show that using exact sub-
gradients gives better approximations of the sample mean than using approximated subgradients.
Compared with the set median, the results indicate that the subgradient and approximated subgra-
dient method have found reasonable solutions in the sense that the resultingaverage SSD is lower.

5.2 Central Clustering

Based on the concept of sample mean for structures, we applied the structural versions of k-means
and simple competitive learning on four data sets in order to assess and compare the performance
of subgradient methods.

5.2.1 CENTRAL CLUSTERING ALGORITHMS FORGRAPHS

We consider k-means and simple competitive learning in order to minimize the clusterobjective
(see Section 4.2)7

F(M,Y ,X ) =
1
2

k

∑
j=1

m

∑
i=1

mi j D(Xi ,Yj).

K-means for graphs.The structural version of k-means is outlined in Algorithm 2. This method
operates as the EM algorithm of standard k-means, where the chosen distortion measure in the E-
step isD to classify the structuresXi according to nearest cluster centerYj . In the M-step the basic
incremental subgradient method described in Algorithm 1 is applied to recompute the means.
Simple competitive learning.The structural version of simple competitive learning corresponds
to the basic incremental subgradient method described in Algorithm 1 for minimizing the cluster
objectiveF(X).

5.2.2 DATA

We selected four data sets described in Riesen and Bunke (2008). The data sets are publicly available
at the IAM Graph Database Repository. Each data set is divided into a training, validation, and a
test set. In all four cases, we considered data from the test set only. The description of the data

5. The repository can be found athttp://www.iam.unibe.ch/fki/databases/iam-graph-database.
6. gSpan can be found athttp://www.xifengyan.net/software/gSpan.htm.
7. We replaced the factor 1/mby the factor 1/2 for convenience of presentation of our results.
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data set #graphs) #(classes) avg(nodes) max(nodes) avg(edges) max(edges)
letter 750 15 4.7 8 3.1 6
grec 528 22 11.5 24 11.9 29
fingerprint 900 3 8.3 26 14.1 48
molecules 100 2 24.6 40 25.2 44

Table 2: Summary of main characteristics of the data sets used for central clustering.

sets are mainly excerpts from Riesen and Bunke (2008). Table 2 provides a summary of the main
characteristics of the data sets.
Letter Graphs. We consider all 750 graphs from the test data set representing distortedletter
drawings from the Roman alphabet that consist of straight lines only (A, E, F, H, I, K, L, M, N, T, V,
W, X, Y, Z). The graphs are uniformly distributed over the 15 classes (letters). The letter drawings
are obtained by distorting prototype letters at low distortion level. Lines of a letter are represented by
edges and ending points of lines by vertices. Each vertex is labeled with a two-dimensional vector
giving the position of its end point relative to a reference coordinate system. Edges are labeled with
weight 1. Figure 6 shows a prototype letter and distorted version at various distortion levels.

Figure 6: Example of letter drawings: Prototype of letter A and distorted copies generated by im-
posing low, medium, and high distortion (from left to right) on prototype A.

GREC Graphs. The GREC data set (Dosch and Valveny, 2006) consists of graphs representing
symbols from architectural and electronic drawings. We use all 528 graphs from the test data set
uniformly distributed over 22 classes. The images occur at five differentdistortion levels. In Figure
7 for each distortion level one example of a drawing is given. Depending on the distortion level,
either erosion, dilation, or other morphological operations are applied. The result is thinned to
obtain lines of one pixel width. Finally, graphs are extracted from the resulting denoised images
by tracing the lines from end to end and detecting intersections as well as corners. Ending points,
corners, intersections and circles are represented by vertices and labeled with a two-dimensional
attribute giving their position. The vertices are connected by undirected edges which are labeled as
line or arc. An additional attribute specifies the angle with respect to the horizontal direction or the
diameter in case of arcs.

Figure 7: GREC symbols: A sample image of each distortion level
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Fingerprint Graphs. We consider a subset of 900 graphs from the test data set representing fin-
gerprint images of the NIST-4 database (Watson and Wilson, 1992). Thegraphs are uniformly
distributed over three classesleft, right, andwhorl. A fourth class (arch) is excluded in order to
keep the data set balanced. Fingerprint images are converted into graphs by filtering the images and
extracting regions that are relevant (Neuhaus and Bunke, 2005). Relevant regions are binarized and
a noise removal and thinning procedure is applied. This results in a skeletonized representation of
the extracted regions. Ending points and bifurcation points of the skeletonized regions are repre-
sented by vertices. Additional vertices are inserted in regular intervals between ending points and
bifurcation points. Finally, undirected edges are inserted to link vertices that are directly connected
through a ridge in the skeleton. Each vertex is labeled with a two-dimensional attribute giving its
position. Edges are attributed with an angle denoting the orientation of the edgewith respect to the
horizontal direction. Figure 8 shows fingerprints of each class.

Figure 8: Fingerprints: (a) Left (b) Right (c) Arch (d) Whorl. Fingerprints of class arch are not
considered.

Molecules. The mutagenicity data set consists of chemical molecules from two classes (mutagen,
non-mutagen). The data set was originally compiled by Kazius, McGuire, and Bursi (2005) and
reprocessed by Riesen and Bunke (2008). We consider a subset of100 molecules from the test
data set uniformly distributed over both classes. We describe molecules by graphs in the usual way:
atoms are represented by vertices labeled with the atom type of the corresponding atom and bonds
between atoms are represented by edges labeled with the valence of the corresponding bonds. We
used a 1-to-k binary encoding for representing atom types and valence of bonds, respectively.

5.2.3 GENERAL EXPERIMENTAL SETUP

In all experiments, we applied k-means and simple competitive learning for graphs to the aforemen-
tioned data sets. We used the following experimental setup:
Performance measures.We used the following measures to assess the performance of an algorithm
on a data set: (1) error value of the cluster objective (see Section 4.2), (2) classification accuracy, and
(3) silhouette index. The silhouette index is a cluster validation index taking values from[−1,1].
Higher values indicate a more compact and well separated cluster structure. For more details we
refer to Theodoridis and Koutroumbas (2009).
Initialization of the clustering algorithms.The numberk of centroids as shown in Table 3 was cho-
sen by compromising a satisfactory classification accuracy against the silhouette index. To initialize
both clustering algorithms, we used a modified version of the ”furthest first”heuristic (Hochbaum
and Shmoys, 1985). For each data setS , the first centroidY1 is initialized to be a graph closest to
the sample mean ofS . Subsequent centroids are initialized according to

Yi+1 = argmax
X∈S

min
Y∈Yi

D(X,Y),

2690



STRUCTURESPACES

data set k measure km cl

letter 30
error 11.6 11.1
accuracy 0.86 0.90
silhouette 0.38 0.40

grec 33
error 32.7 27.6
accuracy 0.84 0.87
silhouette 0.40 0.42

fingerprint 60
error 1.88 1.30
accuracy 0.81 0.79
silhouette 0.32 0.34

molecules 10
error 56.0 53.8
accuracy 0.68 0.70
silhouette 0.04 0.05

Table 3: Results of k-means (km) and simple competitive learning (cl) on four data sets.

whereYi is the set of the firsti centroids chosen so far.

Subgradient and graph distance calculations.For subgradient and graph distance calculations, we
applied a depth first search algorithm on the letter data set and the graduated assignment algorithm
(Gold and Rangarajan, 1996) on the grec, fingerprint, and molecule dataset.

5.2.4 RESULTS

Table 3 summarizes the results. The first observation to be made is that simple competitive learning
performs slightly better than k-means with respect to all three performance measures. This is in
contrast to findings on standard k-means and simple competitive learning in vector spaces. The
second observation is that both k-means algorithms yield satisfying classification accuracies on
all data sets. This result shows that approximated subgradient methods can be applied to central
clustering in the domain of graphs.

5.3 Clustering Protein Structures

In our last experiment, we compared the performance of k-means and simplecompetitive learning
of graphs with hierarchical clustering applied on protein structures.

5.3.1 DATA : PROTEIN CONTACT MAPS

One common way to model the 3D structure of proteins are contact maps. A contact map is a graph
X = (V,E) with ordered vertex set. Vertices represent residues. Two vertices are connected by
an edge (contact) if the spatial distance of the corresponding residues isbelow some prespecified
threshold.
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ID domain ID domain ID domain ID domain

1 1b00A 11 4tmyB 21 2b3iA 31 1tri
2 1dbwA 12 1rn1A 22 2pcy 32 3ypiA
3 1nat 13 1rn1B 23 2plt 33 8timA
4 1ntr 14 1rn1C 24 1amk 34 1ydvA
5 1qmpA 15 1bawA 25 1aw2A 35 1b71A
6 1qmpB 16 1byoA 26 1b9bA 36 1bcfA
7 1qmpC 17 1byoB 27 1btmA 37 1dpsA
8 1qmpD 18 1kdi 28 1htiA 38 1fha
9 3chy 19 1nin 29 1tmhA 39 1ier
10 4tmyA 20 1pla 30 1treA 40 1rcd

Table 4: PDB domain names of the Skolnick test set and their assigned indexes (ID).

No Style Residues Seq. Sim. Proteins

1 alpha-beta 124 15-30% 1-14
2 beta 99 35-90% 15-23
3 alpha-beta 250 30-90% 24-34
4 170 7-70% 35-40

Table 5: Characteristic properties of the Skolnick test set as taken from Caprara and Lancia (2002).
Shown are the fold style, mean number of residues, and the range of similarityobtained
by sequence alignment of the protein domains.

We used the Skolnick test set consisting of 40 protein contact maps provided by Xie and Sahini-
dis (2007). Table 4 shows the PDB domain names of the test set and their assigned indexes.8 Table 5
describes characteristic properties of the protein domains. The characteristic feature of the Skolnick
data is that sequence similarity fails for correct categorization of the proteins as indicated by the
fourth column (Seq. Sim.) of Table 5. This motivates structural alignment for solving the Skolnick
clustering test.

5.3.2 ALGORITHMS

To cluster the contact maps, we minimized the cluster objective described in Section 4.3

F(M,Y ,X ) =
1
m

k

∑
j=1

m

∑
i=1

mi j D(Xi ,Yj),

using the extensions of k-means and simple competitive learning. The chosendistance measureD
for both, the letter graphs and the contact maps, is the minimizer of the standardEuclidean metric.

8. The Protein Data Bank (PDB) is a repository for the 3D structures of proteins, nucleic acids, and other large biological
molecules.
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C ID Fold Superfamily Family

1 1-11 Flavodin-like Che Y-like Che Y-related

2 12-14 Microbial Microbial Fungi
ribonucl. ribonucl. ribonucl.

3 15-23 Cuperdoxin- Cuperdoxins Plastocyanim-like
like Plastoazurin-like

4 24-34 TIM-beta Triosephosphate Triosephosphate
alpha-barrel isomerase (TIM) isomerase (TIM)

5 35-40 Ferritin-like Ferritin-like Ferritin

Table 6: Clusters of Skolnick proteins detected by competitive learning and k-means. Shown are
the cluster memberships of the proteins via their indexes (ID) as assigned in Table 5.
The clusters perfectly agree with the fold, family, and superfamily according to SCOP
categories.

For letter graphs the underlying transformation setT is the set of all possible vertex permutations.
In the case of contact maps, the setT is the subset of all partial vertex permutations that preserve
the order of the vertices.

For subgradient and distance calculations, we used a combination of graduated assignment and
dynamic programming (Jain and Lappe, 2007).

5.3.3 RESULTS

Competitive learning and k-means both correctly categorized the 40 proteinsin 5 clusters accord-
ing to the SCOP categories as shown in Table 6.9 This result was also achieved by previous ap-
proaches based on hierarchical clustering using pairwise similarity matrices(Xie and Sahinidis,
2007; Caprara and Lancia, 2002; Caprara, Carr, Istrail, Lancia, and Walenz, 2004).

Competitive learning and k-means require less pairwise structural alignments than pairwise clus-
tering. Pairwise clustering of 40 structures requires 780 structural alignments. In contrast, competi-
tive learning required 120 and k-means 440 structural alignments. One problem of central clustering
algorithms applied to contact maps is the increasing size of the cluster centers caused by the updat-
ing step. A solution to this problem is to restrict the vertices of a cluster center tothose vertices that
occur in at least one cluster member. In doing so, spurious vertices of former cluster members are
removed.

The distinguishing feature of central clustering of structures is that we obtain prototypes for each
cluster. According to Jain and Obermayer (2009), the sample mean is equivalent to the multiple
alignment of proteins, which is like clustering an essential task in bioinformatics. Hence, central
clustering of protein structures can solve two tasks simultaneously, categorizing the proteins and
and multiple aligning cluster members, which is useful for protein structure classification, structure-
based function prediction, and highlighting structurally conserved regions of functional significance.

9. TheStructural Classification of Proteins(SCOP) database is a largely manual classification of protein structural
domains based on similarities of their amino acid sequences and 3D structures.
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Figure 9: Shown are approximated sample means of the Che Y-like superfamilyof cluster C1 (left)
and the Cuperdoxins superfamily family of cluster C3 (right ). Diagonal elements show
the residues and off-diagonal elements the contacts. Darker shading refers to a higher
relative frequency of occurrence of residues/contacts over all cluster members.

Figure 9 shows approximations of sample means of the two largest clusters computed by competitive
learning.

6. Summary

In this contribution, we described a generic technique of how to generalizeclassical learning ap-
proaches and other problems from pattern recognition to structured domains. The proposed tech-
nique is based on the notion ofT -space. AT -space is a quotient set of a metric vector space—the
representation space—with all the vectors identified that represent the same structure. The equiva-
lence classes of representation vectors are determined by the subgroupof homogeneous isometrics
T . This constructions turns out to be a convenient abstraction of combinatorial structures to for-
mally adopt geometrical and analytical concepts from vector spaces.

The metric of the representation spaceX induces a metric on theT -space. A norm onX
induces aT -norm onXT . TheT -norm corresponds to the same geometric concept of length as the
standard norm. Thus, different vector representations of the same structure have the same length.
An inner product〈·, ·〉 onX induces the innerT -product onXT , which is not bilinear but has the
same geometrical properties as〈·, ·〉. In other words, the Cauchy-Schwarz inequality is valid for
structures. This result gives rise to a well-defined geometric concept ofangle between structures.

The interplay of geometrical intuition, the algebraic group structure of the transformation set
T , and the link to the properties of a vector space via the membership function yields the well-
defined notions ofT -differentiability andT -gradient that generalize the standard definitions of
differentiability and gradient of a smooth function at some point from a vector space. In particular,
theT -gradient of aT -function at aT -differentiable point is a well-defined structure pointing in
direction of steepest ascent and satisfies the necessary condition of optimality. Therefore, we can
apply local gradient information to minimize smoothT -functions.

One application of the theory ofT -spaces are problems from structural pattern recognition.
For selected problems, we presented continuous optimization problems, where the cost functions
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defined onT -spaces are locally Lipschitz. Locally Lipschitz functions are nonsmooth ona set of
Lebesgue measure zero, but admit a generalized gradient at non-differentiable points. The field of
nonsmooth optimization provides techniques like the subgradient method to minimize this class of
nonsmooth functions.

As case studies, we considered the problem of computing a sample mean and central clustering
in the domain of graphs. The cost functions are locally Lipschitz, but computation of a subgradi-
ent is computationally intractable. To cope with the computational complexity, we suggested an
approximate subgradient method that chooses the opposite of a direction close to the generalized
gradient as descent direction. We illustrated that the proposed method is capable to minimize the
cost function of the case study. Even so the high computational complexity ofderiving a subgra-
dient demands a reevaluation of existing nonsmooth optimization methods and asksfor devising
algorithms that use approximations of the generalized gradient.

Appendix A. Introduction to T -spaces

This section formally introducesT −spacesand presents proofs.

A.1 T -spaces

Let X = R
n be then-dimensional Euclidean vector space, and letT be a subgroup of the group of

all n×n permutation matrices. Then the binary operation

· : T ×X → X , (T,x) 7→ Tx

is a group action ofT onX . Forx∈ X , theorbit of x is denoted by

[x]T = {Tx : T ∈ T } .

If no misunderstanding can occur, we write[x] instead of[x]T .
A T -spaceoverX is the orbit spaceXT = X /T of all orbits ofx ∈ X under the action ofT .

We callX therepresentation spaceof XT . By

µ : X → XT

we denote themembership functionthat sends vector representations to the structure they describe.
The following notations, definitions, and results are useful to simplify technicalities. We use

capital lettersX,Y,Z, . . . to denote the elements ofXT . Suppose thatX = µ(x) for somex∈ X . Then
we identifyX with [x] and make use of sloppy notations like, for example,x∈ X to denotex∈ [x].10

By 0T we denote theT -zero ofXT . It is easy to show that 0T has only the zero element 0∈ X
as its unique representation vector.

Proposition 2 LetXT be aT -space over the metric vector spaceX . Then µ−1(0T ) = [0] ={0}.

Proof Follows directly from the fact that eachT ∈ T is homogeneous and injective. �

A T -spaceXT has, in fact, aT -zero element, but it is unclear how to define an addition+ onXT
such thatXT together with+ forms a group. The absence of an additive group structure is one of the

10. The notation is sloppy, becauseX is an element inXT and not a set, whereas[x] is a set of equivalent elements from
X .
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major reasons why analytical tools for structured data are extremely rare compared to the plethora
of powerful tools developed for feature vectors residing in some Banach space. To mitigate this
drawback ofT -spacesXT , we exploit the vector space axioms ofX via the membership functionµ.

We say a membership functionµ : X → XT is T -linear if

(TL1) [x+y] ⊆ [x]⊕ [y] = {x′ +y′ : x′ ∈ [x],y′ ∈ [y]},

(TL2) [λx] = λ [x] = {λx′ : x′ ∈ [x]}

for all x,y ∈ X , and for allλ ∈ R. Note that for (TL1) we have a subset relation and for (TL2)
equality. This definition has a sound notation but appears to be independent on µ at first glance.
Since we identify the orbits[x] in X with the elementsµ(x) of XT , we can rewrite (TL1) and (TL2)
by slight abuse of notation

µ(x+y) ⊆ µ(x)⊕µ(y),

µ(λx) = λµ(x).

Membership functions that areT -linear preserve enough structure to transfer some geometrical and
analytical concepts fromX to XT .

In contrast to the standard definition of linearity, we only require a subsetrelation in (TL1)
rather than equality. The proof of Prop. 3 explains this issue.

Proposition 3 Let XT be aT -space over the Euclidean spaceX .Then the membership function
µ : X → XT is T -linear.

Proof Let z= x+ y, and letz′ ∈ [x+y]. Then there is an elementT ∈ T with z′ = Tz. SinceT is
linear by assumption, we obtain

z′ = Tz= T(x+y) = Tx+Ty∈ [x]⊕ [y] .

This proves (TL1). The proof of (TL2) is similar. �

For an intuitive understanding it is sometimes more convenient to use the following notation

λX = µ(λx),

Xx +Yy = µ(x+y).

It is important to note that the ’+’ symbol in Xx +Yy does not refer to some kind of addition inXT .
The notationXx +Yy is simply an alternative and for our purposes more convenient way to refer to
the elementµ(x+y) ∈ XT .

We conclude this section with some further useful technical notations and results. LetX n be the
n-ary cartesian product of a metric vector spaceX . Any real-valued functionf : X n → R induces
functions

F∗ : X n
T → R, (X1, . . . ,Xn) 7→ max{ f (x1, . . . ,xn) : xi ∈ Xi},

F∗ : X n
T → R, (X1, . . . ,Xn) 7→ min{ f (x1, . . . ,xn) : xi ∈ Xi} .

SinceT is finite, the orbits[x] of x are finite. Hence,F∗ andF∗ assume an extremal value. We call
F∗ maximizerandF∗ minimizerof f onX n

T . Let F be either a maximizer or minimizer off . The
support

supp(F |X1, . . . ,Xn)
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of F at (X1, . . . ,Xn) ∈ X n
T is the set of all elements(x1, . . . ,xn) ∈ ∏n

i=1Xi with f (x1 . . . ,xn) =
F(X1, . . . ,Xn). The next results shows a useful property of the support.

Proposition 4 Let F be the minimizer or maximizer of a function f: X n → R. Let X1, . . . ,Xn ∈
XT . Then for each xi ∈ Xi there are a xj ∈ Xj for all j ∈ {1, . . . ,n} \ {i} such that(x1, . . . ,xn) ∈
supp(F |X1, . . . ,Xn).

Proof Let xi ∈ Xi . Suppose that(x∗1, . . . ,x
∗
n) ∈ supp(F |X1, . . . ,Xn). Then there is a transformation

T ∈ T with Txi = x∗i . SinceT is a group, the inverseT−1 exists. Hence,x j = T−1x∗j is an element
of Xj for all j 6= i. We have

F(X1, . . . ,Xn) = f (x∗1, . . . ,x
∗
n) = f (Tx1, . . . ,Txn) = f (x1, . . . ,xn) .

This shows the assertion. �

A.2 Metric T -Spaces

Let XT be aT -space over the metric vector space(X ,d). The minimizer

D∗ : XT ×XT → R, (X,Y) 7→ min{d(x,y) : x∈ X,y∈Y} .

of the metricd is a distance measure onXT . Theorem 5 shows thatD∗ is a metric.

Theorem 5 Let XT be aT -space over the metric space(X ,d). Then the minimizer D∗ of d is a
metric onXT .

Proof Let X, Y, Z ∈ XT .

1. We showD∗(X,Y) = 0 ⇔ X = Y. Let x ∈ X be a representation vector ofX. According to
Prop. 4 there is ay∈Y such that(x,y) ∈ supp(D∗|x,y). We have

D∗(X,Y) = 0 ⇔ ∀x∈ X∃y∈Y d(x,y) = 0

⇔ ∀x∈ X∃y∈Y x= y

⇔ X = Y.

2. SymmetryD∗(X,Y) = D∗(Y,X) follows from symmetry ofd.

3. We showD∗(X,Z) ≤ D∗(X,Y)+D∗(Y,Z). Let (x,y) ∈ supp(D∗|X,Y). There is az∈ Z such
that(y,z) ∈ supp(D∗|Y,Z). Then

D∗(X,Y)+D∗(Y,Z) = d(x,y)+d(y,z)

≥ d(x,z)

≥ min{d(x,z) : x∈ X,z∈ Z}
= D∗(X,Z).

�

Given the assumptions of Theorem 5, we call(XT ,D∗) metricT -spaceover (X ,d). A metric
spaceX is complete if every Cauchy sequence of points inX converges to a point fromX . The next
result states thatXT is complete ifX is complete.
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Theorem 6 AnyT -space over a complete metric vector space is a complete metric space.

Proof Let XT be aT -space over the complete metric space(X ,d). According to Theorem 5,XT is
a metric space with metricD∗. To show thatXT is complete, consider an arbitrary Cauchy sequence
(Xi)i∈N in XT . We construct a Cauchy sequence(xk) such that(µ(xk)) is a subsequence of(Xi). For
anyk > 0 there is ank such thatD∗(Xi ,Xj) < 1/2k for all i, j > nk. For eachk, there arexk ∈ Xnk and
xk+1 ∈ Xnk+1 with d(xk,xk+1) ≤ 1/2k. By the triangle inequality, we have

d(xi ,x j) ≤
j−1

∑
k=i

d(xk,xk+1) ≤
1

2i−1

for any i, j with i < j. Hence,(xk) is a Cauchy sequence inX and (µ(xk)) a subsequence of
(Xi). SinceX is complete,(xk) converges to a limit pointx ∈ X . By continuity of µ, we have
limk→∞ µ(xk) = µ(x), whereµ(x) ∈ XT . Thus, the whole sequence(Xi) converges toµ(x). This
shows thatXT is complete. �

A.3 T -Spaces over Normed Vector Spaces

Let XT be aT -space over the normed vector space(X ,‖·‖). As a normed vector space,X is a
metric space with metricd(x,y) = ‖x−y‖ for all x,y∈ X . For anyT ∈ T , we have

‖Tx‖ = ‖Tx−0‖ = ‖Tx−T0‖ = ‖x−0‖ = ‖x‖ .

Hence, the minimizer‖·‖∗ and maximizer‖·‖∗ of ‖·‖ coincide, that is

‖X‖∗ = ‖X‖∗ = ‖x‖ (2)

for all X ∈ XT and for allx∈ X.
We call the minimizer‖·‖∗ theT -norm induced by the norm‖·‖. Note that aT -norm isnot a

norm, because aT -space has no well defined addition. But we can show that aT -norm has norm-
like properties. We use the notationsλX for µ(λX) andXx+Yy for µ(x+y) as introduced in Section
3.2, p. 2696.

Proposition 7 Let (XT ,‖·‖∗) be aT -space over the normed space(X ,‖·‖). For all X,Y ∈ XT , we
have

1. ‖X‖∗ = 0 if, and only if, X= 0T .

2. ‖λX‖∗ = |λ|‖X‖∗ for all λ ∈ R.

3. ‖Xx +Yy‖∗ ≤ ‖X‖∗ +‖Y‖∗ for all x ∈ X, y∈Y.

Proof Follows directly from first applying Equation (2) and then using the properties of the norm
‖·‖ defined onX . �
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A.4 T -Spaces over Inner Product Spaces

Let XT be aT -space over the inner product space(X ,〈·, ·〉), and let

〈·, ·〉∗ : XT ×XT → R, (X,Y) 7→ max{〈x,y〉 : x∈ X,y∈Y}

be the maximizer of the inner product〈·, ·〉.
We call 〈·, ·〉∗ inner T -product induced by the inner product〈·, ·〉. The innerT -product isnot

an inner product, because the maximum-operator in the definition of〈·, ·〉∗ does not preserve the
bilinearity property of an inner product. But we shall show later that an inner T -product satisfies
some weaker properties of an inner product.

Any inner product spaceX is a normed space with norm‖x‖ =
√
〈x,x〉. The norm‖·‖ onX in

turn gives rise to theT -norm‖·‖∗ onXT . The next result shows that aT -norm is related to an inner
T -product in the same way as a norm to an inner product.

Proposition 8 Let(XT ,〈·, ·〉∗) be aT -space over the inner product space(X ,〈·, ·〉), and let X∈XT .
Then

1. 〈X,X〉∗ = 〈x,x〉 for all x ∈ X.

2. ‖X‖∗ =
√
〈X,X〉∗.

Proof

1. X is the orbit ofx under the group actionT . The assertion follows from the fact that each
transformationT of T satisfies

〈Tx,Tx〉 = ‖Tx‖2 = ‖x‖2 = 〈x,x〉

for all x∈ X .

2. Follows from the first part by taking the square root.

�

Using Prop. 8 the following operations to construct‖·‖∗ commute

(X ,〈·, ·〉) 〈·,·〉∗−−−−→ (XT ,〈·, ·〉∗)

‖·‖=
√

〈·,·〉
y

y‖·‖∗=
√

〈·,·〉∗

(X ,‖·‖) −−−−→
‖·‖∗

(XT ,‖·‖∗) .
.

Next we show that an innerT -product satisfies some weaker properties related to an inner
product.

Proposition 9 Let X,Y,Z ∈ XT , and let x∈ X, y∈Y. Then

1. 〈X,X〉∗ ≥ 0 with 〈X,X〉∗ = 0 ⇔ X = 0T (positive definite)

2. 〈X,Y〉∗ = 〈Y,X〉∗ (symmetric)
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3. 〈λX,Y〉∗ = λ〈X,Y〉∗ for λ ≥ 0 (positive homogeneous)

4. 〈Xx +Yy,Z〉∗ ≤ 〈X,Z〉∗+〈Y,Z〉∗ (sublinear)

Proof

1. Follows from Prop. 8 and the positive definiteness of〈·, ·〉.

2. Follows from the symmetry of〈·, ·〉.

3. Letλ ≥ 0. Then

〈λX,Y〉∗ = max{〈λx,y〉 : x∈ X,y∈Y}
= λmax{〈x,y〉 : x∈ X,y∈Y}
= λ〈X,Y〉∗ .

4. LetW = Xx +Yy, and let(w,z) ∈ supp(〈·, ·〉∗ |W,Z). Sinceµ is T -linear by Prop. 3, we have
W ⊆ X⊕Y. Hence, there arex∈ X andy∈Y such thatw = x+y. Thus,

〈W,Z〉 =〈w,z〉 = 〈x+y,z〉 = 〈x,z〉+〈y,z〉 .

From〈x,z〉 ≤ 〈X,Z〉∗ and〈y,z〉 ≤ 〈Y,Z〉∗ follows the assertion.

�

From the proof of Prop. 9 follows thatT -linearity of the membership function partially pre-
serves the structure ofX such that the innerT -product is a positive definite, symmetric, and sublin-
ear in both arguments.

Any inner product space(X ,〈·, ·〉) is a metric space with metricd(x,y) = ‖x−y‖. The metricd
induces a metricD∗ onXT . As for theT -norm, we want to expressD∗ in terms of〈·, ·〉∗.

Proposition 10 Let (XT ,〈·, ·〉∗) be aT -space over the inner product space(X ,〈·, ·〉). Then for all
X, Y∈ XT , we have

D∗(X,Y)2 = ‖X‖2
∗ −2〈X,Y〉∗+ ‖Y‖2

∗ .

Proof We have

D∗(X,Y)2 = min
{
‖x−y‖2 : x∈ X,y∈Y

}

= min{〈x−y,x−y〉 : x∈ X,y∈Y}

= min
{
‖x‖2−2〈x,y〉+‖y‖2 : x∈ X,y∈Y

}

= ‖x‖2−2max{〈x,y〉 : x∈ X,y∈Y}+‖y‖2

= ‖X‖2
∗ −2〈X,Y〉∗+ ‖Y‖2

∗ .

�

Next, we extend the Cauchy-Schwarz inequality.
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Theorem 11 Let (XT ,〈·, ·〉∗) be aT -space over the inner product space(X ,〈·, ·〉). Then
∣∣〈X,Y〉∗

∣∣≤ ‖X‖∗ ‖Y‖∗ .

for all X ,Y ∈ XT

Proof Let (x,y) ∈ supp(〈·, ·〉∗ |X,Y). Applying the conventional Cauchy-Schwarz inequality for
vectors and using Eq. (2) yields

∣∣〈X,Y〉∗
∣∣= |〈x,y〉| ≤ ‖x‖‖y‖ = ‖X‖∗ ‖Y‖∗ .

�

Using Theorem 11, we can show that the angle of structures has a geometrical meaning. For
two nonzero structuresX andY, the angleθ ∈ [0,π] betweenX andY is defined (indirectly in terms
of its cosine) by

cosθ =
〈X,Y〉∗

‖X‖∗ ‖Y‖∗
.

Theorem 11 implies that

−1≤ 〈X,Y〉∗
‖X‖∗ ‖Y‖∗

≤ 1

and thus assures that this angle is well-defined. It is worthy to mention that〈X,Y〉∗ has the same
geometrical properties as an inner product, although it does not satisfy the algebraic properties of an
inner product. Having the concept of an angle for structures, we can define structural orthogonality
in the usual way. Two nonzero structuresX andY, written asX ⊥Y, arestructurally orthogonal if
〈X,Y〉∗ = 0. Thus, Theorem 11 constitutes the starting point of a geometry ofT -spaces, which we
do not further expand.

Appendix B. T -Mappings

This section studies differential and the local Lipschitz property of mappings onXT . The key result
of this section is that the concept of gradient and its generalizations from nonsmooth analysis can
be transferred in a well-defined manner to mappings onT -spaces. Basic definitions and results on
nonsmooth analysis of locally Lipschitz mappings are given in Appendix C.

B.1 Properties ofT -Mappings

LetXT be aT-space overX and letY be a set. AT -mappingis a mapping of the formF : XT → Y .
If Y is a subset ofR, we also callF aT -function.

Instead of studying aT -mappingF directly, it is more convenient to consider itsrepresentation
mappingdefined by

f : X → Y , x 7→ F ◦µ(x).

Thus, we have to show that analyzingT -mappings is equivalent to analyzing their representation
mappings. For this we introduce the notion ofT -invariant mapping. AT -invariant mappingis
a mappingf : X → Y that is constant on the orbits[x]T for all x ∈ X . Obviously, representation
mappings areT -invariant. In addition, we have the following universal properties:11

11. A universal property can be regarded as some abstract property which requires the existence of a unique mapping
under certain conditions.
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(UP1) Each mappingF : XT → Y has a unique representationf : X → Y with f = F ◦µ.

(UP2) EachT -invariant mappingf : X → Y can be lifted in the obvious way to a unique mapping
F : XT → Y with f = F ◦µ.

Hence, by (UP1) and (UP2) we may safely identifyT -mappings with their representation mappings.
Next, we show thatT -spaces over complete metric vector spaces are universal quotients with

respect to continuity, the Lipschitz property, and the local Lipschitz property. For this, we need
some additional results.

Proposition 12 Let (XT ,D∗) be a metricT -space over the metric space(X ,d). Then the member-
ship function µ: X → XT is a continuous map.

Proof Let (xi)i∈N be a sequence inX which converges tox ∈ X . Let (Xi) be the sequence inXT
with Xi = µ(xi) for all i ∈ N, and letX = µ(x). For anyε > 0 there is a numbern = n(ε) with
D∗(Xi ,X) ≤ d(xi ,x) < ε for all i > n. Hence,µ is continuous. �

A mapping f : X → Y between topological spaces is open if for any open setU ∈ X , the image
f (U) is open inY .

Proposition 13 Let (XT ,D∗) be a metricT -space over the metric vector space(X ,d). Then µ:
X → XT is an open mapping.

Proof It is sufficient to show that for anyx∈ X and any open neighborhoodU of x there is an open
neighborhoodVT of X = µ(x) such thatVT ⊆ µ(U).

Let x ∈ X , and letU ⊆ X be an open set withx ∈ U. Then there isε > 0 such that the open
neighborhoodN (x,ε) is contained inU. LetUT = µ(U) andVT = µ(N (x,ε)). Clearly,X = µ(x)∈
VT ⊆UT . We show thatVT is open. FromD∗ (X,µ(y)) ≤ d(x,y) < ε for all y∈ N (x,ε) follows
VT ⊆ NT (X,ε). Now letY ∈ NT (X,ε). For x, we can find a ay∈ X with D∗(X,Y) = d(x,y) < ε
by Prop. 4. Hence,y∈N (x,ε). This proves thatNT (X,ε) = VT ⊆UT . �

The next result shows the aforementioned universal property ofXT with respect to continuity,
the Lipschitz property, and the local Lipschitz property.

Proposition 14 LetX ,Y be complete metric vector spaces, and letXT be a metricT -space over X.
Suppose that f: X → Y is aT -invariant mapping. If f is continuous (Lipschitz, locally Lipschitz),
then f lifts to a unique continuous (Lipschitz, locally Lipschitz) mapping F: XT → Y with f(x) =
F(µ(x)) for all x ∈ X .

Proof By (UP2), the existence of such aT -mappingF implies uniqueness. Thus, it remains to show
thatF preserves continuity and both Lipschitz properties. In the following letdX anddY denote the
metric ofX andY , resp., and letD∗ be the metric ofXT induced bydX .
Continuity. Let U ⊆ Y open. ThenV = f−1(U) is open inX , becausef is continuous. From
Prop. 13 follows thatVT = µ(V ) is open inXT . The assumption follows from the factVT =
F−1(U).
Lipschitz property. Suppose there is aL ≥ 0 such that

dY ( f (x), f (y)) ≤ L ·dX (x,y)
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for all x,y∈ X . Let X,Y ∈ XT . For(x,y) ∈ supp(D∗|X,Y) we have

dY (F(X),F(Y)) = dY ( f (x), f (y)) ≤ L ·dX (x,y) = L ·D∗(X,Y).

SinceX andY were chosen arbitrarily,F is Lipschitz.
Local Lipschitz property. Let X0 ∈ XT , and letx0 ∈ X. Since f is locally Lipschitz atx0, there is a
L ≥ 0 such that

dY ( f (x), f (y)) ≤ L ·dX (x,y)

for all x,y from some neighborhoodU = N (x0,ε) in X . Sinceµ : X → XT is an open mapping,
there is an open neighborhoodVT of X0 with VT ⊆ µ(U). Let X,Y ∈ VT arbitrary. We choose
x,y,y′ ∈ µ−1(VT )⊆U with µ(x) = X, µ(y) = µ(y′) =Y, and(x,y)∈ supp(D∗|X,Y). Fromx,y′ ∈U
follows dX (x,y′) < ε and from(x,y)∈ supp(D∗|X,Y) follows D∗(X,Y) = dX (x,y). Combining both
relations and using thatD∗ is a minimizer ofdX yields

D∗(X,Y) = dX (x,y) ≤ dX (x,y′) < ε.

Hence, we have

dY (F(X),F(Y)) = dY ( f (x), f (y)) ≤ L ·dX (x,y) = L ·D∗(X,Y).

SinceX,Y ∈ VT were chosen arbitrarily,F is locally Lipschitz atX0. �

Now we want to study differential properties ofT -mappings via their representation mappings.
Let XT be aT -space over the Euclidean space(X ,‖·‖) and letY be another Euclidean space.
Suppose thatf : X → Y is aT -mapping, which is differentiable at ¯x∈ X . By

D f (x̄) : X → Y , x 7→ D f (x̄)(x)

we denote the derivative off at x̄.

Theorem 15 Let X andY be Euclidean spaces, and letXT be aT -space overX . Suppose that
f : X → Y is a T -mapping, which is differentiable at̄x∈ X . Then f is differentiable at all points
x∈ [x̄]. In addition, we have

D f (Tx̄) = D f (x̄)◦T−1

for all T ∈ T .

Proof By ‖·‖X and‖·‖Y we denote the norm defined onX andY , respectively. Letx ∈ [x̄]. We
show thatf is differentiable inx. Let T ∈ T with Tx̄ = x. Forh 6= 0, we define the mapping

r(h) =

∥∥ f (x+h)− f (x)−D f (x̄)
(
T−1h

)∥∥
Y

‖h‖X

=

∥∥ f (Tx̄+TT−1h)− f (Tx̄)−D f (x̄)
(
T−1h

)∥∥
Y

‖TT−1h‖X
.

We seth′ = T−1h and obtain

r(h) =
‖ f (Tx̄+Th′)− f (Tx̄)−D f (x̄)(h′)‖Y

‖Th′‖X

=
‖ f (T(x̄+h′))− f (Tx̄)−D f (x̄)(h′)‖Y

‖Th′‖X
.
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Since f is T -invariant, we havef (T(x̄+h′)) = f (x̄+h′) and f (Tx̄) = f (x̄). In addition, we have
‖Th′‖ = ‖h′‖, becauseT is an isometry. Thus,

r(h) =
‖ f (x̄+h′)− f (x̄)−D f (x̄)(h′)‖Y

‖h′‖X
.

Since f is differentiable in ¯x, we have

lim
h→0

r(h) = lim
h′→0

r(h) = 0.

Hence,f is differentiable atx with derivativeD f (x) = D f (Tx̄) = D f (x̄)◦T−1. �

A T -mappingF : XT → Y is said to beT -differentiableat X̄ ∈ XT if its representation func-
tion is differentiable at an arbitrary vector representation ofX̄. From Theorem 15 follows that
differentiability of f at an arbitrary vector representation ofX̄ implies differentiability at all vector
representations of̄X. Hence,T -differentiability atX̄ ∈ XT is independent from the particular vector
representation of̄X and therefore well-defined.

B.2 T -Differentiable Functions

In this section, we study differential properties ofT -functions of the formF : XT → R.
Let f : X → R be the representation function ofF . Suppose thatf is differentiable atx ∈ X

with gradient∇ f (x̄). Then, by Theorem 15, theT -functionF is T -differentiable atX̄ = µ(x̄). We
call the structure

∇F(X̄) = µ(∇ f (x̄)).

T -gradientof F at X̄. We show that theT -gradient is well-defined, that is independent from the
particular choice of vector representation ¯x ∈ X̄. To see this letT ∈ T be an arbitrary orthogonal
transformation fromT . By Theorem 15, we have

∇ f (Tx̄) = ∇ f (x̄)T−1 = ∇ f (x̄)T ′,

whereT ′ = T−1 is the transpose ofT. From∇ f (x̄)T ′ = T∇ f (x̄) follows ∇ f (Tx̄) = T∇ f (x̄). Thus,
we have

µ(∇ f (Tx̄)) = µ(T∇ f (x̄)) = µ(∇ f (x̄))

showing that theT -gradient is well-defined.
TheT -gradient induces theT -function

∇F(X̄) : XT → R, X 7→ 〈∇F(X̄),X〉∗ .

We use this function for showing that the geometrical properties of a gradient also hold for aT -
gradient. For this, we define thedirectional T -derivativeof F at X̄ along the directionV with
‖V‖∗ = 1 by

DVF(X̄) = 〈V,∇F(X̄)〉∗ .

The first geometrical result shows that theT -gradient is a structure pointing to the direction of
steepest ascent.
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Proposition 16 Let f : X → R be a continuously differentiable representation function of aT -
function F : XT → R. Then for all X̄ ∈ XT \ {0T } and all V ∈ UT = {X ∈ X : ‖X‖∗ = 1}, we
have

∇F(X̄)

‖∇F(X̄)‖∗
= arg max

V∈UT

DVF(X̄).

Proof From the definition of the directional derivative and the implications of Theorem 11 follows

DVF(X̄) = 〈V,∇F(X̄)〉∗ = ‖V‖∗ ‖∇F(X̄)‖∗ cosα,

whereα is the angle betweenV and∇F(X̄). Hence, the directional derivativeDVF(X̄) becomes
maximal ifV points to the same direction as∇F(X̄). �

Next, we show that the necessary condition for optimality can be transferred toT -differentiable
T -functions.

Proposition 17 Let F : XT → R be aT -function with a partial differentiable representation func-
tion. If X ∈ XT is a local optimum of F, then we have

∇F(X) = 0T .

Proof Let f : X → R be the representation function ofF , and letx∈ X be a vector representation of
X. Since f is partial differentiable, the gradient off atx exists. By definition of theT -gradient, we
have

µ(∇ f (x)) = ∇F(X) = 0T .

From Prop. 2 follows that 0 is the unique vector representation of∇F(X). Thus, any vector repre-
sentationx of X is a local optimum of the representation functionf . Without loss of generality, we
assume thatx∈X is a local minimum. Then there is an open neighborhoodU of x with f (x)≤ f (x′)
for all x′ ∈U. Sinceµ is an open mapping by Prop. 13, the setUT = µ(U) is an open neighborhood
of X. From theT -invariance off follows thatF(X) = f (x) ≤ f (x′) = F(X′) for all X′ ∈UT . This
shows thatF is a local minimum. �

An immediate consequence of the proof is that ifx is a local minimum (maximum) of the
representation functionf then allx′ ∈ [x] are local minima (maxima).

B.3 Pointwise Maximizers

This section introduces and studies differential properties of pointwise maximizers and applies the
results to structural similarity and distance functions.

B.3.1 POINTWISE MAXIMIZERS

Thepointwise maximizerof functions f1, . . . , fm : U → R defined on an open subsetU ⊆ R
n is the

function f : U → R with

f (x) = max
1≤i≤m

fi(x).

We call the set supp( f ) = { fi : 1≤ i ≤ m} thesupportof f , and its elementssupport functions.

Theorem 18 Let f : U → R be a pointwise maximizer with finite supportsupp( f ). We have:
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• If all f i ∈ supp( f ) are locally Lipschitz at x, then f is locally Lipschitz at x and

∂ f (x) ⊆ con{∂ fi(x) : fi ∈ supp( f )∧ fi(x) = f (x)} . (3)

• If all f i ∈ supp( f ) are regular at x, then f is regular at x and equality in (3) holds.

• If all f i ∈ supp( f ) are smooth at x, then f is regular at x and

∂ f (x) = con{∇ fi(x) : fi ∈ supp( f )∧ fi(x) = f (x)} .

Proof Mäkel̈a and Neittaanm̈aki (1992), Theorem 3.2.12 and Corollary 3.2.14. �

If all support functions off ∗ are locally Lipschitz, thenf ∗ is also locally Lipschitz and admits
a generalized gradient at any point fromU. In addition, f ∗ is differentiable almost everywhere on
U by Rademacher’s Theorem (see Appendix, Theorem 23).

Similarly, we can define in the obvious way thepointwise minimizerof a finite set of functions.
According to Theorem 19, all statements made on pointwise maximizers carry over to pointwise
minimizers.

Theorem 19 If f be locally Lipschitz at x, then

∂ f (λx) = λ∂ f (x)

for all λ ∈ R.

Proof Mäkel̈a and Neittaanm̈aki (1992), Theorem 3.2.4. �

In the remainder of this section, we consider similarity and distance functions as examples of
pointwise maximizers and minimizers, respectively.

B.3.2 SIMILARITY FUNCTIONS: THE GENERAL CASE

We consider similarity functions of the form

S∗ : XT ×XT → R, (X,Y) 7→ max
x∈X,y∈Y

s(x,y)

that are maximizers of similarity functionss : X ×X → R. For a givenY ∈ XT , we define the
function

sY : X → R, x 7→ S∗(µ(x),Y).

The functionsY representsS∗ (·,Y) and is a pointwise maximizer with support

supp(sY) = {sy : sy(·) = s(·,y), y∈Y}.

If the support functions ofsY are locally Lipschitz, regular, or smooth, we can apply Theorem 18 to
show thatsY is locally Lipschitz, admits a generalized gradient at each point of its domain, and is
differentiable almost everywhere.
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B.3.3 SIMILARITY FUNCTIONS: THE INNER T -PRODUCT

As a specific example of a similarity function as a pointwise maximizer, we considerthe innerT -
product. Suppose thatS∗ (·, ·) = 〈·, ·〉∗. For a fixed structureY ∈ XT , the support of the pointwise
maximizersY is of the form

supp(sY) = {sy : sy(·) = 〈·,y〉, y∈Y},
As linear functions, these support functionssy are continuously differentiable. From Theorem 18
follows

• sY is locally Lipschitz and regular,

• the generalized gradient∂sY(x) is the convex set

∂sY(x) = con{y∈Y : (x,y) ∈ supp(sY|x)} .

The next statement follows directly from Prop. 9.

Proposition 20 The function sY : X → R is convex.

Proof From Prop. 9 follows thatsy is positively homogeneous and sublinear. Hence,sY is convex.
�

B.3.4 DISTANCE FUNCTIONS: THE GENERAL CASE

Suppose that we are given an arbitrary distance function of the form

D∗ : XT ×XT → R, (X,Y) 7→ min
x∈X,y∈Y

d(x,y).

To apply the theorems on pointwise maximizers, we consider the function

D̂∗(X,Y) = −D∗(X,Y) = max
x∈X,y∈Y

−d(x,y).

For a givenY ∈ XT , we define the function

d̂Y : X → R, x 7→ D̂∗(µ(x),Y).

The functiond̂Y representŝD∗ (·,Y) and is a pointwise maximizer with support

supp
(

d̂Y

)
=
{

d̂y : d̂y(·) = −d(·,y), y∈Y
}

.

B.3.5 DISTANCE FUNCTIONS: THE METRIC D∗

Let D∗ be the metric onXT induced by a metricd onX of the formd(x,y) = ‖x−y‖. For a given
Y ∈ XT , we define the function

d̂Y : X → R, x 7→ D̂∗(µ(x),Y).

The functiond̂Y representŝD∗(·,Y) and is a pointwise maximizer with support

supp
(

d̂Y

)
= {d̂y : y∈Y},

whered̂y(x) =−‖x−y‖ for all x∈ X . The support functions of̂dY are locally Lipschitz and regular
onX , and smooth onX \{y}. From Theorem 18 follows
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• d̂Y is locally Lipschitz and regular,

• the generalized gradient∂d̂Y(x) is the convex set

∂d̂Y(x) =





con
{
− (x−y)

‖x−y‖ : y∈Y∧ (y,x) ∈ supp(d̂Y|x)
}

: x 6= y

{y∈ XT : ‖y‖ ≤ 1} : x = y.

As in the Euclidean space, the squared structural Euclidean metricD2
∗ turns out to be more con-

venient thanD∗. As opposed tôdY, the support functions of the squared functiond̂2
Y are continuously

differentiable at all points fromX . In particular, we have

• d̂2
Y is locally Lipschitz and regular,

• the generalized gradient∂d̂2
Y(x) is the convex set

∂d̂2
Y(x) = con

{
−2(x−y) : y∈Y∧ (y,x) ∈ supp

(
d̂2

Y |x
)}

.

Appendix C. Locally Lipschitz Functions

We review some basic properties of locally Lipschitz functions and their generalized gradients.
Unless otherwise stated proofs can be found in Clarke (1990), Section 2.3. For a detailed treatment
to the first-order generalized derivative we refer to Clarke (1990); Mäkel̈a and Neittaanm̈aki (1992).

Let (X ,dX) and(Y ,dY) be metric spaces, and letU ⊆ X be an open set. A mapf : X → Y is
LipschitzonU if there is a scalarL ≥ 0 with

dY ( f (u), f (v)) ≤ L ·dX (u,v)

for all u,v∈U. We say thatf is locally Lipschitzatu∈U if f is Lipschitz on someε-neighborhood
N (u,ε) ⊆U of u.

Proposition 21 Let f,g :U ⊆ X → R be locally Lipschitz at u, and letλ ∈ R be a scalar. Thenλ f ,
f +g, and f·g are locally Lipschitz at u. If g(u) 6= 0, then f/g is locally Lipschitz at u.

Proposition 22 Let f : X → Y be locally Lipschitz at x, and let g: X → Z be locally Lipschitz at
y = f (x). Then h= g◦ f is locally Lipschitz at x.

Proof Let N(x,εx) ⊆ X , N(y,εy) ⊆ Y be neighborhoods ofx andy satisfying the following proper-
ties: (i) f (N(x,εx)) ⊆ N(y,εy), (ii) there areLx,Ly ≥ 0 such thatdY ( f (u), f (v)) ≤ Lx ·dX (u,v) for
all u,v∈N(x,εx) anddZ (g(p),g(q))≤ Ly ·dY (p,q) for all p,q∈N(y,εy). For anyu,v∈ X , we have

dZ (g◦ f (u),g◦ f (v)) ≤ LydY( f (u), f (v)) ≤ LyLxdX (u,v) .

�

Theorem 23 (Rademacher)Let U ⊆ R
n be a nonempty open set, and let f: U → R be locally

Lipschitz. Then the set of points at which f is not differentiable has Lebesgue measure zero.
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The functionf is directionally differentiableatx∈U if the limit

f ′(x,d) = lim
t↓0

f (x+ td)− f (x)
t

exists for all directionsd∈R
n. In this case, the valuef ′(x,d) is thedirectional derivativeof f atx in

the directiond. We call the functionf directionally differentiableif f is directionally differentiable
at all pointsx∈U.

Thegeneralized directional derivativeof f atx∈U in the directiond ∈ X is defined by

f ◦(x,d) = lim sup
t↓0,y→x

f (y+ td)− f (y)
t

,

wheret ↓ 0 andy→ x are sequences such thaty+ td is always inU.
We sayf is regular atx∈U if the following conditions are satisfied

1. f is directionally differentiable atx.

2. f ◦(x̄,d) = f ′(x,d) for all d ∈ R
n.

A function f is said to besmoothat x if f is continuously differentiable atx. We have the
following implications.

Proposition 24 Let f : U → R be a function. The following implications hold:

1. f is smooth at x, then f is locally Lipschitz, regular, continuous, and differentiable at x.

2. f is locally Lipschitz or differentiable at x, then f is continuous at x.

Proof

1. Smoothness implies differentiability and continuity are well-known results from analysis. The
locally Lipschitz property follows from M̈akel̈a and Neittaanm̈aki (1992), Lemma 3.1.6 and
regularity from M̈akel̈a and Neittaanm̈aki (1992), Theorem 3.2.2.

2. Both assertions are again well-known results from analysis.

�

Thegeneralized gradient∂ f (x) of f atx is the set

∂ f (x) = {y∈ X : f ◦(x,d) ≥ 〈y,d〉 for all d ∈ X } .

The elements of the set∂ f (x) are calledsubgradientsof f atx.

Theorem 25 Let f : U → R be a function on the open subsetU. We have:

• If f is locally Lipschitz and differentiable at x, then

∇ f (x) ∈ ∂ f (x).

• If f is locally Lipschitz, regular, and differentiable at x, then

∂ f (x) = {∇ f (x)} .

Proof Mäkel̈a and Neittaanm̈aki (1992), Theorem 3.1.5, Theorem 3.1.7, and Theorem 3.2.4.�
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Appendix D. The Graduated Assignment Algorithm

We use the graduated assignment algorithm to approximate the NP-hard squared distanceD∗(X,Y)2

between two weighted graphs and to determine a subgradient from the generalized gradient∂d2
Y (see

Section B.3.5). According to Prop. 10, the squared distanceD∗(X,Y)2 can be expressed by the inner
T -product. Here, we determineD∗(X,Y)2 via 〈X,Y〉∗.

Let X andY be weighted graphs with weighted adjacency matricesX = (xi j ) andY = (yi j ).
Suppose thatX andY are of ordern andm, respectively. Without loss of generality, we assume that
n < m. By Π = Πn×m we denote the set of(n×m)-match matricesM = (mi j ) with elements from
[0,1] such that each row sums to 1 and each column sums ton/m. Then we have

〈X,Y〉∗ = max
M∈Π

〈
M′XM,Y

〉
,

whereM′ denotes the transpose ofM. To compute the innerT -product, graduated assignment
minimizes

F(M) = −1
2

〈
M′XM,Y

〉
.

subject toM ∈ Π. Suppose thatM0 is an optimal solution. Then 2(M′
0XM0−Y) is a subgradient

from the generalized gradient∂d2
Y(X).

The core of the algorithm implements a deterministic annealing process with annealing param-
eterT by the following iteration scheme

m(t+1)
i j = aib j exp

(
− 1

T

n

∑
r=1

m

∑
s=1

m(t)
rs
〈
xir ,y js

〉
)

,

wheret denotes the time step. The scaling factorsai , bi computed by Sinkhorn’s algorithm (Sinkhorn,
1964) enforce the constraints of the match matrix. The algorithm in detail is described in Gold, Ran-
garajan, and Mjolsness (1996).
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