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Abstract

Permutations are ubiquitous in many real-world problemshsas voting, ranking, and data asso-
ciation. Representing uncertainty over permutations élehging, since there are possibilities,
and typical compact and factorized probability distribatrepresentations, such as graphical mod-
els, cannot capture the mutual exclusivity constrainte@ated with permutations. In this paper,
we use the “low-frequency” terms of a Fourier decompositmnepresent distributions over per-
mutations compactly. We preseiitonecker conditioninga novel approach for maintaining and
updating these distributions directly in the Fourier damailowing for polynomial time bandlim-
ited approximations. Low order Fourier-based approxiometj however, may lead to functions that
do not correspond to valid distributions. To address thidblam, we present a quadratic program
defined directly in the Fourier domain for projecting the mpimation onto a relaxation of the
polytope of legal marginal distributions. We demonstréie éffectiveness of our approach on a
real camera-based multi-person tracking scenario.

Keywords: identity management, permutations, approximate infexegooup theoretical meth-
ods, sensor networks

1. Introduction

Probability distributions over permutations arise in a diverse variety ofwedtl problems. While
they were perhaps first studied in the context of gambling and card gdreg$iave now been found

to be applicable to many important problems such as multi-object tracking, infiormatrieval,
webpage ranking, preference elicitation, and voting. Probabilistic neagproblems over permu-
tations, however, are not amenable to the typical representationseaffoydnachine learning such
as Bayesian networks and Markov random fields. This paper ex@arakernative representation
and inference algorithms based on Fourier analysis for dealing with peifomsta

As an example, consider the problem of trackingeople based on a set of noisy measurements

of identity and position. A typical tracking system might attempt to manage a setracks along
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Figure 1: When two persons pass near each other, their identities ceonfesed.

with an identity corresponding to each track, in spite of ambiguities arising ifrgerfect identity
measurements. When the people are well separated, the problem is eeasitypdsed and mea-
surements about each individual can be clearly associated with a partieglka When people pass
near each other, however, confusion can arise as their signal siggatay mix; see Figure 1. Af-
ter the individuals separate again, their positions may be clearly distingléshabtheir identities
can still be confused, resulting in identity uncertainty which must be prapddarward in time
with each person, until additional observations allow for disambiguatiois. tibk of maintaining a
belief state for the correct association between object tracks and algatities while accounting
for local mixing events and sensor observations, was introduced in $ain(2003) and is called
theidentity management problem

The identity management problem poses a challenge for probabilistic intebecause it needs
to address the fundamental combinatorial challenge that there is a faoiaméler of associations
to maintain between tracks and identities. Distributions over the space of mlltsions require
storing at leash! — 1 numbers, an infeasible task for all but very snrmalMoreover, typical com-
pact representations, such as graphical models, cannot efficieptiyreahe mutual exclusivity
constraints associated with permutations.

While there have been many approaches for coping with the factorial critymémaintaining
a distribution over permutations, most attack the problem using one of two-ig#agng and up-
dating a small subset of likely permutations, or, as in our case, restrictirsjdesation to a tractable
subspace of possible distributions. Willsky (1978) was the first to formthaterobabilistic filter-
ing/smoothing problem for group-valued random variables. He praparecfficient FFT based
approach of transforming between primal and Fourier domains so asitbaaily convolutions,
and provided efficient algorithms for dihedral and metacyclic groupghkat al. (1999) show that
probability distributions on the group of permutations are well approximateal sipall subset of
Fourier coefficients of the actual distribution, allowing for a principled eéttibetween accuracy
and complexity. The approach taken in Shin et al. (2005), Schumitsch(20@b), and Schumitsch
et al. (2006) can be seen as an algorithm for maintaining a particular fikesstsof Fourier coef-
ficients of the log density. Most recently, Kondor et al. (2007) allow fgeaeral set of Fourier
coefficients, but assume a restrictive form of the observation modeter o exploit an efficient
FFT factorization.

In the following, we outline our main contributions and provide a roadmap ofsdwtions
ahead-

1. A much shorter version this work appearedilPS2007 (Huang et al., 2007). We provide a more complete discus-
sion of our Fourier based methods in this extended paper.
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¢ In Sections 4 and 5, we provide a gentle introduction to the theory of gepresentations
and noncommutative Fourier analyis. While none of the results of theserseatie novel,
and have indeed been studied by mathematicians for decades (Diac&disTéfas, 1999;
Willsky, 1978; Chen, 1989), noncommutative Fourier analysis is still faigy mo the ma-
chine learning community, which has just begun to discover some of its excipiplica-
tions (Huang et al., 2007, 2009; Kondor et al., 2007; Kondor and \Bargt, 2008). Our
tutorial sections are targeted specifically at the machine learning communitieandbe its
connections to probabilistic inference problems that involve permutations.

e In Section 6, we discuss performing probabilistic inference operationg iRdbrier domain.
In particular, we present Fourier theoretic algorithms for two ubiquitoweaifwns which
appear in filtering applications and beyond: prediction/rollup and conditiowith Bayes
rule. Our main contribution in this section is a novel and conceptually simpleitdggr
called Kronecker Conditioningwhich performs all conditioning operations completely in
the Fourier domain, allowing for a principled tradeoff between computatiooalplexity
and approximation accuracy. Our approach generalizes upon psewvimnk in two ways—
first, in the sense that it can address any transition model or likelihoodidarihat can be
represented in the Fourier domain, and second, in the sense that manye$walts hold for
arbitrary finite groups.

e In Section 7, we analyze the errors which can be introduced by bandlimitorglkability
distribution and show how they propagate with respect to inferencetapesaWe argue that
approximate conditioning based on bandlimited distributions can sometimes yielgi~ou
coefficients which do not correspond to any valid distribution, evenmetgmegative “prob-
abilities” on occasion. We address possible negative and inconsistéatjiites by present-
ing a method for projecting the result back into the polytope of coefficientshdorrespond
to nonnegative and consistent marginal probabilities using a simple qugzhagiam.

e In Section 8, we present a collection of general techniques for effigieomputing the
Fourier coefficients of probabilistic models that might be useful in pradiifaience prob-
lems, and give a variety of examples of such computations for probabilistielsththt might
arise in identity management or ranking scenarios.

¢ Finally in Section 10, we empirically evaluate the accuracy of approximatesiméeron sim-
ulated data drawn from our model and further demonstrate the effeetigerf our approach
on a real camera-based multi-person tracking scenario.

2. Filtering Over Permutations

As a prelude to the general problem statement, we begin with a simple identity ema@aigproblem
on three tracks (illustrated in Figure 2) which we will use as a running exartmpliis problem, we
observe a stream of localization data from three people walking insidena i©xcept for a camera
positioned at the entrance, however, there is no way to distinguish beigargities once they are
inside. In this example, an internal tracker declares that two tracks hdxed’ whenever they get
too close to each other and announces the identity of any track that enéitsdhe room.

In our particular example, three people, Alice, Bob and Cathy, enterra smparately, walk
around, and we observe Bob as he exits. The events for our partexderple in the figure are
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Figure 2: Identity Management example. Three people, Alice, Bob andi€kater a room and
we receive a position measurement for each person at each time step. dMVityrto
observe identities inside the room, however, we are confused whamneviacks get too
close. In this example, track 1 crosses with track 2, then with track 3, theaeddhe
room, at which point it is observed that the identity at Track 1 is in fact Bob.

recorded in Table 1. Since Tracks 2 and 3 never mix, we know that Catinotbe in Track 2 in the
end, and furthermore, since we observe Bob to be in Track 1 wheritagvea can deduce that Cathy
must have been in Track 3, and therefore Alice must have been in TraCku@2simple example
illustrates the combinatorial nature of the problem—in particular, reasonig #te mixing events
allows us to exactly decide where Alice and Cathy were even though we ouly araobservation
about Bob at the end.

Event # Event Type
1 Tracks 1 and 2 mixed
2 Tracks 1 and 3 mixed
3 Observed Identity Bob at Track 1

Table 1: Table of Mixing and Observation events logged by the tracker.

In identity management, a permutationmepresents a joint assignment of identities to internal
tracks, witho(i) being the track belonging to thiéh identity. When people walk too closely to-
gether, their identities can be confused, leading to uncertaintyamvé@o model this uncertainty,
we use aHidden Markov Model (HMMpn permutations which is a joint distribution over latent
permutationoV ..., o(T), and observed variables”., ..., Z™) which factors as:

P(aW,...,aM.ZY . A7) =p(c SIS I_LP (Z|oY)-P(cV|ctY).

The conditional probability distributioR(c® |o(t=1) is called thetransition modeland might re-
flect, for example, that the identities belonging to two tracks were swappeduaitie probability
by a mixing event. The distributioR(zZ"|c(V)) is called theobservation modewhich might, for
example, capture a distribution over the color of clothing for each individual.
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We focus orfiltering, in which one queries the HMM for the posterior at some time step, con-
ditioned on all past observations. Given the distribufio® |z, ..., ZY), we recursively com-
puteP(a™ V2D .. D) in two steps: grediction/rollupstep and a@onditioningstep. Taken
together, these two steps form the well knofaerward Algorithm(Rabiner, 1989). The predic-
tion/rollup step multiplies the distribution by the transition model and marginalizes eprévious
time step:

P(a2Y,...,2Y) = 5 P(a" P |aV)P(a|2Y,...,2Y).
o)
The conditioning step conditions the distribution on an observatfo® using Bayes rule:

P( (t+1) ‘Z ] (t+1)) 0 P( (t+1) ‘O'H_l )P( (t+1) ‘Z Z(t)).

Since there are! permutations, a single iteration of the algorithm requi@gn!)?) flops and is
consequently intractable for all but very small The approach that we advocate is to maintain a
compact approximation to the true distribution based on the Fourier transéarme discuss later,
the Fourier based approximation is equivalent to maintaining a set of logr-andrginals, rather
than the full joint, which we regard as being analogous t&\asumed Density FiltefBoyen and
Koller, 1998).

Although we use hidden Markov models and filtering as a running examplapgr®ach we
describe is useful for other probabilistic inference tasks over permuogatsnich as ranking objects
and modeling user preferences. For example, operations such asatiaagion and conditioning
are fundamental and are widely applicable. In particular, conditioningygayes rule, one of the
main topics of our paper, is one of the most fundamental probabilistic opesatad we provide a
completely general formulation.

3. Probability Distributions over the Symmetric Group

A permutation om elements is a one-to-one mapping of the &kt .., n} into itself and can be
written as a tuple,
o=[o(1) a(2) ... a(n)],

wherea(i) denotes where thih element is mapped under the permutation (catied line no-
tation). For exampleg = [2 3 1 4 § means that(1) = 2, 0(2) = 3, 0(3) = 1, 0(4) = 4, and
a(5) = 5. The set of all permutations arelements forms a group under fraperation of function
composition—that is, i1 ando, are permutations, then

0102 = [01(02(1)) 01(02(2)) ... 01(02(Nn))]

is itself a permutation. The set of all permutations is called th&ymmetric groupor justS,.

We will actually notate the elements &f using the more standaycle notation in which
acycle(i, j,k,...,0) refers to the permutation which mapso j, j tok, ..., and finally/ to i.
Though not every permutation can be written as a single cycle, any permutatioalways be
written as a product of disjoint cycles. For example, the permutatien[2 3 1 4 § written in
cycle notation io = (1,2,3)(4)(5). The number of elements in a cycle is called tyele length
and we typically drop the length 1 cycles in cycle notation when it creates naaitye—in our

2. See Appendix A for a list of the basic group theoretic definitions usedsipéper.
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example,o = (1,2,3)(4)(5) = (1,2,3). We refer to the identity permutation (which maps every
element to itself) as.

A probability distribution over permutations can be thought of as a joint digioibwn then
random variablego(1),...,0(n)) subject to themutual exclusivity constrainthat P(o : a(i) =
o(j)) =0 whenever # j. For example, in the identity management problem, Alice and Bob cannot
both be in Track 1 simultaneously. Due to the fact that all ofdti¢ are coupled in the joint dis-
tribution, graphical models, which might have otherwise exploited an uridgrbpnditional inde-
pendence structure, are ineffective. Instead, our Fourier bagpedxdmation achieves compactness
by exploiting thealgebraic structureof the problem.

3.1 Compact Summary Statistics

While continuous distributions like Gaussians are typically summarized using ni®(lika mean
and variance), or more generally, expected features, it is not immedidteilyus how one might,
for example, compute the ‘mean’ of a distribution over permutations. Thersiise method that
might spring to mind, however, which is to think of the permutationpersnutation matriceand
to average the matrices instead.

Example 1 For example, consider the two permutatian$l,2) € S; (€ is the identity and1,2)
swaps 1 and 2). We can associate the identity permutatiaith the 3 x 3 identity matrix, and
similarly, we can associate the permutatidn?2) with the matrix:

010
(1,2)—~ |1 0 O
0 01
The ‘average’ o and(1,2) is therefore:
1]/ 00] ;]010 1/2 1/2 0
501 0|+5/100|=]12 120
0 01 0 01 0O 0 1

As we will later show, computing the ‘mean’ (as described above) of a disiitb over permuta-
tions,P, compactly summarizé3by storing a marginal distribution over eachadfl), o(2),...,0(n),
which requires storing onl®(n?) numbers rather than the fuli(n!) for the exact distribution. As
an example, one possible summary might look like:

| Alice Bob Cathy
Trackl| 2/3 1/6 1/6
Track2| 1/3 1/3 1/3
Track3| 0 1/2 1/2

Such doubly stochastic “first-order summaries” have been studied inugasettings (Shin et al.,
2003; Helmbold and Warmuth, 2007). In identity management (Shin et al.) 3008t-order sum-

P

3. Strictly speaking, a map from identities to tracks is not a permutation sipeenautation always maps a set into
itself. In fact, the set of all such identity-to-track assignments doesatoally form a group since there is no way
to compose any two such assignments to obtain a legitimate group operatombuae the notation by referring to
these assignments as a group, but really the elements of the groupbele Ise thought of as the ‘deviation’ from
the original identity-to-track assignment (where only the tracks are ytedanfor example, when they are confused).
In the group theoretic language, there is a faithful group actid ah the set of all identity-to-track assignments.
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maries maintain, for example,

P(Alice is at Track 3 = 2/3,
P(Bobis at Track 3=1/2.

What cannot be captured by first-order summaries however, are therlugder statements like:

P(Alice is in Track 1landBob is in Track 2 = 0.

Over the next two sections, we will show that the first-order summary oftetuison P(0)
can equivalently be viewed as the lowest frequency coefficients ofabeaef transform ofP(o),
and that by considering higher frequencies, we can capture higtler mrarginal probabilities in
a principled fashion. Furthermore, the Fourier theoretic perspectveieawill show, provides a
natural framework for formulating inference operations with respectit@ompact summaries. In
a nutshell, we will view the prediction/rollup step as a convolution and the coniliticstep as a
pointwise product—then we will formulate the two inference operations in thei€&odomain as a
pointwise product and convolution, respectively.

4. The Fourier Transform on Finite Groups

Over the last fifty years, the Fourier Transform has been ubiquitopglijeal to everything digital,
particularly with the invention of the Fast Fourier Transform (Cooley aunkey, 1965; Rockmore,
2000). On the real line, the Fourier Transform is a well-studied methoddoomposing a func-
tion into a sum of sine and cosine terms over a spectrum of frequencidsapRdess familiar to
the machine learning community though, is its group theoretic generalizationisladttion we
review group theoretic generalizations of the Fourier transform with ari@yards approximating
functions onS,. None of the results stated in this section or the next are original. Noncomweutati
generalizations of the Fourier transform have been studied quite exdbrtsiroughout the last cen-
tury from both the mathematics (Lang, 1965) and physics communities (C&&9).1Applications
to permutations were first pioneered by Persi Diaconis who studied pmshitecard shuffling and
since then, there have been many papers on related topics in probabiliyagistics. For further
information, see Diaconis (1988) and Terras (1999).

4.1 Group Representation Theory

The generalized definition of the Fourier Transform relies on the thefogyonup representations,
which formalize the concept of associating permutations with matrices andedei@ construct a
complete basis for the space of functions on a gi@ughus also playing a role analogous to that of
sinusoids on the real line.

Definition 1 Arepresentationf a group G is a map from G to a set of invertiblegix d, (complex)
matrix operators  : G — C%*%) which preserves algebraic structure in the sense that for all
01,02 € G, p(0102) = p(01) - p(02). The matrices which lie in the image pfare called the
representation matriceand we will refer to g as thedegreeof the representation.
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The requirement thai(o102) = p(01) - p(02) is analogous to the property thei1+92) — g1 . g2
for the conventional sinusoidal basis. Each matrix efifyo) defines some function ové&:

P11(0)  P12(0) -+ P14,(0)

P21(0)  P22(0) -+ P2, (0)
p(o) = : : : !

Pd,1(0) Pd2(0) -+ Pdyd,y(O)

and consequently, each representapaimultaneously defines a setdﬁ functions overs,. We
will eventually think of group representations as the set of Fourier basigibns onto which we
can project arbitrary functions.

Before moving onto examples, we make several remarks about the iggradithis paper. First,
while our paper is primarily focused on the symmetric group, many of its resuiltisfbr arbitrary
finite groups. For example, there are a variety of finite groups that heere tudied in applications,
like metacyclic groups (Willsky, 1978), wreath product groups (Footd.e2004), etc. However,
while some of these results will even extend with minimal effort to more genesalscauch as
locally compact groups, the assumption in all of the following results will be@iatfinite, even
if it is not explicitly stated. Specifically, most of the results in Sections 4, 6 /Agukndix D.2 are
intended to hold over any finite group, while the results of the remaining ssai@nspecific to
probabilistic inference over the symmetric group. Secondly, given atrasbfinite groupG, some
of the algebraic results that we use require that the underlying field beitmglex numbers. For the
particular case of the symmetric group, however, we can in fact assubtbahr@presentations are
real-valued matrices. Thus, throughout the paper, we will explicitly asshat¢he representations
are real-valued.

Example 2 We begin by showing three examples of representations on the symmaipc g

1. The simplest example of a representation is calledrt@l representatiop,) : S — R1x1,
which maps each element of the symmetric group to 1, the multiplicative idemtitye geal
numbers. The trivial representation is actually defined for every grang@,while it may seem
unworthy of mention, it plays the role of the constant basis function in thedrabeory.

2. Thefirst-order permutation representationS,, which we alluded to in Example 1, is the de-
gree n representatiort,_; 1) (we explain the terminology in Section 5) , which maps a per-
mutationo to its corresponding permutation matrix given liy,_11)(0)]ij = 1{a(j) =i}.

For example, the first-order permutation representation gisQjiven by:

1 00 010 1 00
T(2,1)(€) = 010 T(Z,l)(la 2) = 1 00 '[(2’1)(27 3) = 0 0 1
0 01 0 01 010

o O

0 1 00 1 010
Te(L,3)=[0 1 0| 71y(123)=|1 0 0| 71y(1,32)=|0 0 1
100 010 100

4. To recover similar results for more complex-valued representatioreswould have to replace matrix transposes by
adjoints, etc.
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3. Thealternating representatiaf S, maps a permutatiog to the determinant of ,_1 1)(0),
which is+1if o can be equivalently written as the composition of an even number of pairwise
swaps, and-1 otherwise. We write the alternating representatiorpas . 1) with n1's in the
subscript. For example, oy 3wve have:

P1111)((1,2,3) = p(1,1,1,1)((13)(12)) = +1.

The alternating representation can be interpreted as the ‘highest freguéasis function
on the symmetric group, intuitively due to its high sensitivity to swaps. For dgarifip
T(1,..1(0) = 1, thenty  1)((12)0) = —1. In identity management, it may be reasonable
to believe that the joint probability over all n identity labels should only change little if
just two objects are mislabeled due to swapping—in this case, ignoring tisefbastion cor-
responding to the alternating representation should still provide an atcelapproximation

to the joint distribution.

In general, a representation corresponds to an overcomplete sectibhs and therefore does
not constitute a valid basis for any subspace of functions. For examplsettof nine functions on
S corresponding to; 1) span only four dimensions, because there are six normalization constraints
(three on the row sums and three on the column sums), of which five aresimdiept—and so there
are five redundant dimensions. To find a valid complete basis for the spaoections onS,, we
will need to find a family of representations whose basis functions are @mdigmt, and span the
entiren!-dimensional space of functions.

In the following two definitions, we will provide two methods for constructingesvmepresen-
tation from old ones such that the set of functionsSjrcorresponding to the new representation
is linearly dependenbn the old representations. Somewhat surprisingly, it can be shownehat d
pendencies which arise amongst the representations can alwaysgeired in a certain sense, to
come from the two possible following sources (Serre, 1977).

Definition 2

1. Equivalence. Given a representatiop; and an invertible matrix C, one can define a new
representatiorp, by “changing the basis” fop;:

p2(0) £C - py(0)-C. L)

We say, in this case, thgy and p, are equivalentas representations (writtep; = p2, as
opposed tgp; = p2), and the matrix C is known as thetertwining operatar Note that
dpl = dpz'

It can be checked that the functions correspondingiaan be reconstructed from those
corresponding tg;. For example, if C is a permutation matrix, the matrix entriepptire
exactly the same as the matrix entriepgfonly permuted.

2. Direct Sum. Given two representations andp,, we can always form a new representation,
which we will write a1 & p2, by defining:

2 | pi(0) ‘ 0
P1®P2(0) = 0
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p1 P p2 is called thedirect sum representatiofror example, the direct sum of two copies of
the trivial representation is:

10

0 1}’

with four corresponding functions on,Seach of which is clearly dependent upon the trivial
representation itself.

Pmn) ©Pm(0) =

Most representations can be seen as being equivalent to a direcf stiotty smaller representa-
tions. Whenever a representatiprcan be decomposed ps= p; P p2, we say thap is reducible
As an example, we now show that the first-order permutation represertaisaducible represen-
tation.

Example 3 Instead of using the standard basis vectdes,e;, e3}, the first-order permutation
representation for § 151) : 3 — C3<3, can be equivalently written with respect to a new basis
{v1,Vv2,v3}, where:

w:a+®+%
ler+ e+ €3’
—e+e
Vo= ———,
| —e1+ e
e -e+2e
V3 = .
| —e1 — e+ 263

To ‘change the basis’, we write the new basis vectors as columns in a rGatrix

1 V2 1

A I R
C=V|1V2V|3=@2—2\/6,

s 9 &

and conjugate the representatiop ;) by C (as in Equation 1) to obtain the equivalent representa-
tionC™*-1154)(0)-C:

1100 1 0 0

c1 ‘T<271>(8) -C=1|0 1 0 c1 ~T<271)(1, 2) C=10 -1 0

0| 01 0 0 1
M1 0 0 1| 0 0 ]
Ct1,y(23)-C=|0 1/2  /3/2 Ct1,y(13)-C=|0 12 —/3/2
| 0 | V3/2 -1/2 0| —v32 -1/2 |
1 0 0 1| 0 0
Cl1yp(1,23)-C=|0 | -1/2 —V3/2 C111(1,32)-C=|0 -1/2  /3/2
| 0 | V32 -1/2 0| —v3/2 -1/2 |

The interesting property of this particular basis is that the new represemntatiatrices all ap-
pear to be the direct sum of two smaller representations, a trivial reptasien, p s as the top left
block, and a degree 2 representation in the bottom right which we will refas %, ;).
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Geometrically, the representatign, ;) can also be thought of as the group of rigid symmetries
of the equilateral triangle with vertices:

Ll I L B

The matrixp»1)(1,2) acts on the triangle by reflecting about the x-axis, apgh) (1,2,3) by ar/3
counter-clockwise rotation.

In general, there are infinitely many reducible representations. For éxagien any dimen-
siond, there is a representation which maps every element of a gsdaghed x d identity matrix
(the direct sum ofl copies of the trivial representation). However, for any finite grougrelexists
a finite collection of atomic representations which can be used to build up aay refresenta-
tion (up to equivalence) using the direct sum operation. These repatisas are referred to as
theirreduciblesof a group, and they are defined simply to be the collection of represergtdtipn
to equivalence) which are not reducible. It can be shown that anplex) representation of a
finite groupG is equivalent to a direct sum of irreducibles (Diaconis, 1988), anadefior any
representation, there exists a matrig€ for which

Zp
chttrc=PpPo». 2)

p =1

wherep ranges over all distinct irreducible representations of the g@umnd the innees refers to
some finite numberzf) of copies of each irreducibie.

As it happens, there are only three irreducible representatioss (Diaconis, 1988), up to
equivalence: the trivial representatippy), the degree 2 representatipyp 1), and the alternating
representatiop(; 1 1. The complete set of irreducible representation matrices are shown in
the Table 2. Unfortunately, the analysis of the irreducible representdoms> 3 is far more
complicated and we postpone this more general discussion for Section 5.

4.2 The Fourier Transform

The link between group representation theory and Fourier analysiseis biwthe celebrateleter-
Weyl theorentDiaconis, 1988; Terras, 1999; Sagan, 2001) which says that thxreatries of the
irreducibles ofG form acompleteset oforthogonalbasis functions o6.%> The space of functions
on S, for example, is orthogonally spanned by the 3! functippg(o), [P(2,1)(0)]1.1, [P(2,1)(0)]1.2,
[P21)(0)]2.1, [P(2,1)(0)]22 andp(.1,1)(0), where[p(a)];; denotes théi, j) entry of the matrip(a).

As a replacement for projecting a functidronto a complete set of sinusoidal basis functions
(as one would do on the real line), the Peter-Weyl theorem suggestadristproject onto the basis
provided by the irreducibles @. As on the real line, this projection can be done by computing the
inner product off with each element of the basis, and we define this operation to be the gezttraliz
form of the Fourier Transform.

5. Technically the Peter-Weyl result, as stated here, is only true if all abjpresentation matrices are unitary. That is,
p(o)*p(o) =1 for all o € S, where the matriA* is the conjugate transpose Af For the case of real-valued (as
opposed to complex-valued) matrices, however, the definitions of yritat orthogonal matrices coincide.

While most representations are not unitary, there is a standard remultrépresentation theory which shows
that foranyrepresentation db, there exists an equivalent unitary representation.
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o P Py P11
c ] 2] |-
L2 | 1 Pﬁ 2] 1
ao [+] (2203 |
(1,2,3) | 1 [;%g’fﬁf} 1
(1,3,2) || 1 [_;1}45; f{f?; } 1

Table 2: The irreducible representation matriceSpf

Definition 3 Let f: G — R be any function on a group G and lebe any representation on G. The
Fourier Transfornof f at the representatiop is defined to be the matrix of coefficients:

fo="3 f(o)p(0).

The collection of Fourier Transforms at all irreducible representatioh&dormthe Fourier Trans-
form of f.

There are two important points which distinguish this Fourier Transform fte familiar for-
mulation on the real line—first, the outputs of the transform are matrix-valaed,second, the
inputs to f arerepresentation®f G rather than real numbers. As in the familiar formulation, the
Fourier Transform is invertible and the inversion formula is explicitly givehg Fourier Inversion
Theorem.

Theorem 4 (Fourier Inversion Theorem)
1 ~
f(0) = = Y o, Tr [ ] -m(0)] @3)
Gl 4

whereA indexes over the collection of irreducibles of G.

Note that the trace term in the inverse Fourier Transform is just the ‘mattiprdaluct’ between
prA andp, (0), since TI{AT - B] = (veqA),veqB)), where by vec we mean mapping a matrix to a
vector on the same elements arranged in column-major order.

We now provide several examples for intuition. For functions on the rea] line Fourier
Transform at zero frequency gives the DC component of a signals@ime holds true for functions
on a group; Iff : G — R is any function, then sincpy = 1, the Fourier Transform of at the
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trivial representation is constant, Wifhn) =, f(0). Thus, for any probability distributioR, we
haveR, = 1. If P were the uniform distribution, thef, = 0 at every irreduciblg except at the
trivial representation.

The Fourier Transform at,,_; 1) also has a simple interpretation:

[froanlii = ;f(c)h(nfl,l)(o)]ij = Zﬂf(c)]l{c(i)zi}z - f(o).

o€ o€ a:0())=i

The set\j; = {o : a(j) =i} is the set of th¢n— 1)! possible permutations which map elem¢id

i. In identity managemen#y;; can be thought of as the set of assignments which, for example, have
Alice at Track 1. IfP is a distribution, therlﬂmflll) is a matrix offirst-order marginal probabilities,
where the(i, j)-th element is the marginal probability that a random permutation drawn From
maps elemeng toi.

Example 4 Consider the following probability distribution ory'S

o £ L2 | (23] (1,3 (1,23 | (132 ]
P(0) 1/3 1/6 1/3 0 1/6 0 |

The set of all first order marginal probabilities is given by the Fourienstorm att 1)

|A B C
1]2/3 1/6 1/6
211/3 1/3 1/3
3| 0 1/2 1/2

Proy =

In the above matrix, each column | represents a marginal distribution tinepossible tracks that
identity j can map to under a random draw from P. We see, for exampleAtitat is at Track 1
with probability 2/3, or at Track 2 with probability 1/3. Simultaneously, each fagepresents a
marginal distribution over the possible identities that could have been nuagprack i under a
random draw from P. In our example, Bob and Cathy are equally likely to Beack 3, but Alice
is definitely not in Track 3. Since each row and each column is itself a digbipuhe matrixl5r(2‘1)
must be doubly stochastic. We will elaborate on the consequences dbskisation later.

The Fourier transform of the same distribution at all irreducibles is:

~

=0.

111

- 1/4 V3/4] S
Pow =1 Pozy = [ V3/4  1/4 } i

The first-order permutation representatiog, 1 1), captures the statistics of how a random per-
mutation acts on a single object irrespective of where all of the othet objects are mapped, and
in doing so, compactly summarizes the distribution with 0®iy?) numbers. Unfortunately, as
mentioned in Section 3, the Fourier transform at the first-order permutatpegsentation cannot
capture more complicated statements like:

P(Alice and Bob occupy Tracks 1 and 2 0.
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To avoid collapsing away so much information, we might define richer sumrtetigtgs that might
capture ‘higher-order’ effects. We define thecond-order unordered permutation representation
by:

[Tn-22)(9)]4ijy.1key = L{o({k.€}) = {i, j}},
where we index the matrix rows and columns by unordered gaiig. The condition inside the
indicator function states that the representation captures whether thd phjects{k, ¢} maps to
the pair{i, j}, but is indifferent with respect to the ordering; that is, eitker i and? — j, or,
K— j and/ — i.

Example 5 For n= 4, there are six possible unordered paifst, 2},{1,3},{1,4},{2,3},{2,4}, and
{3,4}. The matrix representation of the permutatidn2, 3) is:

[ {12} {13} {14} {23} {24} {34} ]
1.2} 0 0 0 1 0 0
{1,3} 1 0 0 0 0 0
T22(1,2,3) = | {1,4} 0 0 0 0 1 0
{2,3} 0 1 0 0 0 0
2,4} 0 0 0 0 0 1
| {3,4} 0 0 1 0 0 0 |

Thesecond order ordered permutation representatigp., 1 1), is defined similarly:

[T(n-22,2)(9)](i.j), (o) = T{O((k, £)) = (i, ])},

where(k, /) denotes awrderedpair. Therefore[t,_211)(0)] ),k is 1 if and only ifc mapsk to
iand/to j.

As in the first-order case, the Fourier transform of a probability distribuatx ,_» 7), returns
a matrix of marginal probabilities of the forn®(o : o({k,¢}) = {i, ] }), which captures statements
like, "Alice and Bob occupy Tracks 1 and 2 with probability 1/2". Similarly, tloeifer transform
at 1(h_p,1,1) returns a matrix of marginal probabilities of the foo : a((k,¢)) = (i, j)), which
captures statements like, "Alice is in Traclkdd Bob is in Track 2 with probability 9/10".

We can go further and define third-order representations, foudbroepresentations, and so
on. In general however, the permutation representations as they eamedbfined above are re-
ducible, intuitively due to the fact that it is possible to recover lower ordagimal probabilities
from higher order marginal probabilities. For example, one can re¢bheanormalization constant
(corresponding to the trivial representation) from the first order mafrixarginals by summing
across either the rows or columns, and the first order marginal probabifibien the second order
marginal probabilities by summing across appropriate matrix entries. To trudyelge the machin-
ery of Fourier analysis, it is important to understand the Fourier tramsérthe irreducibles of
the symmetric group, and in the next section, we show how to derive theiditee representa-
tions of the Symmetric group by first defining permutation representatioms;ghbtracting off the
lower-order effects”.

5. Representation Theory on the Symmetric Group

In this section, we provide a brief introduction to the representation théahge Symmetric group.
Rather than giving a fully rigorous treatment of the subject, our goal isvedgpme intuition about
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the kind of information which can be captured by the irreducible repreemszof S,. Roughly
speaking, we will show that Fourier transforms on the Symmetric group aithstEbeing indexed
by frequencies, are indexed Ipartitions of n (tuples of numbers which sum t©, and certain
partitions correspond to more complex basis functions than others. Fafspwe point the reader
to consult: Diaconis (1989), James and Kerber (1981), Sagan (20@i1yershik and Okounkov
(2006).

Instead of the singleton or pairwise marginals which were described in éwops section,
we will now focus on using the Fourier coefficients of a distribution to qaemyuch wider class of
marginal probabilities. As an example, we will be able to compute the followinggcmmnplicated)

marginal probability orgs using Fourier coefficients:
1[2]6]
4/5 : (4)
3

()

which we interpret as the joint marginal probability that the rows of the dimgna the left map to
corresponding rows on the right as unordered sets. In other wegdstion 4 is the joint probability
that unorderedset {1,2,3} maps to{1,2,6}, the unordered paif4,5} maps to{4,5}, and the

singleton{6} maps to{3}.

The diagrams in Equation 4 are knownFasrer's diagramsand are commonly used to visualize
partitionsof n, which are defined to be unordered tuples of positive integets(A1,...,A,), which
sum ton. For example) = (3,2) is a partition ofn = 5 since 3+ 2= 5. Usually we write partitions
as weakly decreasing sequences by convention, so the partitions bfare:

BN

(5), (4,1), (3,2), (3,1,1), (2,2,1), (2,1,1,1), (1,1,1,1,1),

and their respective Ferrers diagrams are:

HENNE ! : : CH

A Young tabloids an assignment of the numb€ik . .., n} to the boxes of a Ferrers diagram for a
partitionA, where each row represents an unordered set. There are 6 Ydlwigsaorresponding
to the partitionA = (2,2), for example:

1|2 1/3 14 213 214 34
3141712147123 1214|1113’ 111]2]]"
. .
The Young tabI0|d,, for example, represents the two underordered{de®} and{3,4}, and if

we were interested in computing the joint probability thef1,2}) = {3,4} ando({3,4}) = {1,2},
then we could write the problem in terms of Young tabloids as:

(o-e({58)) - 132))
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In general, we will be able to use the Fourier coefficients at irreducilpkesentations to com-
pute the marginal probabilities of Young tabloids. As we shall see, with the dfelpe James
Submodule theoreifdames and Kerber, 1981), the marginals corresponding to “simple” pastitio
will require very few Fourier coefficients to compute, which is one of the maxengths of working
in the Fourier domain.

Example 6 Imagine three separate rooms containing two tracks each, in which AlidéBab are
in room 1 occupying Tracks 1 and 2; Cathy and David are in room 2 ogiogpTracks 3 and 4; and
Eric and Frank are in room 3 occupying Tracks 5 and 6, but we areai¢ to distinguish which
person is at which track in any of the rooms. Then

o (-

It is in fact, possible to recast the first-order marginals which were hestin the previous
section in the language of Young tabloids by noticing that, for example, if 1 twapsthen the
unordered sef2,...,n} must map to{2,...,n} since permutations are one-to-one mappings. The
marginal probability that(1) = 1, then, is equal to the marginal probability th#tl) = 1 and
o({2,...,n}) ={2,...,n}. If n=6, then the marginal probability written using Young tabloids is:

fo-o({245)-fg753))

The first-order marginal probabilities correspond, therefore, to theinsarprobabilities of
Young tabloids of shapg = (n—1,1).

Likewise, the second-order unordered marginals correspond togYianoids of shap@ =
(n—2,2). If n= 6 again, then the marginal probability tHdt 2} maps to{2,4} corresponds to the
following marginal probability for tabloids:

: 3/4[5/6J|) _ [[1]3]5]6]
(o o({3270)) - {35°))
The second-ordesrderedmarginals are captured at the partitios- (n—2,1,1). For example,
the marginal probability thaf1l} maps to{2} and {2} maps to{4} is given by:

()1

And finally, we remark that thél,...,1) partition of n recovers all original probabilities since it
asks for a joint distribution oves(1),...,0(n). The corresponding matrix of marginals hds< n!
entries (though there will only bl distinct probabilities.

To see how the marginal probabilities of Young tabloids of shapan be thought of as Fourier
coefficients, we will define a representation (which we call geemutation representatigrasso-
ciated withA and show that the Fourier transform of a distribution at a permutationseptaion

m[O|>
T|o|w

NS

NN
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gives marginal probabilities. We begin by fixing an ordering on the sebssiple Young tabloids,
{t1},{t2}, ..., and define the permutation representatig{o) to be the matrix:

0(0)]: :{ L ifo({tj}) ={t}

1 0 otherwise

It can be checked that the functiopis indeed a valid representation of the Symmetric group, and
therefore we can compute Fourier coefficientsyatif P(o) is a probability distribution, then

B, = 3 P@Im ;.

- P(O-)’
{o:o({tj})={ti}}

=P(o: o({t;}) = {t}),

and thereforethe matrix of marginals corresponding to Young tabloids of shafsegivenexactly
by the Fourier transform at the representation

As we showed earlier, the simplest marginals (the zeroth order normalizati@tant), corre-
spond to the Fourier transformat,, while the first-order marginals correspond{@ 1 1), and the
second-order unordered marginals corresponighta »). The list goes on and on, with the marginals
getting more complicated. At the other end of the spectrum, we have the Fooeiéicients at the
representationy ; . 1) Which exactly recover the original probabiliti®$c).

We use the word ‘spectrum’ suggestively here, because the diflexets of complexity for the
marginals are highly reminiscent of the different frequencies for rakled signals, and a natural
question to ask is how the partitions might be ordered with respect to the ‘cxitypte the corre-
sponding basis functions. In particular how might one characterize tgisevaotion of complexity
for a given partition?

The ‘correct’ characterization, as it turns out, is to usedbminance orderingf partitions,
which, unlike the ordering on frequencies, is not a linear order, baéraa partial order.

Definition 5 (Dominance Ordering) LetA,u be partitions of n. TheA ™ p (we sayA dominates
W), if for each i,3 1 Ak > Y1 bk

For example,(4,2) > (3,2,1) since 4> 3, 4+2>3+2, and 4+2+0>3+2+1. However,
(3,3) and (4,1,1) cannot be compared with respect to the dominance ordering sirncé, dut
3+ 3> 4+ 1. The ordering over the partitions ot= 6 is depicted in Figure 3(a).

Partitions with fat Ferrers diagrams tend to be greater (with respect to doceioadering) than
those with skinny Ferrers diagrams. Intuitively, representations guonekng to partitions which
are high in the dominance ordering are ‘low frequency’, while representationegponding to
partitions which ardéow in the dominance ordering are ‘high frequerty.”

Having defined a family of intuitive permutation representations over the Syiergedup, we
can now ask whether the permutation representations are irreduciblé eh@answer in general,
is to the negative, due to the fact that it is often possible to reconstruct mder marginals by
summing over the appropriate higher order marginal probabilities. Howiev@possible to show

6. The direction of the ordering is slightly counterintuitive given the freqyenterpretation, but is standard in the
literature.
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Ixl1 O
'33;333 5x5
1
EIIII
f 9x9
EEF':" s S
’ 5x5 10x10
E o
w EEF' N \ /
A ®
EI' @ 16x16
23 E | p \
f 10x10 5x5
ED S 7
9x9
L .
E 5x5
1x1 O
(@) Dominance ordering for (b) Fourier coefficient matrices f@.

n=~6.

Figure 3: The dominance order for partitionget 6 are shown in the left diagram (a). Fat Ferrer's
diagrams tend to be higher in the order and long, skinny diagrams tend to ée bine
corresponding Fourier coefficient matrices for each partition (atuibde representa-
tions) are shown in the right diagram (b). Note that since the Fourier fuesi8ons form
a complete basis for the space of functions on the Symmetric group, therberaisictly
n! coefficients in total.

that, for each permutation representatignthere exists a corresponding irreducible representation
p», Which, loosely, captures all of the information at the ‘frequencyhich was not already cap-
tured at lower frequency irreducibles. Moreover, it can be shownthigae exists no irreducible
representation besides those indexed by the partitionsTiese remarkable results are formalized
in the James Submodule Theorewhich we state here without proof (see Diaconis 1988, James
and Kerber 1981 and Sagan 2001).

Theorem 6 (James’ Submodule Theorem)

1. (Uniqueness) For each partition, of n, there exists an irreducible representatipR, which
iS unigue up to equivalence.

2. (Completeness) Every irreducible representation,afd@responds to some partition of n.
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3. There exists a matrix,Gassociated with each partitiok, for which

Ky

Cr 1y (0)-Cr =P Poulo), forallces,. (5)

U>A (=1
4. Ky, = 1for all partitions A.

In plain English, part (3) of the James Submodule theorem says that walways reconstruct
marginal probabilities ok-tabloids using the Fourier coefficients at irreducibles whiclati® and
abovein the dominance ordering, if we have knowledge of the maggiXwhich can be precom-
puted using methods detailed in Appendix D), and the multiplickigs In particular, combining
Equation 5 with the definition of the Fourier transform, we have that

K
fr, =Ch - {@@ fpp] Cr, (6)

A (=1

and so to obtain marginal probabilities ®ttabloids, we simply construct a block diagonal matrix
using the appropriate irreducible Fourier coefficients, and conjuga® byhe multiplicitiesKj,

are known as th&ostka nhumbersnd can be computed using Young’s rule (Sagan, 2001). To
illustrate using a few examples, we have the following decompositions:

Tin) = Pn)>
Tin—1,1) = P(n) D Pn-1,1)s
T(n-22) = Pmn) DP(n-1,1) D Pn-22);
Tin-21,1) = Pmn) DP(n-11) DPn-1,1) DP(n-2,2) ©P(n-21,1)
T(n-33) = Pn) DPmn-1,1) PP(n-2.2) ©P(n-33);
Tn-321) = Pmn) DPn-1,1) PP(n-1,1) P P(n-2,2) P P(n-22) ©P(n-21,1) D Pn-33) PPn-321)-

Intuitively, the irreducibles at a partitiok reflect the “pure”At"-order effects of the underlying
distribution. In other words, the irreducibles)atorm a basis for functions that have “interesting”
AMh-order marginal probabilities, but uniform marginals at all partitipssich thapi > A.

Example 7 As an example, we demonstrate a “preference” function which is “puralgtond-
order (unordered) in the sense that its Fourier coefficients are euzéro at all irreducible repre-
sentations exce,_» ) (and the trivial representation). Consider the function, — R defined

by:
_ [ 1 ifjo(1)—0(2)| = 1(modny
fo) = { 0 otherwise

Intuitively, imagine seating n people at a round table with n chairs, but with dmestcaint that
the first two people, Alice and Bob, are only happy if they are allowed toesit to each other.
In this case, f can be thought of as the indicator function for the subsetatihg arrangements
(permutations) which make Alice and Bob happy.

Since f depends only on the destination of the unordered {daR}, its Fourier transform
is zero at all partitions p such that 1 (n—2,2) (ﬂl = 0). On the other hand, Alice and Bob
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Aol (-1 | (h-22) | (h-211) | (n-33) | (n-321)
dim p, 1 n—1 n(n£3) (nfl)2(n72) n(nfle)s(n75) n(n72§(n74)

Table 3: Dimensions of low-order irreducible representation matrices.

have no individual preferences for seating, so the first-order “margihaf f are uniform, and

hence,f,_11) = 0. The Fourier coefficients at irreducibles can be obtained from the skoater
(unordered) “marginals” using Equation 5.

7] -

CEI;]—Z,Z) ) PT(nfz.z) 'C(n*272) =

fo

(n—2,2)

The sizes of the irreducible representation matrices are typically much smaltethigir corre-
sponding permutation representation matrices. In the case-df, ..., 1) for example, dint) = n!
while dimp, = 1. There is a simple combinatorial algorithm, known asHloek Formula(Sagan,
2001), for computing the dimension pf. While we do not discuss it, we provide a few dimen-
sionality computations here (Table 3) to facilitate a dicussion of complexity lagmpi® providing
polynomial sized function approximations, the Fourier coefficient matriaegoow quite fast, and
roughly, one would nee®(n?) storage to maintaikth order marginals. For example, we would
need to stor@(n®) elements to maintain fourth-order marginals. It is worth noting that since the
Fourier transform is invertible, there musttig-ourier coefficients in total, and $g, dg =|G|=nl.
See Figure 3(b) for an example of what the matrices of a complete Fouriefdren onS would
look like.

In practice, since the irreducible representation matrices are determilyagpaio equivalence,
it is necessary to choose a basis for the irreducible representatiordeintorexplicitly construct
the representation matrices. As in Kondor et al. (2007), we us@dlitand-Tsetlin basisvhich has
several attractive properties, two advantages being that the matricesbwalued and orthogonal.
See Appendix B for details on constructing irreducible matrix represengatitth respect to the
Gel'fand-Tsetlin basis.

6. Inference in the Fourier Domain

What we have shown thus far is that there is a principled method for compactisnarizing distri-
butions over permutations based on the idea of bandlimiting—saving only thizdowency terms
of the Fourier transform of a function, which, as we discussed, i/alguit to maintaining a set of
low-order marginal probabilities. We now turn to the problem of performimdpgabilistic inference
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using our compact summaries. One of the main advantages of viewing magagrfedsirier coeffi-
cients is that it provides a natural principle for formulating polynomial time exiprate inference
algorithms, which is to rewrite all inference related operations with respehetdourier domain,
then to perform the Fourier domain operations ignoring high-order terms.

The idea of bandlimiting a distribution is ultimately moot, however, if it becomes sacg$o
transform back to the primal domain each time an inference operation is dddeatly, the Fourier
Transform onS, scales a®©((n!)?), and even the fastest Fast Fourier Transforms for functions on
S, are no faster tha®(n?-n!) (see Maslen 1998 for example). To resolve this issue, we present a
formulation of inference which operates solely in the Fourier domain, allowsnig avoid a costly
transform. We begin by discussing exact inference in the Fourier domhict) is no more tractable
than the original problem because there @ré&ourier coefficients, but it will allow us to discuss
the bandlimiting approximation in the next section. There are two operationg\8idew: predic-
tion/rollup, and conditioning. While we have motivated both of these operatiotise familiar
context of hidden Markov models, they are fundamental and appear iy ather settings. The
assumption for the rest of this section is that the Fourier transforms of tigtioa and observation
models are known. We discuss methods for obtaining the models in Sectione8ndih results
of this section (excluding the discussions about complexity) extend nattwadiyrer finite groups
besidess,.

6.1 Fourier Prediction/Rollup

We will consider one patrticular class of transition models—that of randotkswaver a group,
which assumes that*? is generated frons¥) by drawing a random permutatiott) from some
distributionQ® and settingg™*Y = it 7 In our identity management exampté!) represents

a random identity permutation that might occur among tracks when they get tdasach other
(what we call amixing event For exampleQ(1,2) = 1/2 means that Tracks 1 and 2 swapped
identities with probability 1/2. The random walk model also appears in many affjications
such as modeling card shuffles (Diaconis, 1988).

The motivation behind the random walk transition model is that it allows us to wigtg@té-
diction/rollup operation as eonvolutionof distributions on a group. The extension of the familiar
notion of convolution to groups simply replaces additions and subtractioasddggous group op-
erations (function composition and inverse, respectively):

Definition 7 Let Q and P be probability distributions on a group G. Define thavolutiorf of Q
and P to be the functiof@x P] (01) = ¥4, (010, )P(02).

Using Definition 7, we see that the prediction/rollup step can be written as:
P(ot+Y) = z P(c™Y|c)). p(aV),
o)
= z QY (). p(a),

{(o® 1) :ct+D=nt).cV}

7. We placert on the left side of the multiplication because we want it to permute tracks ainidientities. Had we
definedrtto map from tracks to identities (instead of identities to tracks), thewould be multiplied from the right.
Besides left versus right multiplication, there are no differences bettheetwo conventions.

8. Note that this definition of convolution on groupssisictly a generalization of convolution of functions on the real
line, and is a non-commutative operation for non-Abelian groups. TiglistributionP x Q is not necessarily the
same af)* P.
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(Right-multiplying both sides of*+1 = it/ g(®)
by (cV)~1, we see thatt) can be replaced by (g())-1),
— Z Q(t) (O'(tJrl) . (O'(t))*l) . |:>(0'(t))7

o)

_ {Qm « p] (Gt+D),

As with Fourier transforms on the real line, the Fourier coefficients of tmyaution of distribu-
tionsP andQ on groups can be obtained from the Fourier coefficienBafdQ individually, using
the convolution theoren(see also Diaconis 1988):

Proposition 8 (Convolution Theorem) Let Q and P be probability distributions on a group G. For
any representatiop,

[Q*P}p = ép‘lspa
where the operation on the right side is matrix multiplication.

Therefore, assuming that the Fourier transfoﬁ,ﬁﬂ)sandﬁg) are given, the prediction/rollup update
rule is simply:
t+1 ~(t t

B QY
Note that the update only requires knowledgéaind does not require. Furthermore, the update
is pointwisein the Fourier domain in the sense that the coefficients at the represergatitect
I3,§t+1) only atp. Consequently, prediction/rollup updates in the Fourier domain neverseithe
representational complexity. For example, if we maintain third-order margitheds a single step
of prediction/rollup called at timereturns theexactthird-order marginals at timie+- 1, and nothing
more.

Example 8 We run the prediction/rollup routines on the first two time steps of the example in
Figure 2, first in the primal domain, then in the Fourier domain. At eachimgievent, two tracks, i
and j, swap identities with some probability. Using a mixing model given by:

3/4 ifni=¢
Qm =4 1/4 ifm=(j) ,

0 otherwise

we obtain results shown in Tables 4 and 5.

6.1.1 GOMPLEXITY OF PREDICTION/ROLLUP

We will discuss complexity in terms of the dimension of the largest maintained irt#duurier
coefficient matrix, which we will denote by« (see Table 3 for irreducible dimensions). If
we maintain 2¢ order marginals, for example, thekax = O(nz), and if we maintain ¥ order
marginals, themlmax= O(n3).

Performing a single prediction/rollup step in the Fourier domain involves paifig a single
matrix multiplication for each irreducible and thus requi@sl3,.,) time using the naive multipli-
cation algorithm.
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o PO | QU | PO | Q@ | pP@

£ 1 | 3/4|3/4|3/4|9/16
(L2) | o |1/4|1/4| 0 |3/16
23 | 0o | o] 0| 0] O
(1,3) | o | o | o |1/4]3/16
123 ||l o | o | 0| 0 |1/16
(1,32l o | ol 0| 0| O

Table 4: Primal domain prediction/rollup example.

0 oW B 0@ B2
p(g) 1 1 1 1 1

10 1/2 0 1/2 0 7/8  —\/3/8 7/16  —/3/8
Py 01 0 1 0 1 ~\/3/8 5/8 —V3/16  5/8
P(11,1) 1 1/2 1/2 1/2 1/4

Table 5: Fourier domain prediction/rollup example.

In certain situations, faster updates can be achieved. For example, @aitivésp mixing model
of Example 8, the Fourier transform @fdistribution takes the forerApx =dlg, +Bpa(i, j), where
lg, is thed, x d identity matrix (see also Section 8). As it turns out, the mapsik, j) can be
factored into a product dD(n) sparse matrices each with at m@Xid, ) nonzero entries. To see
why, recall the elementary fact that the transposifio) factors into a sequence 6fn) adjacent
transpositions:

G)=>0i+10+Li+2)--(j-L)(-2j-1)-(+Li+2)(,i+1).

If we use the Gel'fand-Tsetlin basis adapted to the subgroup ¢hain--- S, (see Appendix B),
then we also know that the irreducible representation matrices evaluatdjhegra transpositions
are sparse with no more th&@i{d?,,,) nonzero entries. Thus by carefully exploiting sparsity during
the prediction/rollup algorithm, one can achieve@imd?,,) update, which is faster thad(d3,,)

as long as one uses more than first-order terms.

6.1.2 LUMITATIONS OF RANDOM WALK MODELS

While the random walk assumption captures a rather general family of transitidels, there do
exist certain models which cannot be written as a random walk on a groyarticular, one lim-
itation is that the prediction/rollup update for a random walk model can onlgaser the entropy
of the distribution. As with Kalman filters, localization is thus impossible without makioger-
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vations? Shin et al. (2005) show that the entropy must increase for a certain kirashdom walk
on S, (wherertcould be either the identity or the transpositi@n)), but in fact, the result is easily
generalized for any random walk mixing model and for any finite group.

Proposition 9
H [PE(0)] = max{H [QU)| 1 [P (o)},

where H[P(0)| denotes the statistical entropy functionallRfo)] = — 5 ;g P(0) logP(0).
Proof We have:

P(t+1) (O.(t+1) )

Il
—
Q
—
=
*
T
=
=
—
Q
—
+
=
~—

Applying the Jensen Inequality to the entropy function (which is concaed)s;
H [P““)(o(t“))} > S PU(c)H {Q(t)(o- (G(t))*l)} . (Jensen's inequality)
o)

=3 PO (c)H [Q(t)(o)} ., (translation invariance of entropy)

o)

=H [Q(t)(o)} , (sincey ;o PV (o) = 1).

The proof that [P+Y) (g®+1)] > H [PU (a¥)] is similar with the exception that we must rewrite
the convolution so that the sum ranges owér

P(t+1)(0(t+l)) — [Q(t) % p(t)} (0(t+1))7
- z Q(t)(r(t))p(t)((r(t))fl ) 0-(t+1))_

T®

Example 9 This example is based on one from Diaconis (1988). Consider a deakdsfrumbered
{1,...,n}. Choose a random permutation of cards by first picking two cards iexi@gntly, and
swapping (a card might be swapped with itself), yielding the following probaliktyibution over
S

i ift=¢
Q(m =< 5 if misatransposition. (7
0 otherwise

9. In general, if we are not constrained to using linear Gaussian mdtislppssible to localize with no observations.
Consider a robot walking along the unit interval on the real line (which isargroup). If the position of the robot
is unknown, one easy localization strategy might be to simply drive the tolibe right, with the knowledge that
given ample time, the robot will slam into the ‘wall’, at which point it will havedn localized. With random walk
based models on groups however, these strategies are impossiblererttegsame robot walking around the unit
circle—since, in some sense, the group structure prevents the exisfénedls’.
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Entropy with respect to number of shuffles
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Figure 4: We start with a deck of cards in sorted order, and perfotaefifconsecutive shuffles
according to the rule given in Equation 7. The plot shows the entropy aoflifigbu-
tion over permutations with respect to the number of shufflesmifer3,4,...,8. When
H(P)/log(n!) = 1, the distribution has become uniform.

Repeating the above process for generating random permutatigives a transition model for
a hidden Markov model over the symmetric group. We can also sead€Myuhat the entropy of
the deck increases monotonically with each shuffle, and that repeaiéftestwith @) eventually
bring the deck to the uniform distribution.

6.2 Fourier Conditioning

In contrast with the prediction/rollup operation, conditioning can potentiallyeizse the repre-
sentational complexity. As an example, suppose that we know the followstepfider marginal
probabilities:

P(Alice is at Track 1 or Track = .9, and

P(Bob is at Track 1 or Track)2= .9.

If we then make the following first-order observation:

P(Cathy is at Track 1 or Track)2= 1,
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then it can be inferred that Alice and Bob canhothoccupy Tracks 1 and 2 at the same time, that
is,
P({Alice,Bob} occupy Tracks {1,2) = 0,

demonstrating that after conditioning, we are left with knowledge of secoder (unordered)
marginals despite the fact that the prior and likelihood functions were omyikrmup to first-order.
Intuitively, the example shows that conditioning “smears” information from-éwder Fourier co-
efficients to high-order coefficients, and that one cannot hope farirgtvgise operation as was
afforded by prediction/rollup. We now show precisely how irreducibliedifberent complexities
“interact” with each other in the Fourier domain during conditioning.

An application of Bayes rule to find a posterior distributi®(o|z) after observing some evi-
dencez requires two steps: pointwise producbf likelihood P(z/o) and priorP(o), followed by a
normalization step:

P(al2) =n-P(Zo)-P(0).

For notational convenience, we will refer to the likelihood functionL#go) henceforth. We
showed earlier that the normalization constant = ¥, L(z|o) - P(0) is given by the Fourier trans-

form of @) at the trivial representation—and therefore the normalization step ofitaoridg
can be implemented by simply dividing each Fourier coefficient by the s{:ia(FaP(‘)}

P(n)

The pointwise product of two functionfsandg, however, is trickier to formulate in the Fourier
domain. For functions on the real line, the pointwise product of functi@amshe implemented
by convolving the Fourier coefficients df and d, and so a natural question is: can we apply a
similar operation for functions over general groups? Our answer to ttiiatishere is an analogous
(but more complicated) notion of convolution in the Fourier domain of a géfiari@ group. We
present a convolution-based conditioning algorithm which weksahecker Conditioningwhich,
in contrast to the pointwise nature of the Fourier Domain prediction/rollup steg,much like
convolution, smears the information at an irreducit)e¢o other irreducibles.

6.2.1 FOURIER TRANSFORM OF THEPOINTWISE PRODUCT

Our approach to computing the Fourier transform of the pointwise pradtetms off andgis to
manipulate the functiofi(c)g(o) so that it can be seen as the result of an inverse Fourier transform
(Equation 3). Hence, the goal will be to find matridgs(as a function off, §) such that for any
0€G,

1(6)-9(0) = 15 3 b Tr (R -py(0). ®)

after which we will be able to read off the Fourier transform of the pointwiseluct as{ﬂ;} =R,.
pv

For anyo € G, we can write the pointwise product in termsfoéndg using the inverse Fourier
transform:

f(0)-9(0) = z T (1 -;(0))

A ’é‘ %dpuTr (ggu ) pu(0)>]

> dp, dp, Tr(pr pa(o )) -Tr (qu'pu(ﬁ)ﬂ. 9)

~
G)‘F* G)
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If AandB are square, TIA® B) = (TrA) - (TrB).
(A®B)-(C®D) = AC®BD.

LetA be ann x n matrix, andC an invertiblen x n matrix. Then TA=Tr (C*lAC).

Eal A

LetA be ann x n matrix andB; be matrices of sizen, x my wherey;m = n. Then
Tr(A-(;Bi)) = 5i Tr(Ai - Bi), whereA is the block ofA corresponding to block
B in the matrix(&p; By).

Table 6: Matrix Identities used in Proposition 10.

Now we want to manipulate this product of traces in the last line to be just ooe (@ in Equa-
tion 8), by appealing to some properties of ti@necker Product The Kronecker product of an
nxnmatrixU = (u; ;) by anmx mmatrixV, is defined to be themx nmmatrix

U1.’1V U1’2V ce U;|_7nV

U271V U272V e UzﬂnV
UV = . . , :

Un71V Lth e Unﬁnv

We summarize some important matrix properties in Table 6. The connection toodlem is given
by matrix property 1. Applying this to Equation 9, we have:

T (@) -Tr (g -pu(@) = Tr((f-m(0) @ (8, -pul0))
= Tr((fm ®gpp)T‘(pA(0)®pu(0))>a

where the last line follows by Property 2. The term on the I%ﬁ@ p,.» is @ matrix of coefficients.
The term on the righp, (0) ® pu(0), itself happens to be a representation, called<ttmecker (or
Tensor) Product Representatioim general, the Kronecker product representation is reducible, and
so it can be decomposed into a direct sum of irreducibles. In particulay,ahdp, are any two
irreducibles ofG, there exists a similarity transfor@),, such that, for ang € G,

Dw

Coi” P @ (0)-Cu =D Pepv(0). (10)

vV /=1

The® symbols here refer to a matrix direct sum as in Equationi@dexes over all irreducible rep-
resentations d,, while ¢ indexes over a number obpiesof p, which appear in the decomposition.
We index blocks on the right side of this equation by pairs of indjee&). The number of copies of
eachp, (for the tensor product pag, © py) is denoted by the integex,,, the collection of which,
taken over all triplegA, i, v), are commonly referred to as tl#ebsch-Gordan seriedNote that we
allow thez,,, to be zero, in which casg, does not contribute to the direct sum. The matriCgs
are known as th€lebsch-Gordan coefficient he Kronecker Product Decompositiggroblem is
that of finding the irreducible components of the Kronecker producesgmtation, and thus to find
the Clebsch-Gordan series/coefficients for each pair of irreduciptesentationsp,, py).
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Decomposing the Kronecker product inside Equation 10 using the Cl€bsadan series and
coefficients yields the desired Fourier transform, which we summarize imthredf a proposition.
In the case that andg are defined over an Abelian group, we will show that the following formulas
reduce to the familiar form of convolution.

Proposition 10 Let f, § be the Fourier transforms of functions f and g respectively, and for each
dered pair of irreduciblegp,, py), define: A, = C{pl (fo, ®Gp,) -G Then the Fourier transform
of the pointwise product fg is:

2 )

9, - dpvye| > ddp, > AL (11)

where é‘ﬁ@ is the block of A, corresponding to thév, /) block in@, EB?:“Vl py from Equation 10.

Proof We use the fact thal,, is an orthogonal matrix for all pair,, py), that is,CATu-CMl =1.

f(0)-g(0) = |;zolpm(f}; P@) || g 2T (@;-puw))]
~(16) Z b [1(5 o) (65 040
o Provery = (57 ) 5 ot 10 (-0) (6. 1))
(by Property 2)- (&)2%%%“ ((for 65" (Pr(0) @ p(0)) )
(by Property 3)- <|é|>zzdmdpun (ST (o @8p,) " o

Cl- (Pa(0) ©pu(0)) -Coy)

D
_— 1
(by definition ofCy,, andAy) = <\G|> Z dp, dp, Tr (AIU- <€B@ pv(c)>>
v =1
I\

T
(by Property 4)= |G\2 Z 0o, o, Z do, /Z Tr <(dmlA;\:;€)> pv(0)>

T
d
p;\ Pu ( £)
(rearranging termsy — |G| 2 do, Tr {(E E N Au ) p\,(o)] .

Recognizing the last expression as an inverse Fourier transform desiie proof. |

The Clebsch-Gordan seriez,,, plays an important role in Equation 11, which says that the
(Pa.Py) cross-term contributes to the pointwise produgpabnly whenz,,, > 0. In the simplest
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case, we have that
1 ifu=v
Ak =\ 0 otherwise’
which is true sincg, (o) = 1 for all o € §,. As another example, it is known that:

Pin-11) @ Pn-1,1) = Pn) DP(n-1,1) DP(n-2,2) DPn-2,11)
or equivalently,

1 ifvisoneof(n),(n—1,1),(n—2,2), or(n—2,1,1)
An-11).(-11v =\ otherwise '

So if the Fourier transforms of the likelihood and prior are zero past thietfio irreducibles ()
and (n—1,1)), then a single conditioning step results in a Fourier transform which, iergén
carries second-order information(@— 2,2) and(n—2,1,1), but is guaranteed to be zero past the
first four irreduciblegn), (n—1,1), (n—2,2) and(n—2,1,1).

As far as we know, there are no analytical formulas for finding the entebsch-Gordan se-
ries or coefficients, and in practice, acquiring the coefficients reqoamesiderable precomputation.
We emphasize however, that as fundamental constants related to theibtesiof the Symmetric
group, they need only be computedce and for all(like the digits ofr, for example) and can be
stored in a table for all future reference. For a detailed discussion lufitgees for computing the
Clebsch-Gordan series/coefficients, see Appendix D. We have masteohmecomputed coeffi-
cients available on our lab websft&put we will assume throughout the rest of the paper that both
the series and coefficients have been made available as a lookup table.

As a final remark, note that Proposition 10 can be rewritten somewhat ntarévily by ab-
sorbing the scalars and submatrices of the Clebsch-Gordan coeffitiemtgrojection matrices
P,

Proposition 11 Let f,@ be the Fourier transforms of functions f and g respectively. For eacletrip
of partitions (A, u,v) there exists a positive integef g, and projection operators {%Z) for each
¢ €{1,2,...,2} such that the Fourier transform of the pointwise product fg is:

2 w

=1 _ VONT (£ ca ) o)
[fg}pv_ Azu gl(Pw )T (o ©6p,) - Pr - (12)

When f andg are functions on an Abelian gro@p then it is a well known fact that all irreducible
representations are one-dimensional, and so Equation 12 redt{(@ to= Y. ( fo, -8p,)» Where
Py

all the tensor products have simply become scalar multiplications and the famiiiaitide of
convolution is recovered.
6.2.2 GOMPLEXITY OF CONDITIONING

The complexity of (bandlimited) conditioning (assuming precomputed Clebscta®
series/coefficients) depends on the order of the coefficients maintainddth the prior and the

10. Seehttp:/iwww.select.cs.cmu.edu/data/index.html
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observation model. However, it is difficult to state a general complexity éhdonarbitrary finite
groups due to our limited understanding of the Clebsch-Gordan serigg. wéeconsider condi-
tioning only on the symmetric group of ordewith the assumption that the number of irreducibles
maintained is very small (and in particular, not allowed to grow with respett tOur assumption
is realistic in practice since for moderately lamget is impractical to consider maintaining higher
than, say, third-order terms. If we denote the dimension of the largest maidtaieducibles of the
prior and likelihood bydfay andd2ls, respectively, then the complexity of conditioning is dom-
inated by the step that forms a mat@X - (A® B) - C, where the matriceA® B andC are each
(dRax - doS)-dimensional. Note, however, that since we are only interested in certaiksbid
C™ . (A®B)-C, the full matrix need not be computed. In particular, the largest extratbett has
sizedfax , and so the complexity of conditioning @((dggSX)Z(d,%g;”ﬁ) using the naive matrix
multiplication algorithm.

In some situations (see Section 8), the observation model is fully specifi@dtbgrder Fourier
terms. In such casesl?% = O(n) and we can perform conditioning in the Fourier domain in
O(n?- (dhax )®) time. If a model is fully specified by second-order terms, for example, then th
update require®(n*- (dhax )%) time.

To speed up conditioning, one can often exploit matrix sparsity in two wayst, we observe
that the Clebsch-Gordan coefficient matrices are often sparse (wetcget prove this, see Fig-
ure 10.1) and so we can save a conjectured factadify - d°23) in practice. Secondly, for certain
coset-based observation models (see Section 8), we can show that émrappropriate relabeling
of identities and tracks), the Fourier coefficient matrices of the observatarel are sparse (with
O(debs) or sometimes eve®(1) nonzero entries fok,). For the simplest observations which take
the form (“Identity j is at trackj”), for example, we can obtai®((day )%) running time (without
accounting for the conjectured sparsity of the Clebsch-Gordan deetf§, which matches the time
required for the prediction/rollup update. See Appendix B for details.

We now conclude our section on inference with a fully worked example oh&cker condi-
tioning.

Example 10 For this example, refer to Table 2 for the representationszof@&ven functions fg:
S — R, we will compute the Fourier transform of the pointwise produag.f

Since there are three irreducibles, there are nine tensor produgctsp,, to decompose, six of
which are trivial either because they are one-dimensional, or involveotergs against the trivial
representation. The nontrivial tensor products to consider@s) ® p(1.1,1), P(1,1,1) ® P(2,1) and
P21 ®P(2,1)- The Clebsch-Gordan series for the nontrivial tensor products are:

Z21),(110yv | 411,20y | 4 21V

O - O

2.1).(
0 1
1 1
0 1

The Clebsch-Gordan coefficients for the nontrivial tensor productgaen by the following
orthogonal matrices:

1 0 -1 O

0 1 0 -1 v2|0 -1 0 1

Coneiy = 1 ol Carveen=|41 ¢ | Ceveen= >lo -1 0o -1
1 O 1 0
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As in Proposition 10, define:

Aepeary = Chyenin (fen®8ui)Censaiy, (13)
Al1yeel = C(Tl,l,l)g(z,l) (faiy ©621) Caryel), (14)
Acnsey = Chiees (fey®@8ey)Ceyeey: (15)
Then Proposition 10 gives the following formulas:
_ 1~ . A
F Oy =3 [fp(e,) “Gpa) T fouas *Gpuan T4 [A2ney)] 1,1} ’ (16)
_ 1 r~ .
f 'gp<2'1) - 31 ) |:fp(2.1) 'gp(a) + fp(a) '90(2,1) +A(1,1,1)®(2,1)
TARDe(L1) T2 [A<2,1)®(2,1)]2:3_,2:3] : (17)
_ 1~ . . A
PGy =3 [f%’) Gouan + Touay Gpe T4 [A(271)®(271)}4,4} ) (18)

where the notationAl,p.c.q denotes the block of entries in A between rows a and b, and between
columns c and d (inclusive).
Using the above formulas, we can continue on Example 8 and compute tlpdiade step in
our identity management problem (Figure 2). At the final time step, werebshat Bob is at track
1 with 100% certainty. Our likelihood function is therefore nonzero only for trenpitations which
map Bob (the second identity) to the first track:

1 ifo=(1,2)o0r(1,3,2)
L{o) O { 0 otherwise '
The Fourier transform of the likelihood function is:

~ - ~3/2 V321 -
o =2 T = | iy "y |+ Tow =0 (19)

Plugging the Fourier transforms of the prior distributioﬁ(@ from Table 5) and likelihood (Equa-
tion 19) into Equations 13, 14, 15, we have:

-7 =3 11 573
-2/3 -10 -6/3 -14

20 22/3 -4  4/3
-11v/3 23 -3 -13
To invoke Bayes rule in the Fourier domain, we perform a pointwise ptadiieg Equations 16, 17, 18,
and normalize by dividing by the trivial coefficient, which yields the Four&nsform of the poste-
rior distribution as:

A _[o 0] , i1 VB, 1
2oy =| g o | AineEn T g| _ 3 _3 | Aebee) = 33

Poid| =1 [Plo| =| g 7| [Plel] =-1 (20)
0 Py

e P21
Finally, we can see that the result is correct by recognizing that thei€otmransform of the
posterior (Equation 20) corresponds exactly to the distribution which isdl-at(1,2) and 0 every-
where else. Bob is therefore at Track 1, Alice at Track 2 and CathyeaaiKT3.

o e (L2 23] 13| (123 ] (1,32))]
PO)| O 1 0 0 0 0 |
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Algorithm 1: Pseudocode for the Fourier Prediction/Rollup Algorithm.
PREDICTIONROLLUP
input : Q%) andP, p) € A
output: BS ™, p) e A
5t+1) AL Bt

1 foreachpy, e Ado By, ™7 «— Qp, 'Fsp(n ;

Algorithm 2 : Pseudocode for the Kronecker Conditioning Algorithm.
KRONECKERCONDITIONING
input : Fourier coefficients of the likelihood functioﬁpA, p) € AL, and Fourier coefficients
of the prior distributionP,,, py € Ap
output: Fourier coefficients of the posterior distributid/_rf,’pv, pv € A\p
1 foreachpy, € Ap do LP,, — 0 //Initialize Posterior
//Pointwise Product
2 foreachp, € AL do
3 foreachpy € Apdo
4 z— CGseries$py,py) ;
5
6
7

Ch — CGeoef ficient&py, py) ; Ay — Cly- (Lo, ® Py, ) -Cay;
for py € Ap such that g, # 0do
for /=1toz, do
d

[LOPD] o [LOPD] - haald: A" is the(v, ) block of A,
Pv v

[ee]

Pv

1o foreachp, € Ado [L(t)P(t)]

—n [L(/t)P\(U} //Normalization

Pv Pv

7. Approximate Inference by Bandlimiting

We now consider the consequences of performing inference usingthreFransform at a reduced
set of coefficients. Important issues include understanding how earobe introduced into the
system, and when our algorithms are expected to perform well as anxapption. Specifically,
we fix a bandlimit\M'N and maintain the Fourier transform Bfonly at irreducibles which are at
AMIN or above in the dominance ordering:

A={py : A\AMINY

For example, wheAM™N = (n—2,1,1), A'is the set{pn),P(n-1,1): P(n—22)» 3N P(n_2.1,1) }» Which
corresponds to maintaining second-order (ordered) marginal glitleatof the formP(o((i, j)) =
(k,£)). During inference, we follow the procedure outlined in the previous sedtin discard the
higher order terms which can be introduced during the conditioning stepdBsode for bandlim-
ited prediction/rollup and Kronecker conditioning is given in Algorithms 1 an@/2 note that it is
not necessary to maintain the same number of irreducibles for both pridikahlkdood during the
conditioning step. The first question to ask is: when should one expecidiiimited approximation

to be close td?(0) as a function? Qualitatively, if a distribution is relatively smooth, then most of its
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Bandlimiting Error

Energy Preserved by Fourier Projection

0] 0.2 0.4 0.6 0.8 1
H[P]/log(n!)

Figure 5: In general, smoother distributions are well approximated by tolerd-ourier projec-
tions. In this graph, we show the approximation quality of the Fourier projestom
distributions with different entropies, starting from sharply peaked dé&talalitions on
the left side of the graph, which get iteratively smoothed until they beconeeséxi-
mum entropy uniform distribution on the right side. On yhaxis, we measure how much
energyis preserved in the bandlimited approximation, which we define t%bzewhere
P’ is the bandlimited approximation & Each line represents the approximation quality
using a fixed number of Fourier coefficients. At one extreme, we aclpierfect signal
reconstruction by using all Fourier coefficients, and at the other, \wWernpe poorly on
“spiky” distributions, but well on high-entropy distributions, by storingiagée Fourier
coefficient.

energy is stored in the low-order Fourier coefficients. However, inempimenon quite reminiscent
of the Heisenberg uncertainty principle from quantum mechanics, it iglgxeleen the distribution
is sharply concentrated at a small subset of permutations, that the Forgjection is unable to
faithfully approximate the distribution. We illustrate this uncertainty effect in Féguby plotting
the accuracy of a bandlimited distribution against the entropy of a distribution.

Even though the bandlimited distribution is sometimes a poor approximation to thdagtre d
bution, the marginals maintained by our algorithm are often sufficiently aicufad so instead
of considering the approximation accuracy of the bandlimited Fourier tvemsto the true joint
distribution, we consider the accuracy only at the marginals which are madtBinour method.

7.1 Sources of Error During Inference

We now analyze the errors incurred during our inference procsduite respect to the accuracy
at maintained marginals. It is immediate that the Fourier domain prediction/rollugtage is
exactdue to its pointwise nature in the Fourier domain. For example, if we have tbadecder
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Figure 6: We show the dominance ordering for partitionsief 5 andn = 6 again. By setting
AMIN —(3/1)1) and (4, 1,1) respectively, we keep the irreducibles corresponding to the
partitions in the dotted regions. If we call Kronecker Conditioning with a brster
observation model, then according to Theorem 12, we can expect tosame error at
the Fourier coefficients corresponding(®1,1) and(3,2) for n=5, and(4,1,1) and
(4,2) for n = 6 (shown as shaded tableaux), but to be exact at first-order ¢eeffic

marginals at timé = 0, then we can find the exact second order marginals at-all if we only per-
form prediction/rollup operations. Instead, the errors in inferencermgecommitted by Kronecker
conditioning, where they are implicitly introduced at coefficients outside @y effectively setting
the coefficients of the prior and likelihood at irreducibles outsida& ¢ be zero), then propagated
inside to the irreducibles ak.

In practice, we observe that the errors introduced at the low-ora@etucibles during inference
are small if the prior and likelihood are sufficiently diffuse, which makesssesince the high-
frequency Fourier coefficients are small in such cases. We can somstimwshat the update is
exactat low order irreducibles if we maintaenoughcoefficients.

Theorem 12 If AMIN = (n—p,A,,...), and the Kronecker conditioning algorithm is called with a
likelihood function whose Fourier coefficients are nonzero only,athen > (n—q, p,...), then
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the approximate Fourier coefficients of the posterior distribution are extihe set of irreducibles:
Nexact=1{pr : A>(n—|p—q,...)}.

Proof See Appendix D. |

For example, if we call Kronecker conditioning by passing in third-ordenseof the prior and
first-order terms of the likelihood, then all first and second-orderr@ered and ordered) marginal
probabilities of the posterior distribution can be reconstructed without erro

7.2 Projecting to the Marginal Polytope

Despite the encouraging result of Theorem 12, the fact remains thsg@ative conditioning steps
can propagate errors to all levels of the bandlimited Fourier transforminaneny circumstances,
result in a Fourier transform whose “marginal probabilities” corregponno consistent joint dis-
tribution over permutations, and are sometimes negative. To combat this mprobe present a
method for projecting to the space of coefficients corresponding to ¢ensjgint distributions
(which we will refer to as thenarginal polytop& during inference.

We begin by discussing the first-order version of the marginal polytopegiron problem.
Given ann x n matrix, M, of real numbers, how can we decide whether there exists some proba-
bility distribution which had\ as its matrix of first-order marginal probabilities? A necessary and
sufficient condition, as it turns out, is ft to bedoubly stochasticThat is, all entries ol must be
nonnegative and all rows and columnshdfmust sum to one (the probability that Alice issime
trackis 1, and the probability thatome identitys at Track 3 is 1). The double stochasticity condi-
tion comes from th&irkhoff-von Neumantheorem (van Lint and Wilson, 2001) which states that
a matrix is doubly stochastitand only if it can be written as a convex combination of permutation
matrices.

To “renormalize” first-order marginals to be doubly stochastic, some au{&in et al., 2003,
2005; Balakrishnan et al., 2004; Helmbold and Warmuth, 2007) havethe&inkhorn iteration
which alternates between normalizing rows and columns independently umiigrgence is ob-
tained. Convergence is guaranteed under mild conditions and it can e shat the limit is a
nonnegative doubly stochastic matrix which is closest to the original matrix isghse that the
Kullback-Leibler divergence is minimized (Balakrishnan et al., 2004).

There are several problems which cause the Sinkhorn iteration to benatutal solution in
our setting. First, since the Sinkhorn iteration only works for nonnegatia&ices, we would
have to first cap entries to lie in the appropriate rari@el]. More seriously, even though the
Sinkhorn iteration would guarantee a doubly stochastic higher order métaiginals, there are
several natural constraints which are violated when running the Sinktevation on higher-order
marginals. For example, with second-order (ordered) marginals, it séatae should at least
enforce the following symmetry constraint:

P(o:a(k,() = (i,])) =P(o:a(t,k) = (j;1),

which says, for example, that the marginal probability that Alice is in TrackdLBob is in Track
2 is the same as the marginal probability that Bob is in Track 2 and Alice is in Traénother
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natural constraint that can be broken is what we refer tmwasorder marginal consistencyror
example, it should always be the case that:

P(j) = 3 Pl.i) = Y P

It should be noted that the doubly stochastic requirement is a speciabiclaseer-order marginal
consistency—we require that higher-order marginals be consistenedH thrder marginal.

While compactly describing the constraints of the marginal polytope exactlyimeraa open
problem, we propose a method for projecting ontelaxedform of the marginal polytope which
addresses both symmetry and low-order consistency problems by ogetiaéiotly on irreducible
Fourier coefficients instead of on the matrix of marginal probabilities. Atieheconditioning step,
we apply a ‘correction’ to the approximate postefi8? by finding the bandlimited function in the
relaxed marginal polytope which is closestR®) in anL, sense. To perform the projection, we
employ the Plancherel Theorem (Diaconis, 1988) which relateklistance between functions
on §, to a distance metric in the Fourier domain.

Proposition 13 (Plancherel Theorem)

S -00) = 5T bt ((f—0)" (o -t). 1)

To find the closest bandlimited function in the relaxed marginal polytope, meulate a quadratic
program whose objective is to minimize the right side of Equation 21, andevhos is taken only
over the set of maintained irreduciblég,subject to the set of constraints which require all marginal
probabilities to be nonnegative. We thus refer to our correction st&teasherel Projection Our
quadratic program can be written as:

minimizegyo; S chTr [(f_ prrOj);A (f— f“proj)px]

AEN
subjectto:  [fPl] m=1
KymiN |, _
Cymin - @ @ ng)proJ -C;I\—WN >0, for all (i7 J)v
H>AMING =1

ij

whereK,mn andCymin are the precomputed constants from Equation 6. We remark that evemthoug
the projection will produce a Fourier transform corresponding to ngeminee marginals which are
consistent with each other, there might not necessarily exist a joint lpilitpalistribution on S,
consistent with those marginals except in the special case of first-ordginaia.

Example 11 In Example 10, we ran the Kronecker conditioning algorithm using all oRheier
coefficients. If only the first-order coefficients are available, howéwven the expressions for zeroth
and first order terms of the posterior (Equations 16,17) become:

— 1 1~

f “Oog = 3 [fp(s) ") +4- [A(2,1)®(2,1)]171} )

_ 1 ra R .
f Gopay = 3 [fp<2,1> “Opg T fF’(s) "oz +2 [A(231)®(271)]2:3,2:3] )
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Plugging in the same numerical values from Example 10 and normalizingppapately yields the
approximate Fourier coefficients of the posterior:

~10/9 —77/400

o], =+ [P, = [ 700 4s )

which correspond to the following first-order marginal probabilities:

A B C

A Track1/ 0 11/9 -2/9
'@y | Track2|1 0 0
Track3| 0 —-2/9 11/9

In particular, we see that the approximate matrix of ‘marginals’ contaiegative numbers. Apply-
ing the Plancherel projection step, we obtain the following marginals:

|A B C

A Track1/0 1 O
@y | Track2|1 0 O |’

Track3|0 0 1

which happen to be exactly the true posterior marginals. It should be rnatedver, that rounding
the ‘marginals’ to be in the appropriate range would have worked in thidipalar example as
well.

8. Probabilistic Models of Mixing and Observations

While the algorithms presented in the previous sections are general in geethahthey work on all
mixing and observation models, it is not always obvious how to compute théeFtnansform of a
given model. In this section, we discuss a collection of useful models farhwine can efficiently
compute low-order Fourier coefficients or even provide a closed-éxpnession. See Table 7 for a
summary of the various models covered in this section.

We consider bothmixing and observationmodels. In multiobject tracking, a mixing model
might account for the fact that two tracks may have swapped identities witle poobability. Or
in card shuffling, a mixing model might reflect that a card has been inseo®@where into the
deck. In multiobject tracking, an observation model might tell us that Alice soate track with
probability one. Or it might reflect the fact that some subset of identitiegpdes some subset of
tracks with no order information, as in the case of heetooth modelin ranking applications, an
observation model might, for example, reflect that some object is rankbdrhiigan, or preferred
over some other object.

This section is divided into three parts, each describing a differenbapprto computing the
Fourier coefficients of a model, with some being simpler or more efficient to impieinecer-
tain situations than others. Mhrect constructionswe naively apply the definition of the Fourier
transform to obtain the Fourier coefficients of some model. mirginal based constructions
we first compute the low-order ‘marginals’ of some probabilistic model, thefept the result
onto the irreducible Fourier basis. Finally, @@set-based constructionge introduce a family
of ‘atomic’ indicator functions of subgroups of the for& C S, which are then combined using
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Mixing Model Example Semantics Relevant Subgrqup
Pairwise mixing Identity confusion at tracks 1 and 2 S
k-subset mixing Identity confusion at tracks{ih, 2,4,6} S
Insertion mixing Insert top card somewhere in the deck n/a
Observation Model Example Semantics Relevant Subgroup
Single track observation Alice is at Track 1 S-1
Multitrack observation Alice is at Track 1, Bob is at Track 2, etc. S—k
Bluetooth observation The girls occupy tradkis 2, 6, 8} S X Sk
Pairwise ranking observation Apples are better than oranges S2

Table 7. Several useful types of mixing and observation models are sumachar the above table.
In many of these cases, computing the appropriate Fourier transfouta®tb computing
the Fourier transform of the indicator function of some related subgro&, @and so we
also mention the relevant subgroup in the second column. In the third colurprowiee
an example illustrating the semantics of each model.

scale/shift/convolution operations to form more complex models. As we disguSection 11,
there also remains the open possibility of learning modebsctly in the Fourier domain. For the
sake of succinctness, many of the results in this section will be stated withamft pr

8.1 Direct Construction
In some applications we are fortunate enough to have a model that cairé&l{d transformed
efficiently using the definition of the Fourier transform (Definition 3). Wevidle two examples.

8.1.1 RAIRWISE MIXING

The simplest mixing model for identity management assumes that with probahititything hap-
pens, and that with probabiliyl — p), the identities for tracksand ] are swapped. The probability
distribution for thepairwise mixing modek therefore:

p if T=c¢
Qj(m=4 1-p if=(,j) . (22)
0 otherwise

SinceQ;; is such a sparse distribution (in the sense @atm) = 0 for mostr), it is possible to
directly computeQ;; using Definition 3:

Qi =i +a-pen((i. i),

wherel refers to thal, x d, identity matrix (since any representation must map the identity element
€ to an identity matrix), ang,((i, j)) is the irreducible representation matpx evaluated at the
transposition(i, j) (which can be computed using the algorithms from Appendix C).
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8.1.2 INSERTIONMIXING

As another example, we can consider thgertion mixing mode(also called thegop-in shuffle
Diaconis 1988) in which we take the top card in some decakazrds, and with uniform probability,
insert itsomewherén the deck, preserving all other original relative orderings. Insestitan be
useful in ranking applications where we might wish to add a new item into ceraidn without
disturbing the marginal probabilities over relative rankings of existing itening distribution for
the insertion mixing model is given by:

Qrsertionry — 1 if mtis a cycle of the forn{j, j — 1,...,1) for somej € {1,...,n}
0 otherwise '

Since the insertion mixing model is supported mpermutations, it is again simple to directly
construct the Fourier transform from the definition. We have:

n

P 1
insertion __ — ii—1.....1.
= 2 el D

8.2 Marginal Based Construction

In marginal based constructionge first compute the low-order ‘marginal$of some probabilistic
model, then project the result onto the irreducible Fourier basis. Thes gifunctionf : §, —

R, we compute, for example, the first-order marginé@l’l), and conjugate by an intertwining
operator (Equation 6) to obtain the Fourier coefficienténatand (n—1,1). Sometimes when the
Fourier transform off is provably non-zeronly at low-order terms, a marginal based construction
might be the easiest method to obtain Fourier coefficients.

8.2.1 GOLORHISTOGRAM OBSERVATION

The simplest model assumes that we can get observations of the forrk:#igacolork’ (which is
essentially the model considered by Kondor et al. 2007). The probalilggeing colok at track
¢ given data associatiomis

L(0) =P(z =K|o) = U510k,

wherey 0510« = 1. For each identity, the likelihodd(o) = P(z = k|o) depends, for example,
on a histogram over all possible colors. If the number of possible cold{s tisen the likelihood
model can be specified by arx K matrix of probabilities. For example,

\ k=Red k=Orange k= Yellow k= Green

| o(aicey =7 12 1/4 1/4 0
Qo0k=| GBob)=¢ | 1/4 0 0 34 (23)
o(Cathy) =/ 0 1/2 1/2 0

Since the observation model only depends on a single identity, the firgtterdes of the Fourier
transform suffice to describe the likelihood exactly. To compute the fidgrdfourier coefficients

11. The word ‘marginals’ is technically appropriate only when the fundtiauestion is a legal probability distribution
(as opposed to likelihood functions, for example), however we useéfén to similar summary statistics for general
functions.
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at irreducibles, we proceed by computing the first-order Fourier ciggifls at the first-order per-
mutation representation (the first-order “marginals”), then transformingedurcible coefficients.
The Fourier transform of the likelihood at the first-order permutationesgtation is given by:

Con] = 3 Pa=Ko)= ¥ gy
U {oo(D=i} {o:0(7)=i}

To compute thej-term, there are two cases to consider.

1. Ifi = ¢ (that s, if Tracki is the same as the track that was observed), then the coefligient
is proportional to the probability that Identifyis colork.

Eij = Z C(J"k:(nfl)!-(]j,k. (24)
{o:0(j)=i}

2. If, on the other hand, # ¢ (Tracki is not the observed track)), then the coefficiént is
proportional to the sum over

Eij - z Oo-2(0) k = n; Z U510k = é (N=2)!-amk. (25)
{o:a())=i} i{o:0(j)=i ando(m)=¢} j

Example 12 We will compute the first-order marginals of the likelihood function gwKich arises
from observing a "Red blob at Track 1". Plugging the values from the "Rellimn of thea matrix
(Equation 23) into Equation 24 and 25 yields the following matrix of first-ombeafficients (at the
T(n—1,1) PErMutation representation):

| Track 1 Track 2 Track
T an]e = Alice | 1/4  1/2  3/4
(=11 Jij Bob | 1/4 1/2 3/4
Cathy 1 1/2 0

The corresponding coefficients at the irreducible representations are

A~

. . 0 0
L3 =15 Loy = [ V34 34 } La11)=0.

8.2.2 UWNORDEREDSUBSET (BLUETOOTH) OBSERVATION

We sometimes receive measurements in the form of unordered lists. Forlexadngbluetooth
modelis the likelihood function that arises if tracKg, ... ,k} are within range of a bluetooth de-
tector and we receive a measurement that ident{ties. ., k} are in range. In sports, we might
observe that the firdt tracks belong to the red team and that the fesk tracks belong to the blue
team. And finally, inapproval voting one specifies a subset of approved candidates rather than, for
example, picking a single favorite.

We consider two options for bluetooth-type situations. In the first optionaesv for some
error-tolerance by setting the likelihood to be proportional to the numbeadidrthat are correctly
returned in the measurement:

poluetoothz g = {in,-- . ikHo) O[{te, ...t} N0 ({is,....ik})| +U(0), (26)
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whereU (0) is a constant function 08, allowing for noisy observations. Our first bluetooth model
can be expressed using only first order terms (intuitively becausdreag&makes a linear contribu-
tion) and thugPp'ueteothis nonzero only at the first two partitions= (n), (n—1,1). For simplicity,
we consider the Fourier transform of the functioi(o) = |o({1,...,k}) N {1,...,k}|. The first-
order ‘marginals’ off are covered in the following four cases:

o (j <kandi<Kk): Lj=Ygq(j=i f(0) = (k—=1)2(n—2)! + (n—1)!
e (j <kandi>K): Lij = Y g.4(j)=i f(0) =k(k—1)(n—2)!

e (j>kandi<Kk): Lij =Y gq(j)=i f(0) =k(k—1)(n—2)!

o (j>kandi>Kk): Lij = Sg.6(j)=i f(0) =k*(n—2)!

We discuss the second bluetooth-type model after discussing cosetdmsmstructions.

8.3 Coset-Based Construction

Most of the time, realistic models are not supported on only a handful ofigations. The ap-
proach we take now is to use a collection of ‘primitive’ functions to form moteragsting models
via scale/shift/convolution operations. In particular, we will make use of aididunctions of sub-
sets of the fornBcy C S, whereX = (xg,...,X) andY = (yi,...,yk) are orderek-tuples with
{x,....x%} C{L,...,n}, {y1,..., ¥} C {1,...,n} and no repetitions are allowe8y y denotes the
set of elements i, which are constrained to map eagho y;:

Sxy={0€eS : o(x)=y,foreachi=1,... k. (27)

TheSx vy can also be thought of as two-sided cosets associated with subgrabhpsaing, « C S..
For example, iiX = (1,2) andY = (3,4) with n= 4, thenSx v is simply the set of all permutations
that map - 3 and 2— 4. Thus,Scy = {(1,3)(2,4),(1,3,2,4)}. Since|X| = |Y| =k, then|Sky| =
(n—Kk)!, and in the special case thdt=Y, we have thatx vy is in fact a subgroup isomorphic to
S«

As we show in Appendix C, the Fourier transform of the indicaigy, takes a particularly
simple (and low rank) form and can be efficiently computed. The methodibdeddn Appendix Cis
based on the FFT and exploits the same structure of the symmetric group ted isyKondor et al.
(2007). 1t is thus possible to understand why some observation modetd &fster conditioning
updates based on sparsity in Fourier domain.

The functions,, can be viewed as a set of function primitives for constructing more compli-
cated models via shift/scale/convolution operations in the Fourier domain. Welisouss the re-
maining models in Table 7 with the assumption that there exists some blackbox funbiich con-
structs the Fourier coefficients of the indicator function of (two-sidedptof the fornbxy C S,
(see Algorithm 5 in Appendix D).

8.3.1 k-SUBSETMIXING

It is not always appropriate to mix only two people at once (as in Equatidm2® so we would
like to formulate a mixing model which occurs over a subset of traXks,{t,...,t} C {1,...,n}.
One way to ‘mimic’ the desired effect is to repeatedly draw péir$) from {t;,...,tx} and to
convolve against the pairwise mixing mod€)g. A better alternative is to directly construct the
Fourier coefficient matrices for tHesubset mixing modeh which we allow the tracks iX to be
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randomly permuted with uniform probability. In the followinX, denotes some fixed ordering of
the complement oK. For example, ih =5, with X = {1,2, 4}, thenX is either(3,5) or (5,3). The
k-subset mixing model is defined as:

if me Sgx C

otherW|se (28)

O X

Qx(m) = {

Note thatSy x is isomorphic td5 and that the pairwise mixing model is the special case wkerg.
Intuitively, Equation 28 fixes all of the tracks outsideXofind says that with uniform probability, the
set of tracks inX experience some permutation of their respective identities. Equation 28scan a
be written ax (1) = k,6 <« (10), and thus the mixing model is simply a multiple of the indicator
function of Sg ¢

8.3.2 SNGLE/MULTI-TRACK OBSERVATION

In the single track observation mod@lsed in Shin et al. 2005, Schumitsch et al. 2005 and Kondor
et al. 2007, for example), we acquire an identity measuremeatttrackj. In the simplest version
of the model, we write the likelihood function as:

. nm ifo(j) =i
P Z =]|0)= { - . R (29)
( [0) LI otherwise

n—

where j ranges over alh possible identitiesP(z|o) can also be written as a weighted sum of a
uniform distributionU, and an indicator function:

Pa=ilo) = (h3 ) 85.0)+ (57 )u(@)

Equation 29 is useful when we receive measurements directly as singléiede(fAlice is
at Track 1 with such and such probability”). It is, however, far moregmn to receive lower
level measurements thdépendonly upon a single identity, which we formalize with the following
conditional independence assumption:

P(z|o) = P(z[a(}))-

For example, as in Equation 23, we might have a color histogram over agictdiral (“Alice loves

to wear green”) and observe a single color per timestep. Or we might aaojuservations in the
form of color histograms and choose to model a distribution over all possilide histograms. If
for each identityj, P(z|o(j) =i) = aj, then we can write the likelihood function as a weighted
linear combination oh indicators,

L(o) =P(z|o) = Za ds,, (0
and by the linearity of the Fourier transform, we can obtain the Fourieficiesits ofL:

b=,
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Finally, the single-track observations can be generalized to handle jovalti®ns of multiple
tracks at once with a higher-order model:

P(Z(t17...,tk) =

) _ T if o(i¢) =t,foreach?¢ € {1,... k}
(in,..i)[0) =4 _Lom otherwise - (30)

Unsurprisingly, while the Fourier coefficients of Equation 29 can beesgad exactly using first-
order terms, the Fourier coefficients of the multi-track observation modekt®qu30, requires
kth-order terms. It is important to note that joint multi-track observations atmclisrom making
k independent identity observations at the same timestep—we can handle thedsdtéry calling
the Kronecker conditioning algorithm with a single-track observation mkdiehes. Depending
upon the specific sensor setup, one model may be more natural than the othe

8.3.3 BLUETOOTH OBSERVATION

In contrast with the first bluetooth model (Equation 26), our second bltretgpe model handles a
higher-order form of measurement. Like the single/multi-track observatiateragat says that with

some probability we receive the correct unordered list, and with somelpititip we receive some
other list drawn uniformly at random:

. . o if o({ir,...,ik}) = {ts,... .t}
Pbluetomm(z{tl,...,tk} = {lla ) |k}|0) = { ﬁ otherwise
E

As with the single/multi-track observation models, the bluetooth model can be wagt@mweighted
linear combination of a uniform distribution and the indicator function o§ar S,_-coset, where:

SoxSik={0€S : o({1,....k}) = {1,....k}}.

To compute the Fourier transform BPIUet°02 it is enough to note that the indicator function of
S x Sh_k can be thought of as a convolution of indicator function§adndS,  in a certain sense.
More precisely.

Proposition 14 Let X= (1,...,k) and Y= (k+1,...,n). Then:ds «s, , = Os4 * 0s,y -

Invoking the convolution theorem (Proposition 8) shows that the Foudefficient matrices of
ds.xs, « €an be constructed by first computing the Fourier coefficien8qfandSy,y, and point-
wise multiplying corresponding coefficient matrices. We have:

[SS(xSHL = [S&_XL- {SS(‘YL\’ for all partitionsA.

An interesting fact about the bluetooth model is that its Fourier terms areat@tbpartitions
with more than two rows.

Proposition 15 Without loss of generality, assume thatk. The Fourier transform of the blue-
tooth modelPPUe°°t s nonzero only at partitions of the forn —s,s) where s< k.
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8.3.4 RIRWISE RANKING OBSERVATION

Finally in the pairwise ranking modelwe consider observations of the form “objgcts ranked
higher than objedt’ which can appear in various forms of voting and preference elicitatibliké
candidatex better than candidatg’) or webpage/advertisement ranking. Here we thinloas a
mapping from objects to ranks. Our pairwise ranking model simply assighehpgyobability to
observations which agree with the ordering ahd | in o.

rank B . if ak) <a(f)
PP (@dlo) = { 1-m  otherwise

Whenk=n-1,¢=nandmn= 1, we have:

rank [ 1 ifo(n-1)<a(n)
P (dec)_{ 0 otherwise

= z 6S(n—1.n).(i‘j) ().

i<]

Perhaps unsurprisingly, pairwise ranking models can be sufficientlumeapby first-order and
second-order (ordered) Fourier coefficiéAts

Proposition 16 The Fourier coefficients of the pairwise ranking mocf§1‘,”k, are nonzero only at
three partitions:A = (n), (n—1,1),and(n—2,1,1).

9. Related Work

Rankings and permutations have recently become an active area o€heseaachine learning due
to their importance in information retrieval and preference elicitation. Ratlaerdbnsidering full
distributions over permutations, many approaches, like RankSVM (Joac2®®) and RankBoost
(Freund et al., 2003), have instead focused on learning a single ‘optiaming with respect to
some objective function.

There are also several authors (from both the statistics and machinad¢eemmmunities) who
have studied distributions over permutations/rankings (Mallows, 1957 hinitg 1985; Fligner and
Verducci, 1986; Meila et al., 2007; Taylor et al., 2008; Lebanon and,2@08). Taylor et al. (2008)
consider distributions oves, which are induced by the rankings mfndependent draws fromin-
dividually centered Gaussian distributions with equal variance. They acttlypsummarize their
distributions using a®(n?) matrix which is conceptually similar to our first-order summaries and
apply their techniques to ranking web documents. Most other previousages at directly mod-
eling distributions orfy,, however, have relied on distance based exponential family models. For
example, the Mallows model (Mallows, 1957) defines a Gaussian-like distmbaver permuta-
tions as:

P(o;c,00) O exp(—cd(o,0p)),

where the functionl(o, 0p) is theKendall’s tau distancevhich counts the number of adjacent swaps
that are required to bring= to o, *.

12. Additionally, Is(rgﬂ‘il) and ﬁ{gﬂ';_l,l) are known to be rank 1 matrices, a fact which can potentially be exploited fo

faster conditioning updates in practice.

1040



FOURIER THEORETICPROBABILISTIC INFERENCE OVERPERMUTATIONS

Distance based exponential family models have the advantage that thegropaatly repre-
sent distributions for very large, and admit conjugate prior distributions (Meila et al., 2007). Es-
timating parameters has been a popular problem for statisticians—recotlegingtimalog from
data is known as theonsensus rankingr rank aggregatiorproblem and is known to b P-hard
(Bartholdi et al., 1989). Many authors have focused on approximalkgymmithms instead.

Like Gaussian distributions, distance based models also tend to lack flexilititgoal_ebanon
and Mao (2008) propose a nonparametric model of ranked (and paraalked) data based on
placing weighted Mallows kernels on top of training examples, which, as they,scan realize
a far richer class of distributions, and can be learned efficiently. Hexyeliey do not address
the inference problem, and it is not clear if one can efficiently performrérfce operations like
marginalization and conditioning in such models.

As we have shown in this paper, Fourier based methods (Diaconis, KB8&8pr et al., 2007;
Huang et al., 2007) offer a principled alternative method for compactisesemting distributions
over permutations and performing efficient probabilistic inference dipasa Our work draws from
two strands of research—one from the data association/identity managkeettire, and one
from a more theoretical area on Fourier analysis in statistics. In the followiageview several of
the works which have led up to our current Fourier based approach.

9.1 Previous Work in Identity Management

The identity management problem has been addressed in a number ofipnswiixs, and is closely
related to, but not identical with, the classical data association problemiofaimeng correspon-
dences between tracks and observations. Both problems need tosatieressndamental combina-
torial challenge that there is a factorial or exponential number of aggowao maintain between
tracks and identities, or between tracks and observations respechvedgt literature already ex-
ists on the the data association problem, beginning wittmtbkiple hypothesis testingpproach
(MHT) of Reid (1979). The MHT is a ‘deferred logic’ method in which pabkervations are ex-
ploited in forming new hypotheses when a new set of observations a&ese the number of
hypotheses can grow exponentially over time, various heuristics havepbeposed to help cope
with the complexity blowup. For example, one can choose to maintain onlig thessthypothe-
ses for some parametie(Cox and Hingorani, 1994), using Murty’s algorithm (Murty, 1968).t Bu
for such an approximation to be effectidemay still need to scale exponentially in the number
of objects. A slightly more recent filtering approach is jbi@t probabilistic data association filter
(JPDA) (Bar-Shalom and Fortmann, 1988), which is a suboptimal singtespproximation of the
optimal Bayesian filter. JPDA makes associations sequentially and is unalierégteerroneous
associations made in the past (Poore, 1995). Even though the JPDA isffiaieatehan the MHT,
the calculation of the JPDA association probabilities is still a #P-complete pral@eitins and
Uhlmann, 1992), since it effectively must compute matrix permanents. Palghapproximation
algorithms to the JPDA association probabilities have recently been studieg Maitkov chain
Monte Carlo (MCMC) methods (Oh et al., 2004; Oh and Sastry, 2005).

The identity management problem was first explicitly introduced in Shin et@D3 Identity
management differs from the classical data association problem in thatsgésvabion model is
not concerned with the low-level tracking details but instead with high levernmation about
object identities. Shin et al. (2003) introduced the notion ofliblef matrixapproximation of
the association probabilities, which collapses a distribution over all possbteiations to just
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its first-order marginals. In the case oftracks andn identities, the belief matriB is ann x

n doubly-stochastic matrix of non-negative entrigs whereb;; is the probability that identity

is associated with track. As we already saw in Section 4, the belief matrix approximation is
equivalent to maintaining the zeroth- and first-order Fourier coefficidrias our current work is

a strict generalization and extension of those previous results.

An alternative representation that has also been considered is an itiorritaeoretic ap-
proach (Shin et al., 2005; Schumitsch et al., 2005, 2006) in which thdatgesmgparameterized
as:

P(0;Q) OexpTr(Q" - 1(n_11)(0)).

In our framework, the information form approach can be viewed as a midtiionaintaining the
Fourier transform of théog probability distribution at only the first two irreducibles. The infor-
mation matrix approach is especially attractive in a distributed sensor neteiftirigs since, if the
columns of the information matrix are distributed to leader nodes tracking theat@ge targets,
then the observation events become entirely local operations, avoiding tleeexypensive Kro-
necker conditioning algorithm in our setting. On the other hand, the informatadrix coefficients
do not have the same intuitive marginals interpretation afforded in our sedtigigmoreover, pre-
diction/rollup steps cannot be performed analytically in the information matrix.foks in many
classical data structures problems there are representation tradsuaf§:issome operations are
less expensive in one representation and some operations in the theTdtbdyest choice in any
particular scenario will depend on the ratio between observation and mivémyse

9.2 Previous Work on Fourier-Based Approximations

The concept of using Fourier transforms to study probability distributiongroops is not new,
with the earliest papers in this area having been published in the 1960%af@Eky, 1963). Will-
sky (1978) was the first to formulate the exact filtering problem in the Fodoenain for finite
and locally compact Lie groups and contributed the first noncommutatiteFeasier Transform
algorithm (for Metacyclic groups). However, he does not addrepsoapnate inference, suggest-
ing instead to always transform to the appropriate domain for which eithgrégction/rollup or
conditioning operations can be accomplished using a pointwise product. Whiteling signifi-
cant improvements in complexity for smaller groups, his approach is still iivledsr our problem
given the factorial order of the Symmetric group.

Diaconis (1988) used the Fourier transform to analyze probability disisitgion the Symmet-
ric group in order to study card shuffling and ranking problems. His Wwaickthe ground for much
of the progress made over the last two decades on probabilistic grouy #rebnoncommutative
FFT algorithms (Clausen and Baum, 1993; Rockmore, 2000).

Kondor et al. (2007) was the first to show that the data association prataeld be efficiently
approximated using FFT factorizations. In contrast to our frameworkendneery model is assumed
to be have been specified in the Fourier domain, they work with an observatidel which can be
written as the indicator function of cosets of subgroups of the f&m S,.

Conceptually, one might imagine formulating a conditioning algorithm which aptiiesn-
verse Fast Fourier Transform (IFFT) to the prior distribution, condétiarthe primal domain using
pointwise multiplication, then transforms back up to the Fourier domain using thed-Bbtain
posterior Fourier coefficients. While such a procedure would ordinbéljntractable because of
the factorial number of permutations, Kondor et al. (2007) elegantly shibat for certain coset-
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based observation models, it is not necessary to perform the full Fdtifsien to do a pointwise
product. They exploit this observation to formulate an efficient conditioalggrithm whose run-
ning time depends on the complexity of the observation model (which canlyobgimeasured by
the number of irreducibles required to fully specify it).

Our work generalizes the conditioning formulation from Kondor et al. 200the sense that it
can work forany observation model and extends easily to similar filtering problems over any finite
group. In the case that the observation model is specified at sufficiently innaducibles, our con-
ditioning algorithm (prior to the projection step) returns the same approximababitities as the
FFT-based algorithm. For example, we can show that the observation nmeelelig Equation 29
is fully specified by two Fourier components, and that both algorithms hanéigdeoutput. Addi-
tionally, Kondor et al. (2007) do not address the issue of projectinglegti distributions, which,
as we show in our experimental results is fundamental in practice.

10. Experimental Results

In this section we present the results of several experiments to validadédgouithm. We evaluate
performance first by measuring the quality of our approximation for problehere the true dis-
tribution is known. Instead of measuring a distance between the true distnitariththe inverse
Fourier transform of our approximation, it makes more sense in our settimg&sure error only
at the marginals which are maintained by our approximation. In the resultstedpaelow, we
measure thé, error between the true matrix of marginals and the approximation. If notinega
marginal probabilities are guaranteed, it also makes sense to measuregfgedce.

10.1 Simulated Data

We first tested the accuracy of a single Kronecker conditioning step Ibggcaome number of
pairwise mixing events (which can be thought roughly as a measure ofpghtfollowed by a
single first-order observation. In tlyeaxis of Figure 7(a), we plot the Kullback-Leibler divergence
between the true first-order marginals and approximate first-order mergitarned by Kronecker
conditioning. We compared the results of maintaining first-order, and demater (unordered and
ordered) marginals. As shown in Figure 7(a), Kronecker conditionimgdee accurate when the
prior is smooth and unsurprisingly, when we allow for higher order Foteiens. As guaranteed
by Theorem 12, we also see that the first-order terms of the posteriexacewhen we maintain
second-order (ordered) marginals.

To understand how our algorithms perform over many timesteps (whens ean propagate to
all Fourier terms), we compared to exact inference on synthetic data setscim tracks are drawn
atrandom to be observed or swapped. As a baseline, we show thra@cotia uniform distribution.
We observe that the Fourier approximation is better when there are eithemnirxdng events (the
fraction of conditioning events is smaller), or when more Fourier coeffisiare maintained, as
shown in Figure 7(b). We also see that the Plancherel Projection stepdarfiental, especially
when mixing events are rare.

Figures 10(a) and 10(b) show the per-timeslice accuracy of two typical of the algorithm.
The fraction of conditioning events is 50% in Figure 10(a), and 70% in Eid(b). What we
typically observe is that while the projected and nonprojected accuraeiedtan quite similar, the
nonprojected marginals can perform significantly worse during certgimeets.
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Figure 7: Simulation results.
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ence algorithms against an exact algorithm v@m3n!) time complexity

Finally, we compared running times against an exact inference algorithiahn\wkrforms pre-
diction/rollup in the Fourier domain and conditioning in the primal domain. While tleelipr
tion/rollup step for pairwise mixing models can be implemente®(n!) time (linear in the size
of the symmetric group), we show running times for the more general mixing Isiobtestead of
the naiveO((n!)?) complexity, its running time is a more efficie@®n°n!) due to the Fast Fourier
Transform (Clausen and Baum, 1993). It is clear that our algorithiescaacefully compared
to the exact solution (Figure 10.1), and in fact, we could not run exaetdnte fom > 8 due to
memory constraints. In Figure 10.1, we show empirically that the Clebsca@aoefficients are
indeed sparse, supporting a faster conjectured runtime.
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Figure 9: Clebsch-Gordan Sparsity: We measured the sparsity of thedBi€lprdan coefficients
matrices by plotting the number of nonzero coefficients in a Clebsch-Gakdficient
matrix against the number of total entries in the matrix for variownd pairs of irre-
ducibles. For each fixed tensor product pair, we see that the numbenaéro entries
scales sublinearly with respect to the total number of matrix elements.

10.2 Real Camera Network

We also evaluated our algorithm on data taken from a real network of eagintras (Fig. 11(a)). In
the data, there are= 11 people walking around a room in fairly close proximity. To handle the fact
that people can freely leave and enter the room, we maintain a list of the waos are external

to the room. Each time a new track leaves the room, it is added to the list and a miginigi®
called to allow fom? pairwise swaps amongst theexternal tracks.

The number of mixing events is approximately the same as the number of dibmesva-or
each observation, the network returns a color histogram of the blobias=sbwith one track. The
task after conditioning on each observation is to predict identities for akgradich are inside
the room, and the evaluation metric is the fraction of accurate predictions.olvpaced against
a baseline approach of predicting the identity of a track based on the mestlyegbserved his-
togram at that track. This approach is expected to be accurate wherateanany observations and
discriminative appearance models, neither of which our problem afforle Figure 11(b) shows,
both the baseline and first order model(without projection) fared poehile the projection step
dramatically boosted the prediction accuracy for this problem. To illustratdffreitty of predict-
ing based on appearance alone, the rightmost bar reflects the peréerofaanomniscientracker
who knows the result of each mixing event and is therefore left only withasle of distinguishing
between appearances. We conjecture that the performance of outhetg@vith projection) is near
optimal.
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Figure 10: Accuracy as a function of time on two typical runs.

11. Future Research

There remain several possible extensions to the current work stemmingbfoth practical and
theoretical considerations. We list a few open questions and extensithesfillowing.

11.1 Adaptive Filtering

While our current algorithms easily beat exact inference in terms of rgniimime, they are still
limited by a relatively high (though polynomial) time complexity. In practice howelteseems
reasonable to believe that the “difficult” identity management problems typicalbhia only a
small subset of people at a time. A useful extension of our work would loevse aradaptive
version of the algorithm which allocates more Fourier coefficients towarelsdéntities which
require higher order reasoning. We believe that this kind of extensioittvioe the appropriate way
to scale our algorithm to handling massive nhumbers of objects at a time.

11.2 Characterizing the Marginal Polytope

In our paper, we presented a projection of the bandlimited distribution tadarc@olytope, which
is exactly the marginal polytope for first-order bandlimited distributions, trigtly an outer bound
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Figure 11: Evaluation on data set from a real camera network. In theriexgnt, there ara= 11
people walking in a room begin tracked by 8 cameras.

for higher orders. An interesting project would be to generalize the Bffilon Neumann theorem
by exactly characterizing the marginal polytope at higher order margikésconjecture that the
marginal polytope for low order marginals can be described with polynomiallyroanstraints.

11.3 Learning in the Fourier Domain

Another interesting problem is whether we can learn bandlimited mixing andwaltie® models
directly in the Fourier domainGiven fully observed permutations, ..., om, drawn from a distri-
butionP(0), a naive method for estimatirtgy at low-orderp is to simply observe that:

Po = Eo~p[p(0)],

and so one can estimate the Fourier transform by simply avergdmg over all o;. However,
since we typically do not observe full permutations in real applications lik&ing or identity
management, it would be interesting to estimate Fourier transforms using partisiyved data.
In the case of Bayesian learning, it may be possible to apply some of thégeehrdiscussed in
this paper.

11.4 Probabilistic Inference on Other Groups

The Fourier theoretic framework presented in this paper is not specifietsytmmetric group -

in fact, the prediction/rollup and conditioning formulations, as well as most @fréisults from
Appendix D hold over any finite or compact Lie group. As an example, tmearomutative group

of rotation operators in three dimensior®3), appears in settings which model the pose of a
three dimensional object. Elements3@(3) might be used to represent the pose of a robot arm
in robotics, or the orientation of a mesh in computer graphics; In many setitings,ld be useful

to have a compact representation of uncertainty over poses. We belibehe are many other
application domains with algebraic structure where similar probabilistic inferalgorithms might
apply, and in particular, that noncommutative settings offer a particuladijestging but exciting
opportunity for machine learning research.
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12. Conclusions

In this paper, we have presented a Fourier theoretic framework for aiysummarizing dis-
tributions over permutations. We showed that common probabilistic infergre@tions can be
performed completely in the Fourier domain and that, using the low-order tdrthe Bourier ex-
pansion of a distribution, one can obtain polynomial time inference algorithimstief theoretic
summaries are attractive because they have tuneable approximation qaaktyntuitive interpre-
tations in terms of low-order marginals, and have allowed us to leveragksrasd insights from
noncommutative Fourier analysis to formulate our algorithms.

The main contributions of our paper include methods for performing gepeosbabilistic in-
ference operations completely in the Fourier domain. In particular, weapma the Kronecker
conditioning algorithm, which conditions a distribution on evidence using Beyleswvhile oper-
ating only on Fourier coefficients. While prediction/rollup operations cawtigen as pointwise
products in the Fourier domain, we showed that conditioning operationgeavritten, in dual
fashion, as generalized convolutions in the Fourier domain. Our condigi@igorithm is general
in two senses: first, one can use Kronecker conditioning to handle agnalttion model which
can be written in the Fourier domain, and second, the same algorithm campliEdp condition
distributions over arbitrary finite groups. Due to this generality, we aretaldéficiently compute
the Fourier transforms of a wide variety of probabilistic models which may fiatrbe useful in
different applications.

We presented an analysis of the errors which can accumulate in bandlimigeelnoé and ar-
gued that Fourier based approaches work well when the underlyitrdpdigons are diffuse and are
thus well approximated by low-frequency basis functions. During imiggeerrors in high-order
terms due to bandlimiting can be propagated to lower-order terms and bandlionitgiti@ning can,
on occasion, result in Fourier coefficients which correspond to no dadtdibution. We showed,
however, that the problem can be remedied by projecting to a relaxatioa ofdlginal polytope.

Finally, our evaluation on data from a camera network shows that our negertbrm well
when compared to the optimal solution in small problems, or to an omniscient trexckage
problems. Furthermore, we demonstrated that our projection step is funtidiineobtaining these
high-quality results.

Algebraic methods have recently enjoyed a surge of interest in the macainabpcommunity.
We believe that our unified approach for performing probabilistic infexeouxer permutations, as
well as our gentle exposition of group representation theory and nonctativeu-ourier analysis
will significantly lower the barrier of entry for machine learning researstveho are interested
in using or further developing algebraically inspired algorithms which asfuligor real-world
problems.
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Appendix A. Groups

This section is intended as a quick glossary for the group theoretic definitsetsin the paper.

Groups are a generalization of many of the spaces that we typically work suith as the real

numbers, integers, vector spaces, and matrices. The definition of g gndies all of these spaces
under a handful of axioms.

Definition 17 (Group) A groupis a set G together with a binary operationG x G — G (called
thegroup operatiopsuch that the followingroup axiomshold:

1. (Associativity) The group operationassociative That is, for any group elements,@», 093 €
G, we have:
(01-92) 93 =01 (02 Gs), forall g1,02,93 € G.

2. (Identity) There exists aidentity element (denoted bg) such that ge = €-g = g for any
geG.

3. (Inverses) For every g G, there exists amverse elemerg! suchthatggt=g!.g==¢.

Definition 18 (Abelian Group) If, for any group elements;gg, € G, we have ¢-g> = g2 gs1, then
G is called anAbelianor commutativegroup.

Perhaps the most familiar group is the set of integ@rsyith respect to the addition operation. Itis
well known that for any integera,b,c € Z, a+ (b+c) = (a+b) +c. The identity element in the
integers is zero, and every element has an additive invarsé{a) = (—a) +a= 0). Additionally,
the integers are an Abelian group sirceb = b+ afor anya, b € Z. Note that the natural numbers
N={0,1,2,3,...} do not form a group with respect to addition because inverses do istit ex

The main example of a group in this paper, of course, is the symmetric graipettof per-
mutations of{1,...,n}. The group operation on permutations is function composition, which is
associative, and we discussed inverses and the identity element in Section 3

Example 13 There are many groups besides the integers and the symmetric grbagolowing
are several examples.

e The positive real numbef®*™ form a group with respect to multiplication. The identity ele-
ment ofR™ is the multiplicative identity], and given a real number X, there exists an inverse
element..

e As an example of a finite group, tirgegers modulm, Z/nZ, form a group with respect to
addition modulo n.

e The invertible n<x n matrices over the reals, GR), form a group with respect to matrix
multiplication. The rnx n identity matrix serves as the identity element in,&), and by
assumption, every matrix in GR) is invertible.

The group axioms impose strong structural constraintS,cend one of the ways that structure
is manifested in groups is in the existencesobgroups
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Definition 19 (Subgroup) If G is a group (with group operation), a subset HC G is called a
subgroupif it is itself a group with respect to the same group operation. H is calladvéal
subgrougf it is either all of G or consists only of a single element.

Example 14 We have the following examples of subgroups.

e The even integerZ, form a subgroup of the integers since the sum of any two even integers
is an even integer, and the inverse (negative) of an even integer is again elowever, the
odd integers dmotform a subgroup since the sum of two odd integers is not odd.

e The special orthogonal matrices (orthogonal matrices with determiraljtform a sub-
group of the group of x n matrices, GkL(R). This can be seen by using the facts (1), that
(detA)(detB) = det(AB) and (2), that the inverse of any orthogonal matrix is also orthogonal.

Appendix B. Constructing Irreducible Representation Matrices

In this section, we present (without proof) some standard algorithmefmtricting the irreducible
representation matrices with respect to hel'fand-Tsetlin (GZ) basigconstructed with respect
to the subgroup chaif, € S C --- € $,).23 None of the techniques in Appendix B are novel.
For a more elaborate discussion, see, for example, Kondor (2006 (889) and Vershik and
Okounkov (2006). There are several properties which make theiitge representation matrices,
written with respect to the GZ basis, fairly useful in practice. They aresgnteed to be, for example,
real-valued and orthogonal. And as we will show, the matrices have cagafual sparsity properties
that can be exploited in implementation.

We begin by introducing a few concepts relatingMoung tableauxvhich are like Young
tabloids with the distinction that the rows are consideredrdsred tuplegather tharunordered
sets For example, the following two diagrams are distinct as Yotaigeaux but not as Young
tabloids

1[3]2]
54

2[3

1
25 (as Young tableaux)

A Young Tableau is said to bestandardif its entries are increasing to the right along rows and
down columns. For example, the set of all standard Young Tableawapéah= (3,2) is:

2|4 314] ’ |2]5] 7 |3]5

Given a permutatiomw € S,, one can always applg to a Young tableat to get a new Young
tableau, which we denote lwyot, by permuting the labels within the tableau. For example,

1[3[5] [1[2]5] [1]3[4] [1[2]4] [1]2]3]
{ Y 745 * (31)

(1,2)0 112[3] _ [2][1]3]

4|5 4|5

Note, however, that eventifis a standard tableaa,ot is not guaranteed to be standard.
The significance of the standard tableaux is that the set of all standédualof shapa can
be used to index the set of GZ basis vectors for the irreducible repatiserp,. Since there are

13. The irreducible representation matrices in this Appendix are alsatisoasereferred to asoung’s Orthogonal Rep-
resentation (YOR)
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five total standard tableaux of shaf®2), we see, for example, that the irreducible corresponding
to the partition(3,2) is 5-dimensional. There is a simple recursive procedure for enumeraéng th
set of all standard tableaux of shapevhich we illustrate foi = (3,2).

Example 15 If A = (3,2), there are only two possible boxes that the label 5 can occupy so that both
rows and columns are increasing. They are:

5

|
, and 5

To enumerate the set of all standard tableaux of sh@®2), we need to fill the empty boxes in
the above partially filled tableaux with the label4,2,3,4} so that both rows and columns are
increasing. Enumerating the standard tableaux of sh@2) thus reduces to enumerating the set
of standard tableaux of shap€? 2) and(3,1), respectively. Fof2,2), the set of standard tableaux
(which, in implementation would be computed recursively) is:

13 1|2
214 [3]4}[)°

and for(3,1), the set of standard tableaux is:

1[3[4] [1]2]4] [1]2]3]
2 K ' 4 '

The entire set of standard tableaux of shaBg?) is therefore:

1[3]5] 125\U 1[3]4] [1]2]4]
2[4]  [3]4 2|5/ 7 [3]5]

213}

Before explicitly constructing the representation matrices, we must defigaedsdistance on
Young Tableaux called thexial distance

IS
o1

Definition 20 Theaxial distanced (i, j), between entries i and j in tableau t, is defined to be:
di(i, j) = (col(t, j) — col(t,i)) — (row(t, j) —row(t,i)),

where rowt, i) denotes the row of label i in tableau t, and (9l) denotes the column of label i in
tableau t.

Intuitively, the axial distance betweénr- 1 andi in a standard tabledus equal to the (signed)
number of steps that are required to travel frioml toi, if at each step, one is allowed to traverse a
single box in the tableau in one of the four cardinal directions. For exaitiq@exial distance from

3 to 4 with respect to tableati=|1213] is;
3‘,3)) — <row< : 3‘,4) —row( HE 3‘,3))

4|5

0 (3,4) = (col ( : 3‘,4) —col(
—(1-3)-(2-1)=-3

[211\V]
B
[$211 ]
[211\V]
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B.1 Constructing Representation Matrices for Adjacent Transpaitions

In the following discussion, we will consider a fixed ordering,...,ty,, on the set of standard
tableaux of shapa and refer to both standard tableaux and columng,¢6) interchangeably.
Thust; refers to first columniy refers to the second column and so on. And we will index elements
in p)(0) using pairs of standard tablegt,, ty).

To explicitly define the representation matrices with respect to the GZ basisjlMiest con-
struct the matrices for adjacent transpositions (i.e., permutations of theiferthi)), and then we
will construct arbitrary representation matrices by combining the matricabdadjacent transpo-
sitions. The rule for constructing the matrix coefficigmt(i — 1, i)]tj,tk is as follows.

1. Define the(t;,tx) coefficient ofp, (i — 1,i) to be zero if it is (1), off-diagonalj( k) and (2),
not of the form(t;, (i — 1,i) oty).
2. If (tj,t) is a diagonal element, (i.e., of the forty,t;)), define:

[p)\(l - 17i)}tj,tj = l/dt](l - 1vi)v

wheredy; (i — 1,i) is the axial distance which we defined earlier in the section.
3. If (tj,t) can be written a#t;, (i — 1,i) ot;) define:

[Pr (i = L)y gy = /21— 1/ (i~ L,0).

Note that the only time that off-diagonal elements can be nonzero undebdie aules is when
(i—i,i)ot; happens to also be a standard tableau. If we apply an adjacent tiéiospos= (i — 1,i)
to a standard tabledutheno ot is guaranteed to be standard if and only-f1 andi were neither
in the same row nor column of This can be seen by examining each case separately.

1. i—21andi are in the same row or same column of. If i andi — 1 are in the same row of
theni — 1 lies to the left ofi. Applying oot swaps their positions so thalies to the left of
i — 1, and so we see thatot cannot be standard. For example,

1]2|5] _ [1]2]5]
3[4] ~[4]3]

(3,4)0

Similarly, we see that if andi — 1 are in the same column tfo ot cannot be standard. For
example,

1/3[5] _[1]4]5]

214 23]

2. i—1andi are neither in the same row nor column oft. In the second case,ot can be
seen to be a standard tableau due to the fact thatandi are adjacent indices. For example,

1/2[3] _[1]2]4]
4[5 3[5]

(3,4)0

(3,4)0

Therefore, to see ifi — 1,i) ot is standard, we need only check to see thatl andi are
in different rows and columns of the tableuThe pseudocode for constructing the irreducible
representation matrices for adjacent swaps is summarized in Algorithm 3.tiNditthe matrices
constructed in the algorithm are sparse, with no more than two nonzero ééemeany given
column.

1052



FOURIER THEORETICPROBABILISTIC INFERENCE OVERPERMUTATIONS

Algorithm 3: Pseudocode for computing irreducible representations matrices witkctesp
the Gel'fand-Tsetlin basis at adjacent transpositions.
ADJACENTRHO
input :ie€{2,...,n},A
output: py (i —1,i)
1 P Od,xdy;
2 foreach standard tableaux t of shapedo
d — (col(t,i) —col(t,i — 1)) — (row(t,i) — row(t,i — 1));
4 p(t,t) — 1/d;
5 if i —21 and i are in different rows and columns ofiten
6
7

w

p((i—1,i)o(t),t) —/1—1/d%

return p ;

Example 16 We compute the representation matrixpgf,) evaluated at the adjacent transposition
o= (i—1,i) = (3,4). For this example, we will use the enumeration of the standard tableaux of
shape(3,2) given in Equation 31.

For each(3,2)-tableau §, we identify whetheo ot; is standard and compute the axial distance
from 3 to 4 on the tableauit

i 1 2 3 4 5
1[3]5] [1]2]5] [1[3[4] [1[2]4] [1]2]3]
t; 2|4 3|4 2|5 3|5 4[5
1[4[5] [1]2]5] [1]4[3] [1]2]3] [1]2]4]
(3,4) ot 2|3 4[3 2|5 4]5 3]5
(3,4) ot; Standard? No No No Yes Yes
axial distance (d(3,4)) -1 1 1 3 -3

Putting the results together in a matrix yields:,

P32 (34) = | t3 1 :

oI

—
a1
(S
©loo
Wi
L

where all of the empty entries are zero.

B.2 Constructing Representation Matrices for General Permutatias

To construct representation matrices for general permutations, it igknowbserve that all per-
mutations can be factored into a sequence of adjacent swaps. For exénaplermutatiorl, 2,5)
can be factored into:

(1,2,5) = (4,5)(3,4)(1,2)(2,3)(3,4)(4,5),

1053



HUANG, GUESTRIN AND GUIBAS

Algorithm 4 : Pseudocode for computing irreducible representation matrices foraaytyiter-

mutations.
GETRHO

input : o€ §,A
output: py(0) (ad, x d, matrix)
//Use Bubblesort to factar into a product of transpositions
k«—0;
factors— 0,
fori=1,2,...,ndo
for j=nn—-1,...,i+1do
if a(j) <o(j—1)then
Swap6(j —1),0())) ;
k—k+1;
factorgdk) «— j ;
//Construct representation matrix using adjacent transpositions
PA(O) < ldyxd
m < length(factors);
for j=1,...,mdo
PA(0) < GETADJACENTRHO(factoryj),A)-pa(0) ;

© 00 N O O B~ W N PP

A o
A w N P O

and hence, for any partitiox,

p)\(]-? 2’ 5) = p;\(4, 5) : p;\(3, 4) : p)\(lv 2) ' p)\(zv 3) ' p)\(374) ' p)\(47 5)7

sincep, is a group representation. Algorithmically, factoring a permutation into adjavesips
looks very similar to the Bubblesort algorithm, and we show the pseudocadganithm 4.

Appendix C. Fourier Transforming the Indicator Function ds, ,

In this section, we derive the Fourier transform of the indicator functiothe two-sided coset
Sxy C S (see Equation 27). To do so, we will need to understand the Gel'faatiTdasis
at a slightly deeper level. For example, the fact that the basis elements arednidy standard
tableaux has not been motivated and may seem unintuitive. We begin thismdegtimotivating
the standard tableaux from the perspective oftitenching rule a standard fact taken from the
representation theory of the symmetric group. We then show how the lmgnehe leads to a
method for computing the desired indicator functions.

C.1 Standard Tableaux and the Gel'fand-Tsetlin Basis

It is straightforward to see that any irreducible representatjoaf S,, can also be seen as a rep-
resentation of5, 1 when restricted to permutations & 1 (the set of elements which fix). We
will denote the restricted representation pb)y@_l. However, the irreducibility property may not
be preserved by restriction, which is to say that, as a representatt®n 0fp, is not necessarily
irreducible and might decompose as Equation 2 would dictate. Thus, foralf, 1 (or more
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precisely,o € §, such thats(n) = n), there existE, and multiplicitiesz, such that:

) u

Gyt -pa(0) -Gy = DD ru(o),

woj=1

wherep ranges over the partitions af- 1.

Thebranching ruleallows us to state the decomposition even more precisely. Given any parti-
tion A of n, let A~ index over the set of partitions of— 1 whose Ferrers diagrams differ frokrin
a single box.

Theorem 21 (Branching Rule, see Vershik and Okounkov (2006) for proof) For each irreducible
representatiorp, of §,, there exists a matrixCsuch that:

G l-pr(0) Gy =P (0)
N

holds for anyo € S, _1.

Example 17 If A = (3,2), then its corresponding Ferrers diagram iggj, and the Ferrers dia-
grams corresponding to partitions dfwhich differ fromA in a single box are:

Y

Thus,A~ indexes over the sdt(2,2),(3,1)}. The branching rule states that given an irreducible
matrix representatiop s ») of &, then there is a matrix @) such that, for any permutatiome S
such thato(5) =5,

- P2.2)(0) 0
C)\ L p(3,2) (G) : C)\ = ( O) p(3,1) (0.)

The Gel'fand-Tsetlin basis is constructed such that the branching rids kath allC, = 1.
Thus the irreducible representation matrices constructed with respect@@ thasis have the prop-
erty that the equation:

pA(0) =P pr-(0)
N

holds identically for allo € S,_1. We now can show how the branching rule naturally leads to
indexing the basis elements by standard tableaux. First observe thaatiohing rule allows us to
associate each column of the irreducipjewith some partition oh — 1.

If we recursively apply the branching rule again (thus restricting,te), we see that the fol-
lowing decomposition holds:

p(0)=EP [EB px(c)] ,
A~ L
whereA™~ indexes over partitions which differ from™ by a single box. Thus each column can
be associated with a partition of- 1 and a partition ofn— 2. Taking this logic even further, we
can restrict tds,_3, $,_4, and so on until we can restrict no further, associating each column with a
sequence of partitiof$py - 1, - 2..., gy F N, where each partitiop; can be obtained by adding

14. Here we use the} n notation to denote the relation thats a partition ofn. For example(3,2,1) - 6.
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a single box to the Ferrers diagramgf 1, andp, = A. We will refer to such a sequence as a
branching sequencesince the branching rule guarantees multiplicity-free decompositions (that is
2,, = 1 for all pairs(A, 1)), it turns out that each column gf, is uniquelyspecified by a branching
sequence.

Example 18 A possible branching sequence is:

-0 L

or written as partitions{(1) — (2) — (2,1) — (3,1) — (3,2)].

The set of all possible branching sequences endirlgdan be visualized using laranching tree
(shown forA = (3,2) in Figure 12(a)), where each branching sequence is a path betwersothe
and some leaf node. We will denote the branching tree corresponding fmattigon A by 7
and the set of nodes at th¥ level of 7* by Z* (where the root node forms the zeroth level by
convention). We can rephrase the branching rule in terms of the brantrha

Proposition 22 Let p, be an irreducible matrix representation of &onstructed with respect to
the Gel'fand-Tsetlin basis). For anye€ S C S,, p)(0) decomposes as:

P (0) = D Pu(0).

HETY |

Example 19 As an example, consider applying Proposition 22tg,) with k= 3. The(n—k)th

(second) level of the branching tree #or= (3, 2), ‘I2(3’2) consists of two copies of the partiti¢®, 1)

and a single copy of the partitiof8). Thus for any elememt € S5 which fixes4 and5 (o(4) = 4,
o(5) =5), we have:

P21 (0)

PE2)(0) = P2,1)(0)

P3)(0)

As a final remark, observe that branching sequences can be conegedgented astandard
tableaux where the number in each box indicates the point in the sequence at waibbxiwas
added. For example, the following standard tableau and sequencditibpsiare equivalent:

4] (1) = (2) = (2,1) — (3,1) — (3,2)].

1|2
3|5

To summarize, the GZ basis (adapted to the subgroup &ain--- C S,) is defined so that the
branching rule holds as a matrix identity (with no need of a change of basis)yatd furthermore,
each basis vector of the representation spacg,fean be associated with a branching sequence, or
equivalently, a standard tableau.

C.2 Fourier Transforming s, ,,

We are now in a position to compute the Fourier transform of indicators obtineds, . First, as
a corollary of the branching rule, we see that we can decompose thieiRoansform of functions
that are supported d&,_1 C S..
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(3,2) (3,2)
(2,2) (3,1) (2,2) (3,1)
(2,1)  (2,1) (3) (2,1)  (3)
(1,1) (2) (1,1) (2) (2) 1, 1 1) (2) 2):
| T T F T
(1) (1) (1) (1) (1) (1) (1) (1)
(@) 732 (b) ‘Tg

Figure 12: (a) The branching tree foe= (3,2). (b) The 3¢ level of 732 (outlined) is denoted by
‘I3(3’2) and consists of two copies of the partitigh 1) and three copies of the partition

(2).

Corollary 23 If f : §, — Ris supported on the subgroup_3, then for each partitiofz, the Fourier
transform of f (with respect to the Gel'fand-Tsetlin basis adapted S, C --- C §,) decomposes
into a direct sum of Fourier transforms op §. Specifically, we have:

fAA = @ [fA lﬂ—l]k
e
where f|7 , is defined to be the restriction of f t¢.S.

Consider the Fourier transform of the indicator functiorgot- Sq:

(1 fo(j)=jforje{k+1,...,n}
%(0) _{ 0 otherwise '

We now apply the branching rute— k times to the indicator functiods . Sinceds, is supported
on & C S, the Fourier transform obs,_ at the irreduciblep, can be written as a direct sum of
Fourier coefficient matrices at the irreducibles which appear imthéth level of the branching

tree corresponding td.
bs],= @ [,
HETY |
Furthermore, since the restriction &, to the subgrouf&, is a constant function, we see that all of

the nontrivial irreducible summands are zero (since the Fourier trangfba constant function is
zero at all nontrivial terms) and that the trivial terms are exddtlBecause the trivial representation

is one-dimensional, only a subset of the diagonal elemenﬁésp]fA can be nonzero.
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Algorithm 5: Pseudocode for computing the Fourier transform of the indicator funciio
S C S, at the partitionh.

S(-INDICATOR

input : k,n,A (a partition ofn)

output: [E&]A

[Ss(h « Og, xd, ;
foreach standard tableaux t of shapedo
ift |[f)=[1]2]3]-|k]|then

[6&})\(t,t) — K

w N e

N

Algorithmically we can construct the Fourier transformdgf at A by enumerating all of the
branching sequences farand setting théj, j) diagonal element 0{8@})\ to bek! if the corre-

spondingjth branching sequence contains the partifibn Alternatively, we can state the proce-
dure in terms of standard tableaux. First, we define a restriction operatianstandard tableau
t.

Definition 24 Given a standard tableau t with n boxes and a positive integemk we define the
restrictionof t to & (denoted by ) to be the standard tableau t after removing boxes containing
labels k+1, ..., n.

To construct the Fourier transform & atA, we iterate through the standard tableaux of shigpe
and set th€j, j) diagonal element 0[85(} to bek! if the restriction of thejth tableau td5, t; |},

A
takes the formi[2][3] - [k]. See Algorithm 5.

Example 20 We compute{gsz} as an example. The branching sequence3 fer(3,2) are:

(3,2)
1315) (1) = (L) - (21) - (2,2) — (3,2),
12/5) (1)~ (2~ (21— (22) — (3.2)],
134 (1)~ (L)~ 21— (31— (32
12/4) (1)~ (2 = (21— (3,1) - (3.2)],
12]3] (1)~ (2~ (3)— (31— (32).

Since there are only three sequences which contain the partiignonly those three basis
elements have nonzero entries. And finally, noting that the appropriateatization constant here
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is simply|S| = 2! = 2, we see that:

1[3]5] [1]2]5] [1][3]4] [1]2]4] [1]2]3]

214 34 2|5 3|5 4|5

13Is]1 o 0 0 0 0

) L2181 o 2 0 0 0
[552}(372): 53 Z1 - 0 0 0 0
1214]1 o 0 0 2 0

1231 o 0 0 0 2

Our discussion has been focused on the indicator funétgrout computingds, , with [X| = Y| =
n—k can be accomplished by first constructing the Fourier coefficient matacég , then relabel-
ing the tracks and identities using a change of basis. More preciselypseipipat, to achieve this
relabeling, we must permute tie(identities) using a permutatiam and theY (tracks) usingm.
The Shift Theorengsee Diaconis 1988) can be applied to reorder the Fourier coefficierdsding
to these new labels.

Proposition 25 (Shift Theorem) Given f: § — R, define f: § — R by f'(0) = f(omy) for
some fixedy, T, € S,. The Fourier transforms of f and &re related as:f/y = p)(1Tu) - fy - pA(TR).

We conclude with a comment on sparsity. It is clear from Algorithm 5 that thedficaent
matrices of[gsxﬂy} ) are all, up to an appropriate relabeling of identities and tracks, diagonatesatr
with at mostO(d,) nonzero entries. In fact, we can sometimes show that a given modél(tias
nonzero entries.

Consider, for example, the indicator functidg,_,, corresponding to observations of the form
(“Identity j is at tracki”), which is nonzero only at the first two partition®)), and(n—1,1). The

zeroth-order term is[SSH]( | = (n—1)!. The first-order Fourier coefficient matri%%sﬂ,l}( 12)’
n =%

is a matrix of all zeroes except for a single element on the diagc{ﬁg,lil}( " (t,t), where
n—1,

1 2\3yn
n

t—

, which takes on the valug — 1)!.

Appendix D. Decomposing the Tensor Product Representation

We now turn to théfensor Product Decompositigamroblem, which is that of finding the irreducible
components of the typically reducible tensor product representation, dhdp, are irreducible
representations &, then there exists an intertwining operay, such that:

D\

Gt (PA®@pu(0)) - Cru= P P v (0). (32)

vV (=1
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In this section, we will present a set of numerical methods for computingl#tes€h-Gordan series
(2w) and Clebsch-Gordan coefficients, () for a pair of irreducible representatiopg @ p,. We
begin by discussing two methods for computing the Clebsch-Gordan skrithe second section,
we provide a general algorithm for computing the intertwining operatorstwhiate two equivalent
representations and discuss how it can be applied to computing the Cl8bstan coefficients
(Equation 32) and the matrices which relate marginal probabilities to irreduedbleer coefficients
(Equation 6). The results of Appendix D.1 are specific to the symmetric gwahife the results of
Appendix D.2 can be applied to arbitrary finite groups.

D.1 Computing the Clebsch-Gordan Series

We begin with a simple, well-known algorithm basedgsaup charactergor computing the Clebsch-
Gordan series that turns out to be computationally intractable, but yieldsadéluminating theo-
retical results. See Serre (1977) for proofs of the theoretical restétsin this section.

One of the main results of representation theory was the discovery thatekists a relatively
compact way of encoding any representation up to equivalence withtarwegbich we call the
characterof the representation. Ib is a representation of a group, then the character of the
representatiop, is defined simply to be the trace of the representation at each elente@t

Xp(0) =Tr(p(0)).

The reason characters have been so extensively studied is that ihaglyrcharacterize a repre-
sentation up to equivalence in the sense that two charggieendy,, are equal if and only ip;
andp, are equivalent as representations. Even more surprising is that tte a&fppossible group
characters is orthogonally spanned by the characters of the irredrggibésentations. To make this
precise, we first define an inner product on functions fem

Definition 26 Let @, be two real-valued functions on G. Thmer producof ¢ andy is defined
to be:

_ 1
@¥)= 1] 3 #OW(O)

With respect to the above inner product, we have the following importanlkt rehich allows us to
test a given representation for irreducibility, and to test two irreducildiesedquivalence.

Proposition 27 Letx,, andx,, be characters corresponding to irreducible representations. Then

1 ifpi=p2
{Xp1 Xe2) _{ 0 otherwise

Proposition 27 shows that the irreducible characters form an orthoheataf functions. The
next proposition says that the irreducible charactpemthe space of all possible characters.

Proposition 28 Suppose is any representation of G and which decomposes into irreducibles as:

2\
p=PHPn.

A (=1

whereA indexes over all irreducibles of G. Then:
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1. The character of is a linear combination of irreducible charactergy(= 5 2Xp,)-
2. and the multiplicity of each irreducibley zcan be recovered usingp, Xp,) = 2.

A simple way to decompose any group representatipis given by Proposition 28, which
says that we can take inner productsggfagainst the basis of irreducible characters to obtain the
irreducible multiplicitiesz,. To treat the special case of finding the Clebsch-Gordan series, one
observes that the character of the tensor product is simply the pointwidegbiof the characters of
each tensor product factor.

Theorem 29 Let p, andp, be irreducible representations with charactegs X, respectively. Let
2, be the number of copies pf in p), @ py, (hence, one term of the Clebsch-Gordan series). Then:

1. The character of the tensor product representation is given by:

Xpr@pu = Xn Xu =D ZywXv-
v
2. The terms of the Clebsch-Gordan series can be computed using:
2w == 3 X (9) - Xu(9) - Xv(9)

and satisfy the following symmetry:
D = Dwp = Z4ivv = 4un = Zap = Lypr- (33)

Dot products for characters on the symmetric group can be doDé&4m)) time where #n) is the
number of partitions of the numbaer instead of the naiv®(n!) time. In practice however, (#)
also grows too quickly for the character method to be tractable.

D.1.1 MURNAGHAN’'S FORMULAS

A theorem by Murnaghan (1938) gives us a ‘bound’ on which repreegions can appear in the
tensor product decomposition &p.

Theorem 30 Let p1,p2 be the irreducibles corresponding to the partitiom— p,A,,...) and(n—
g,M2,...) respectively. Then the produgt ® p, does not contain any irreducibles corresponding
to a partition whose first term is less thanp—q.

In view of the connection between the Clebsch-Gordan series andlatiamoof Fourier coeffi-
cients, Theorem 30 is analogous to the fact that for functions over #ife the convolution of two
compactly supported functions is also compactly supported.

We can use Theorem 30 to show that Kronecker conditioning is exaettatrtirreducibles.
Proof [of Theorem 12] Let\ denote the set of irreducibles at which our algorithm maintains Fourier
coefficients. Since the errors in the prior come from setting coefficienssdguof/A to be zero, we
see that Kronecker conditioning returns an approximate posterior whistac at the irreducibles
in

Nexact= {Pv : 2 =0, whereA ¢ A andu> (n—q,H,...)}.
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Combining Theorem 30 with Equation 33: Zf,, > 0, withA = (n—p,A2,A3,...),u= (N—
g, M2, M3, ...) andv = (n—r,va,v3,...), then we have thatr < p+q,p<qg+r, andq< p-+r.
In particular, it implies that > p—q andr > q— p, or more succinctlyr > |p—q|. Hence, if
v =(n—rVy,...), thenp, € Aexact Whenever < |p—q|, which proves the desired result. W

The same paper (Murnaghan, 1938) derives several generaldGi€iordan series formulas for
pairs of low-order irreducibles in terms af and in particular, derives the Clebsch-Gordan series
for many of the Kronecker product pairs that one would likely encountpractice. For example,

® Oin-1,1) ®Pn-1,1) = Pn) DPmn-1,1) PPn-2.2) ©P(n-2,1,1)

® O(n-1,1) ®P(n-22) = Pn-1.1) PP(n-2.2) ®P(n-2,1,1) ©Pn-33) DP(n-321)

® O(n-1,1) ®Pn-211) = P(n-1.1) D P(n-2,2) DP(n-21,1) ©Pn-321) DPn-3111)
® Pin-11) ®P(n-33) = Pn-22) DP(n-33) DP(n-321) D P(n-44) DPn-431)

D.2 Computing the Clebsch-Gordan Coefficients

In this section, we consider the general problem of finding an orthogmexator which decom-
poses an arbitrary complex representati(g), of a finite groupG.*® Unlike the Clebsch-Gordan
series which are basis-independent, intertwining operators must bepated if we change the
underlying basis by which the irreducible representation matrices arérectesl. However, for a
fixed basis, we remind the reader that these intertwining operators nieusearomputed once and
for all and can be stored in a table for future reference X_be any degred group representation
of G, and letY be an equivalent direct sum of irreducibles, for example,

2y
Y(0) =D Drv(0), (34)

vV /=1

where each irreduciblge, has degree,. We would like to compute an invertible (and orthogonal)
operatolC, such thaC- X (o) =Y(0)-C, for all o € G. Throughout this section, we will assume that
the multiplicitiesz, are known. To compute Clebsch-Gordan coefficients, for example, owddw
setX = p) ® pu, and the multiplicities would be given by the Clebsch-Gordan series (Eqigijon
To find the matrix which relates marginal probabilities to irreducible coefficieméswould set
X =T1,, and the multiplicities would be given by the Kostka numbers (Equation 6).

We will begin by describing an algorithm for computing a basis for the spaedl possible
intertwining operators which we denote by:

Intix.y| = {C € R™? : C-X(0)=Y(0)-C, Yo eG}.

We will then discuss some of the theoretical properties of iatand show how to efficiently select
anorthogonalelement of Ink.y;.

15. Though the fundamental ideas in this section hold for a general fitgogwe will continue to index irreducible
by partitions and think of representations as being real-valued. Toa&methe results, one can simply replace all
transposes in this section by adjoints and think afs indexing over the irreducibles Gfrather than partitions.
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Our approach is to naivel§ view the task of finding elements of |t as a similarity matrix
recovery problem, with the twist that the similarity matrix must be consistent dvgraup ele-
ments. To the best of our knowledge, the technique presented in this sectinginal. We first
cast the problem of recovering a similarity matrix as a nullspace computation.

Proposition 31 Let A B,C be matrices and letig = | ® A—B" ®1. Then AC=CB if and only if
vedC) € Nullspacg¢Kag).

Proof A well known matrix identity (van Loan, 2000) states thatAifB,C are matrices, then
ved ABC) = (CT @ A) vedB). Applying the identity toAC = CB, we have:
veACI) = vedICB),
and after some manipulation:
(l® A-B"®1)vedC) =0,
showing that ve(C) € Nullspacé¢Kag). [ |

For eacho € G, the nullspace of the matrik (o) constructed using the above proposition as:
K(o)=1®Y(0)—X(o)&l, (35)
wherel is ad x d identity matrix, corresponds to the space of matricesuch that
Cs-X(0)=Y(0)-C, forallo e G.

To find the space of intertwining operators which are consistent adiageap elements, we need
to find the intersection:

() Nullspac€K (0)).

0eG

At first glance, it may seem that computing the intersection might require eiagmihnullspaces
if G=S,, but as luck would have it, most of the nullspaces in the intersection areegtig, as we
now show.

Definition 32 We say that a finite group G eneratedy a set ofgeneratorS= {gi,...,gm} if
every element of G can be written as a finite product of elements in S.

For example, the following three sets are all generator§for
e {(1,2),(1,3),....(Am},
e {(1,2),(2,3),(3,4),... i—1,n)}, and
e {(1,2),(1,2,3,...n)}.

To ensure a consistent similarity matrix for all group elements, we use the fotigevoposition
which says that it suffices to be consistent on any set of generattire gfoup.

16. In implementation, we use a more efficient algorithm for computingtimiteing operators known as thgigenfunc-
tion Method(EFM) (Chen, 1989). Unfortunately, the EFM is too complicated for usatgcdbe in this paper. The
method which we describe in this appendix is conceptually simpler than thedeleMieneralizes easily to groups
besidess,.
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Proposition 33 Let X and Y be representations of finite group G and suppose that Gesaged by

the elementey,...,om. If there exists an invertible linear operator C such thadQo;) =Y(g;)-C

for each ic {1,...,m}, then X and Y are equivalent as representations with C as the intertwining
operator.

Proof We just need to show th& is a similarity transform for any other element @fas well.
Let 1t be any element o6 and supposet can be written as the following product of generators:
=[], 0i. It follows that:

ctvime - ctv(fla)e-c ([ve)

= (C1.Y(o1)-C)(Ct-Y(02)-C)---(CL-Y(om)-C)

_ |T| (C-Y(a)-C) = mx(oi) =X (I._l oi) = X(m).

Since this holds for everyt € G, we have showi€ to be an intertwining operator between the
representationx andy. |

The good news is that despite havinigelements S, can be generated by just two elements, namely,
(1,2) and(1,2,...,n), and so the problem reduces to solving for the intersection of two nullspace
(K(1,2) N K(1,2,...,n)), which can be done using standard numerical methods. Typically, the
nullspace is multidimensional, showing that, for example, the Clebsch-Gooddfficents forp), ®

pu are not unique even up to scale.

Because Ink.y) contains singular operators (the zero matrix is a member gfyntfor ex-
ample), not every element of Ipt, is actually a legitimate intertwining operator as we require
invertibility. In practice, however, since the singular elements corresfibadneasure zero subset
of Intx.y;, one method for reliably selecting an operator fromylntthat “works” is to simply select
a random element from the nullspace to®edt may, however, be desirable to haveathogonal
matrix C which works as an intertwining operator. In the following, we discuss gecbballed the
Commutant Algebravhich will lead to several insights about the spacexlat and in particular,
will lead to an algorithm for ‘modifying’ any invertible intertwining operatorto be anorthogonal
matrix.

Definition 34 TheCommutant Algebraf a representation Y is defined to be the space of operators
which commute with Y¥*

Comy = {SeR¥™¥ : S.Y(0)=Y(0)-S, Voe Gl

The elements of the Commutant AlgebraYotan be shown to always take on a particular con-
strained form (shown using Schur's Lemma in Sagan 2001). In parti@ary element of Com
takes the form

S=P M @14, (36)

whereM, is somez, x z, matrix of coefficients antl, is thed, x d, identity (recall that the, are
the multiplicities from Equation 34). Moreover, it can be shown that everyixnaitthis form must
necessarily be an element of the Commutant Algebra.

17. Notice that the definition of the Commutant Algebra does not involvesiiesentatioiX.
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The link between Comand our problem is that the space of intertwining operators can be
thought of as a ‘translate’ of the Commutant Algebra.

Lemma 35 There exists a vector space isomorphism betwegqynand Cong.

Proof LetR be any invertible element of Ity; and define the linear map: Comy — RI%d py:
f:S— (S'R). We will show that the image of is exactly the space of intertwining operators.
Consider any elememt € G:

(S‘R)-X(0)-(S-R)t=S.R-X(0)-RL.5%,
=S-Y(0)-S* (sinceRe€ Inty.y)),
=Y(o) (sinceSe Comy).
We have shown th&- R € Int.y), and sincef is linear and invertible, we have that pay; and
Comy are isomorphic as vector spaces.
Using the lemma, we can see that the dimension @t;mtmust be the same as the dimension of

Comy, and therefore we have the following expression for the dimension gfynt

Proposition 36
di||||ntx;y = 2\2,
[X:Y] EV

Proof To compute the dimension of Inty;, we need to compute the dimension of Gorwhich
can be accomplished simply by computing the number of free parameters itideqgé. Each
matrix My, is free and yieldgZ parameters, and summing across all irreduciblgields the desired
dimension. |

To select an orthogonal intertwining operator, we will assume that wehaga gome invertible
R € Int)x.y; which is not necessarily orthogonal (such as a random element of ispane ofK
, Equation 35). To find an orthogonal element, we will ‘modiRto be an orthogonal matrix by
applying an appropriate rotation, such tiRatR" = . We begin with a simple observation about
R-R".

Lemma 37 If both X and Y are orthogonal representations and R is an invertible raeaflinty.y,,
then the matrix RR" is an element of Com

Proof Consider a fixed € G. SinceR € Intx.y;, we have that:
X(0)=R1.Y(0)-R

Itis also true that:
X(ohHh=RtY0? R (37)

SinceX (o) andY (o) are orthogonal matrices by assumption, Equation 37 becomes:

XT(0)=R1.YT(0)-R
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Algorithm 6 : Pseudocode for computing an orthogonal intertwining operators
INTXY
input : A degreed orthogonal matrix representatiohevaluated at permutatiorn, 2) and
(1,...,n), and the multiplicityz,, of the irreduciblep, in X
output: A matrix C, with orthogonal rows such th&! - ¢%p, -C, = X
1 Kp e laxd ® (©*pv(1,2)) — X(1,2) @ lgxd;
2 Ko lgxad @ (&*py(,...,n) —X(1,...,n) ®lgxg;
3 K [Ky;Ky];  //IStack K and K
4 Ve SparseNuIIspao{cK,zﬁ); /IFind the ¢-dimensional nullspace
5 R« Reshapév;z,d,,d); //Reshape v into éz,d,) x d matrix
6 M « KroneckerFactof®R-R"); //Find M such that RRT = M ® g,
7 S, < EigenvectoréM) ;
8
9

C S R;
NormalizeRowsC, );

Taking transposes,
X(o)=R"-Y(0)- (RYHT.
We now multiply both sides on the left B and on the right bR,

R-X(0)-RT=R-R"-Y(0)- (R HT.R"
=R-R".Y(0).

SinceR € Intjx.y),

Y(0)-R-RT =R-R"-Y(0),

which shows thaR- R" € Cony,. ]

We can now state and prove our orthogonalization procedure, whidtswgrdiagonalizing the
matrix R- R". Due to its highly constrained form, the procedure is quite efficient.

Theorem 38 Let X be any orthogonal group representation of G and Y an equivaktmbgonal
irreducible decomposition (As in Equation 34). Then for any invertible etéiRe Intx.y), there
exists an (efficiently computable) orthogonal matrix T such that the matrRR i an element of
Intxv) and isorthogonal

Proof Lemma 37 and Equation 36 together imply that the ma®iR" can always be written in
the form
R-R" = @y (Mg, ®14,)

SinceR-R' is symmetric, each of the matricé;, is also symmetric and must therefore possess
an orthogonal basis of eigenvectors. Define the m&jixo be the matrix whose columns are the
eigenvectors oMy, .

The matrixS= &, (S, ®lg,) has the following two properties:
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1. (S'-R)(S"-R)T is a diagonal matrix:
Each column oBis an eigenvector dk-R' by standard properties of the direct sum and Kro-
necker product. Since each of the matric®g,is orthogonal, the matri$is also orthogonal.
We have:
(S"-R(ST-RT=5"-R-R"-S

=S LRRS

=D,
whereD is a diagonal matrix of eigenvaluesRf R .

2. ST ‘Re |nt[x;y]:

By Equation 36, a matrix is an element of Cpifiand only if it takes the formey (S, ® g, ).
SinceS can be written in the required form, so cgh. We see thaS' € Comy, and by the
proof of Lemma 35, we see that -R e INtx.y-

Finally, settingT = D¥/2. ST makes the matri - R orthogonal (and does not change the fact
thatT -Re |nt[x;y]). |

We see that the complexity of computidgis dominated by the eigenspace decomposition
of Mz, which isO(z?,). Pseudocode for computing orthogonal intertwining operators is given
Algorithm 6.
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