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Abstract

Finite structures such as point patterns, strings, treebgeaphs occur as "natural” representations
of structured data in different application areas of maghaarning. We develop the theory of
structure spaceand derive geometrical and analytical concepts such asiigie aetween struc-
tures and the derivative of functions on structures. Inipaler, we show that the gradient of a
differentiable structural function is a well-defined stuwre pointing in the direction of steepest
ascent. Exploiting the properties of structure spacesijliittwn out that a number of problems
in structural pattern recognition such as central clustedr learning in structured output spaces
can be formulated as optimization problems with cost fumtithat are locally Lipschitz. Hence,
methods from nonsmooth analysis are applicable to optithizse cost functions.

Keywords: graphs, graph matching, learning in structured domainssmooth optimization

1. Introduction

In pattern recognition and machine learning, it is common practice to repréatnby feature
vectors living in a Banach space, because this space provides pbaealytical techniques for
data analysis, which are usually not available for other representatiossandard technique to
solve a learning problem in a Banach space is to set up a smooth error fyngtiech is then

minimized by using local gradient information.

But often, the data we want to learn about have no natural represerdatieature vectors and
are more naturally represented in terms of finite combinatorial structurbssufor example, point
patterns, strings, trees, lattices or graphs. Such learning problemsaaisariety of applications,
which range from predicting the biological activity of a given chemicalcitrie over finding fre-
guent substructures of a data set of chemical compounds, and prgdiei3D-fold of a protein
given its amino sequence, to natural language parsing, to name just a few.

In many applications, the séf of finite combinatorial structures is equipped with a distance
functiond : X x X — R, , which is often provided by external knowledge. An example of such a
distance function is the edit distance on string, trees, or graphs (Leeémsl966; Sanfeliu and Fu,
1983; Shapiro and Haralick, 1985; Shasha and Zhang, 1989; Zh886§). The edit distance is ap-
plied to sequence alignment in bioinformatics (Gusfield, 1997), in chemoinfmsr{&aymond and
Willett, 2002) by means of the maximum common subgraph isomorphism, and in comisite
(Eshera and Fu, 1986; Myers, Wilson, and Hancock, 2000; Rit##g-and Hancock, 2005). Since
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distance spacdst, d) of structures often have less mathematical structure than Banach sgmaces,
eral standard statistical pattern recognition techniques cannot be ggdidato( X, d).

There are two main approaches that apply standard statistical pattegnitemotechniques to a
given distance spadeX,d). The first approach directly operates on the sgacel). Examples are
the k-nearest neighbor classifier, the linear programming machine (Graepedrieh, Bollmann-
Sdorra, and Obermayer, 1999), and pairwise clustering (HofmanBamuann, 1997; Graepel and
Obermayer, 1999). These methods can cope with)seksmt possess an arbitrary distance function
d as the sole mathematical structure6n The problem is that many pattern recognition methods
require a spacg with a richer mathematical structure. For example, large margin classifiensaeq
as mathematical structure a complete vector space in which distances arslcGamgte measured.
From an algorithmic point of view, many pattern recognition methods use loadiagnt information
to minimize some cost function. For these methods, Banach spaces areedndiiv enough
structure to define derivatives and gradients.

The aim of the second approach is to overcome the lack of mathematical strbgtembed-
ding a given distance spa¢&’,d) into a mathematically richer spa¢&’,d’). Several methods
have been proposed, which mainly differ in the choice of the target spaemd to which ex-
tent the original distance functiahis preserved. Typical examples are embeddings into Euclidean
spaces (Cox and Cox, 2000; Luo, Wilson, and Hancock, 2003; MidhHofmann, 2004), Hilbert
spaces (@rtner, 2003; Hochreiter and Obermayer, 2004, 2006; Kashima,aJsudl Inokuchi,
2003; Lodhi, Saunders, Shawe-Taylor, Cristianini, and Watkins, R@zhach spaces (Hein, Bous-
quet, and Saoblkopf, 2005; von Luxburg and Bousquet, 2004), and Pseuddidean spaces (Her-
brich, Graepel, Bollmann-Sdorra, and Obermayer, 1998; Goldf&85;1Pekalska, Paclik, and
Duin, 2001).

During this transformation, one has to ensure that the relevant informdttba original prob-

lem is preserved. Under the assumption tthas a reasonable distance function anprovided
by some external knowledge, we can preserve the relevant informatissoimetrically embed-
ding the original spacéX,d) into some target spadeX’,d’). Depending on the choice of the
target space this is only possible if the distance fundtisatisfies certain properties. Suppose that
S ={x1,...,%} C X is a finite set and = (djj) is a distance matrix with elemend§ = d(x;,x;).
If dis symmetric and homogeneous, we can isometrically embado a Pseudo-Euclidean space
(Goldfarb, 1985). In the case thdtis a metric, the elements @p can be isometrically embedded
into a Banach space. An isometric embeddingsahto a Hilbert or Euclidean space is possible
only if the matrixD? is of negative type (Schoenberg, 1937).

Most standard learning methods have been developed in a Hilbert spaceBuclidean space
equipped with a Euclidean distance. But distance matrices of a finite santficatorial structures
are often not of negative type and therefore an isometric embedding inloeattdpace or Euclidean
space is not possible. Another common problem of most isometric embedditiga they only
preserve distance relations and disregard knowledge about therihhatere of the elements from
the original space. For example the inherent nature of graphs is thatdheist of a finite set of
vertices together with a binary relation on that set. These information is last,\wwe have settled
in the target space for solving a pattern recognition problem. But for sontieodsin pattern
recognition it is necessary to either directly access the original data ocduenethe effects of the
operations performed in the target space. One example is the sample mesat of @ombinatorial

1. A symmetric matrixM is of negative type ik Mx <= 0 for all x with xT1 = 0.

2668



STRUCTURE SPACES

structures (Jain and Obermayer, 2008; Jiangnlyer, and Bunke, 2001), which is a fundamental
concept for several methods in pattern recognition such as principgdar@ent analysis and central
clustering (Gold, Rangarajan, and Mjolsness, 199&t@r and Bunke, 2002; Lozano and Escolano,
2003; Jain and Wysotzki, 2004; Bonev, Escolano, Lozano, Suagrl@aaand Aguilar, 2007; Jain
and Obermayer, 2008). The sample mean of a set of vectors is the vécdample means of
each component of those vectors. Similarly, a sample mean of a set of coonlaihstructures

is a combinatorial structure composed of the sample means of the constituasthpastructure

is composed of. Another example is finding frequent substructures wea get of combinatorial
structures (Dehaspe, Toivonen, and King, 1998; Yan and Ha2)2B6r such problems a principled
framework is missing.

In this contribution, we present a theoretical framework that isometricalyismstructurally
embeds certain metric spacg®,d) of combinatorial structures into a quotient spéa@,d’) of a
Euclidean vector space. Instead of discarding information about theeimh@ature of the original
data, we can weaken the requirement that the embeddify, o into (X’,d’) should be isometric
for all metrics. Here, we focus on metridshat are related to the pointwise maximum of a set of
Euclidean distances. This restriction is acceptable from an application gfoiidgw, because we
can show that such metrics on combinatorial structures and their related gyniilactions are a
common choice of proximity measure in a number of different applications (Raldgarajan, and
Mjolsness, 1996; Holm and Sander, 1993; Caprara, Carr, Istraitibgand Walenz, 2004).

The quotient spacex’,d’) preserves the distance relations and the nature of the original data.
The related Euclidean space provides the mathematical structure thatigevés a rich arsenal
of learning methods. The goal of the proposed approach is to adoplastalearning methods
based on local gradient information to learning on structures in the qusfpacex’. In order to
do so, we need an approach that allows us to formally adopt geometritanatytical concepts
for finite combinatorial structures. The proposed approach maps comiaatructures to equiv-
alence classes of vectors, where the elements of the same equivalesxarelalifferent vector
representations of the same structure. Mapping a combinatorial strucamestpuivalence class of
vectors rather than to a single vector provides a link to the geometry of Eaclgfaces and at the
same time preserves the nature of the original data. The resulting quotiétitesset of equiva-
lence classes) leads to the more abstract notigh-epace. Formally, & -spaceX.; over a vector
spaceX is a quotient set of, where the equivalence classes are the orbits of the group action of
a transformation grou@ on X. We show that/ -spaces encompass a variety of different classes
of combinatorial structures, which also includes vectors. Thus, theytlidar-spaces generalizes
the vector space concept to cope with combinatorial structures and aietaiaing the geometrical
and algebraic properties of a vector space to a certain extent.

We present case studies to illustrate that the theoretical framework cgpledato machine
learning applications.

This paper is organized as follows: Section 2 provides an overviewt éhelasic idea of the
proposed approach. In Section 3, we stuthgpacesX,; over metric, normed, and inner product
vector space&’. We show that the gradient of a smooth function on structures satisfiestbssary
condition of optimality and is a well-defined structure pointing in direction of sisepscent. In
Section 4, we use the theory Btspaces to formulate selected problems in structural pattern recog-
nition as continuous optimization problems. We show that the proposed cwsiofus are locally
Lipschitz and therefore nonsmooth on a set of Lebesgue measureFperiis class of functions,
we can apply methods from nonsmooth optimization. As a case study, wegliacisction 5 the

2669



JAIN AND OBERMAYER

X1 X9 X3 X
mous
1/3
Figure 1: lllustration of a sample meXrof the three graph® = {X1,Xp, X3}. Vertices and edges
of X that occur in all of the three example graphs framare highlighted with bold
lines. All other vertices and edgesXfare annotated with the relative frequency of their

occurrence inD. By annotating the highlighted vertices and edges wfth 1, we obtain
a weighted graph.

problem of determining a sample mean of a set of structures including its apli¢a central
clustering. As structures we consider point patterns and attributed gregdction 6 concludes.
Technical parts and proofs have been delegated to the appendix.

2. An Example

The purpose of this section is to provide an overview about the basiciidiea proposed approach.
To this end, we consider the (open) problem of determining the sample megapdfs as a sim-
ple introductory example. The concept of a sample mean is the theoreticadion for central
clustering algorithms (see Section 4.3 and references therein).

A directed graphis a pairX = (V,E) consisting of a finite se¥ of verticesand a seE =
{(i,j) eV xV :i#j} of edges

By G we denote the set of all directed graphs. Suppose that

D = (Xa,...,X)

is a collection ok not necessarily distinct graphs frogh Our goal is to determine a sample mean of
X. Intuitively, a sample mean averages the occurrences of vertices ges within their structural
context as illustrated in Figure 1.

As the sample mean of integers is not necessarily an integer, the sample m®&ais oot
necessarily a directed graph frogh (see Figure 1). Therefore, we extend the Geof directed
graphs to the sef;[R] of weighted directed graphs. Weighted directed grapls a triple X =
(V,E,a) consisting of a directed gragh, E) and aweight functiora : V UV — R such that each
edge has nonzero weight. A weighted directed gedpii order|V| = nis completely specified by
its weight matrix X= (x;j) with elementsq; = a(i, j) foralli, j € {1,...,n}.

The standard method

. k
=3

to determine the sample menof D fails, because a well-defined addition of directed graphs
is unknown as indicated by Figure 2. Therefore, we consider an aquivcharacterization of
the standard notion of sample mean. Following Jiangn§er, and Bunke (2001), we adopt the
optimization formulation of the standard sample mean. For vectors, the samplemmaauizes the
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sum of squared Euclidean distances from the data points. In line with thisifation, we define a
sample mean op as a global minimum of the cost function

k
F(X)= ,;D<x,>9>27 (1)

whereD is some appropriate distance function gfiR] that measures structural consistent and
inconsistent parts of the graphs under consideration.

In principle, we could use any "well-behaved” distance functiadere, we first consider dis-
tance functions on structures that generalize the Euclidean metric, bdeacigdean spaces have a
rich repository of analytical tools. To adapt at least parts of these tootgriicture spaces, it seems
to be reasonable to relate the distance fundddn Equation (1) to the Euclidean metric. From an
application point of view, this restriction is acceptable for the following reas@) Geometric dis-
tance functions on graphs and their related similarity functions are a comnooreadf proximity
measure in a number of different applications (Gold, Rangarajan, andniégs, 1996; Holm and
Sander, 1993); and (ii) it can be shown that a number of structuedh@®ximity measures like,
for example, the maximum common subgraph (Raymond and Willett, 2002) or maxaoniact
map overlap problem for protein structure comparison (Goldman, IstrailPapadimitriou, 1999)
can be related to an inner product and therefore to the Euclidean distance

The geometric distance functiobswe consider here are usually defined as the maximum of a
set of Euclidean distances. This definition implies that (i) the cost funEtismeither differentiable
nor convex; (ii) the sample mean of graphs is not unique as shown in Figarel (iii) determining
a sample mean of graphs is NP-complete, because evaluationsdflP-complete. Thus, we are
faced with an intractable combinatorial optimization problem, where, at a linstg, a solution has
to be found from an uncountable infinite set. In addition, multiple local minima ofdsefunction
F complicates a characterization of a structural mean.

To deal with these difficulties, we embed graphs int®-apace as we will show shortly. The
basic idea is to view graphs as equivalence classes of vectors via thgitt weatrices, where the
elements of the same equivalence class are different vector reptesentd# the same structure.
The resulting quotient set (the set of equivalence classes) leads to teeabxiract notion of -
space. Formally, & -spaceX; over a vector spack is a quotient set ak’, where the equivalence
classes are the orbits of the group action of a transformation groupX. The theory ofZ -spaces
generalizes the vector space concept to cope with combinatorial staiangeims at retaining the
geometrical and algebraic properties of a vector space to a certain drteoing so, theZ -space
concept not only clears the way to approach the structural versior etinple mean in a principled
way, but also generalizes standard techniques of learning in structanegins.

2.1 The Basic Approach

To construct? -spaces, we demand that all graphs are of bounded ardenere the bound can
be chosen arbitrarily large. For a pattern recognition application this is setiaus restriction,
because we can assume that the data graphs of interest are of bouteledin the second step, we
align each weighted directed grapghof orderm < n to a graphX’ of ordern by addingp=n—m

2. As we will see later, a distance function is well-behaved if it is locally Liggch
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1o
L

Figure 2: lllustration of one key problem in the domain of graphs: the lackw€ll-defined ad-
dition. The graphX; can be added t¥; with respect td (X3, Xz) in two different ways
as indicated by the highlighted subgraph¥dndZ. As a consequenc¥,andZ can be
regarded as two distinct sample meanXpandXo.

inil awe

isolated vertices. The weighted adjacency matrix of the aligned gfajshthen of the form

' ( X Omp >

Opm Opp /'
whereX is the weighted adjacency matrix ¥ and G, p, Opm, Op p are padding zero matrices. By
G[R,n] we denote the set of weighted directed graphs of bounded order

For practical issues, it is important to note that restricting to structureswfdsm orden and
alignment of structures are purely technical assumptions to simplify mathem&iesmachine
learning problems, these limitations should have no practical impact, becaitiser the bounch
needs to be specified nor an alignment of all graphs to an identical ceg€elsrio be performed.
In a practical setting, we cancel out both technical assumptions by esimgjcgtructure preserving
mappings between the verticesXfandY. Thus, when applying the theory, all we actually require
is that the graphs are finite. We will return to this issue later, when we hawedped the necessary
technicalities.

The positions of the diagonal elementsofietermine an ordering of the vertices. Conversely,
different orderings of the vertices may result in different matrices. éSme are interested in the
structure of a graph, the ordering of its vertices does not really matterefdre, we consider two
matricesX andX’ as being equivalent, denoted Ky~ X/, if they can be obtained from one another
by reordering the vertices. Mathematically, the equivalence relation cemitben as

X~X & 3IPeT :PTXP=X,

whereT denotes the set of alh x n)-permutation matrice$ The setT together with the function
compositionT o T’ for all T, T’ € 7 forms an algebraic group. B] we denote the equivalence
class of all matrices equivalent ¥ Occasionally, we also refer {&X] as the equivalence class of
the graphX.

There aren! different orderings of the vertices for an arbitrary graptwith n vertices. Each
of then! orderings determines a weighted adjacency matrix. The equivalenseatldsconsist of
all its different matrix representation. Note that different orderings efvgrtices may result in the
same matrix representation of the graph.

3. The letterZ stands for transformation.
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X1 g X2 g X3 Cl) X4 é X5 % X6 C2)
i N N VN N P
1 2 2 1 2 3 3 2 1 3 3 1
Yl 3 Y2 3 Y3 1 Y4 Cl) Y5 2 Y6 2
N N A N N N
1 2 2 1 2 3 3 2 1 3 3 1

Figure 3: lllustration of two graphs with all possible orderings of their vegticThe number at-
tached to the vertices represents their order (anchatrattributes). The ordered graphs
are grouped together according to their matrix representations. AlledadgaphsK1-
X6 yield the same weighted adjacency matrix. In the second row, the (¥dir¥?2),
(Y3,Y4), and(Y5,Y6) result in identical matrices.

Example 1 Consider the graphs % X1 and Y = Y1 depicted in the first column of Figure 3.
The numbers annotated to the vertices represent an arbitrarily chaskming. Suppose that all
vertices and edges have attribute Then the weighted adjacency matrices of X and Y given the
chosen ordering of their vertices are of the form

111 1 01
X=1111 and Y=1 011
111 111

The first and second row of Figure 3 show 8le= 6 different orderings of X and Y, respectively.
The matrix representation of X is independent of its ordering, that id) eaardering of the
vertices of X results in the same matrix representation. Hence, the equéeatéass of X consists
of the singleton X.
The6 different orderings of graph Y result in three different matrix repréagons. The equiv-
alence class of Y is of the form

101 111 110
Y] = 011,110,211 1]},
111 101 011

where the first matrix refers to the ordering of=YY1 and Y2, the second to 3 and Y4, and the
third to Y5 and Y6.

Since we may regard matrices as vectors, we can emdbatb the vector spac& = R™" as
the setX] of all vector representations &f. We call the quotient set

Xr=X/~=J X
Xex

consisting of all equivalence classgsspaceover therepresentation spac#. Figure 4 depicts an
embedding of a graph into a vector space.
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ordering graph matrix vector embedding
2
1 2 1
X
1 < ) x=(21,1,4)" 0
] 1 4
2: 2 _|
, _
2: 4 1 _ X’
1 , T
X=(4,112)
) 1 2
= 4

Figure 4: lllustration of an embedding of a graph of order 2. The attriboftéise vertices are 2
and 4, and the attribute of the bidirectional edge is 1. Depending on thergae the
vertices, we obtain two different matrix representations. Stacking the cslwithe
matrix to a 4-dimensional vector yields the vector representati@rsdx’. The plot in
the last column depicts both representation vectors by considering thearfadgourth
dimension. Thus a graph is represented as a set of vectors in somesypater

3. T-spaces

In this section, we formalize the ideas @fiispaces of the previous section. We consider a more
general setting in the sense that we include classes of finite structuresh@thelirected graphs
with attributes from arbitrary vector spaces rather than weights Roihe chosen approach that
allows to formally adopt geometrical and analytical concepts makes userudtibe ofr-structures

We introduce -structures in Section 3.1. Based on the notion-sfructures, we develop the theory
of 7-spaces in Sections 3.2 and 3.3. For a detailed technical treatmé@nspéces we refer to
Appendix A and B. Finally, Section 3.4 considers optimization of locally Lipschitections on
Tspaces.

3.1 Attributed r-Structures

A r-structureis a pairX = (P, ) consisting of a finite se® # 0, and a subseR C P'. The
elements ofP are thepointsof ther-structureX, the elements off are itsr-ary relations A r-
structure with point# is said to be a-structureon 2. For convenience, we occasionally identify
the structureX on 2 with its relation®..

The following examples serve to indicate that several types of combinastmigitures can be
regarded as-structures. We first show that graphs are 2-structures. For thigsevéhe following
notation: Given a finite se® of points, let

PP —{(p,a) : p.ge P, p#a}

be the set of tuples fror®? without diagonal elemeni, p).

Example 2 (Graphs) Let ? be a finite set of points, and let X (?,R) be a2-structure with
R C P2
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1. X is adirected graplif ® C P2,
2. X is asimple graptif ® C ?? such that(p,q) € ® implies(q, p) € R..

3. X is asimple graph with loop# ® C P2 such that(p,q) € ® implies(q, p) € ®. Loops are
edgedp, p) with the same endpoints.

In a similar way, we can define further types of graphs such as, fongea trees, directed
acyclic graphs, complete graphs, and regular graphs as 2-strusyuspscifying the corresponding
properties org.

The next example shows that elements of a set are 1-structures.

Example 3 (Set of Elements)Let P be a finite set of points. TheementsE(P) = (P,R) is a
1-structure with® = P, that is its relations are the elements®f

To introduce analytical concepts to functionsrestructures, we shift from discrete to contin-
uous spaces by introducing attributes. 12t ®9 denote the set of attributes. Af-attributed
r-structure is a triple X4 = (P, R, a) consisting of ar-structureX = (2, %) and anattribution
a: P — 4 with a(p) # 0 if, and only if, p € . Besides the technical argument, attributions also
have a practical relevance, because they are often used to enleandptibns of structured objects.
The next example collects some attributed structures.

Example 4 Let P be afinite set of order n.

e Attributed graphs Let 4 = RY. An attributed graphs an A-attributed 2-structure G, =
(P,R,a), where G= (P, R ) is a simple graph with loops anal: ® — 4 is an attribution
that assigns each vertex (loop) and each edge a non-zero featuce vec

e Point patternsLet 4 = R?. A point patternis an 4-attributed 1-structure B = (?, R, ),
where HP) = (P, R) are the elements aP anda : X — 4 is an attribution that assigns
each element p 2 its coordinatesx(p).

The next example shows that vectors are attributed 1-structures. Hélmesults om-structures
are also valid in vector spaces.

Example 5 Let 4 be a vector space. Suppose thais of order n= 1. Avectoris an Z-attributed
1-structure ¥ = (P, R,a), where EP) = (P,R) is the single element & anda : X — 4 is
an attribution that maps a singleton to a vector. Hence, the set of all posstifnletures ¥ on P
reproduces the vector spack

Note that we may assume without loss of generality that the attributesetdtions from®_ are
nonzero, that isi(®) C 4\ {0}. If the zero vector 0 is required as a valid attribute ofrelation,
we can always change, for example, to the vector sptiee 4 x R and redefiner as

(0,0) : peP\R
a(p),l) @ pexr '

An Z-attributedr-structureX = (P, R ,a) is completely specified by ithatrix representation
X = (Xp,...p.) With elements

o P - aAxR, p— { (

Xpl--~pr =a (p17‘ cey pr)
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forall p=(p1,...,pr) € P". For example, the matrix representation of a simple graph is its ordinary
adjacency matrix.

Neither the "nature” of the point® nor the particular form of the-relations®_ of a givenr-
structureX = (P, R ,a) do really matter. What matters is the structure describe® bySuppose
that X is of order|?| = n. To abstract from the "nature” of points, we chodge= {1,...,n} as
our standard set of points. The particular form#fdepends on the numbering of the points from
Zn. To abstract from the particular form &, we identify sets of-relations that can be obtained
from one another by renumbering the points. Mathematically, we can exihrese sets by means
of isomorphism classesTwo Z-attributedr-structuresX = (?,%,a) and X' = (?',R/,a’) are
isomorphic written asX ~ X’ if there is a bijective mapping: ? — P’ satisfying

L p=(py-- P) €R < 0(p) = (@(P1),--.,0(pr)) € R
2. a(p)=0ad'((p)) forall pe R.

Theisomorphisntlass]X] of X consists of allZ-attributedr-structures or? = Z, that are isomor-
phic toX. By 53" we denote the set of aft-attributedr-structures or = Z, and by[57"] the set
of all isomorphism classes of structures frofj.

We can identify any-structureX = (Zm, R ,a) of orderm < n with a structure of orden by
addingg = n—misolated points. The aligned structure is then of the f&fms= (Z,, X ,a’), where

gy d AP T peR
a(p)_{ 0 : otherwise’

Using alignment, we can regas);’ as the set ofZ-attributedr-structures of bounded order
Similarly, we may think of[s;"] as the set of abstract-attributedr-structures of bounded order
n. Again recall that specifying a boumdand aligning smaller structures to structures of ordare
purely technical assumptions to simplify mathematics.

3.2 T-Spaces

Let X = R" be then-dimensional Euclidean vector space, andZiebe a subgroup of the group of
all n x n permutation matrices. Then the binary operation

S TxX—=X, (T,X)—TX
is a group action off on X. Forx € X, theorbit of x is denoted by
Xy={Tx: TeT}.

If no misunderstanding can occur, we wrikginstead oflx],.
A T-spaceover X is the orbit space(; = X /7 of all orbits ofx € X under the action of.
We call X therepresentation spaoef X;. By

HiX — X

we denote thenembership functiothat sends vector representations to the structure they describe.
T-spaces are a convenient abstractionsiructures in order to adopt geometrical and analytical
concepts. To see this, let = RY and letx = 4N, whereN = n'. Via the matrix representations,
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we can identifyr-structures froms" as vectors fron. Obviously, we have a relaxation in the
sense thasy" C X and[5}'] C X such thapirestricted ons}y" sends vector representations to the
structures they represent. Note that there are structutks that are not well-defined-structures
from [.5‘2“}. Hence, care must be taken when applyiiigpaces.

The following notations, definitions, and results are useful to simplify teetiitizss. We use
capital lettersX,Y, Z, ... to denote the elements &f-. Suppose that = p(x) for somex € X. Then
we identify X with [x] and make use of sloppy notations like, for example,X to denotex € [x].#

Let f : X x X — R be a symmetric function satisfyinfyx,y) = f(y,x) for all x,y € X. Thenf
induces symmetric functions

F': Xy x Xy — R, (X,)Y)—max{f(xy):xeX,yeY},
Fo:Xr x Xy — R, (X)Y)—min{f(x)y) :xeX,yeY}.
Since7 is finite, the orbitgx] of x are finite. Hencel-* andF, assume an extremal value. We call

F* maximizerandF, minimizerof f on X1 x X.
An inner product-, -) on X gives rise to a maximizer of the form

() i X x Xy =R, (X)Y)—max{(x,y) : xe X,yeY}.

We call (-,-)" inner T-productinduced by(-,-). The inner7-product isnot an inner product,
because the maximum-operator in the definitiorf-0f* does not preserve the bilinearity property
of an inner product. But we can show that an infieproduct satisfies some weaker properties.

graphs matrices vectors embedding
2
2 1\ /4 1 - T
x =(2,1,1,4)
X 1 T
1 4 1 2 X'=(4,11,2)
4
3
3 1\/1 1 y =(3,1,1, 1)T
Y 1 T
1 1/\1 3 y=(1,11273)

[N

Figure 5: lllustration of two example graphs and their embeddings in a vguaceqsee Figure 4
for a detailed description).

Example 6 Consider the graphs X and Y from Figure 5. We have

4. The notation is sloppy, becau¥ds an element int; and not a set, where#d is a set of equivalent elements from
X.

2677



JAIN AND OBERMAYER

Thus, to determinéX,Y)”, we select vector representatiokf X andy of Y that have closest
angle and then evaluate, y).

Any inner product spac# is a normed space with norfix|| = 1/ (x,X) and a metric space with
metricd(x,y) = |[x—y||. The norm||-|| and the metricl on X give rise to minimizerg-||, of ||-||
andD, of d on X.

Since elements frorT” preserve lengths and angles, we have

T = [Tx=0[| = [Tx=TO[| = |[x—0ff = [|x]

forall T € 7. Hence,||X]|, is independent from the choice of vector representation. We call the
minimizer||-||, the‘T-norminduced by the nornj-||. A 7-norm is related to an innef-product in
the same way as a norm to an inner product. We have

1. (X, X)" = (x,x) for all x € X.

2. X, = VX, X)".

Note that aZ-norm isnot a norm, because @-space has no well defined addition. But we can
show that a7 -norm has norm-like properties.

Example 7 Consider the graphs X and Y from Figure 5. To determine tfieirorm, it is sufficient
to compute the standard norm of an arbitrarily chosen vector repretientaHence, we have

XL, = [IXII = ||| = V22,
IYIL = Iyl =ly| = V12

The minimizeD,. of the Euclidean metrid(x,y) = || x—y|| is also a metric. To distinguish from
ordinary metrics, we call the minimiz&, of a Euclidean metrid on X the 7-metric induced by
d. We can express the metil; in terms of(-,-)" as follows:

D.(X,Y)% = [IX[|Z —2(X,Y)" +[|Y|2.

Example 8 Consider the graphs X and Y depicted in Figure 5. To determif{X[Y), we select
vector representationg of X andy of Y that have minimal distancédy). Then we find that

D.(X,Y)=d(x,y) =d(X,y) = V2.
3.3 Functions onT-Spaces
A T -functionis a function of the form
F: Xy —R,

whereX is aT-space oveX. Instead of considering the-functionF, it is often more convenient
to consider itgepresentation function

f:X—R, X—Fopu(x),
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which is invariant under transformations from elementg of

Here, the focus is o -functions that are locally Lipschitz. A'-function islocally Lipschitz
if, and only if, its representation function is locally Lipschitz. We refer to apgix C for basic
definitions and properties from nonsmooth analysis of locally Lipschitztioms.

Suppose thak is a locally Lipschitz function with representation functibnBy Rademacher’s
Theorem 23,f is differentiable almost everywhere. In addition, at non-differentialoliatp, f
admits the concept of generalized gradient. The concepts differentiabitityradient can be trans-
fered to7-spaces in a well-defined way. Assume tfias differentiable at some poimte X with
gradient]f (x). Thenf is differentiable at all point¥ x € X with T € 7 and the gradient of at T x
is of the form

Of(Tx) =TOf(x).

We sayF is T-differentiable atX, if its representation functioffi is differentiable at an arbitrary
vector representatione X. The well-defined structure

is the T -gradientof F at X pointing in direction of steepest ascent.

3.4 Optimization of Locally Lipschitz 7-Functions

A standard technique in machine learning and pattern recognition is to poamentgproblem as
an optimization problem. Here, we consider the problem of solving optimizatioioigms of the
form

P1) minimize F:X; - R, X Y& R(X)
subjectto X € Us
where the component functioifs are locally LipschitzT -functions andti; C X7 is the feasible

set of admissible solutions. Then according to Prop. 21, the cost furi€i®also locally Lipschitz,
and we can rewrite (P1) to an equivalent optimization problem

minimize f: X >R,  x— YK, fi(x)
subjectto xe U

(P2)
where the component functiorfsare the representation functionskpfand U C X is the feasible

set withu(U) = Us. Hence,f is the representation function of the locally LipschitzfunctionF
and therefore also locally Lipschitz.

To minimize locally Lipschitz functions, the field of nonsmooth optimization offersiaier
of techniques. A survey of classical methods can be found &keé¥ and Neittaanéki (1992);
Shor (1985). As an example, we describe subgradient methods, wiidasy to implement and
well-suited to identify the difficulties arising in nonsmooth optimization. Algorithm flioes the
basic procedure:
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Algorithm 1 (Basic Incremental Algorithm)

choose starting poing € U and set :=0
repeat
set 1:=X1
fori=1,...,kdo
direction finding:
determinedy; € X andn > 0 s.t.%; +ndyi € U and

fi(%i -+ ndei) < fi(%;i)

l'ine search:
find step size;; > 0 such thak; +ngidi; € U and

Nt,i ~ argminf; (% +ndy;)
n>0
updati ng:
setir1 =%+ Ne,idk

Setx1:= K k1
Sett:=t+1
until some termination criterion is satisfied

To explain the algorithm, we first consider the case th& smooth andi = X. In the step
direction finding we generate a descent direction by exploiting the fact that the directjprsite
to the gradient is locally the steepest descent direction. Line searchyismploys some efficient
univariate smooth optimization method or polynomial interpolation. The negessadition for
a local minimum yields a termination criterion. Now suppose that locally Lipschitz. Thenf
admits a generalized gradient at each point. The generalized gradieates with the gradient
at differentiable points and is a convex set of subgradients at naereliffiable points. For more
details, we refer to Appendix C.

Subgradients, the elements of a generalized gradient, play a very impat&in algorithms
for non-differentiable optimization. The basic idea of subgradient metiots generalize the
methods for smooth problems by replacing the gradient by an arbitraryaglibgt. In the direction
finding step, Algorithm 1 computes an arbitrary subgradertdf (x) at the current poink. If
f is differentiable atx, then the subgradiemt coincides with the gradierif f (x). If in addition
d #£ 0, then the opposite directiond is the direction of steepest descent. On the other harfd, if
is not differentiable ax, then—d is not necessarily a direction of descentfadit x. But sincef is
differentiable almost everywhere by Rademacher’s Theorem 23, tlé men-differentiable points
is a set of Lebesgue measure zero.

Line search uses predetermined step siggsinstead of an exact or approximate line search
as in the gradient method. One reason for this is that the direettbnomputed in the direction
finding step is not necessarily a direction of descent. Thus, the viabilitylmjradient methods
depend critically on the sequence of step sizes. One common choice asestefhat satisfy

timzoo and tinf@o,
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wheren; =ny 1.
To formulate a termination criterion, we could—in principle—make use of the fallgwec-
essary condition of optimality.

Theorem 1 Let f: X — R be locally Lipschitz at its minimum (maximumgxg . Then
0eof(x).

At non-differentiable points, however, an arbitrary subgradientigdes no information about the
existence of the zero in the generalized gradiéhix). Therefore, when assuming an instantly
decreasing step size, one reliable termination criterion stops the algorithoomaas the step size
falls below a predefined threshold.

Since the subgradient method is not a descent method, it is common to kdepftthe best
point found so far, which is the one with smallest function value. For fudbdganced and more so-
phisticated techniques to minimize locally Lipschitz functions, we referakdfh and Neittaanidki
(1992); Shor (1985).

We conclude this section with a remark on determining intractable subgradieafgractical
setting.

3.4.1 APPROXIMATING SUBGRADIENTS

Nonsmooth optimization as discussed iralk¢b and Neittaaniéki (1992); Shor (1985) assumes
that at each poirnt we can evaluate at least one subgradjen®d f (x) and the function valué (x).

In principle, this should be no obstacle for the class of problems we aresteerin. In a practical
setting, however, evaluating a subgradient as descent direction camipeitationally intractable.
For example, the pattern recognition problems described later in Sectiona2edall computa-
tionally efficient for structures like point patterns, but NP-hard fordtrtes like graphs. A solution
to this problem is to approximate a subgradient by using polynomial time algoritAmapprox-
imated subgradient corresponds to a direction that is no longer a sidigrafithe cost function.
In particular, at smooth points, an approximated (sub)gradient (hibgefarresponds to a descent
direction close to the direction of steepest descent. We call Algorithmapproximate incremen-
tal subgradient methodi$ the direction finding step produces directions that are not necessarily
subgradients of the corresponding component functjon

We replace the subgradient by a computationally cheaper approximatiodiestion of de-
scent. In a computer simulation, we show that determining a sample mean of wegghfh is
indeed possible when using approximate subgradient methods.

Suppose that; is theT-space of simple weighted graphs ovee= R"™", and let?; C X7
be the subset of weighted graphs with attributes from the intg®y&). Our goal is to determine a
sample mean of a collection of simple weighted graghs {X,..., Xk} C Us.

Given a representationof X, the computationally intractable task is to find a representagion
of X; such that(x,x;) € supp(d)%i|x). This problem is closely related to the problem of computing
the distanceD..(X,X;), which is known to be an NP-compleggaph matching problemHence,
in a practical setting, exact algorithms that guarantee to find a subgradielescent direction are
useless for all but the smallest graphs. A solution to this problem is to appatx a subgradi-
ent by using polynomial time algorithms. An approximated subgradient gmmnels to a direction
that is no longer a subgradient of the cost function. In particular, ab#maoints, an approxi-
mated (sub)gradient (hopefully) corresponds to a descent diredtisa to the direction of steepest
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descent. We call Algorithm 1 aapproximate incremental subgradient methddbe direction find-
ing step produces directions that are not necessarily subgradients afritesponding component
function f;.

4. Pattern Recognition in‘7T-Spaces

This section shows how the framework‘@tspaces can be applied to solve problems in structural
pattern recognition. We first propose a generic scheme for learningtandes spaces. Based on
this generic scheme, we derive cost functions for determining a sample wesdral clustering,
learning large margin classifiers, supervised learning in structured &malior output spaces, and
finding frequent substructures. Apart from the last problem, all @bstfunctions presented in this
section extend standard cost functions from the vector space formaliErspaces in the sense that
we recover the standard formulations when regarding vectars#actures.

4.1 A Generic Approach: Learning in Distance Spaces

Without loss of generality, we may assume ti&t-, D) is a distance space, whebEeis either
the metricD, induced by the Euclidean metric ot or another (not necessarily metric) distance
function that is more appropriate for the problem to hand. A generic apprto solve a learning
problem(P) in X7 is as follows:

1. Transform(P) to an optimization problem, where the cost functfois a function defined on
Xr.

2. Show thaf is locally Lipschitz.
3. OptimizeF using methods from nonsmooth optimization.

Since Xy is a metric space over an Euclidean vector space, we can apply subgradiods or
other techniques from nonsmooth optimization to minimize locally Lipschifzinctions onXy.
If the cost functionF depends on a distance measxeve demand thaD is locally Lipschitz to
ensure the locally Lipschitz property fbr.

4.2 The Sample Mean ok-Structures

The sample mean of structures is a basic concept for a number of methodssiticatgpattern
recognition. Examples include visualizing or comparing two populations ahida graphs, and
central clustering of structures (Section 4.3).

We define a sample mean of thelementsXy, ..., Xk € Xy as a minimizer of

minimize F(X) =X ;D(X,X)?
subjectto X € Xr

)

whereD is a distance function oX. If D is locally Lipschitz, therF is also locally Lipschitz by
Prop. 21.

First approaches to study averages of graphs have been pussdi&ihy, Minger, and Bunke
(2001). They considered the set median and generalized median of e sdmgraphs as a discrete
optimization problem with a similar cost function as for the sample mean. To minimizeo#te c
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function, they applied a genetic algorithm to graphs with a small number ofetiésattributes. In
this contribution, we shift the problem of determining a sample mean from tistoreontinuous
optimization.

4.3 Central Clustering of k-Structures

Suppose that we are given a training sample: {Xy,...,Xn} consisting ofm structuresX; drawn
from the structure spacé;. The aim of central clustering is to firktluster centerg” = {Y1, ..., Y}
C Xz such that the following cost function

1 k m
==

is minimized with respect to a given distortion measDre The matrixM = (m;) is a (m x k)-
membership matrix with elements; € [0, 1] such thaty ;m;; =1 foralli=1,...,m.

If the distortion measure is locally Lipschitz, thénas a function of the cluster centersis
locally Lipschitz by Prop. 21.

A number of central clustering algorithms for graphs have been devisehtly (Gold, Ran-
garajan, and Mjolsness, 1996u@er and Bunke, 2002; Lozano and Escolano, 2003; Jain and
Wysotzki, 2004; Bonev, Escolano, Lozano, Suau, Cazorla, andlakg@007). In experiments
it has been shown that the proposed methods converge to satisfadtoiyrs) although neither the
notion of cluster center nor the update rule of the cluster centers is watledefBecause of these
issues one might expect that central clustering algorithm could be prarseitations halfway be-
tween different cluster centers of the same cluster. An explanation whyatiely occurs can now
be given. As long as the cost function is locally Lipschitz, almost all pointsiiffierentiable. For
these points the update rule is well-defined. Hence, it is very unlikely thaftihementioned oscil-
lations occur over a longer period of time, when using an optimization algoritatrstitcessively
decreases the step size.

4.4 Large Margin Classifiers

Consider the function
bwp: Xr — R, X — (W,X)"+b,

whereW € X is theweight structureandb € R the bias The discriminantyy, implements a
two-category classifier in the obvious way: Assign an input strucXute the class labeled 1 if
hwp(X) > 0 and to—1 if hy(X) < 0.

Suppose that = {(X1,y1),...,(X« Yk)} is a training sample consisting kfraining structures
X; € X together with corresponding labejse {+1}. We say,Z is T-separablef there exists a
Wp € X7 andbg € R with

h, (X) = (Wb, X)" + bo =y

for all (X,y) € Z.
To find an "optimal” discriminant that correctly classifies the training examplesconstruct

the cost function
k

FW,b.0) = 5 IWI?— 3 a4 (W )" + ).
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where then; > 0 are the Lagrangian multipliers. The representation functidn isfof the form

k
f(w,b,0) = % HWHZ—_ZGM (s (w,b)—-1),

wheres (w,b) = maxrc (w, TX) + b. The elementsy € W andx; € X; are arbitrary. The first term
of f is smooth and convex (and therefore locally Lipschitz). The locally Lipsgiribperty and
convexity of the second term follows from the rules of calculus for locaipsthitz functions (see
Section C) and Prop. 20. Hendeis locally Lipschitz and convex.

The structurally linear discriminants sets the stage to (i) explore large margsifides in struc-
ture spaces and (ii) construct neural learning machines for adapteegsing of finite structures.
Subgradient methods for maximum margin learning has been applied in Radlififiel, and Zinke-
vich (2006) for predicting structures rather than classes. Finally notéhthénnerZ -product as a
maximizer of a set of similarities is not a kernelgner, 2005).

4.5 Supervised Learning

The next application example generalizes the problem of learning largemwagsifiers fork-
structures by allowing/ -spaces as input and as output space. Note that the in- and outpes spac
may consist of different classeslotructures, for example, the input patterns can be feature vectors
and the output space can be the domain of graphs.

Assume that we are given a a training sample {(X1,Y1),..., (X, Yk) } consisting ok training
structuresX; drawn from someZ -spaceX; over.X together with corresponding output structuyes
from a‘T’-space); over?. Given the training data, our goal is to find an unknown functional
relationship (hypothesis)

H:X: — 97

from a hypothesis spac# that best predicts the output structures of unseen exanigles) €
X7 x 97 according to some cost function

k
F(H.2) = 0 5 LHOO,Y),

wherelL : 97 x 97 — R denotes the loss function.
The representation function &fis of the form

k
f(0,2) =} 3 009 ),

wherel : 7 x Y — R is the representation function bf h: X — 9 the representation function of
H, andx € X, y; € Yi. We assume that the functiohshave a parametric form and are therefore
uniquely determined by the value of their parameter ve@{okVe make this dependencetobn 6,
explicit by writing f (6, Z) instead off (h, Z).

The functionf is locally Lipschitz if ¢ andh (as a function o®y) are locally Lipschitz. As
an example for a locally Lipschitz functioh, we extend supervised neural learning machines to
k-structures:
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e Loss function The loss
£(x,y) = Ds (H(x), 1(y))?
is locally Lipschitz as a function of.

e Hypothesis spaceConsider the setfyy of all functionsg: X — 9 that can be implemented
by a neural network. Suppose that all functions fréfg are smooth. If dint?sy) = M, then
g is of the formg = (g1,...,9m), Where theg; are the component functions gf For each
component;, the pointwise maximizer

hi(x) = maxg;(Tx)

is locally Lipschitz. Henceh = (hy, ..., hu) is locally Lipschitz.

Compared to common models in predicting structures as applied by Taska);(d80chan-
taridis, Hofmann, Joachims, and Altun (2004), the proposed appratiehsdn two ways: First,
the proposed cost function requires no indirection via a score funétion x 9 — R to select the
prediction from9” by maximizingf for a given input fromX. Second, the proposed approach sug-
gests a formulation that can be exploited to approximately solve discrete atiduzus prediction
problems.

4.6 Frequent Substructures

Our aim is to find the most frequent substructure occurring in a finite data sék-structures. To
show how to apply the theory af-spaces to this problem, we consider a simplified setting.
First we define what we mean by a substructure-gtructureX’ = (Zm, R’,0') is said to be a
substructureof ak-structureX = (Z,, R ,a), if there is an isomorphic embeddigg Zm — Z.
Next, we restrict ourselves tostructures with attributes froff, 1] C R for the sake of simplic-
ity. Let

Br = {X = (Zn, R, q) € X7 : a(X) € {0,1}},
Ur = {X = (Zn, R, q) € X7 - a(X) € [0,1]}
be the set of al-attributedk-structuresX € Xz with attributes from{0,1} and|[0, 1], respectively.

Suppose thaD = {Xy,..., X} C B is a set ok-structures.
The characteristic function of theth structurex; € D

{ 1 : Xis asubstructure of;

XX)=1 0 . otherwise

indicates whether thk-structureX is a substructure oX;. We sayX* is amaximal frequent sub-
structureof ordermf it solves the following discrete problem
maximize F(X) =K ;xi(X)
subjectto |X|=m
X € Br.
We cast the discrete to a continuous problem. For this, we define

XX
IXI?

Fi(X) =
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for all X € Uy. We haveF(X) € [0,1] with F(X) = 1 if, and only if, X is a substructure aoX;.
Consider for a moment the problem to maximize the criterion function

k
GIX) = 3 F(X)

The problem with this criterion function is that a maximi2€e U; of G could be ak-structure
not occurring as a substructure in any of tastructures fromD. To fix this problem, we use the
soft-max function exp (K (X) — 1)) with control parametef. In the limit — oo, thei-th soft-max
function reduces to the characteristic functjgnGiven a fixed3 > 0, the soft-max formulation of
the frequent subgraph problem is of the form

maximize Fg(X) = 3K ;exp{B(F(X)-1)}
subjectto |X|=m
X e Ug.

The representation function & is of the form

w03 ee{e (5 2)

wheres (X) = maxrc7 (X, Tx). Applying the rules of calculus yields th& is locally Lipschitz.

The common approach casts the frequent subgraph mining problem toch peablem in a
state space, which is then solved by a search algorithm (Dehaspen@ojend King, 1998; Han,
Pei, and Yin, 2000; Inokuchi, Washio, and Motoda, 2000; Kuramoedikéarypis, 2001; Yan and
Han, 2002). Here, we suggest a continuous cost function for thadre subgraph mining problem
that can be solved using optimization based methods (see Section 3.4).

5. Experimental Results

To demonstrate the effectiveness and versatility of the proposed fraiewe applied it to the
problem of determining a sample mean of randomly generated point pattermgeayhted graphs
as well as to central clustering of letters and protein structures repeedeygraphs.

5.1 Sample Mean

To assess the performance and to investigate the behavior of the sehgeaml approximated sub-
gradient method for determining a sample mean, we conducted an experimeatsglom graphs,
letter graphs, and chemical graphs. For computing approximate subgsagie applied the gradu-
ated assignmen@{) algorithm (see Appendix D). For data sets consisting of small graphalsee
applied a depth first searcBH) algorithm that guarantees to return an exact subgradient.

5.1.1 DATA

Random Graphs.The first data set consists of randomly generated graphs. We sakngteghs
by distorting a given initial graph according to the following scheme: Firsttameomly generated
an initial graphMg with 6 vertices and edge density50 Next, we assigned a feature vector to
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depth-first graduated set
search assignment mean
Random Graphs 29.645.3) 34.5 ( 6.6) 43.0 ¢ 7.5)
Letter Graphs 42.3% 10.1) 43.94 11.1) 60.5 {+ 16.6)
Molecules 262.24 113.6) 338.04 115.0)

Table 1: Average SSD of sample mean approximated by depth-first seadchraduated assign-
ment. As reference value the average SSD of the set mean is shown inttbellgsn.
Standard deviations are given in parentheses.

each vertex and edge M, drawn from a uniform distribution ové6,1]¢ (d = 3). GivenMo, we
randomly generatedl distorted graphs as follows: Each vertex and edge was deleted with 20%
probability. A new vertex was inserted with 10% probability and randomly eoted to other
vertices with 50% probability. Uniform noise froff, 1]¢ with standard deviatiow € [0,1] was
imposed to all feature vectors. Finally, the vertices of the distorted graptesrandomly permuted.

We generated 500 samples each consisting-efL0 graphs. For each sample the noise level
o € [0,1] was randomly prespecified.

Letter Graphs. The letter graphs were taken from the IAM Graph Database Reposioihe
graphs represent distorted letter drawings from the Roman alphabetotingist of straight lines
only. Lines of a letter are represented by edges and ending points obirvestices. Each vertex is
labeled with a two-dimensional vector giving the position of its end point relatia reference co-
ordinate system. Edges are labeled with weight 1. We considered the 15@iatibs representing
the capital letteA at a medium distortion level.

We generated 100 samples each consisting-01.0 letter graphs drawn from a uniform distri-
bution over the data set of 150 graph letters representing ketiea medium distortion level.

Chemical GraphsThe chemical compound database was taken from the gSpénHiie data set
contains 340 chemical compounds, 66 atom types, and 4 types of bondsve@age a chemical
compound consists of 27 vertices and 28 edges. Atoms are represgniedtibes and bonds
between atoms by edges. As attributes for atom types and type of bondsede 1-to-k binary
encoding, wher& = 66 for encoding atom types akd= 4 for encoding types of bonds.

We generated 100 samples each consisting-6f10 chemical graphs drawn from a uniform
distribution over the data set of 340 chemical graphs.

5.1.2 BVALUATION PROCEDURE

As performance measure, we used the average sum-of-squaredest&8D) of the sample mean
described in Section 4.2 averaged over all samples. The average $&Pset mean graph serves
as our reference value. The set mean is an element from the gse¢lf that minimizes the SSD
over all structures fronD.
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Algorithm 2 (K-Means for Structures)

initialize numberk of clusters

initialize cluster center¥;,. .., Yk

repeat
classify structure¥; according to neare¥j
recomputey;

until some termination criterion is satisfied

5.1.3 RESULTS

Table 1 shows the average SSD and its standard deviation. The resuitthsthaising exact sub-
gradients gives better approximations of the sample mean than using apgezkisnhgradients.
Compared with the set median, the results indicate that the subgradient@odiam@ted subgra-
dient method have found reasonable solutions in the sense that the reauétiage SSD is lower.

5.2 Central Clustering

Based on the concept of sample mean for structures, we applied the igtrwetsions of k-means
and simple competitive learning on four data sets in order to assess andredimpaerformance
of subgradient methods.

5.2.1 GENTRAL CLUSTERING ALGORITHMS FORGRAPHS

We consider k-means and simple competitive learning in order to minimize the chijestive
(see Section 4.3)

k m
F(IM, 7, X) = Z; D(X,Yj).

K-means for graphs.The structural version of k-means is outlined in Algorithm 2. This method
operates as the EM algorithm of standard k-means, where the chosatiatistoeeasure in the E-
step isD to classify the structures according to nearest cluster centgr. In the M-step the basic
incremental subgradient method described in Algorithm 1 is applied to redertippimeans.

Simple competitive learning.The structural version of simple competitive learning corresponds
to the basic incremental subgradient method described in Algorithm 1 for minigniaan cluster
objectiveF (X).

5.2.2 DatA

We selected four data sets described in Riesen and Bunke (2008)afBrsets are publicly available
at the IAM Graph Database Repository. Each data set is divided into &ngairalidation, and a
test set. In all four cases, we considered data from the test set oméyddscription of the data

5. The repository can be foundHtt p: / / www. i am uni be. ch/ f ki / dat abases/i am gr aph- dat abase.
6. gSpan can be found bttt p: / / ww. xi f engyan. net/ sof t war e/ gSpan. ht m
7. We replaced the factor/in by the factor ¥2 for convenience of presentation of our results.
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data set #graphs) #(classes) avg(nodes) max(nodes) avg(edgag(edges)

letter 750 15 4.7 8 3.1 6
grec 528 22 115 24 11.9 29
fingerprint 900 3 8.3 26 141 48
molecules 100 2 24.6 40 25.2 44

Table 2: Summary of main characteristics of the data sets used for censitalririg.

sets are mainly excerpts from Riesen and Bunke (2008). Table 2 psaaidemmary of the main
characteristics of the data sets.

Letter Graphs. We consider all 750 graphs from the test data set representing distetted
drawings from the Roman alphabet that consist of straight lines only,(R, I, |, K, L, M, N, T, V,
W, X, Y, Z). The graphs are uniformly distributed over the 15 classes (#tt&he letter drawings
are obtained by distorting prototype letters at low distortion level. Lines of & brggepresented by
edges and ending points of lines by vertices. Each vertex is labeled with-ditvemsional vector
giving the position of its end point relative to a reference coordinatesydtelges are labeled with
weight 1. Figure 6 shows a prototype letter and distorted version at gadistortion levels.

A A AR

Figure 6: Example of letter drawings: Prototype of letter A and distorted s@meerated by im-
posing low, medium, and high distortion (from left to right) on prototype A.

GREC Graphs. The GREC data set (Dosch and Valveny, 2006) consists of graphssesping
symbols from architectural and electronic drawings. We use all 52&grfipm the test data set
uniformly distributed over 22 classes. The images occur at five diffelistdrtion levels. In Figure
7 for each distortion level one example of a drawing is given. Dependinip® distortion level,
either erosion, dilation, or other morphological operations are appliec r@sult is thinned to
obtain lines of one pixel width. Finally, graphs are extracted from thetregudenoised images
by tracing the lines from end to end and detecting intersections as well msrsoEnding points,
corners, intersections and circles are represented by vertices atedatith a two-dimensional
attribute giving their position. The vertices are connected by undirecgebeghich are labeled as
line or arc. An additional attribute specifies the angle with respect to thedmbaizdirection or the
diameter in case of arcs.

o <25 Q

Figure 7: GREC symbols: A sample image of each distortion level
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Fingerprint Graphs. We consider a subset of 900 graphs from the test data set repregstmiin
gerprint images of the NIST-4 database (Watson and Wilson, 1992). giidphs are uniformly
distributed over three classét, right, andwhorl. A fourth class &rch) is excluded in order to
keep the data set balanced. Fingerprint images are converted int@ ¢paplbering the images and
extracting regions that are relevant (Neuhaus and Bunke, 200E\aRéregions are binarized and
a noise removal and thinning procedure is applied. This results in a skeldaepresentation of
the extracted regions. Ending points and bifurcation points of the skeletbnégiions are repre-
sented by vertices. Additional vertices are inserted in regular intervakeba ending points and
bifurcation points. Finally, undirected edges are inserted to link verticéatbalirectly connected
through a ridge in the skeleton. Each vertex is labeled with a two-dimensitinalte giving its
position. Edges are attributed with an angle denoting the orientation of thendithgespect to the
horizontal direction. Figure 8 shows fingerprints of each class.

Figure 8: Fingerprints: (a) Left (b) Right (c) Arch (d) Whorl. Fingants of class arch are not
considered.

Molecules. The mutagenicity data set consists of chemical molecules from two classegémuta
non-mutagen). The data set was originally compiled by Kazius, McGuie Bamsi (2005) and
reprocessed by Riesen and Bunke (2008). We consider a sub%@0 oholecules from the test
data set uniformly distributed over both classes. We describe moleculeagiysgn the usual way:
atoms are represented by vertices labeled with the atom type of the comdéspatom and bonds
between atoms are represented by edges labeled with the valence ofrsponding bonds. We
used a 1-tdk binary encoding for representing atom types and valence of borgfmatively.

5.2.3 (ENERAL EXPERIMENTAL SETUP

In all experiments, we applied k-means and simple competitive learning fohgta the aforemen-
tioned data sets. We used the following experimental setup:

Performance measuredVe used the following measures to assess the performance of an algorithm
on a data set: (1) error value of the cluster objective (see Section2).2)aésification accuracy, and
(3) silhouette index. The silhouette index is a cluster validation index takingsdiom[—1, 1].
Higher values indicate a more compact and well separated cluster strtuEturenore details we
refer to Theodoridis and Koutroumbas (2009).

Initialization of the clustering algorithmsThe numbek of centroids as shown in Table 3 was cho-
sen by compromising a satisfactory classification accuracy against theetttbhondex. To initialize
both clustering algorithms, we used a modified version of the "furthest fiemttistic (Hochbaum
and Shmoys, 1985). For each data.$gethe first centroidy; is initialized to be a graph closest to
the sample mean ¢f. Subsequent centroids are initialized according to

Y= arggwemiQD(X,Y),
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data set k measure km cl
letter 30
error 116 111
accuracy 0.86 0.90
silhouette 0.38 0.40
grec 33
error 32.7 27.6
accuracy 0.84 0.87
silhouette 0.40 0.42
fingerprint 60
error 1.88 1.30
accuracy 0.81 0.79
silhouette 0.32 0.34
molecules 10
error 56.0 53.8
accuracy 0.68 0.70
silhouette 0.04 0.05

Table 3: Results of k-means (km) and simple competitive learning (cl) on fatarskts.

where?; is the set of the firstcentroids chosen so far.

Subgradient and graph distance calculatiof®r subgradient and graph distance calculations, we
applied a depth first search algorithm on the letter data set and the gichdsaignment algorithm
(Gold and Rangarajan, 1996) on the grec, fingerprint, and moleculselata

5.2.4 RESULTS

Table 3 summarizes the results. The first observation to be made is that sirmpletitive learning
performs slightly better than k-means with respect to all three performanasumes. This is in
contrast to findings on standard k-means and simple competitive learningtior epaces. The
second observation is that both k-means algorithms yield satisfying classiiiGecuracies on
all data sets. This result shows that approximated subgradient methoth& egoplied to central
clustering in the domain of graphs.

5.3 Clustering Protein Structures

In our last experiment, we compared the performance of k-means and siompfeetitive learning
of graphs with hierarchical clustering applied on protein structures.

5.3.1 DaTA: PROTEIN CONTACT MAPS

One common way to model the 3D structure of proteins are contact maps.t#&ctaomap is a graph
X = (V,E) with ordered vertex set. Vertices represent residues. Two vertieesoanected by
an edge (contact) if the spatial distance of the corresponding residbekvws some prespecified
threshold.
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ID domain ID domain ID domain ID domain
1 1bO0A 11 4tmyB 21 2b3iA 31 1tri
2 1dbwA 12 1rnlA 22 2pcy 32 3ypiA
3 1nat 13 1rnl1B 23 2plt 33 8timA
4 1ntr 14 1ml1C 24 lamk 34 1lydvA
5 1gmpA 15 lbawA 25 law?2A 35 1b71A
6 1gmpB 16 1byoA 26 1b9bA 36 1bcfA
7 1gmpC 17 1byoB 27 1btmA 37 1ldpsA
8 1gmpD 18 1kdi 28 1htiA 38 1fha
9 3chy 19 1nin 29 1tmhA 39 lier
10 4tmyA 20 1pla 30 1treA 40 1rcd

Table 4: PDB domain names of the Skolnick test set and their assigned sngiexe

No Style Residues Seq. Sim. Proteins
1 alpha-beta 124 15-30% 1-14
2 beta 99 35-90% 15-23
3 alpha-beta 250 30-90% 24-34
4 170 7-70% 35-40

Table 5: Characteristic properties of the Skolnick test set as taken fegora and Lancia (2002).
Shown are the fold style, mean number of residues, and the range of sinlardiyed
by sequence alignment of the protein domains.

We used the Skolnick test set consisting of 40 protein contact maps pddwdé&e and Sahini-
dis (2007). Table 4 shows the PDB domain names of the test set and tligieassdexe$. Table 5
describes characteristic properties of the protein domains. The chisticteature of the Skolnick
data is that sequence similarity fails for correct categorization of the psoésirindicated by the

fourth column Geq. Sin).of Table 5. This motivates structural alignment for solving the Skolnick
clustering test.

5.3.2 ALGORITHMS

To cluster the contact maps, we minimized the cluster objective describedtiors¢8

1 k m
F(M, o, X) = E;émjD(X"Yj)’
using the extensions of k-means and simple competitive learning. The ctiist@mmce measur@
for both, the letter graphs and the contact maps, is the minimizer of the staéfuididean metric.

8. The Protein Data Bank (PDB) is a repository for the 3D structuresobéims, nucleic acids, and other large biological
molecules.
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C ID Fold Superfamily Family
1 1-11 Flavodin-like Che Y-like Che Y-related
2 12-14 Microbial Microbial Fungi
ribonucl. ribonucl. ribonucl.
3 15-23 Cuperdoxin- Cuperdoxins Plastocyanim-like
like Plastoazurin-like

4 24-34 TIM-beta Triosephosphate  Triosephosphate
alpha-barrel isomerase (TIM) isomerase (TIM)

5 35-40 Ferritin-like Ferritin-like Ferritin

Table 6: Clusters of Skolnick proteins detected by competitive learning anddns. Shown are
the cluster memberships of the proteins via their indexes (ID) as assignheabie 9.
The clusters perfectly agree with the fold, family, and superfamily accortinSCOP
categories.

For letter graphs the underlying transformation‘gds the set of all possible vertex permutations.
In the case of contact maps, the géts the subset of all partial vertex permutations that preserve
the order of the vertices.

For subgradient and distance calculations, we used a combination obggddssignment and
dynamic programming (Jain and Lappe, 2007).

5.3.3 ReEsuLTS

Competitive learning and k-means both correctly categorized the 40 prateinslusters accord-
ing to the SCOP categories as shown in Tabfe Bhis result was also achieved by previous ap-
proaches based on hierarchical clustering using pairwise similarity mafoesand Sahinidis,
2007; Caprara and Lancia, 2002; Caprara, Carr, Istrail, Lancth\¥alenz, 2004).

Competitive learning and k-means require less pairwise structural alignmantsahwise clus-
tering. Pairwise clustering of 40 structures requires 780 structuralhaéigts. In contrast, competi-
tive learning required 120 and k-means 440 structural alignments. @hkepr of central clustering
algorithms applied to contact maps is the increasing size of the cluster cemteesidy the updat-
ing step. A solution to this problem is to restrict the vertices of a cluster centieose vertices that
occur in at least one cluster member. In doing so, spurious verticesméfaluster members are
removed.

The distinguishing feature of central clustering of structures is that ‘e&roprototypes for each
cluster. According to Jain and Obermayer (2009), the sample mean isakluito the multiple
alignment of proteins, which is like clustering an essential task in bioinformatience, central
clustering of protein structures can solve two tasks simultaneously, caiegathe proteins and
and multiple aligning cluster members, which is useful for protein structursifitaion, structure-
based function prediction, and highlighting structurally conserved regibiunctional significance.

9. The Structural Classification of ProteinESCOP) database is a largely manual classification of protein structural
domains based on similarities of their amino acid sequences and 3D s#suctur
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Figure 9: Shown are approximated sample means of the Che Y-like supertdrilyster C1 feft)
and the Cuperdoxins superfamily family of cluster Ciglit). Diagonal elements show
the residues and off-diagonal elements the contacts. Darker shafing t@ a higher
relative frequency of occurrence of residues/contacts over ateclasembers.

Figure 9 shows approximations of sample means of the two largest clustepsitaa by competitive
learning.

6. Summary

In this contribution, we described a generic technique of how to geneidéssical learning ap-
proaches and other problems from pattern recognition to structured danidie proposed tech-
nigue is based on the notion Gf-space. A7 -space is a quotient set of a metric vector space—the
representation space—with all the vectors identified that representrtfteesteucture. The equiva-
lence classes of representation vectors are determined by the subffempogeneous isometrics
T. This constructions turns out to be a convenient abstraction of combadagtructures to for-
mally adopt geometrical and analytical concepts from vector spaces.

The metric of the representation spateinduces a metric on th@-space. A norm orxX
induces & -norm onX.r. TheZ-norm corresponds to the same geometric concept of length as the
standard norm. Thus, different vector representations of the sanctéus&rinave the same length.
An inner product-,-) on X induces the inne -product onX;, which is not bilinear but has the
same geometrical properties as). In other words, the Cauchy-Schwarz inequality is valid for
structures. This result gives rise to a well-defined geometric concepight between structures.

The interplay of geometrical intuition, the algebraic group structure of tmsfivramation set
T, and the link to the properties of a vector space via the membership functilols yie well-
defined notions of7 -differentiability and7-gradient that generalize the standard definitions of
differentiability and gradient of a smooth function at some point from a vesgtace. In particular,
the 7-gradient of a7 -function at a7 -differentiable point is a well-defined structure pointing in
direction of steepest ascent and satisfies the necessary conditiotinodldp. Therefore, we can
apply local gradient information to minimize smodadthkfunctions.

One application of the theory af -spaces are problems from structural pattern recognition.
For selected problems, we presented continuous optimization problems thleecost functions
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defined onT-spaces are locally Lipschitz. Locally Lipschitz functions are honsmooth set of
Lebesgue measure zero, but admit a generalized gradient at nerediféble points. The field of
nonsmooth optimization provides techniques like the subgradient method to mininsizéags of
nonsmooth functions.

As case studies, we considered the problem of computing a sample meamaadl dustering
in the domain of graphs. The cost functions are locally Lipschitz, but ctetipn of a subgradi-
ent is computationally intractable. To cope with the computational complexity, ggested an
approximate subgradient method that chooses the opposite of a direcsentelthe generalized
gradient as descent direction. We illustrated that the proposed methqgobisledo minimize the
cost function of the case study. Even so the high computational complexitgriving a subgra-
dient demands a reevaluation of existing nonsmooth optimization methods anfbadksising
algorithms that use approximations of the generalized gradient.

Appendix A. Introduction to 7-spaces

This section formally introduce® — spacesand presents proofs.

A.1l T-spaces

Let X = R" be then-dimensional Euclidean vector space, andZigbe a subgroup of the group of
all n x n permutation matrices. Then the binary operation

S TxX—-X, (T,X)—TX
is a group action off on X. Forx € X, theorbit of x is denoted by
Xy={Tx: TeT}.

If no misunderstanding can occur, we wrikginstead oflx],.
A T-spaceover X is the orbit space(; = X /7 of all orbits ofx € X under the action of.
We call X therepresentation spaoef X;. By

HiX — X

we denote thenembership functiothat sends vector representations to the structure they describe.
The following notations, definitions, and results are useful to simplify teetiitizs. We use
capital lettersX,Y, Z, ... to denote the elements &f-. Suppose that = p(x) for somex € X. Then
we identify X with [x] and make use of sloppy notations like, for exampgle X to denotex € [x].1°
By 07 we denote theZ-zero of Xi. It is easy to show thatPhas only the zero elementOx
as its unique representation vector.

Proposition 2 Let X, be a7-space over the metric vector spate Then {11 (07) = [0] = {0}.

Proof Follows directly from the fact that eadhe 7 is homogeneous and injective. |
A T-spaceXy has, in fact, & -zero element, but it is unclear how to define an additiaon X
such thatX; together with4- forms a group. The absence of an additive group structure is one of the

10. The notation is sloppy, becauses an element iy and not a set, wheregq is a set of equivalent elements from
X.
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major reasons why analytical tools for structured data are extremelyoanpared to the plethora

of powerful tools developed for feature vectors residing in some Baspace. To mitigate this

drawback of7 -spacesXy, we exploit the vector space axiomsXifvia the membership functiom
We say a membership functipnn X — X7 is 7 -linear if

(TLY) x4y € Mo ={X+Y : X €,y €[y},
(TL2) A = AX ={AX : X €[X}

for all x,y € X, and for allA € R. Note that for (TL1) we have a subset relation and for (TL2)
equality. This definition has a sound notation but appears to be indepgerdgrat first glance.
Since we identify the orbits] in X with the elementsi(x) of X7, we can rewrite (TL1) and (TL2)
by slight abuse of notation

H(X+y) € H(X) D uy),
HAX) = Ap(X).

Membership functions that arfE-linear preserve enough structure to transfer some geometrical and

analytical concepts fromx to X.

In contrast to the standard definition of linearity, we only require a sulesation in (TL1)
rather than equality. The proof of Prop. 3 explains this issue.

Proposition 3 Let X; be a‘7-space over the Euclidean spad&eThen the membership function
M: X — Xz is T-linear.

Proof Let z= x+y, and letZ € [x+y|. Then there is an elemefite 7 with Z = Tz SinceT is
linear by assumption, we obtain

Z=Tz=Tx+y)=Tx+Tye X @]

This proves (TL1). The proof of (TL2) is similar. |
For an intuitive understanding it is sometimes more convenient to use the fajlowtation

AX = U(Ax),
Xe+ Yy = H(X+Y).

It is important to note that thet” symbol in X +Yy does not refer to some kind of addition .
The notationXy + Y, is simply an alternative and for our purposes more convenient way totcefe
the elemenp(x+vy) € Xr.

We conclude this section with some further useful technical notations aotiseLetx" be the
n-ary cartesian product of a metric vector spaceAny real-valued functiorf : X" — R induces
functions

FrrxXy —R,  (Xq,..., %) — max{f(xy,...,%) : X € X},
FoiX? =R, (Xg,...,%) —min{f(xq,....,Xn) : % € X}.

Since7 is finite, the orbitgx] of x are finite. Hencef-* andF, assume an extremal value. We call
F* maximizerandF, minimizerof f on Xg. Let F be either a maximizer or minimizer df The
support

supp(F|X1,...,%Xn)

2696



STRUCTURE SPACES

of F at (Xg,...,Xn) € X} is the set of all element§xy,...,x)) € MLy X with f(x1...,%)) =
F(X1,...,%n). The next results shows a useful property of the support.

Proposition 4 Let F be the minimizer or maximizer of a function X" — R. Let X,..., X, €
Xr. Then for each ixc X; there are a x € X for all j € {1,...,n}\ {i} such that(xy,...,X,) €
SUPPF X4, .. ., Xo)-

Proof Let x; € X;. Suppose thatx;,...,X;) € supp(F|Xq,...,Xn). Then there is a transformation
T € 7 with Tx = x*. SinceT is a group, the inversg ! exists. Hencex; = T*lx]f is an element
of Xj for all j #i. We have

F(Xt,.. o, Xn) = FOK,...0%0) = F(Txg, ..., Tx) = F (X1,...,%n).

This shows the assertion. [ |

A.2 Metric 7-Spaces
Let X be aT-space over the metric vector spdce d). The minimizer

D.: Xy x Xr — R, (X,Y)—min{d(x,y) : xe X,yeY}.
of the metricd is a distance measure ofy. Theorem 5 shows thél, is a metric.

Theorem 5 Let X be a‘7-space over the metric spa¢&’,d). Then the minimizer Dof d is a
metric onX..

Proof LetX,Y,Z € X7.

1. We showD,(X,Y) =0« X =Y. Letx € X be a representation vector ¥f According to
Prop. 4 there is & € Y such thatx,y) € supgD.|x,y). We have
D,(X,Y)=0 & YxeX3dyeY dxy) =0
& VXeXyeY x=y
& X=Y.

2. SymmetnyD,(X,Y) = D.(Y, X) follows from symmetry ofl.

3. We showD,(X,Z) < D.(X,Y)+D.(Y,Z). Let (x,y) € supgD,|X,Y). There is & € Z such
that(y,z) € supp(D;|Y,Z). Then
D.(X,Y)+D.(Y,Z) =d(x,y) +d(y,2)
>d(x,2)
>min{d(x,z) : xe X,ze Z}
=D,(X,2).

Given the assumptions of Theorem 5, we ¢all-, D,) metric 7-spaceover (X,d). A metric
spaceX is complete if every Cauchy sequence of point&inonverges to a point from. The next
result states thati; is complete ifX is complete.
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Theorem 6 Any ‘7 -space over a complete metric vector space is a complete metric space.

Proof Let X be a7 -space over the complete metric spa&ed). According to Theorem 5 is

a metric space with metrid,.. To show thatX,; is complete, consider an arbitrary Cauchy sequence
(X)ien In X7. We construct a Cauchy sequerigg) such that{p(xy)) is a subsequence @X;). For
anyk > 0 there is ay such thaD, (X, Xj) < 1/2k foralli, j > ng. For eaclk, there areq € X, and

Xicr1 € X,y With d (X, Xeq1) < 1/2. By the triangle inequality, we have

for anyi, j with i < j. Hence,(X) is a Cauchy sequence ik and (L(X)) a subsequence of
(Xi). SinceX is complete,(xx) converges to a limit poink € X. By continuity of yu, we have
limg_e H(Xc) = K(X), Wherep(x) € Xz. Thus, the whole sequenc¥;) converges tqu(x). This
shows thatX; is complete. |

A.3 T-Spaces over Normed Vector Spaces

Let X be aT-space over the normed vector spdge ||-||). As a normed vector spacg, is a
metric space with metrid(x,y) = ||x—y]|| for all x,y € X. For anyT < 7, we have

ITX| = [[Tx=0|| = [Tx=TO[| = [[x—=0[| = [|x]|.
Hence, the minimizel-||, and maximizet|-||* of ||-|| coincide, that is
XL =X = I 2)
for all X € X7 and for allx € X.
We call the minimizet|-||, the T-norminduced by the nornjj-||. Note that & -norm isnot a
norm, because @-space has no well defined addition. But we can show tl&treorm has norm-

like properties. We use the notatiokX for p(AX) andXy+ Yy for p(x+y) as introduced in Section
3.2, p. 2696.

Proposition 7 Let (Xr, ||-||,) be aZ-space over the normed spack, |-||). For all X,Y € X7, we
have

1. ||X]|« = 0if, and only if, X= 0.
2. |AX][« = |A[|IX]| forall A € R.

3 X+ Yyl < X[« +]Y]|« forallx e X, ye Y.

Proof Follows directly from first applying Equation (2) and then using the prigeof the norm
||-|| defined onX. [ ]
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A.4 T-Spaces over Inner Product Spaces
Let X be aT-space over the inner product spdgeg (-, -)), and let
(Y X x Xy — R, (X,)Y) —max{(x,y) : xe X,yeY}

be the maximizer of the inner produgt-).

We call {-,-)" inner T-productinduced by the inner produg¢t,-). The innerZ-product isnot
an inner product, because the maximum-operator in the definitign -pf does not preserve the
bilinearity property of an inner product. But we shall show later that arrififrproduct satisfies
some weaker properties of an inner product.

Any inner product spac€ is a normed space with norfix|| = 1/ (x,X). The norm||-|| on X in
turn gives rise to th€ -norm||-||, on Xr. The next result shows that&norm is related to an inner
T-product in the same way as a norm to an inner product.

Proposition 8 Let(Xz, (-,-)*) be aT-space over the inner product spack, (-,-)), and let Xe X;r.
Then

1. (X, X)" = (x,x) for all x € X.
2. [X]|, = /XX
Proof

1. X is the orbit ofx under the group actioi. The assertion follows from the fact that each
transformationT of 7 satisfies

(TXTX) = [ITX% = IX|* = (x,X)
forallx e x.

2. Follows from the first part by taking the square root.

Using Prop. 8 the following operations to constr{igt. commute

(%, )~ ()7
n-n:ml U-n*: ()

A == Kl

Next we show that an innef -product satisfies some weaker properties related to an inner
product.

Proposition 9 Let X,Y,Z € X, and let xe X, ye Y. Then
1. (X, X)" > 0with (X,X)"=0 & X =07 (positive definite

2. (X,Y) = (Y, X)" (symmetrig
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3. (AX,Y) =N (X,Y) forA >0 (positive homogeneols
4. (Xe+Yy,Z)" < (X,Z)"+(Y,Z)" (sublineaj
Proof

1. Follows from Prop. 8 and the positive definiteness of.

2. Follows from the symmetry df, ).

w

. LetA > 0. Then

(AXY)  =max{(Ax,y) : xe X,yeY}
=Amax{(x,y) : xe X,yeY}
=A(X,Y)".

4. LetW = X+, and let(w,z) € supp((-,-)"|W,Z). Sincepis T-linear by Prop. 3, we have
W C X @Y. Hence, there anec X andy € Y such thaiv=x+Yy. Thus,

W,Z) =(W,2) = (x+Y,2) = (x,2) +(y,2).
From(x,2) < (X,Z)" and(y,z) < (Y,Z)" follows the assertion.

|
From the proof of Prop. 9 follows tharf-linearity of the membership function partially pre-
serves the structure of such that the inne¥ -product is a positive definite, symmetric, and sublin-
ear in both arguments.
Any inner product spaceX, (-, -)) is a metric space with metrl(x,y) = || x—y||. The metricd
induces a metri®, on X;. As for theT-norm, we want to expreds, in terms of(,-)".

Proposition 10 Let (X7, (-,-)") be a7 -space over the inner product spack, (-,-)). Then for all
X,Y € Xz, we have
D.(X,Y)? = [X[[F —2(X,¥)" + ||V 2.

Proof We have

D.(X,Y)?=min{|x—y|?: xe X,y Y}
=min{(Xx—y,x—y) : xe X,yeY}
=min{|x|*~2cy) +]ly|* - xe X,y € Y}
= [[x|[?—2max{(x,y) : x€ X,y € Y} +]ly|?
= [IXIIZ =2(X,Y)" + [I|.

Next, we extend the Cauchy-Schwarz inequality.
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Theorem 11 Let (X, (-,-)") be aT-space over the inner product spack, (-,-)). Then
LG < XYL -
forall XY € Xy

Proof Let (x,y) € supp({-,-)*|X,Y). Applying the conventional Cauchy-Schwarz inequality for
vectors and using Eq. (2) yields

[ = 1060 < IXIHIVIE= XYL -

|
Using Theorem 11, we can show that the angle of structures has a geain@ataning. For
two nonzero structures andy, the angled € [0, 17 betweernX andY is defined (indirectly in terms
of its cosine) by

(x.Y)"
cosB=———"-—-"—.
XL AL
Theorem 11 implies that
x.Y)"
1< ——<-— <1
XL AL

and thus assures that this angle is well-defined. It is worthy to mentior{Xh¥* has the same
geometrical properties as an inner product, although it does not satisfygibbraic properties of an
inner product. Having the concept of an angle for structures, we efamedstructural orthogonality
in the usual way. Two nonzero structubésandY, written asX LY, arestructurally orthogonal if
(X,Y)" = 0. Thus, Theorem 11 constitutes the starting point of a geomet#ygpaces, which we
do not further expand.

Appendix B. 7-Mappings

This section studies differential and the local Lipschitz property of magping(;. The key result

of this section is that the concept of gradient and its generalizations fomsnmooth analysis can
be transferred in a well-defined manner to mappingg espaces. Basic definitions and results on
nonsmooth analysis of locally Lipschitz mappings are given in Appendix C.

B.1 Properties of 7-Mappings

Let X be aT-space oveX and let)” be a set. AT-mappingis a mapping of the forrk : Xy — 9.
If 7 is a subset oR, we also calF a7 -function
Instead of studying & -mappingF directly, it is more convenient to consider representation
mappingdefined by
f:X—=9, xX—FouX).

Thus, we have to show that analyzidgmappings is equivalent to analyzing their representation
mappings. For this we introduce the notion‘bfinvariant mapping. A7 -invariant mappingis

a mappingf : X — 9 that is constant on the orbifs] for all x € X. Obviously, representation
mappings are -invariant. In addition, we have the following universal properiies:

11. A universal property can be regarded as some abstractriyragi@ich requires the existence of a unique mapping
under certain conditions.
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(UP1) Each mappingdr : X+ — 9 has a unique representatibn X — 9" with f = F oL

(UP2) Each7 -invariant mappind : X — 9 can be lifted in the obvious way to a unique mapping
F:Xr—9withf=FopW

Hence, by (UP1) and (UP2) we may safely idenfifymappings with their representation mappings.

Next, we show thatl'-spaces over complete metric vector spaces are universal quotients with
respect to continuity, the Lipschitz property, and the local Lipschitz ptgpé-or this, we need
some additional results.

Proposition 12 Let (X7, D,) be a metricZ -space over the metric spa¢&,d). Then the member-
ship function g4 X — Xz is a continuous map.

Proof Let (Xj)iey be a sequence iX which converges tax € X. Let (X;) be the sequence iki;
with X; = p(x) for all i € N, and letX = p(x). For anye > 0 there is a numbem = n(g) with
D. (X, X) <d(x;,Xx) < € for alli > n. Hencep is continuous. [

A mappingf : X — 9 between topological spaces is open if for any opertsetX, the image
f(U) is openiny.

Proposition 13 Let (X7, D,) be a metricZ-space over the metric vector spaC¥,d). Then
X — Xz is an open mapping.

Proof It is sufficient to show that for any € X and any open neighborhodd of x there is an open
neighborhoodVr of X = p(x) such thatV’; C pu(U).

Letx € X, and letd C X be an open set witk € U. Then there i€ > 0 such that the open
neighborhood\(x,€) is contained ini. Let Uy = p(U) and¥y = W(A(x,€)). Clearly,X = pu(x) €
Vir C Ur. We show thatVr is open. FronD, (X,u(y)) < d(x,y) < € for all y € A((x,€) follows
Vr C Nz (X,€). Now letY € Az(X,€). Forx, we can find a & € X with D.(X,Y) =d(x,y) < €
by Prop. 4. Hencey € A'(x,€). This proves thaf\;(X,€) = Vi C Us. |

The next result shows the aforementioned universal property-ofvith respect to continuity,
the Lipschitz property, and the local Lipschitz property.

Proposition 14 Let.X, 9 be complete metric vector spaces, andiigtbe a metricT -space over X.
Suppose that f X — 9" is a‘Z -invariant mapping. If f is continuous (Lipschitz, locally Lipschitz),
then f lifts to a unique continuous (Lipschitz, locally Lipschitz) mappingty — 9" with f(x) =
F(u(x)) forall x € X.

Proof By (UP2), the existence of suchZamappingF implies uniqueness. Thus, it remains to show
thatF preserves continuity and both Lipschitz properties. In the followind tedandd, denote the
metric of X and?’, resp., and leD, be the metric ofX; induced bydy.

Continuity. Let ¢ C 9 open. Then = f~1() is open inX, becausef is continuous. From
Prop. 13 follows thatl; = u() is open inXy. The assumption follows from the fagt; =
F-L().

Lipschitz property Suppose there isla> 0 such that

doy (f(x), f(y)) <L-dx(xy)
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forall x,y € X. LetX,Y € Xz. For(x,y) € supp(D.|X,Y) we have
dy (F(X),F(Y)) = dy(f(x), f(y)) <L-dx(Xy) =L-D(X,Y).

SinceX andY were chosen arbitrarily; is Lipschitz.
Local Lipschitz propertyLet Xo € X7, and letxg € X. Sincef is locally Lipschitz atxg, there is a
L > 0 such that

dy (f(x), f(y)) <L-dx(xy)
for all x,y from some neighborhoo@ = A'(x,€) in X. Sincel: X — Xy is an open mapping,
there is an open neighborhoddr of Xo with 7 C p(U). Let X,Y € ¥ arbitrary. We choose
XY,y € W (V) C uwith u(x) = X, wy) = u(y) =Y, and(x,y) € supp(D.|X,Y). Fromx,y € U
follows dx(X,y') < € and from(x,y) € supp(D.|X,Y) follows D..(X,Y) = dx(x,y). Combining both
relations and using thd, is a minimizer ofdy yields

D*(X’Y) = dx(X,y) S d_x(X,y,) <E&.
Hence, we have

dy(F(X),F(Y)) = dy (£(x), f(y)) <L-dx(xy) = L-Du(X,Y).

SinceX,Y € V; were chosen arbitrarily is locally Lipschitz atXp. [

Now we want to study differential properties @Fmappings via their representation mappings.
Let Xr be a‘7-space over the Euclidean spack, ||-||) and let9” be another Euclidean space.
Suppose that : X — 9 is a‘T-mapping, which is differentiable atc X. By

Df(X): X — 9, X Df(X)(x)
we denote the derivative dfatx.
Theorem 15 Let X and " be Euclidean spaces, and &t be a‘7-space overX. Suppose that
f: X — 9 is a7-mapping, which is differentiable ate X. Then f is differentiable at all points

x € [X]. In addition, we have
Df (TX) =Df(X)oT !

forall T € 7.

Proof By |[|-[|, and||-||,, we denote the norm defined dhand?’, respectively. Lek € [x]. We
show thatf is differentiable inx. Let T € 7 with Tx= x. Forh # 0, we define the mapping

o) — £ - DI (Th) |,

w Al
FXHTT ) — £(T%) - D (%) (T*h) ||,
a ITT-th] .

We set’ = T~1h and obtain
I (TX+TH) — £(TX) - Df(X) ()|
r(h) =
ITHl
_ T i) —£(TX) — DE ) ()l
ITH '
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Sincef is T-invariant, we have (T (x+h)) = f(x+H) and f (Tx) = f(x). In addition, we have
|TH| = |||, becausd is an isometry. Thus,
_ o) =169 — DGO (M)l
[Lagls® '

Sincef is differentiable inx, we have

rI\lﬂqor(h) = rLlrﬂnor(h) =0.
Hence,f is differentiable ak with derivativeDf (x) = Df (TX) =Df(x) o T2 [

A T-mappingF : X;: — 9 is said to beT-differentiabIeap?e Xz if its representation func-
tion is differentiable at an arbitrary vector representatiorXof From Theorem 15 follows that
differentiability of f at an arbitrary vector repres_entation)?)fmplies differentiability at all vector
representations of. Hence 7 -differentiability atX € X is independent from the particular vector
representation ok and therefore well-defined.

B.2 7 -Differentiable Functions

In this section, we study differential propertiesbffunctions of the fornf : Xy — R.

Let f : X — R be the representation function Bf Suppose thaf is differentiable a € X
with gradientd f (X). Then, by Theorem 15, th&-functionF is 7 -differentiable atX = p(x). We
call the structure

OF (X) = W(Of (%)
T-gradientof F at X. We show that thel -gradient is well-defined, that is independent from the

particular choice of vector representatior X. To see this leT € 7 be an arbitrary orthogonal
transformation fronZ". By Theorem 15, we have

Of(Tx) = 0fxXT 1 =0f(X)T/,

whereT’ = T~ 1is the transpose &f. FromOf (X)T’' = TOf(x) follows Of(TX) = TOf(X). Thus,
we have

WO (TX) = WTOF (X)) = WOF ()

showing that thel'-gradient is well-defined.
The T-gradient induces th& -function

OF(X) : Xy — R, X~ (OF(X),X)".

We use this function for showing that the geometrical properties of a gragigo hold for a7 -
gradient. For this, we define ttdirectional T -derivativeof F at X along the directiorV with
IVl =1by

DvF (X) = (V,0F(X))".

The first geometrical result shows that tfiegradient is a structure pointing to the direction of
steepest ascent.
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Proposition 16 Let f: X — R be a continuously differentiable representation function af a
function F: X — R. Then for allX € X7\ {07} and all V € Uy = {X € X : [|X||, =1}, we
have DF()Z)

— 2 — arg maxDyF (X).

IOF(X) g maxbvF(X)

Proof From the definition of the directional derivative and the implications of Téwaot 1 follows

I

DvF (X) = (V,OF (X))" = V], [OF (X)], cosa,

wherea is the angle betweevt and OF (X). Hence, the directional derivatiigy F (X) becomes
maximal ifV points to the same direction as- (X). [

Next, we show that the necessary condition for optimality can be trangfeerfE-differentiable
T -functions.

Proposition 17 Let F: X7 — R be a7 -function with a partial differentiable representation func-
tion. If X € X7 is a local optimum of F, then we have

OF (X) = Og.

Proof Let f : X — R be the representation function®f and letx € X be a vector representation of
X. Sincef is partial differentiable, the gradient éfatx exists. By definition of theZ -gradient, we
have

H(Of (x)) = OF (X) = 0.

From Prop. 2 follows that 0 is the unique vector representatiddFqfX). Thus, any vector repre-
sentatiorx of X is a local optimum of the representation functibnwithout loss of generality, we
assume that € X is a local minimum. Then there is an open neighborh@iaf x with f(x) < f(X)
for all X € U. Sincepis an open mapping by Prop. 13, the $&t = u(U) is an open neighborhood
of X. From the7 -invariance off follows thatF (X) = f(x) < f(X') = F(X’) for all X’ € Ug. This
shows thaf is a local minimum. |

An immediate consequence of the proof is thakis a local minimum (maximum) of the
representation functiof then allx' € [x] are local minima (maxima).

B.3 Pointwise Maximizers

This section introduces and studies differential properties of pointwisénmmers and applies the
results to structural similarity and distance functions.

B.3.1 ROINTWISE MAXIMIZERS

The pointwise maximizeof functionsfy,..., f,,: U — R defined on an open subsatC R" is the
function f : U — R with

f(x) = max fi(X).

We call the set supf) = {fi : 1 <i < m} thesupportof f, and its elementsupport functions

Theorem 18 Let f: U — R be a pointwise maximizer with finite suppstpg f). We have:
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e Ifall f; € supd f) are locally Lipschitz at x, then f is locally Lipschitz at x and
af(x) C con{ofi(x) : fi € sup f) A fi(x) = f(X)}. (3)
e Ifall f; € supd f) are regular at x, then f is regular at x and equality in (3) holds.

e Ifall f; € supgf) are smooth at x, then f is regular at x and

of(x) =con{Ofi(x) : fi € suppf) A fi(x) = f(x)}.

Proof Makek and Neittaaniki (1992), Theorem 3.2.12 and Corollary 3.2.14. [

If all support functions off * are locally Lipschitz, therf* is also locally Lipschitz and admits

a generalized gradient at any point fragh In addition, f* is differentiable almost everywhere on
U by Rademacher’s Theorem (see Appendix, Theorem 23).

Similarly, we can define in the obvious way theintwise minimizeof a finite set of functions.

According to Theorem 19, all statements made on pointwise maximizers carympointwise
minimizers.

Theorem 19 If f be locally Lipschitz at x, then

df (AX) = Adf(x)

forall A € R.

Proof Makehk and Neittaaniki (1992), Theorem 3.2.4. |

In the remainder of this section, we consider similarity and distance funct®oagamples of

pointwise maximizers and minimizers, respectively.

B.3.2 SMILARITY FUNCTIONS: THE GENERAL CASE

We consider similarity functions of the form

S X x X7 — R, (XvY) = Xer;‘(lgé(Ys(Xa y)

that are maximizers of similarity functiorss: X x X — R. For a givenY € X, we define the
function

Sy X =R, x— S(U(x),Y).

The functionsy represent$* (-,Y) and is a pointwise maximizer with support

supp(sy) = {sy : () =s(-,y),ye Y}

If the support functions od, are locally Lipschitz, regular, or smooth, we can apply Theorem 18 to
show thatsy is locally Lipschitz, admits a generalized gradient at each point of its domadhisa
differentiable almost everywhere.
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B.3.3 SMILARITY FUNCTIONS. THE INNER 7 -PRODUCT

As a specific example of a similarity function as a pointwise maximizer, we considenner7 -
product. Suppose th& (-,-) = (-,-)". For a fixed structur® € X, the support of the pointwise
maximizersy is of the form

supfsy) ={sy 1 (") = (-,¥), Y€ Y},

As linear functions, these support functiaggsare continuously differentiable. From Theorem 18
follows

e Sy is locally Lipschitz and regular,
e the generalized gradiedsy (X) is the convex set
0sy(X) =con{y €Y : (X,y) € supfsy|x)}.
The next statement follows directly from Prop. 9.

Proposition 20 The function ¢ : X — R is convex.

Proof From Prop. 9 follows thady is positively homogeneous and sublinear. Heisgas convex.
[

B.3.4 DISTANCE FUNCTIONS: THE GENERAL CASE

Suppose that we are given an arbitrary distance function of the form

D.: Xy x Xy =R, (X,Y) Xerpjygvd(x,y)-

To apply the theorems on pointwise maximizers, we consider the function

~

D.(X,Y) = —-D.(X,Y) = XEnQ?é(Y—d(x,y).

For a givenY € X, we define the function
dy 1 X >R, x— D, (1(X),Y).
The functiondy representf)* (-,Y) and is a pointwise maximizer with support

supp(dy) = {dy : dy() = —d(y),ye Y},

B.3.5 DISTANCE FUNCTIONS. THE METRIC D,

Let D.. be the metric omt;; induced by a metrid on X of the formd(x,y) = ||x—Y]|. For a given
Y € X7, we define the function

dy 1 X >R, X D, (1(X),Y).
The functiondAy representf)*(-,Y) and is a pointwise maximizer with support
supp(dv ) = {dy : ye Y},

wherecTy(x) = —||x—y]|| for all x e X. The support functions ak are locally Lipschitz and regular
on X, and smooth otk \ {y}. From Theorem 18 follows
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e dy is locally Lipschitz and regular,

e the generalized gradiedtly (x) is the convex set

(x=y) . T :

~ con LYEYA(Y,X) €supddv[X)p 1 XFY

adY(X) — { { TIx=yl - }
{yexr |yl <1} Dox=y.

As in the Euclidean space, the squared structural Euclidean rdéttions out to be more con-

venient tharD,.. As opposed tdy the support functions of the squared functufy’mre continuously
differentiable at all points fronk'. In particular, we have

e dZis locally Lipschitz and regular,

e the generalized gradieadAYz(x) is the convex set
1200 iy v - 12
ddy (x) = con{ 2(x—y) 1 YEYA(Y,X) € supp(dﬂx) } .

Appendix C. Locally Lipschitz Functions

We review some basic properties of locally Lipschitz functions and theirrgéned gradients.
Unless otherwise stated proofs can be found in Clarke (1990), Sec8oR@ a detailed treatment
to the first-order generalized derivative we refer to Clarke (199@ké#h and Neittaaniki (1992).

Let (X,dx) and(9",dy) be metric spaces, and lét C X be an open set. Amap: X — ' is
Lipschitzon U if there is a scalak > 0 with

dy (f(u), f(v)) <L-dx (u,v)

for all u,v e U. We say thaf islocally Lipschitzatu € U if f is Lipschitz on some-neighborhood
AN (u,g) C U of u.

Proposition 21 Let f,g: U C X — R be locally Lipschitz at u, and l&t € R be a scalar. Thenf,
f +g, and f-g are locally Lipschitz at u. If qu) # O, then f/g is locally Lipschitz at u.

Proposition 22 Let f: X — 9" be locally Lipschitz at x, and let gX — Z be locally Lipschitz at
y = f(x). Then h=go f is locally Lipschitz at x.

Proof Let N(x,&x) C X, N(y,&y) € 9" be neighborhoods of andy satisfying the following proper-
ties: (i) f (N(x,&x)) € N(y,&y), (i) there areLy, Ly, > 0 such thatl (f(u), f(v)) < Lx-dx (u,V) for
allu,ve N(x,&) anddz (g(p),9(q)) < Ly-dy (p,q) for all p,ge N(y,g,). For anyu,v e X, we have
dz (go f(u),go f(v)) < Lydy(f(u), f(v)) <LyLxdx (u,v).
[ ]

Theorem 23 (Rademacher)Let U C R" be a nonempty open set, and let € — R be locally
Lipschitz. Then the set of points at which f is not differentiable has Leleasgasure zero.
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The functionf is directionally differentiableatx € U if the limit

m f(x+td) — f(x)
10 t

f(x.d) =i

exists for all directionsl € R". In this case, the valuE(x,d) is thedirectional derivativeof f atxin
the directiond. We call the functionf directionally differentiabléf f is directionally differentiable
at all pointsx € 4.

Thegeneralized directional derivativef f atx € U in the directiond € X is defined by

f(xd) = lim sup -/ =T)
t10,y—X t

)

wheret | 0 andy — x are sequences such tlyat td is always in.
We sayf isregularatx € €U if the following conditions are satisfied

1. f is directionally differentiable at.
2. f°(x,d) = f/(x,d) for alld € R".

A function f is said to besmoothat x if f is continuously differentiable at We have the
following implications.

Proposition 24 Let f: U — R be a function. The following implications hold:

1. fissmooth at x, then f is locally Lipschitz, regular, continuous, andrdiff@ble at x.

2. fislocally Lipschitz or differentiable at x, then f is continuous at x.
Proof

1. Smoothness implies differentiability and continuity are well-known results &malysis. The
locally Lipschitz property follows from Mkek and Neittaangki (1992), Lemma 3.1.6 and
regularity from Makek and Neittaaniki (1992), Theorem 3.2.2.

2. Both assertions are again well-known results from analysis.

Thegeneralized gradiendf (x) of f atx s the set
of(x) ={yex: f°(x,d) > (y,d) foralld e X}.
The elements of the séf (x) are calledsubgradient®f f atx.

Theorem 25 Let f: U — R be a function on the open subsét We have:

e If f is locally Lipschitz and differentiable at x, then
Of(x) € of (x).
o If f islocally Lipschitz, regular, and differentiable at x, then
af (x) ={0f(x)}.

Proof Makek and Neittaani@ki (1992), Theorem 3.1.5, Theorem 3.1.7, and Theorem 3.2./8
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Appendix D. The Graduated Assignment Algorithm

We use the graduated assignment algorithm to approximate the NP-hareidsdistance®. (X,Y)?
between two weighted graphs and to determine a subgradient from thaliggtegradiendd (see
Section B.3.5). According to Prop. 10, the squared distan¢X, Y)? can be expressed by the inner
T-product. Here, we determiriz, (X,Y)? via (X,Y)".

Let X andY be weighted graphs with weighted adjacency matres (xj) andY = (yij).
Suppose thaX andY are of orden andm, respectively. Without loss of generality, we assume that
n < m. By M =N""we denote the set @¢h x m)-match matrice¢ = (m;;) with elements from
[0,1] such that each row sums to 1 and each column sumgto Then we have

X, Y)Y = M'XM,Y

(X.Y)" = max( 2
where M’ denotes the transpose Bf. To compute the innef -product, graduated assignment
minimizes 1

F(M)=—-Z=(M'XM,Y).

subject toM € M. Suppose tha¥lg is an optimal solution. Then@1;XMo —Y) is a subgradient
from the generalized gradiedt?(X).

The core of the algorithm implements a deterministic annealing process withliagnzgram-
eterT by the following iteration scheme

n m
anHl = gjb; exp( Z z 5 <X|r7YJs >7
r=1é=1

wheret denotes the time step. The scaling factrs; computed by Sinkhorn’s algorithm (Sinkhorn,
1964) enforce the constraints of the match matrix. The algorithm in detailésided in Gold, Ran-
garajan, and Mjolsness (1996).
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