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Abstract
Permutations are ubiquitous in many real-world problems, such as voting, ranking, and data asso-
ciation. Representing uncertainty over permutations is challenging, since there aren! possibilities,
and typical compact and factorized probability distribution representations, such as graphical mod-
els, cannot capture the mutual exclusivity constraints associated with permutations. In this paper,
we use the “low-frequency” terms of a Fourier decompositionto represent distributions over per-
mutations compactly. We presentKronecker conditioning, a novel approach for maintaining and
updating these distributions directly in the Fourier domain, allowing for polynomial time bandlim-
ited approximations. Low order Fourier-based approximations, however, may lead to functions that
do not correspond to valid distributions. To address this problem, we present a quadratic program
defined directly in the Fourier domain for projecting the approximation onto a relaxation of the
polytope of legal marginal distributions. We demonstrate the effectiveness of our approach on a
real camera-based multi-person tracking scenario.

Keywords: identity management, permutations, approximate inference, group theoretical meth-
ods, sensor networks

1. Introduction

Probability distributions over permutations arise in a diverse variety of realworld problems. While
they were perhaps first studied in the context of gambling and card games,they have now been found
to be applicable to many important problems such as multi-object tracking, information retrieval,
webpage ranking, preference elicitation, and voting. Probabilistic reasoning problems over permu-
tations, however, are not amenable to the typical representations afforded by machine learning such
as Bayesian networks and Markov random fields. This paper exploresan alternative representation
and inference algorithms based on Fourier analysis for dealing with permutations.

As an example, consider the problem of trackingn people based on a set of noisy measurements
of identity and position. A typical tracking system might attempt to manage a set ofn tracks along
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Figure 1: When two persons pass near each other, their identities can getconfused.

with an identity corresponding to each track, in spite of ambiguities arising fromimperfect identity
measurements. When the people are well separated, the problem is easily decomposed and mea-
surements about each individual can be clearly associated with a particular track. When people pass
near each other, however, confusion can arise as their signal signatures may mix; see Figure 1. Af-
ter the individuals separate again, their positions may be clearly distinguishable, but their identities
can still be confused, resulting in identity uncertainty which must be propagated forward in time
with each person, until additional observations allow for disambiguation. This task of maintaining a
belief state for the correct association between object tracks and objectidentities while accounting
for local mixing events and sensor observations, was introduced in Shin et al. (2003) and is called
the identity management problem.

The identity management problem poses a challenge for probabilistic inference because it needs
to address the fundamental combinatorial challenge that there is a factorialnumber of associations
to maintain between tracks and identities. Distributions over the space of all permutations require
storing at leastn!−1 numbers, an infeasible task for all but very smalln. Moreover, typical com-
pact representations, such as graphical models, cannot efficiently capture the mutual exclusivity
constraints associated with permutations.

While there have been many approaches for coping with the factorial complexity of maintaining
a distribution over permutations, most attack the problem using one of two ideas—storing and up-
dating a small subset of likely permutations, or, as in our case, restricting consideration to a tractable
subspace of possible distributions. Willsky (1978) was the first to formulatethe probabilistic filter-
ing/smoothing problem for group-valued random variables. He proposed an efficient FFT based
approach of transforming between primal and Fourier domains so as to avoid costly convolutions,
and provided efficient algorithms for dihedral and metacyclic groups. Kueh et al. (1999) show that
probability distributions on the group of permutations are well approximated bya small subset of
Fourier coefficients of the actual distribution, allowing for a principled tradeoff between accuracy
and complexity. The approach taken in Shin et al. (2005), Schumitsch et al.(2005), and Schumitsch
et al. (2006) can be seen as an algorithm for maintaining a particular fixed subset of Fourier coef-
ficients of the log density. Most recently, Kondor et al. (2007) allow for ageneral set of Fourier
coefficients, but assume a restrictive form of the observation model in order to exploit an efficient
FFT factorization.

In the following, we outline our main contributions and provide a roadmap of thesections
ahead.1

1. A much shorter version this work appeared inNIPS2007 (Huang et al., 2007). We provide a more complete discus-
sion of our Fourier based methods in this extended paper.

998



FOURIER THEORETICPROBABILISTIC INFERENCE OVERPERMUTATIONS

• In Sections 4 and 5, we provide a gentle introduction to the theory of group representations
and noncommutative Fourier analyis. While none of the results of these sections are novel,
and have indeed been studied by mathematicians for decades (Diaconis, 1989; Terras, 1999;
Willsky, 1978; Chen, 1989), noncommutative Fourier analysis is still fairly new to the ma-
chine learning community, which has just begun to discover some of its exciting applica-
tions (Huang et al., 2007, 2009; Kondor et al., 2007; Kondor and Borgwardt, 2008). Our
tutorial sections are targeted specifically at the machine learning community anddescribe its
connections to probabilistic inference problems that involve permutations.

• In Section 6, we discuss performing probabilistic inference operations in the Fourier domain.
In particular, we present Fourier theoretic algorithms for two ubiquitous operations which
appear in filtering applications and beyond: prediction/rollup and conditioning with Bayes
rule. Our main contribution in this section is a novel and conceptually simple algorithm,
called Kronecker Conditioning, which performs all conditioning operations completely in
the Fourier domain, allowing for a principled tradeoff between computationalcomplexity
and approximation accuracy. Our approach generalizes upon previous work in two ways—
first, in the sense that it can address any transition model or likelihood function that can be
represented in the Fourier domain, and second, in the sense that many of our results hold for
arbitrary finite groups.

• In Section 7, we analyze the errors which can be introduced by bandlimiting aprobability
distribution and show how they propagate with respect to inference operations. We argue that
approximate conditioning based on bandlimited distributions can sometimes yield Fourier
coefficients which do not correspond to any valid distribution, even returning negative “prob-
abilities” on occasion. We address possible negative and inconsistent probabilities by present-
ing a method for projecting the result back into the polytope of coefficients which correspond
to nonnegative and consistent marginal probabilities using a simple quadraticprogram.

• In Section 8, we present a collection of general techniques for efficiently computing the
Fourier coefficients of probabilistic models that might be useful in practicalinference prob-
lems, and give a variety of examples of such computations for probabilistic models that might
arise in identity management or ranking scenarios.

• Finally in Section 10, we empirically evaluate the accuracy of approximate inference on sim-
ulated data drawn from our model and further demonstrate the effectiveness of our approach
on a real camera-based multi-person tracking scenario.

2. Filtering Over Permutations

As a prelude to the general problem statement, we begin with a simple identity management problem
on three tracks (illustrated in Figure 2) which we will use as a running example. In this problem, we
observe a stream of localization data from three people walking inside a room. Except for a camera
positioned at the entrance, however, there is no way to distinguish betweenidentities once they are
inside. In this example, an internal tracker declares that two tracks have ‘mixed’ whenever they get
too close to each other and announces the identity of any track that enters or exits the room.

In our particular example, three people, Alice, Bob and Cathy, enter a room separately, walk
around, and we observe Bob as he exits. The events for our particularexample in the figure are

999



HUANG, GUESTRIN AND GUIBAS
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Figure 2: Identity Management example. Three people, Alice, Bob and Charlie enter a room and
we receive a position measurement for each person at each time step. With no way to
observe identities inside the room, however, we are confused whenevertwo tracks get too
close. In this example, track 1 crosses with track 2, then with track 3, then leaves the
room, at which point it is observed that the identity at Track 1 is in fact Bob.

recorded in Table 1. Since Tracks 2 and 3 never mix, we know that Cathy cannot be in Track 2 in the
end, and furthermore, since we observe Bob to be in Track 1 when he exits, we can deduce that Cathy
must have been in Track 3, and therefore Alice must have been in Track 2. Our simple example
illustrates the combinatorial nature of the problem—in particular, reasoning about the mixing events
allows us to exactly decide where Alice and Cathy were even though we only made an observation
about Bob at the end.

Event # Event Type
1 Tracks 1 and 2 mixed
2 Tracks 1 and 3 mixed
3 Observed Identity Bob at Track 1

Table 1: Table of Mixing and Observation events logged by the tracker.

In identity management, a permutationσ represents a joint assignment of identities to internal
tracks, withσ(i) being the track belonging to theith identity. When people walk too closely to-
gether, their identities can be confused, leading to uncertainty overσ. To model this uncertainty,
we use aHidden Markov Model (HMM)on permutations, which is a joint distribution over latent
permutationsσ(1), . . . ,σ(T), and observed variablesz(1), . . . ,z(T) which factors as:

P(σ(1), . . . ,σ(T),z(1), . . . ,z(T)) = P(σ(1))P(z(1)|σ(1))
T

∏
t=2

P(zt |σ(t)) ·P(σ(t)|σ(t−1)).

The conditional probability distributionP(σ(t)|σ(t−1)) is called thetransition model, and might re-
flect, for example, that the identities belonging to two tracks were swapped withsome probability
by a mixing event. The distributionP(z(t)|σ(t)) is called theobservation model, which might, for
example, capture a distribution over the color of clothing for each individual.
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We focus onfiltering, in which one queries the HMM for the posterior at some time step, con-
ditioned on all past observations. Given the distributionP(σ(t)|z(1), . . . ,z(t)), we recursively com-
puteP(σ(t+1)|z(1), . . . ,z(t+1)) in two steps: aprediction/rollupstep and aconditioningstep. Taken
together, these two steps form the well knownForward Algorithm(Rabiner, 1989). The predic-
tion/rollup step multiplies the distribution by the transition model and marginalizes out the previous
time step:

P(σ(t+1)|z(1), . . . ,z(t)) = ∑
σ(t)

P(σ(t+1)|σ(t))P(σ(t)|z(1), . . . ,z(t)).

The conditioning step conditions the distribution on an observationz(t+1) using Bayes rule:

P(σ(t+1)|z(1), . . . ,z(t+1)) ∝ P(z(t+1)|σ(t+1))P(σ(t+1)|z(1), . . . ,z(t)).

Since there aren! permutations, a single iteration of the algorithm requiresO((n!)2) flops and is
consequently intractable for all but very smalln. The approach that we advocate is to maintain a
compact approximation to the true distribution based on the Fourier transform.As we discuss later,
the Fourier based approximation is equivalent to maintaining a set of low-order marginals, rather
than the full joint, which we regard as being analogous to anAssumed Density Filter(Boyen and
Koller, 1998).

Although we use hidden Markov models and filtering as a running example, theapproach we
describe is useful for other probabilistic inference tasks over permutations, such as ranking objects
and modeling user preferences. For example, operations such as marginalization and conditioning
are fundamental and are widely applicable. In particular, conditioning using Bayes rule, one of the
main topics of our paper, is one of the most fundamental probabilistic operations, and we provide a
completely general formulation.

3. Probability Distributions over the Symmetric Group

A permutation onn elements is a one-to-one mapping of the set{1, . . . ,n} into itself and can be
written as a tuple,

σ = [σ(1) σ(2) . . . σ(n)],

whereσ(i) denotes where theith element is mapped under the permutation (calledone line no-
tation). For example,σ = [2 3 1 4 5] means thatσ(1) = 2, σ(2) = 3, σ(3) = 1, σ(4) = 4, and
σ(5) = 5. The set of all permutations onn elements forms a group under the2 operation of function
composition—that is, ifσ1 andσ2 are permutations, then

σ1σ2 = [σ1(σ2(1)) σ1(σ2(2)) . . . σ1(σ2(n))]

is itself a permutation. The set of alln! permutations is called thesymmetric group, or justSn.
We will actually notate the elements ofSn using the more standardcycle notation, in which

a cycle (i, j,k, . . . , ℓ) refers to the permutation which mapsi to j, j to k, . . . , and finallyℓ to i.
Though not every permutation can be written as a single cycle, any permutation can always be
written as a product of disjoint cycles. For example, the permutationσ = [2 3 1 4 5] written in
cycle notation isσ = (1,2,3)(4)(5). The number of elements in a cycle is called thecycle length
and we typically drop the length 1 cycles in cycle notation when it creates no ambiguity—in our

2. See Appendix A for a list of the basic group theoretic definitions used in this paper.
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example,σ = (1,2,3)(4)(5) = (1,2,3). We refer to the identity permutation (which maps every
element to itself) asε.

A probability distribution over permutations can be thought of as a joint distribution on then
random variables(σ(1), . . . ,σ(n)) subject to themutual exclusivity constraintsthat P(σ : σ(i) =
σ( j)) = 0 wheneveri 6= j. For example, in the identity management problem, Alice and Bob cannot
both be in Track 1 simultaneously. Due to the fact that all of theσ(i) are coupled in the joint dis-
tribution, graphical models, which might have otherwise exploited an underlying conditional inde-
pendence structure, are ineffective. Instead, our Fourier based approximation achieves compactness
by exploiting thealgebraic structureof the problem.

3.1 Compact Summary Statistics

While continuous distributions like Gaussians are typically summarized using moments (like mean
and variance), or more generally, expected features, it is not immediately obvious how one might,
for example, compute the ‘mean’ of a distribution over permutations. There is asimple method that
might spring to mind, however, which is to think of the permutations aspermutation matricesand
to average the matrices instead.

Example 1 For example, consider the two permutationsε,(1,2) ∈ S3 (ε is the identity and(1,2)
swaps 1 and 2). We can associate the identity permutationε with the3× 3 identity matrix, and
similarly, we can associate the permutation(1,2) with the matrix:

(1,2) 7→




0 1 0
1 0 0
0 0 1


 .

The ‘average’ ofε and(1,2) is therefore:

1
2




1 0 0
0 1 0
0 0 1


+

1
2




0 1 0
1 0 0
0 0 1


=




1/2 1/2 0
1/2 1/2 0
0 0 1


 .

As we will later show, computing the ‘mean’ (as described above) of a distribution over permuta-
tions,P, compactly summarizesPby storing a marginal distribution over each ofσ(1),σ(2), . . . ,σ(n),
which requires storing onlyO(n2) numbers rather than the fullO(n!) for the exact distribution. As
an example, one possible summary might look like:

P̂ =




Alice Bob Cathy
Track 1 2/3 1/6 1/6
Track 2 1/3 1/3 1/3
Track 3 0 1/2 1/2


 .

Such doubly stochastic “first-order summaries” have been studied in various settings (Shin et al.,
2003; Helmbold and Warmuth, 2007). In identity management (Shin et al., 2003),3 first-order sum-

3. Strictly speaking, a map from identities to tracks is not a permutation since apermutation always maps a set into
itself. In fact, the set of all such identity-to-track assignments does not actually form a group since there is no way
to compose any two such assignments to obtain a legitimate group operation. We abuse the notation by referring to
these assignments as a group, but really the elements of the group here should be thought of as the ‘deviation’ from
the original identity-to-track assignment (where only the tracks are permuted, for example, when they are confused).
In the group theoretic language, there is a faithful group action ofSn on the set of all identity-to-track assignments.
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maries maintain, for example,

P(Alice is at Track 1) = 2/3,

P(Bob is at Track 3) = 1/2.

What cannot be captured by first-order summaries however, are the higher order statements like:

P(Alice is in Track 1andBob is in Track 2) = 0.

Over the next two sections, we will show that the first-order summary of a distribution P(σ)
can equivalently be viewed as the lowest frequency coefficients of the Fourier transform ofP(σ),
and that by considering higher frequencies, we can capture higher order marginal probabilities in
a principled fashion. Furthermore, the Fourier theoretic perspective, as we will show, provides a
natural framework for formulating inference operations with respect to our compact summaries. In
a nutshell, we will view the prediction/rollup step as a convolution and the conditioning step as a
pointwise product—then we will formulate the two inference operations in the Fourier domain as a
pointwise product and convolution, respectively.

4. The Fourier Transform on Finite Groups

Over the last fifty years, the Fourier Transform has been ubiquitously applied to everything digital,
particularly with the invention of the Fast Fourier Transform (Cooley and Tukey, 1965; Rockmore,
2000). On the real line, the Fourier Transform is a well-studied method fordecomposing a func-
tion into a sum of sine and cosine terms over a spectrum of frequencies. Perhaps less familiar to
the machine learning community though, is its group theoretic generalization. In this section we
review group theoretic generalizations of the Fourier transform with an eye towards approximating
functions onSn. None of the results stated in this section or the next are original. Noncommutative
generalizations of the Fourier transform have been studied quite extensively throughout the last cen-
tury from both the mathematics (Lang, 1965) and physics communities (Chen, 1989). Applications
to permutations were first pioneered by Persi Diaconis who studied problems in card shuffling and
since then, there have been many papers on related topics in probability andstatistics. For further
information, see Diaconis (1988) and Terras (1999).

4.1 Group Representation Theory

The generalized definition of the Fourier Transform relies on the theory of group representations,
which formalize the concept of associating permutations with matrices and are used to construct a
complete basis for the space of functions on a groupG, thus also playing a role analogous to that of
sinusoids on the real line.

Definition 1 A representationof a group G is a mapρ from G to a set of invertible dρ×dρ (complex)
matrix operators (ρ : G→ Cdρ×dρ) which preserves algebraic structure in the sense that for all
σ1,σ2 ∈ G, ρ(σ1σ2) = ρ(σ1) · ρ(σ2). The matrices which lie in the image ofρ are called the
representation matrices, and we will refer to dρ as thedegreeof the representation.
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The requirement thatρ(σ1σ2) = ρ(σ1) ·ρ(σ2) is analogous to the property thatei(θ1+θ2) = eiθ1 ·eiθ2

for the conventional sinusoidal basis. Each matrix entry,ρi j (σ) defines some function overSn:

ρ(σ) =




ρ11(σ) ρ12(σ) · · · ρ1dρ(σ)

ρ21(σ) ρ22(σ) · · · ρ2dρ(σ)
...

...
.. .

...
ρdρ1(σ) ρdρ2(σ) · · · ρdρdρ(σ)


 ,

and consequently, each representationρ simultaneously defines a set ofd2
ρ functions overSn. We

will eventually think of group representations as the set of Fourier basis functions onto which we
can project arbitrary functions.

Before moving onto examples, we make several remarks about the generality of this paper. First,
while our paper is primarily focused on the symmetric group, many of its results hold for arbitrary
finite groups. For example, there are a variety of finite groups that have been studied in applications,
like metacyclic groups (Willsky, 1978), wreath product groups (Foote etal., 2004), etc. However,
while some of these results will even extend with minimal effort to more general cases, such as
locally compact groups, the assumption in all of the following results will be thatG is finite, even
if it is not explicitly stated. Specifically, most of the results in Sections 4, 6, andAppendix D.2 are
intended to hold over any finite group, while the results of the remaining sections are specific to
probabilistic inference over the symmetric group. Secondly, given an arbitrary finite groupG, some
of the algebraic results that we use require that the underlying field be the complex numbers. For the
particular case of the symmetric group, however, we can in fact assume that the representations are
real-valued matrices. Thus, throughout the paper, we will explicitly assumethat the representations
are real-valued.4

Example 2 We begin by showing three examples of representations on the symmetric group.

1. The simplest example of a representation is called thetrivial representationρ(n) : Sn→ R1×1,
which maps each element of the symmetric group to 1, the multiplicative identity on the real
numbers. The trivial representation is actually defined for every group,and while it may seem
unworthy of mention, it plays the role of the constant basis function in the Fourier theory.

2. Thefirst-order permutation representationof Sn, which we alluded to in Example 1, is the de-
gree n representation,τ(n−1,1) (we explain the terminology in Section 5) , which maps a per-
mutationσ to its corresponding permutation matrix given by[τ(n−1,1)(σ)]i j = 1{σ( j) = i}.
For example, the first-order permutation representation on S3 is given by:

τ(2,1)(ε) =




1 0 0
0 1 0
0 0 1


 τ(2,1)(1,2) =




0 1 0
1 0 0
0 0 1


 τ(2,1)(2,3) =




1 0 0
0 0 1
0 1 0




τ(2,1)(1,3) =




0 0 1
0 1 0
1 0 0


 τ(2,1)(1,2,3) =




0 0 1
1 0 0
0 1 0


 τ(2,1)(1,3,2) =




0 1 0
0 0 1
1 0 0




4. To recover similar results for more complex-valued representations, one would have to replace matrix transposes by
adjoints, etc.
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3. Thealternating representationof Sn, maps a permutationσ to the determinant ofτ(n−1,1)(σ),
which is+1 if σ can be equivalently written as the composition of an even number of pairwise
swaps, and−1 otherwise. We write the alternating representation asρ(1,...,1) with n1’s in the
subscript. For example, on S4, we have:

ρ(1,1,1,1)((1,2,3)) = ρ(1,1,1,1)((13)(12)) = +1.

The alternating representation can be interpreted as the ‘highest frequency’ basis function
on the symmetric group, intuitively due to its high sensitivity to swaps. For example, if
τ(1,...,1)(σ) = 1, thenτ(1,...,1)((12)σ) = −1. In identity management, it may be reasonable
to believe that the joint probability over all n identity labels should only change by a little if
just two objects are mislabeled due to swapping—in this case, ignoring the basis function cor-
responding to the alternating representation should still provide an accurate approximation
to the joint distribution.

In general, a representation corresponds to an overcomplete set of functions and therefore does
not constitute a valid basis for any subspace of functions. For example, the set of nine functions on
S3 corresponding toτ(2,1) span only four dimensions, because there are six normalization constraints
(three on the row sums and three on the column sums), of which five are independent—and so there
are five redundant dimensions. To find a valid complete basis for the spaceof functions onSn, we
will need to find a family of representations whose basis functions are independent, and span the
entiren!-dimensional space of functions.

In the following two definitions, we will provide two methods for constructing a new represen-
tation from old ones such that the set of functions onSn corresponding to the new representation
is linearly dependenton the old representations. Somewhat surprisingly, it can be shown that de-
pendencies which arise amongst the representations can always be recognized in a certain sense, to
come from the two possible following sources (Serre, 1977).

Definition 2

1. Equivalence. Given a representationρ1 and an invertible matrix C, one can define a new
representationρ2 by “changing the basis” forρ1:

ρ2(σ) , C−1 ·ρ1(σ) ·C. (1)

We say, in this case, thatρ1 and ρ2 are equivalentas representations (writtenρ1 ≡ ρ2, as
opposed toρ1 = ρ2), and the matrix C is known as theintertwining operator. Note that
dρ1 = dρ2.

It can be checked that the functions corresponding toρ2 can be reconstructed from those
corresponding toρ1. For example, if C is a permutation matrix, the matrix entries ofρ2 are
exactly the same as the matrix entries ofρ1, only permuted.

2. Direct Sum. Given two representationsρ1 andρ2, we can always form a new representation,
which we will write asρ1⊕ρ2, by defining:

ρ1⊕ρ2(σ) ,

[
ρ1(σ) 0

0 ρ2(σ)

]
.
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ρ1⊕ρ2 is called thedirect sum representation. For example, the direct sum of two copies of
the trivial representation is:

ρ(n)⊕ρ(n)(σ) =

[
1 0
0 1

]
,

with four corresponding functions on Sn, each of which is clearly dependent upon the trivial
representation itself.

Most representations can be seen as being equivalent to a direct sum of strictly smaller representa-
tions. Whenever a representationρ can be decomposed asρ ≡ ρ1⊕ρ2, we say thatρ is reducible.
As an example, we now show that the first-order permutation representationis a reducible represen-
tation.

Example 3 Instead of using the standard basis vectors{e1,e2,e3}, the first-order permutation
representation for S3, τ(2,1) : S3→ C3×3, can be equivalently written with respect to a new basis
{v1,v2,v3}, where:

v1 =
e1 +e2 +e3

|e1 +e2 +e3|
,

v2 =
−e1 +e2

|−e1 +e2|
,

v3 =
−e1−e2 +2e3

|−e1−e2 +2e3|
.

To ‘change the basis’, we write the new basis vectors as columns in a matrixC:

C =



| | |

v1 v2 v3

| | |


=




1√
3
−
√

2
2 − 1√

6
1√
3

√
2

2 − 1√
6

1√
3

0 2√
6


 ,

and conjugate the representationτ(2,1) by C (as in Equation 1) to obtain the equivalent representa-
tion C−1 · τ(2,1)(σ) ·C:

C−1 · τ(2,1)(ε) ·C =




1 0 0
0 1 0
0 0 1


 C−1 · τ(2,1)(1,2) ·C =




1 0 0
0 −1 0
0 0 1




C−1 · τ(2,1)(2,3) ·C =




1 0 0
0 1/2

√
3/2

0
√

3/2 −1/2


 C−1 · τ(2,1)(1,3) ·C =




1 0 0
0 1/2 −

√
3/2

0 −
√

3/2 −1/2




C−1 · τ(2,1)(1,2,3) ·C =




1 0 0
0 −1/2 −

√
3/2

0
√

3/2 −1/2


 C−1 · τ(2,1)(1,3,2) ·C =




1 0 0
0 −1/2

√
3/2

0 −
√

3/2 −1/2




The interesting property of this particular basis is that the new representation matrices all ap-
pear to be the direct sum of two smaller representations, a trivial representation,ρ(3) as the top left
block, and a degree 2 representation in the bottom right which we will refer toasρ(2,1).
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Geometrically, the representationρ(2,1) can also be thought of as the group of rigid symmetries
of the equilateral triangle with vertices:

P1 =

[ √
3/2

1/2

]
,P2 =

[
−
√

3/2
1/2

]
,P3 =

[
0
−1

]
.

The matrixρ(2,1)(1,2) acts on the triangle by reflecting about the x-axis, andρ(2,1)(1,2,3) by aπ/3
counter-clockwise rotation.

In general, there are infinitely many reducible representations. For example, given any dimen-
siond, there is a representation which maps every element of a groupG to thed×d identity matrix
(the direct sum ofd copies of the trivial representation). However, for any finite group, there exists
a finite collection of atomic representations which can be used to build up any other representa-
tion (up to equivalence) using the direct sum operation. These representations are referred to as
the irreduciblesof a group, and they are defined simply to be the collection of representations (up
to equivalence) which are not reducible. It can be shown that any (complex) representation of a
finite groupG is equivalent to a direct sum of irreducibles (Diaconis, 1988), and hence, for any
representationτ, there exists a matrixC for which

C−1 · τ ·C =
M

ρ

zρ
M

j=1

ρ, (2)

whereρ ranges over all distinct irreducible representations of the groupG, and the inner⊕ refers to
some finite number (zρ) of copies of each irreducibleρ.

As it happens, there are only three irreducible representations ofS3 (Diaconis, 1988), up to
equivalence: the trivial representationρ(3), the degree 2 representationρ(2,1), and the alternating
representationρ(1,1,1). The complete set of irreducible representation matrices ofS3 are shown in
the Table 2. Unfortunately, the analysis of the irreducible representationsfor n > 3 is far more
complicated and we postpone this more general discussion for Section 5.

4.2 The Fourier Transform

The link between group representation theory and Fourier analysis is given by the celebratedPeter-
Weyl theorem(Diaconis, 1988; Terras, 1999; Sagan, 2001) which says that the matrix entries of the
irreducibles ofG form acompleteset oforthogonalbasis functions onG.5 The space of functions
onS3, for example, is orthogonally spanned by the 3! functionsρ(3)(σ), [ρ(2,1)(σ)]1,1, [ρ(2,1)(σ)]1,2,
[ρ(2,1)(σ)]2,1, [ρ(2,1)(σ)]2,2 andρ(1,1,1)(σ), where[ρ(σ)]i j denotes the(i, j) entry of the matrixρ(σ).

As a replacement for projecting a functionf onto a complete set of sinusoidal basis functions
(as one would do on the real line), the Peter-Weyl theorem suggests instead to project onto the basis
provided by the irreducibles ofG. As on the real line, this projection can be done by computing the
inner product off with each element of the basis, and we define this operation to be the generalized
form of the Fourier Transform.

5. Technically the Peter-Weyl result, as stated here, is only true if all of therepresentation matrices are unitary. That is,
ρ(σ)∗ρ(σ) = I for all σ ∈ Sn, where the matrixA∗ is the conjugate transpose ofA. For the case of real-valued (as
opposed to complex-valued) matrices, however, the definitions of unitary and orthogonal matrices coincide.

While most representations are not unitary, there is a standard result from representation theory which shows
that foranyrepresentation ofG, there exists an equivalent unitary representation.
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σ ρ(3) ρ(2,1) ρ(1,1,1)

ε 1

[
1 0
0 1

]
1

(1,2) 1

[
−1 0
0 1

]
−1

(2,3) 1

[
1/2

√
3/2√

3/2 −1/2

]
−1

(1,3) 1

[
1/2 −

√
3/2

−
√

3/2 −1/2

]
−1

(1,2,3) 1

[
−1/2 −

√
3/2√

3/2 −1/2

]
1

(1,3,2) 1

[
−1/2

√
3/2

−
√

3/2 −1/2

]
1

Table 2: The irreducible representation matrices ofS3.

Definition 3 Let f : G→R be any function on a group G and letρ be any representation on G. The
Fourier Transformof f at the representationρ is defined to be the matrix of coefficients:

f̂ρ = ∑
σ

f (σ)ρ(σ).

The collection of Fourier Transforms at all irreducible representations of G formthe Fourier Trans-
form of f .

There are two important points which distinguish this Fourier Transform from its familiar for-
mulation on the real line—first, the outputs of the transform are matrix-valued,and second, the
inputs to f̂ arerepresentationsof G rather than real numbers. As in the familiar formulation, the
Fourier Transform is invertible and the inversion formula is explicitly given by the Fourier Inversion
Theorem.

Theorem 4 (Fourier Inversion Theorem)

f (σ) =
1
|G|∑λ

dρλTr
[

f̂ T
ρλ
·ρλ(σ)

]
, (3)

whereλ indexes over the collection of irreducibles of G.

Note that the trace term in the inverse Fourier Transform is just the ‘matrix dot product’ between
f̂ρλ andρλ(σ), since Tr

[
AT ·B

]
= 〈vec(A),vec(B)〉, where by vec we mean mapping a matrix to a

vector on the same elements arranged in column-major order.
We now provide several examples for intuition. For functions on the real line, the Fourier

Transform at zero frequency gives the DC component of a signal. The same holds true for functions
on a group; If f : G→ R is any function, then sinceρ(n) = 1, the Fourier Transform off at the
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trivial representation is constant, witĥfρ(n)
= ∑σ f (σ). Thus, for any probability distributionP, we

haveP̂ρ(n)
= 1. If P were the uniform distribution, then̂Pρ = 0 at every irreducibleρ except at the

trivial representation.
The Fourier Transform atτ(n−1,1) also has a simple interpretation:

[ f̂τ(n−1,1)
]i j = ∑

σ∈Sn

f (σ)[τ(n−1,1)(σ)]i j = ∑
σ∈Sn

f (σ)1{σ( j) = i}= ∑
σ:σ( j)=i

f (σ).

The set∆i j = {σ : σ( j) = i} is the set of the(n−1)! possible permutations which map elementj to
i. In identity management,∆i j can be thought of as the set of assignments which, for example, have
Alice at Track 1. IfP is a distribution, then̂Pτ(n−1,1)

is a matrix offirst-ordermarginal probabilities,
where the(i, j)-th element is the marginal probability that a random permutation drawn fromP
maps elementj to i.

Example 4 Consider the following probability distribution on S3:

σ ε (1,2) (2,3) (1,3) (1,2,3) (1,3,2)

P(σ) 1/3 1/6 1/3 0 1/6 0

The set of all first order marginal probabilities is given by the Fourier transform atτ(2,1):

P̂τ(2,1)
=




A B C
1 2/3 1/6 1/6
2 1/3 1/3 1/3
3 0 1/2 1/2


 .

In the above matrix, each column j represents a marginal distribution over the possible tracks that
identity j can map to under a random draw from P. We see, for example, thatAlice is at Track 1
with probability 2/3, or at Track 2 with probability 1/3. Simultaneously, each row i represents a
marginal distribution over the possible identities that could have been mapped to track i under a
random draw from P. In our example, Bob and Cathy are equally likely to bein Track 3, but Alice
is definitely not in Track 3. Since each row and each column is itself a distribution, the matrixP̂τ(2,1)

must be doubly stochastic. We will elaborate on the consequences of this observation later.
The Fourier transform of the same distribution at all irreducibles is:

P̂ρ(3)
= 1, P̂ρ(2,1)

=

[
1/4

√
3/4√

3/4 1/4

]
, P̂ρ(1,1,1)

= 0.

The first-order permutation representation,τ(n−1,1), captures the statistics of how a random per-
mutation acts on a single object irrespective of where all of the othern−1 objects are mapped, and
in doing so, compactly summarizes the distribution with onlyO(n2) numbers. Unfortunately, as
mentioned in Section 3, the Fourier transform at the first-order permutation representation cannot
capture more complicated statements like:

P(Alice and Bob occupy Tracks 1 and 2) = 0.
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To avoid collapsing away so much information, we might define richer summary statistics that might
capture ‘higher-order’ effects. We define thesecond-order unordered permutation representation
by:

[τ(n−2,2)(σ)]{i, j},{k,ℓ} = 1{σ({k, ℓ}) = {i, j}} ,
where we index the matrix rows and columns by unordered pairs{i, j}. The condition inside the
indicator function states that the representation captures whether the pair of objects{k, ℓ} maps to
the pair{i, j}, but is indifferent with respect to the ordering; that is, eitherk 7→ i andℓ 7→ j, or,
k 7→ j andℓ 7→ i.

Example 5 For n= 4, there are six possible unordered pairs:{1,2},{1,3},{1,4},{2,3},{2,4}, and
{3,4}. The matrix representation of the permutation(1,2,3) is:

τ(2,2)(1,2,3) =




{1,2} {1,3} {1,4} {2,3} {2,4} {3,4}
{1,2} 0 0 0 1 0 0
{1,3} 1 0 0 0 0 0
{1,4} 0 0 0 0 1 0
{2,3} 0 1 0 0 0 0
{2,4} 0 0 0 0 0 1
{3,4} 0 0 1 0 0 0




.

Thesecond order ordered permutation representation, τ(n−2,1,1), is defined similarly:

[τ(n−2,1,1)(σ)](i, j),(k,ℓ) = 1{σ((k, ℓ)) = (i, j)} ,

where(k, ℓ) denotes anorderedpair. Therefore,[τ(n−2,1,1)(σ)](i, j),(k,ℓ) is 1 if and only ifσ mapsk to
i and ℓ to j.

As in the first-order case, the Fourier transform of a probability distribution atτ(n−2,2), returns
a matrix of marginal probabilities of the form:P(σ : σ({k, ℓ}) = {i, j}), which captures statements
like, "Alice and Bob occupy Tracks 1 and 2 with probability 1/2". Similarly, the Fourier transform
at τ(n−2,1,1) returns a matrix of marginal probabilities of the formP(σ : σ((k, ℓ)) = (i, j)), which
captures statements like, "Alice is in Track 1andBob is in Track 2 with probability 9/10".

We can go further and define third-order representations, fourth-order representations, and so
on. In general however, the permutation representations as they have been defined above are re-
ducible, intuitively due to the fact that it is possible to recover lower order marginal probabilities
from higher order marginal probabilities. For example, one can recoverthe normalization constant
(corresponding to the trivial representation) from the first order matrixof marginals by summing
across either the rows or columns, and the first order marginal probabilities from the second order
marginal probabilities by summing across appropriate matrix entries. To truly leverage the machin-
ery of Fourier analysis, it is important to understand the Fourier transform at the irreducibles of
the symmetric group, and in the next section, we show how to derive the irreducible representa-
tions of the Symmetric group by first defining permutation representations, then “subtracting off the
lower-order effects”.

5. Representation Theory on the Symmetric Group

In this section, we provide a brief introduction to the representation theory of the Symmetric group.
Rather than giving a fully rigorous treatment of the subject, our goal is to give some intuition about
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the kind of information which can be captured by the irreducible representations of Sn. Roughly
speaking, we will show that Fourier transforms on the Symmetric group, instead of being indexed
by frequencies, are indexed bypartitions of n (tuples of numbers which sum ton), and certain
partitions correspond to more complex basis functions than others. For proofs, we point the reader
to consult: Diaconis (1989), James and Kerber (1981), Sagan (2001)and Vershik and Okounkov
(2006).

Instead of the singleton or pairwise marginals which were described in the previous section,
we will now focus on using the Fourier coefficients of a distribution to querya much wider class of
marginal probabilities. As an example, we will be able to compute the following (more complicated)
marginal probability onS6 using Fourier coefficients:

P


σ : σ







1 2 3
4 5
6






=





1 2 6
4 5
3






 , (4)

which we interpret as the joint marginal probability that the rows of the diagram on the left map to
corresponding rows on the right as unordered sets. In other words,Equation 4 is the joint probability
that unorderedset {1,2,3} maps to{1,2,6}, the unordered pair{4,5} maps to{4,5}, and the
singleton{6} maps to{3}.

The diagrams in Equation 4 are known asFerrer’s diagramsand are commonly used to visualize
partitionsof n, which are defined to be unordered tuples of positive integers,λ = (λ1, . . . ,λℓ), which
sum ton. For example,λ = (3,2) is a partition ofn= 5 since 3+2= 5. Usually we write partitions
as weakly decreasing sequences by convention, so the partitions ofn = 5 are:

(5), (4,1), (3,2), (3,1,1), (2,2,1), (2,1,1,1), (1,1,1,1,1),

and their respective Ferrers diagrams are:

, , , , , , .

A Young tabloidis an assignment of the numbers{1, . . . ,n} to the boxes of a Ferrers diagram for a
partitionλ, where each row represents an unordered set. There are 6 Young tabloids corresponding
to the partitionλ = (2,2), for example:

{
1 2
3 4

}
,

{
1 3
2 4

}
,

{
1 4
2 3

}
,

{
2 3
1 4

}
,

{
2 4
1 3

}
,

{
3 4
1 2

}
.

The Young tabloid,
1 2
3 4 , for example, represents the two underordered sets{1,2} and{3,4}, and if

we were interested in computing the joint probability thatσ({1,2}) = {3,4} andσ({3,4}) = {1,2},
then we could write the problem in terms of Young tabloids as:

P

(
σ : σ

({
1 2
3 4

})
=

{
3 4
1 2

})
.
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In general, we will be able to use the Fourier coefficients at irreducible representations to com-
pute the marginal probabilities of Young tabloids. As we shall see, with the helpof the James
Submodule theorem(James and Kerber, 1981), the marginals corresponding to “simple” partitions
will require very few Fourier coefficients to compute, which is one of the mainstrengths of working
in the Fourier domain.

Example 6 Imagine three separate rooms containing two tracks each, in which Alice and Bob are
in room 1 occupying Tracks 1 and 2; Cathy and David are in room 2 occupying Tracks 3 and 4; and
Eric and Frank are in room 3 occupying Tracks 5 and 6, but we are notable to distinguish which
person is at which track in any of the rooms. Then

P


σ :







A B
C D
E F






→





1 2
3 4
5 6






= 1.

It is in fact, possible to recast the first-order marginals which were described in the previous
section in the language of Young tabloids by noticing that, for example, if 1 mapsto 1, then the
unordered set{2, . . . ,n} must map to{2, . . . ,n} since permutations are one-to-one mappings. The
marginal probability thatσ(1) = 1, then, is equal to the marginal probability thatσ(1) = 1 and
σ({2, . . . ,n}) = {2, . . . ,n}. If n = 6, then the marginal probability written using Young tabloids is:

P

(
σ : σ

({
2 3 4 5 6
1

})
=

{
2 3 4 5 6
1

})
.

The first-order marginal probabilities correspond, therefore, to the marginal probabilities of
Young tabloids of shapeλ = (n−1,1).

Likewise, the second-order unordered marginals correspond to Young tabloids of shapeλ =
(n−2,2). If n= 6 again, then the marginal probability that{1,2}maps to{2,4} corresponds to the
following marginal probability for tabloids:

P

(
σ : σ

({
3 4 5 6
1 2

})
=

{
1 3 5 6
2 4

})
.

The second-orderorderedmarginals are captured at the partitionλ = (n−2,1,1). For example,
the marginal probability that{1} maps to{2} and{2} maps to{4} is given by:

P


σ : σ







3 4 5 6
1
2






=





1 3 5 6
2
4






 .

And finally, we remark that the(1, . . . ,1) partition ofn recovers all original probabilities since it
asks for a joint distribution overσ(1), . . . ,σ(n). The corresponding matrix of marginals hasn!×n!
entries (though there will only ben! distinct probabilities.

To see how the marginal probabilities of Young tabloids of shapeλ can be thought of as Fourier
coefficients, we will define a representation (which we call thepermutation representation) asso-
ciated withλ and show that the Fourier transform of a distribution at a permutation representation
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gives marginal probabilities. We begin by fixing an ordering on the set of possible Young tabloids,
{t1},{t2}, . . . , and define the permutation representationτλ(σ) to be the matrix:

[τλ(σ)]i j =

{
1 if σ({t j}) = {ti}
0 otherwise

.

It can be checked that the functionτλ is indeed a valid representation of the Symmetric group, and
therefore we can compute Fourier coefficients atτλ. If P(σ) is a probability distribution, then

[
P̂τλ

]
i j

= ∑
σ∈Sn

P(σ) [τλ(σ)]i j ,

= ∑
{σ :σ({t j})={ti}}

P(σ),

= P(σ : σ({t j}) = {ti}),

and therefore,the matrix of marginals corresponding to Young tabloids of shapeλ is givenexactly
by the Fourier transform at the representationτλ.

As we showed earlier, the simplest marginals (the zeroth order normalization constant), corre-
spond to the Fourier transform atτ(n), while the first-order marginals correspond toτ(n−1,1), and the
second-order unordered marginals correspond toτ(n−2,2). The list goes on and on, with the marginals
getting more complicated. At the other end of the spectrum, we have the Fouriercoefficients at the
representationτ(1,1,...,1) which exactly recover the original probabilitiesP(σ).

We use the word ‘spectrum’ suggestively here, because the differentlevels of complexity for the
marginals are highly reminiscent of the different frequencies for real-valued signals, and a natural
question to ask is how the partitions might be ordered with respect to the ‘complexity’ of the corre-
sponding basis functions. In particular how might one characterize this vague notion of complexity
for a given partition?

The ‘correct’ characterization, as it turns out, is to use thedominance orderingof partitions,
which, unlike the ordering on frequencies, is not a linear order, but rather, a partial order.

Definition 5 (Dominance Ordering) Let λ,µ be partitions of n. Thenλ D µ (we sayλ dominates
µ), if for each i,∑i

k=1 λk ≥ ∑i
k=1µk.

For example,(4,2) D (3,2,1) since 4≥ 3, 4+ 2≥ 3+ 2, and 4+ 2+ 0≥ 3+ 2+ 1. However,
(3,3) and (4,1,1) cannot be compared with respect to the dominance ordering since 3≤ 4, but
3+3≥ 4+1. The ordering over the partitions ofn = 6 is depicted in Figure 3(a).

Partitions with fat Ferrers diagrams tend to be greater (with respect to dominance ordering) than
those with skinny Ferrers diagrams. Intuitively, representations corresponding to partitions which
are high in the dominance ordering are ‘low frequency’, while representations corresponding to
partitions which arelow in the dominance ordering are ‘high frequency.’6

Having defined a family of intuitive permutation representations over the Symmetric group, we
can now ask whether the permutation representations are irreducible or not: the answer in general,
is to the negative, due to the fact that it is often possible to reconstruct lower order marginals by
summing over the appropriate higher order marginal probabilities. However, it is possible to show

6. The direction of the ordering is slightly counterintuitive given the frequency interpretation, but is standard in the
literature.
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(a) Dominance ordering for
n = 6.

(b) Fourier coefficient matrices forS6.

Figure 3: The dominance order for partitions ofn= 6 are shown in the left diagram (a). Fat Ferrer’s
diagrams tend to be higher in the order and long, skinny diagrams tend to be lower. The
corresponding Fourier coefficient matrices for each partition (at irreducible representa-
tions) are shown in the right diagram (b). Note that since the Fourier basisfunctions form
a complete basis for the space of functions on the Symmetric group, there mustbe exactly
n! coefficients in total.

that, for each permutation representationτλ, there exists a corresponding irreducible representation
ρλ, which, loosely, captures all of the information at the ‘frequency’λ which was not already cap-
tured at lower frequency irreducibles. Moreover, it can be shown that there exists no irreducible
representation besides those indexed by the partitions ofn. These remarkable results are formalized
in the James Submodule Theorem, which we state here without proof (see Diaconis 1988, James
and Kerber 1981 and Sagan 2001).

Theorem 6 (James’ Submodule Theorem)

1. (Uniqueness) For each partition,λ, of n, there exists an irreducible representation,ρλ, which
is unique up to equivalence.

2. (Completeness) Every irreducible representation of Sn corresponds to some partition of n.
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3. There exists a matrix Cλ associated with each partitionλ, for which

CT
λ · τλ(σ) ·Cλ =

M

µDλ

Kλµ
M

ℓ=1

ρµ(σ), for all σ ∈ Sn. (5)

4. Kλλ = 1 for all partitions λ.

In plain English, part (3) of the James Submodule theorem says that we canalways reconstruct
marginal probabilities ofλ-tabloids using the Fourier coefficients at irreducibles which lieat λ and
abovein the dominance ordering, if we have knowledge of the matrixCλ (which can be precom-
puted using methods detailed in Appendix D), and the multiplicitiesKλµ. In particular, combining
Equation 5 with the definition of the Fourier transform, we have that

f̂τλ = Cλ ·


M

µDλ

Kλµ
M

ℓ=1

f̂ρµ


 ·CT

λ , (6)

and so to obtain marginal probabilities ofλ-tabloids, we simply construct a block diagonal matrix
using the appropriate irreducible Fourier coefficients, and conjugate byCλ. The multiplicitiesKλµ

are known as theKostka numbersand can be computed using Young’s rule (Sagan, 2001). To
illustrate using a few examples, we have the following decompositions:

τ(n) ≡ ρ(n),

τ(n−1,1) ≡ ρ(n)⊕ρ(n−1,1),

τ(n−2,2) ≡ ρ(n)⊕ρ(n−1,1)⊕ρ(n−2,2),

τ(n−2,1,1) ≡ ρ(n)⊕ρ(n−1,1)⊕ρ(n−1,1)⊕ρ(n−2,2)⊕ρ(n−2,1,1),

τ(n−3,3) ≡ ρ(n)⊕ρ(n−1,1)⊕ρ(n−2,2)⊕ρ(n−3,3),

τ(n−3,2,1) ≡ ρ(n)⊕ρ(n−1,1)⊕ρ(n−1,1)⊕ρ(n−2,2)⊕ρ(n−2,2)⊕ρ(n−2,1,1)⊕ρ(n−3,3)⊕ρ(n−3,2,1).

Intuitively, the irreducibles at a partitionλ reflect the “pure”λth-order effects of the underlying
distribution. In other words, the irreducibles atλ form a basis for functions that have “interesting”
λth-order marginal probabilities, but uniform marginals at all partitionsµ such thatµ⊲ λ.

Example 7 As an example, we demonstrate a “preference” function which is “purely”second-
order (unordered) in the sense that its Fourier coefficients are equalto zero at all irreducible repre-
sentations exceptρ(n−2,2) (and the trivial representation). Consider the function f: Sn→R defined
by:

f (σ) =

{
1 if |σ(1)−σ(2)| ≡ 1 (mod n)
0 otherwise

.

Intuitively, imagine seating n people at a round table with n chairs, but with the constraint that
the first two people, Alice and Bob, are only happy if they are allowed to sit next to each other.
In this case, f can be thought of as the indicator function for the subset of seating arrangements
(permutations) which make Alice and Bob happy.

Since f depends only on the destination of the unordered pair{1,2}, its Fourier transform
is zero at all partitions µ such that µ⊳ (n− 2,2) ( f̂µ = 0). On the other hand, Alice and Bob
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λ (n) (n−1,1) (n−2,2) (n−2,1,1) (n−3,3) (n−3,2,1)

dim ρλ 1 n−1 n(n−3)
2

(n−1)(n−2)
2

n(n−1)(n−5)
6

n(n−2)(n−4)
3

Table 3: Dimensions of low-order irreducible representation matrices.

have no individual preferences for seating, so the first-order “marginals” of f are uniform, and
hence,f̂(n−1,1) = 0. The Fourier coefficients at irreducibles can be obtained from the second-order
(unordered) “marginals” using Equation 5.

CT
(n−2,2) · P̂τ(n−2,2)

·C(n−2,2) =




Z

0

f̂ρ(n−2,2)




.

The sizes of the irreducible representation matrices are typically much smaller than their corre-
sponding permutation representation matrices. In the case ofλ = (1, . . . ,1) for example, dimτλ = n!
while dimρλ = 1. There is a simple combinatorial algorithm, known as theHook Formula(Sagan,
2001), for computing the dimension ofρλ. While we do not discuss it, we provide a few dimen-
sionality computations here (Table 3) to facilitate a dicussion of complexity later. Despite providing
polynomial sized function approximations, the Fourier coefficient matrices can grow quite fast, and
roughly, one would needO(n2k) storage to maintainkth order marginals. For example, we would
need to storeO(n8) elements to maintain fourth-order marginals. It is worth noting that since the
Fourier transform is invertible, there must ben! Fourier coefficients in total, and so∑ρ d2

ρ = |G|= n!.
See Figure 3(b) for an example of what the matrices of a complete Fourier transform onS6 would
look like.

In practice, since the irreducible representation matrices are determined only up to equivalence,
it is necessary to choose a basis for the irreducible representations in order to explicitly construct
the representation matrices. As in Kondor et al. (2007), we use theGel’fand-Tsetlin basiswhich has
several attractive properties, two advantages being that the matrices arereal-valued and orthogonal.
See Appendix B for details on constructing irreducible matrix representations with respect to the
Gel’fand-Tsetlin basis.

6. Inference in the Fourier Domain

What we have shown thus far is that there is a principled method for compactlysummarizing distri-
butions over permutations based on the idea of bandlimiting—saving only the low-frequency terms
of the Fourier transform of a function, which, as we discussed, is equivalent to maintaining a set of
low-order marginal probabilities. We now turn to the problem of performing probabilistic inference
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using our compact summaries. One of the main advantages of viewing marginalsas Fourier coeffi-
cients is that it provides a natural principle for formulating polynomial time approximate inference
algorithms, which is to rewrite all inference related operations with respect tothe Fourier domain,
then to perform the Fourier domain operations ignoring high-order terms.

The idea of bandlimiting a distribution is ultimately moot, however, if it becomes necessary to
transform back to the primal domain each time an inference operation is called.Naively, the Fourier
Transform onSn scales asO((n!)2), and even the fastest Fast Fourier Transforms for functions on
Sn are no faster thanO(n2 ·n!) (see Maslen 1998 for example). To resolve this issue, we present a
formulation of inference which operates solely in the Fourier domain, allowingus to avoid a costly
transform. We begin by discussing exact inference in the Fourier domain,which is no more tractable
than the original problem because there aren! Fourier coefficients, but it will allow us to discuss
the bandlimiting approximation in the next section. There are two operations to consider: predic-
tion/rollup, and conditioning. While we have motivated both of these operationsin the familiar
context of hidden Markov models, they are fundamental and appear in many other settings. The
assumption for the rest of this section is that the Fourier transforms of the transition and observation
models are known. We discuss methods for obtaining the models in Section 8. The main results
of this section (excluding the discussions about complexity) extend naturallyto other finite groups
besidesSn.

6.1 Fourier Prediction/Rollup

We will consider one particular class of transition models—that of random walks over a group,
which assumes thatσ(t+1) is generated fromσ(t) by drawing a random permutationπ(t) from some
distributionQ(t) and settingσ(t+1) = π(t)σ(t).7 In our identity management example,π(t) represents
a random identity permutation that might occur among tracks when they get close to each other
(what we call amixing event). For example,Q(1,2) = 1/2 means that Tracks 1 and 2 swapped
identities with probability 1/2. The random walk model also appears in many otherapplications
such as modeling card shuffles (Diaconis, 1988).

The motivation behind the random walk transition model is that it allows us to write the pre-
diction/rollup operation as aconvolutionof distributions on a group. The extension of the familiar
notion of convolution to groups simply replaces additions and subtractions byanalogous group op-
erations (function composition and inverse, respectively):

Definition 7 Let Q and P be probability distributions on a group G. Define theconvolution8 of Q
and P to be the function[Q∗P] (σ1) = ∑σ2

Q(σ1σ−1
2 )P(σ2).

Using Definition 7, we see that the prediction/rollup step can be written as:

P(σ(t+1)) = ∑
σ(t)

P(σ(t+1)|σ(t)) ·P(σ(t)),

= ∑
{(σ(t),π(t)) :σ(t+1)=π(t)·σ(t)}

Q(t)(π(t)) ·P(σ(t)),

7. We placeπ on the left side of the multiplication because we want it to permute tracks and not identities. Had we
definedπ to map from tracks to identities (instead of identities to tracks), thenπ would be multiplied from the right.
Besides left versus right multiplication, there are no differences between the two conventions.

8. Note that this definition of convolution on groups isstrictly a generalization of convolution of functions on the real
line, and is a non-commutative operation for non-Abelian groups. Thusthe distributionP∗Q is not necessarily the
same asQ∗P.
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(Right-multiplying both sides ofσ(t+1) = π(t)σ(t)

by (σ(t))−1, we see thatπ(t) can be replaced byσ(t+1)(σ(t))−1),

= ∑
σ(t)

Q(t)(σ(t+1) · (σ(t))−1) ·P(σ(t)),

=
[
Q(t) ∗P

]
(σ(t+1)).

As with Fourier transforms on the real line, the Fourier coefficients of the convolution of distribu-
tionsP andQ on groups can be obtained from the Fourier coefficients ofP andQ individually, using
theconvolution theorem(see also Diaconis 1988):

Proposition 8 (Convolution Theorem) Let Q and P be probability distributions on a group G. For
any representationρ, [

Q̂∗P
]

ρ
= Q̂ρ · P̂ρ,

where the operation on the right side is matrix multiplication.

Therefore, assuming that the Fourier transformsP̂(t)
ρ andQ̂(t)

ρ are given, the prediction/rollup update
rule is simply:

P̂(t+1)
ρ ← Q̂(t)

ρ · P̂(t)
ρ .

Note that the update only requires knowledge ofP̂ and does not requireP. Furthermore, the update
is pointwisein the Fourier domain in the sense that the coefficients at the representationρ affect

P̂(t+1)
ρ only at ρ. Consequently, prediction/rollup updates in the Fourier domain never increase the

representational complexity. For example, if we maintain third-order marginals, then a single step
of prediction/rollup called at timet returns theexactthird-order marginals at timet +1, and nothing
more.

Example 8 We run the prediction/rollup routines on the first two time steps of the example in
Figure 2, first in the primal domain, then in the Fourier domain. At each mixing event, two tracks, i
and j, swap identities with some probability. Using a mixing model given by:

Q(π) =





3/4 if π = ε
1/4 if π = (i, j)
0 otherwise

,

we obtain results shown in Tables 4 and 5.

6.1.1 COMPLEXITY OF PREDICTION/ROLLUP

We will discuss complexity in terms of the dimension of the largest maintained irreducible Fourier
coefficient matrix, which we will denote bydmax (see Table 3 for irreducible dimensions). If
we maintain 2nd order marginals, for example, thendmax = O(n2), and if we maintain 3rd order
marginals, thendmax= O(n3).

Performing a single prediction/rollup step in the Fourier domain involves performing a single
matrix multiplication for each irreducible and thus requiresO(d3

max) time using the naive multipli-
cation algorithm.
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σ P(0) Q(1) P(1) Q(2) P(2)

ε 1 3/4 3/4 3/4 9/16

(1,2) 0 1/4 1/4 0 3/16

(2,3) 0 0 0 0 0

(1,3) 0 0 0 1/4 3/16

(1,2,3) 0 0 0 0 1/16

(1,3,2) 0 0 0 0 0

Table 4: Primal domain prediction/rollup example.

P̂(0) Q̂(1) P̂(1) Q̂(2) P̂(2)

ρ(3) 1 1 1 1 1

ρ(2,1)

[
1 0
0 1

] [
1/2 0
0 1

] [
1/2 0
0 1

] [
7/8 −

√
3/8

−
√

3/8 5/8

] [
7/16 −

√
3/8

−
√

3/16 5/8

]

ρ(1,1,1) 1 1/2 1/2 1/2 1/4

Table 5: Fourier domain prediction/rollup example.

In certain situations, faster updates can be achieved. For example, in the pairwise mixing model
of Example 8, the Fourier transform ofQ distribution takes the form:̂Qρλ = αIdλ +βρλ(i, j), where
Idλ is thedλ× dλ identity matrix (see also Section 8). As it turns out, the matrixρλ(i, j) can be
factored into a product ofO(n) sparse matrices each with at mostO(dλ) nonzero entries. To see
why, recall the elementary fact that the transposition(i, j) factors into a sequence ofO(n) adjacent
transpositions:

(i, j) = (i, i +1)(i +1, i +2) · · ·( j−1, j)( j−2, j−1) · (i +1, i +2)(i, i +1).

If we use the Gel’fand-Tsetlin basis adapted to the subgroup chainS1 ⊂ ·· ·Sn (see Appendix B),
then we also know that the irreducible representation matrices evaluated at adjacent transpositions
are sparse with no more thanO(d2

max) nonzero entries. Thus by carefully exploiting sparsity during
the prediction/rollup algorithm, one can achieve anO(nd2

max) update, which is faster thanO(d3
max)

as long as one uses more than first-order terms.

6.1.2 LIMITATIONS OF RANDOM WALK MODELS

While the random walk assumption captures a rather general family of transition models, there do
exist certain models which cannot be written as a random walk on a group. In particular, one lim-
itation is that the prediction/rollup update for a random walk model can only increase the entropy
of the distribution. As with Kalman filters, localization is thus impossible without makingobser-
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vations.9 Shin et al. (2005) show that the entropy must increase for a certain kind of random walk
onSn (whereπ could be either the identity or the transposition(i, j)), but in fact, the result is easily
generalized for any random walk mixing model and for any finite group.

Proposition 9

H
[
P(t+1)(σ(t+1))

]
≥max

{
H
[
Q(t)(τ(t))

]
,H
[
P(t)(σ(t))

]}
,

where H[P(σ)] denotes the statistical entropy functional, H[P(σ)] =−∑σ∈GP(σ) logP(σ).

Proof We have:

P(t+1)(σ(t+1)) =
[
Q(t) ∗P(t)

]
(σ(t+1))

= ∑
σ(t)

Q(σ(t+1) · (σ(t))−1)P(t)(σ(t))

Applying the Jensen Inequality to the entropy function (which is concave) yields:

H
[
P(t+1)(σ(t+1))

]
≥∑

σ(t)

P(t)(σ(t))H
[
Q(t)(σ · (σ(t))−1)

]
, (Jensen’s inequality)

= ∑
σ(t)

P(t)(σ(t))H
[
Q(t)(σ)

]
, (translation invariance of entropy)

= H
[
Q(t)(σ)

]
, (since∑σ(t) P(t)(σ(t)) = 1).

The proof thatH
[
P(t+1)(σ(t+1))

]
≥H

[
P(t)(σ(t))

]
is similar with the exception that we must rewrite

the convolution so that the sum ranges overτ(t).

P(t+1)(σ(t+1)) =
[
Q(t) ∗P(t)

]
(σ(t+1)),

= ∑
τ(t)

Q(t)(τ(t))P(t)((τ(t))−1 ·σ(t+1)).

Example 9 This example is based on one from Diaconis (1988). Consider a deck of cards numbered
{1, . . . ,n}. Choose a random permutation of cards by first picking two cards independently, and
swapping (a card might be swapped with itself), yielding the following probabilitydistribution over
Sn:

Q(π) =





1
n if π = ε
2
n2 if π is a transposition
0 otherwise

. (7)

9. In general, if we are not constrained to using linear Gaussian models,it is possible to localize with no observations.
Consider a robot walking along the unit interval on the real line (which is not a group). If the position of the robot
is unknown, one easy localization strategy might be to simply drive the robot to the right, with the knowledge that
given ample time, the robot will slam into the ‘wall’, at which point it will have been localized. With random walk
based models on groups however, these strategies are impossible—imagine the same robot walking around the unit
circle—since, in some sense, the group structure prevents the existenceof ‘walls’.
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Figure 4: We start with a deck of cards in sorted order, and perform fifteen consecutive shuffles
according to the rule given in Equation 7. The plot shows the entropy of thedistribu-
tion over permutations with respect to the number of shuffles forn = 3,4, . . . ,8. When
H(P)/ log(n!) = 1, the distribution has become uniform.

Repeating the above process for generating random permutationsπ gives a transition model for
a hidden Markov model over the symmetric group. We can also see (Figure 4) that the entropy of
the deck increases monotonically with each shuffle, and that repeated shuffles with Q(π) eventually
bring the deck to the uniform distribution.

6.2 Fourier Conditioning

In contrast with the prediction/rollup operation, conditioning can potentially increase the repre-
sentational complexity. As an example, suppose that we know the following first-order marginal
probabilities:

P(Alice is at Track 1 or Track 2) = .9, and

P(Bob is at Track 1 or Track 2) = .9.

If we then make the following first-order observation:

P(Cathy is at Track 1 or Track 2) = 1,
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then it can be inferred that Alice and Bob cannotbothoccupy Tracks 1 and 2 at the same time, that
is,

P({Alice,Bob} occupy Tracks {1,2}) = 0,

demonstrating that after conditioning, we are left with knowledge of second-order (unordered)
marginals despite the fact that the prior and likelihood functions were only known up to first-order.
Intuitively, the example shows that conditioning “smears” information from low-order Fourier co-
efficients to high-order coefficients, and that one cannot hope for a pointwise operation as was
afforded by prediction/rollup. We now show precisely how irreducibles of different complexities
“interact” with each other in the Fourier domain during conditioning.

An application of Bayes rule to find a posterior distributionP(σ|z) after observing some evi-
dencez requires two steps: apointwise productof likelihood P(z|σ) and priorP(σ), followed by a
normalization step:

P(σ|z) = η ·P(z|σ) ·P(σ).

For notational convenience, we will refer to the likelihood function asL(z|σ) henceforth. We
showed earlier that the normalization constantη−1 = ∑σ L(z|σ) ·P(σ) is given by the Fourier trans-

form of L̂(t)P(t) at the trivial representation—and therefore the normalization step of conditioning

can be implemented by simply dividing each Fourier coefficient by the scalar
[
L̂(t)P(t)

]
ρ(n)

.

The pointwise product of two functionsf andg, however, is trickier to formulate in the Fourier
domain. For functions on the real line, the pointwise product of functions can be implemented
by convolving the Fourier coefficients of̂f and ĝ, and so a natural question is: can we apply a
similar operation for functions over general groups? Our answer to this isthat there is an analogous
(but more complicated) notion of convolution in the Fourier domain of a general finite group. We
present a convolution-based conditioning algorithm which we callKronecker Conditioning, which,
in contrast to the pointwise nature of the Fourier Domain prediction/rollup step,and much like
convolution, smears the information at an irreducibleρν to other irreducibles.

6.2.1 FOURIER TRANSFORM OF THEPOINTWISE PRODUCT

Our approach to computing the Fourier transform of the pointwise productin terms of f̂ andĝ is to
manipulate the functionf (σ)g(σ) so that it can be seen as the result of an inverse Fourier transform
(Equation 3). Hence, the goal will be to find matricesRν (as a function off̂ , ĝ) such that for any
σ ∈G,

f (σ) ·g(σ) =
1
|G|∑ν

dρνTr
(
RT

ν ·ρν(σ)
)
, (8)

after which we will be able to read off the Fourier transform of the pointwiseproduct as
[

f̂ g
]

ρν
= Rν.

For anyσ ∈G, we can write the pointwise product in terms off̂ andĝ using the inverse Fourier
transform:

f (σ) ·g(σ) =

[
1
|G|∑λ

dρλTr
(

f̂ T
ρλ
·ρλ(σ)

)]
·
[

1
|G|∑µ

dρµTr
(

ĝT
ρµ
·ρµ(σ)

)]

=

(
1
|G|

)2

∑
λ,µ

dρλdρµ

[
Tr
(

f̂ T
ρλ
·ρλ(σ)

)
·Tr
(

ĝT
ρµ
·ρµ(σ)

)]
. (9)
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1. If A andB are square, Tr(A⊗B) = (TrA) · (TrB).

2. (A⊗B) · (C⊗D) = AC⊗BD.

3. LetA be ann×n matrix, andC an invertiblen×n matrix. Then TrA= Tr
(
C−1AC

)
.

4. LetA be ann×n matrix andBi be matrices of sizemi×mi where∑i mi = n. Then
Tr(A· (L

i Bi)) = ∑i Tr(Ai ·Bi), whereAi is the block ofA corresponding to block
Bi in the matrix(

L

i Bi).

Table 6: Matrix Identities used in Proposition 10.

Now we want to manipulate this product of traces in the last line to be just one trace (as in Equa-
tion 8), by appealing to some properties of theKronecker Product. The Kronecker product of an
n×n matrixU = (ui, j) by anm×mmatrixV, is defined to be thenm×nmmatrix

U⊗V =




u1,1V u1,2V . . . u1,nV
u2,1V u2,2V . . . u2,nV

...
...

. . .
...

un,1V un,2V . . . un,nV


 .

We summarize some important matrix properties in Table 6. The connection to our problem is given
by matrix property 1. Applying this to Equation 9, we have:

Tr
(

f̂ T
ρλ
·ρλ(σ)

)
·Tr
(

ĝT
ρµ
·ρµ(σ)

)
= Tr

((
f̂ T
ρλ
·ρλ(σ)

)
⊗
(

ĝT
ρµ
·ρµ(σ)

))

= Tr
((

f̂ρλ⊗ ĝρµ

)T · (ρλ(σ)⊗ρµ(σ))
)

,

where the last line follows by Property 2. The term on the left,f̂ρλ⊗ ĝρµ, is a matrix of coefficients.
The term on the right,ρλ(σ)⊗ρµ(σ), itself happens to be a representation, called theKronecker (or
Tensor) Product Representation. In general, the Kronecker product representation is reducible, and
so it can be decomposed into a direct sum of irreducibles. In particular, ifρλ andρµ are any two
irreducibles ofG, there exists a similarity transformCλµ such that, for anyσ ∈G,

C−1
λµ · [ρλ⊗ρµ] (σ) ·Cλµ =

M

ν

zλµν
M

ℓ=1

ρν(σ). (10)

The⊕ symbols here refer to a matrix direct sum as in Equation 2,ν indexes over all irreducible rep-
resentations ofSn, whileℓ indexes over a number ofcopiesof ρν which appear in the decomposition.
We index blocks on the right side of this equation by pairs of indices(ν, ℓ). The number of copies of
eachρν (for the tensor product pairρλ⊗ρµ) is denoted by the integerzλµν, the collection of which,
taken over all triples(λ,µ,ν), are commonly referred to as theClebsch-Gordan series. Note that we
allow thezλµν to be zero, in which caseρν does not contribute to the direct sum. The matricesCλµ

are known as theClebsch-Gordan coefficients. TheKronecker Product Decompositionproblem is
that of finding the irreducible components of the Kronecker product representation, and thus to find
the Clebsch-Gordan series/coefficients for each pair of irreducible representations(ρλ,ρµ).
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Decomposing the Kronecker product inside Equation 10 using the Clebsch-Gordan series and
coefficients yields the desired Fourier transform, which we summarize in the form of a proposition.
In the case thatf andg are defined over an Abelian group, we will show that the following formulas
reduce to the familiar form of convolution.

Proposition 10 Let f̂ , ĝ be the Fourier transforms of functions f and g respectively, and for eachor-
dered pair of irreducibles(ρλ,ρµ), define: Aλµ , C−1

λµ ·
(

f̂ρλ⊗ ĝρµ

)
·Cλµ. Then the Fourier transform

of the pointwise product f g is:

[
f̂ g
]

ρν
=

1
dρν |G|∑λµ

dρλdρµ

zλµν

∑
ℓ=1

A(ν,ℓ)
λµ , (11)

where A(ν,ℓ)
λµ is the block of Aλµ corresponding to the(ν, ℓ) block in

L

ν
Lzλµν

ℓ=1 ρν from Equation 10.

Proof We use the fact thatCλµ is an orthogonal matrix for all pairs(ρλ,ρµ), that is,CT
λµ ·Cλµ = I .

f (σ) ·g(σ) =

[
1
|G|∑λ

dρλTr
(

f̂ T
ρλ
·ρλ(σ)

)]
·
[

1
|G|∑µ

dρµTr
(

ĝT
ρµ
·ρµ(σ)

)]

=

(
1
|G|

)2

∑
λ,µ

dρλdρµ

[
Tr
(

f̂ T
ρλ
·ρµ(σ)

)
·Tr
(

ĝT
ρµ
·ρµ(σ)

)]

(by Property 1)=

(
1
|G|

)2

∑
λ,µ

dρλdρµ

[
Tr
((

f̂ T
ρλ
·ρλ(σ)

)
⊗
(

ĝT
ρµ
·ρµ(σ)

))]

(by Property 2)=

(
1
|G|

)2

∑
λ,µ

dρλdρµTr
((

f̂ρλ⊗ ĝρµ

)T · (ρλ(σ)⊗ρµ(σ))
)

(by Property 3)=

(
1
|G|

)2

∑
λ,µ

dρλdρµTr
(
CT

λµ ·
(

f̂ρλ⊗ ĝρµ

)T ·Cλµ

·CT
λµ · (ρλ(σ)⊗ρµ(σ)) ·Cλµ

)

(by definition ofCλµ andAλµ) =

(
1
|G|

)2

∑
λ,µ

dρλdρµTr

(
AT

λµ ·
(

M

ν

zλµν
M

ℓ=1

ρν(σ)

))

(by Property 4)=
1
|G|2 ∑

λµ

dρλdρµ ∑
ν

dρν

zλµν

∑
ℓ=1

Tr

((
d−1

ρν A(ν,ℓ)
λµ

)T
ρν(σ)

)

(rearranging terms)=
1
|G|∑ν

dρνTr



(

∑
λµ

zλµν

∑
ℓ=1

dρλdρµ

dρν |G|
A(ν,ℓ)

λµ

)T

ρν(σ)


 .

Recognizing the last expression as an inverse Fourier transform completes the proof.

The Clebsch-Gordan series,zλµν, plays an important role in Equation 11, which says that the
(ρλ,ρµ) cross-term contributes to the pointwise product atρν only whenzλµν > 0. In the simplest
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case, we have that

z(n),µ,ν =

{
1 if µ= ν
0 otherwise

,

which is true sinceρ(n)(σ) = 1 for all σ ∈ Sn. As another example, it is known that:

ρ(n−1,1)⊗ρ(n−1,1) ≡ ρ(n)⊕ρ(n−1,1)⊕ρ(n−2,2)⊕ρ(n−2,1,1),

or equivalently,

z(n−1,1),(n−1,1),ν =

{
1 if ν is one of(n),(n−1,1),(n−2,2), or (n−2,1,1)
0 otherwise

.

So if the Fourier transforms of the likelihood and prior are zero past the first two irreducibles ((n)
and (n− 1,1)), then a single conditioning step results in a Fourier transform which, in general,
carries second-order information at(n−2,2) and(n−2,1,1), but is guaranteed to be zero past the
first four irreducibles(n), (n−1,1), (n−2,2) and(n−2,1,1).

As far as we know, there are no analytical formulas for finding the entire Clebsch-Gordan se-
ries or coefficients, and in practice, acquiring the coefficients requiresconsiderable precomputation.
We emphasize however, that as fundamental constants related to the irreducibles of the Symmetric
group, they need only be computedonce and for all(like the digits ofπ, for example) and can be
stored in a table for all future reference. For a detailed discussion of techniques for computing the
Clebsch-Gordan series/coefficients, see Appendix D. We have made a set of precomputed coeffi-
cients available on our lab website,10 but we will assume throughout the rest of the paper that both
the series and coefficients have been made available as a lookup table.

As a final remark, note that Proposition 10 can be rewritten somewhat more intuitively by ab-
sorbing the scalars and submatrices of the Clebsch-Gordan coefficientsinto projection matrices
P(ν,ℓ)

λµ .

Proposition 11 Let f̂ , ĝ be the Fourier transforms of functions f and g respectively. For each triple

of partitions(λ,µ,ν) there exists a positive integer zλ,µ,ν and projection operators P(ν,ℓ)
λµ for each

ℓ ∈ {1,2, . . . ,zλµν} such that the Fourier transform of the pointwise product f g is:

[
f̂ g
]

ρν
= ∑

λ,µ

zλµν

∑
ℓ=1

(P(ν,ℓ)
λµ )T ·

(
f̂ρλ⊗ ĝρµ

)
·P(ν,ℓ)

λµ . (12)

When f andg are functions on an Abelian groupG, then it is a well known fact that all irreducible

representations are one-dimensional, and so Equation 12 reduces to
[

f̂ g
]

ρν
= ∑λ,µ

(
f̂ρλ · ĝρµ

)
, where

all the tensor products have simply become scalar multiplications and the familiar definition of
convolution is recovered.

6.2.2 COMPLEXITY OF CONDITIONING

The complexity of (bandlimited) conditioning (assuming precomputed Clebsch-Gordan
series/coefficients) depends on the order of the coefficients maintained for both the prior and the

10. Seehttp://www.select.cs.cmu.edu/data/index.html .
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observation model. However, it is difficult to state a general complexity bound for arbitrary finite
groups due to our limited understanding of the Clebsch-Gordan series. Here we consider condi-
tioning only on the symmetric group of ordern with the assumption that the number of irreducibles
maintained is very small (and in particular, not allowed to grow with respect ton). Our assumption
is realistic in practice since for moderately largen, it is impractical to consider maintaining higher
than, say, third-order terms. If we denote the dimension of the largest maintained irreducibles of the
prior and likelihood bydprior

max anddobs
max, respectively, then the complexity of conditioning is dom-

inated by the step that forms a matrixCT · (A⊗B) ·C, where the matricesA⊗B andC are each
(dprior

max · dobs
max)-dimensional. Note, however, that since we are only interested in certain blocks of

CT · (A⊗B) ·C, the full matrix need not be computed. In particular, the largest extracted block has

sizedprior
max , and so the complexity of conditioning isO

(
(dobs

max)
2(dprior

max )3
)

using the naive matrix

multiplication algorithm.
In some situations (see Section 8), the observation model is fully specified byfirst-order Fourier

terms. In such cases,dobs
max = O(n) and we can perform conditioning in the Fourier domain in

O(n2 · (dprior
max )3) time. If a model is fully specified by second-order terms, for example, then the

update requiresO(n4 · (dprior
max )3) time.

To speed up conditioning, one can often exploit matrix sparsity in two ways. First, we observe
that the Clebsch-Gordan coefficient matrices are often sparse (we cannot yet prove this, see Fig-
ure 10.1) and so we can save a conjectured factor of(dprior

max ·dobs
max) in practice. Secondly, for certain

coset-based observation models (see Section 8), we can show that (under an appropriate relabeling
of identities and tracks), the Fourier coefficient matrices of the observation model are sparse (with
O(dobs

max) or sometimes evenO(1) nonzero entries for̂Lλ). For the simplest observations which take
the form (“Identity j is at track j”), for example, we can obtainO((dprior

max )3) running time (without
accounting for the conjectured sparsity of the Clebsch-Gordan coefficients), which matches the time
required for the prediction/rollup update. See Appendix B for details.

We now conclude our section on inference with a fully worked example of Kronecker condi-
tioning.

Example 10 For this example, refer to Table 2 for the representations of S3. Given functions f,g :
S3→ R, we will compute the Fourier transform of the pointwise product f·g.

Since there are three irreducibles, there are nine tensor productsρλ⊗ρµ to decompose, six of
which are trivial either because they are one-dimensional, or involve tensoring against the trivial
representation. The nontrivial tensor products to consider areρ(2,1)⊗ρ(1,1,1), ρ(1,1,1)⊗ρ(2,1) and
ρ(2,1)⊗ρ(2,1). The Clebsch-Gordan series for the nontrivial tensor products are:

z(2,1),(1,1,1),ν z(1,1,1),(2,1),ν z(2,1),(2,1),ν
ν = (3) 0 0 1

ν = (2,1) 1 1 1
ν = (1,1,1) 0 0 1

The Clebsch-Gordan coefficients for the nontrivial tensor products aregiven by the following
orthogonal matrices:

C(2,1)⊗(1,1,1) =

[
0 1
−1 0

]
, C(1,1,1)⊗(2,1) =

[
0 −1
1 0

]
, C(2,1)⊗(2,1) =

√
2

2




1 0 −1 0
0 −1 0 1
0 −1 0 −1
1 0 1 0


 .
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As in Proposition 10, define:

A(2,1)⊗(1,1,1) = CT
(2,1)⊗(1,1,1)

(
f̂(2,1)⊗ ĝ(1,1,1)

)
C(2,1)⊗(1,1,1), (13)

A(1,1,1)⊗(2,1) = CT
(1,1,1)⊗(2,1)

(
f̂(1,1,1)⊗ ĝ(2,1)

)
C(1,1,1)⊗(2,1), (14)

A(2,1)⊗(2,1) = CT
(2,1)⊗(2,1)

(
f̂(2,1)⊗ ĝ(2,1)

)
C(2,1)⊗(2,1), (15)

Then Proposition 10 gives the following formulas:

f̂ ·gρ(3)
=

1
3!
·
[

f̂ρ(3)
· ĝρ(3)

+ f̂ρ(1,1,1)
· ĝρ(1,1,1)

+4·
[
A(2,1)⊗(2,1)

]
1,1

]
, (16)

f̂ ·gρ(2,1)
=

1
3!
·
[

f̂ρ(2,1)
· ĝρ(3)

+ f̂ρ(3)
· ĝρ(2,1)

+A(1,1,1)⊗(2,1)

+A(2,1)⊗(1,1,1) +2·
[
A(2,1)⊗(2,1)

]
2:3,2:3

]
, (17)

f̂ ·gρ(1,1,1)
=

1
3!
·
[

f̂ρ(3)
· ĝρ(1,1,1)

+ f̂ρ(1,1,1)
· ĝρ(3)

+4·
[
A(2,1)⊗(2,1)

]
4,4

]
, (18)

where the notation[A]a:b,c:d denotes the block of entries in A between rows a and b, and between
columns c and d (inclusive).

Using the above formulas, we can continue on Example 8 and compute the last update step in
our identity management problem (Figure 2). At the final time step, we observe that Bob is at track
1 with 100% certainty. Our likelihood function is therefore nonzero only for the permutations which
map Bob (the second identity) to the first track:

L(σ) ∝
{

1 if σ = (1,2) or (1,3,2)
0 otherwise

.

The Fourier transform of the likelihood function is:

L̂ρ(3)
= 2, L̂ρ(2,1)

=

[
−3/2

√
3/2

−
√

3/2 1/2

]
, L̂ρ(1,1,1)

= 0. (19)

Plugging the Fourier transforms of the prior distribution (P̂(2) from Table 5) and likelihood (Equa-
tion 19) into Equations 13, 14, 15, we have:

A(2,1)⊗(1,1,1) =

[
0 0
0 0

]
, A(1,1,1)⊗(2,1) =

1
8

[
1

√
3

−
√

3 −3

]
, A(2,1)⊗(2,1) =

1
32




−7 −
√

3 11 5
√

3
−2
√

3 −10 −6
√

3 −14
20 22

√
3 −4 4

√
3

−11
√

3 −23 −
√

3 −13




To invoke Bayes rule in the Fourier domain, we perform a pointwise product using Equations 16, 17, 18,
and normalize by dividing by the trivial coefficient, which yields the Fourier transform of the poste-
rior distribution as:

[
P̂(σ|z)

]
ρ(3)

= 1,
[
P̂(σ|z)

]
ρ(2,1)

=

[
−1 0
0 1

]
,
[
P̂(σ|z)

]
ρ(1,1,1)

=−1. (20)

Finally, we can see that the result is correct by recognizing that the Fourier transform of the
posterior (Equation 20) corresponds exactly to the distribution which is 1 atσ = (1,2) and 0 every-
where else. Bob is therefore at Track 1, Alice at Track 2 and Cathy at Track 3.

σ ε (1,2) (2,3) (1,3) (1,2,3) (1,3,2)

P(σ) 0 1 0 0 0 0
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Algorithm 1 : Pseudocode for the Fourier Prediction/Rollup Algorithm.
PREDICTIONROLLUP

input : Q̂(t)
ρλ andP̂(t)

ρλ , ρλ ∈ Λ
output: P̂(t+1)

ρλ , ρλ ∈ Λ
foreach ρλ ∈ Λ do P̂(t+1)

ρλ ← Q̂(t)
ρλ · P̂

(t)
ρλ ;1

Algorithm 2 : Pseudocode for the Kronecker Conditioning Algorithm.
KRONECKERCONDITIONING

input : Fourier coefficients of the likelihood function,L̂ρλ , ρλ ∈ ΛL, and Fourier coefficients
of the prior distribution,P̂ρµ, ρµ ∈ ΛP

output: Fourier coefficients of the posterior distribution,̂LPρν , ρν ∈ ΛP

foreach ρν ∈ ΛP do L̂Pρν ← 0 //Initialize Posterior1

//Pointwise Product
foreach ρλ ∈ ΛL do2

foreach ρµ ∈ ΛP do3

z←CGseries(ρλ,ρµ) ;4

Cλµ←CGcoe f f icients(ρλ,ρµ) ; Aλµ←CT
λµ ·
(
L̂ρλ⊗ P̂ρµ

)
·Cλµ ;5

for ρν ∈ ΛP such that zλµν 6= 0 do6

for ℓ = 1 to zλµν do7 [
L̂(t)P(t)

]
ρν
←
[
L̂(t)P(t)

]
ρν

+
dρλ dρµ

dρν n! A(ν,ℓ)
λµ ; //A(ν,ℓ)

λµ is the(ν, ℓ) block of Aλµ8

η←
[
L̂(t)P(t)

]−1

ρ(n)

;
9

foreach ρν ∈ Λ do
[
L̂(t)P(t)

]
ρν
← η

[
L̂(t)P(t)

]
ρν

//Normalization
10

7. Approximate Inference by Bandlimiting

We now consider the consequences of performing inference using the Fourier transform at a reduced
set of coefficients. Important issues include understanding how errorcan be introduced into the
system, and when our algorithms are expected to perform well as an approximation. Specifically,
we fix a bandlimitλMIN and maintain the Fourier transform ofP only at irreducibles which are at
λMIN or above in the dominance ordering:

Λ = {ρλ : λDλMIN}.

For example, whenλMIN = (n−2,1,1), Λ is the set
{

ρ(n),ρ(n−1,1),ρ(n−2,2) , andρ(n−2,1,1)

}
, which

corresponds to maintaining second-order (ordered) marginal probabilities of the formP(σ((i, j)) =
(k, ℓ)). During inference, we follow the procedure outlined in the previous section but discard the
higher order terms which can be introduced during the conditioning step. Pseudocode for bandlim-
ited prediction/rollup and Kronecker conditioning is given in Algorithms 1 and 2. We note that it is
not necessary to maintain the same number of irreducibles for both prior andlikelihood during the
conditioning step. The first question to ask is: when should one expect a bandlimited approximation
to be close toP(σ) as a function? Qualitatively, if a distribution is relatively smooth, then most of its
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Figure 5: In general, smoother distributions are well approximated by low-order Fourier projec-
tions. In this graph, we show the approximation quality of the Fourier projections on
distributions with different entropies, starting from sharply peaked delta distributions on
the left side of the graph, which get iteratively smoothed until they becomes the maxi-
mum entropy uniform distribution on the right side. On they-axis, we measure how much

energyis preserved in the bandlimited approximation, which we define to be|P′|2
|P|2 , where

P′ is the bandlimited approximation toP. Each line represents the approximation quality
using a fixed number of Fourier coefficients. At one extreme, we achieveperfect signal
reconstruction by using all Fourier coefficients, and at the other, we perform poorly on
“spiky” distributions, but well on high-entropy distributions, by storing a single Fourier
coefficient.

energy is stored in the low-order Fourier coefficients. However, in a phenomenon quite reminiscent
of the Heisenberg uncertainty principle from quantum mechanics, it is exactly when the distribution
is sharply concentrated at a small subset of permutations, that the Fourierprojection is unable to
faithfully approximate the distribution. We illustrate this uncertainty effect in Figure 5 by plotting
the accuracy of a bandlimited distribution against the entropy of a distribution.

Even though the bandlimited distribution is sometimes a poor approximation to the true distri-
bution, the marginals maintained by our algorithm are often sufficiently accurate. And so instead
of considering the approximation accuracy of the bandlimited Fourier transform to the true joint
distribution, we consider the accuracy only at the marginals which are maintained by our method.

7.1 Sources of Error During Inference

We now analyze the errors incurred during our inference procedures with respect to the accuracy
at maintained marginals. It is immediate that the Fourier domain prediction/rollup operation is
exactdue to its pointwise nature in the Fourier domain. For example, if we have the second order
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(a) n = 5 (b) n = 6

Figure 6: We show the dominance ordering for partitions ofn = 5 andn = 6 again. By setting
λMIN = (3,1,1) and(4,1,1) respectively, we keep the irreducibles corresponding to the
partitions in the dotted regions. If we call Kronecker Conditioning with a first-order
observation model, then according to Theorem 12, we can expect to incursome error at
the Fourier coefficients corresponding to(3,1,1) and(3,2) for n = 5, and(4,1,1) and
(4,2) for n = 6 (shown as shaded tableaux), but to be exact at first-order coefficients.

marginals at timet = 0, then we can find the exact second order marginals at allt > 0 if we only per-
form prediction/rollup operations. Instead, the errors in inference areonly committed by Kronecker
conditioning, where they are implicitly introduced at coefficients outside ofΛ (by effectively setting
the coefficients of the prior and likelihood at irreducibles outside ofΛ to be zero), then propagated
inside to the irreducibles ofΛ.

In practice, we observe that the errors introduced at the low-order irreducibles during inference
are small if the prior and likelihood are sufficiently diffuse, which makes sense since the high-
frequency Fourier coefficients are small in such cases. We can sometimesshow that the update is
exactat low order irreducibles if we maintainenoughcoefficients.

Theorem 12 If λMIN = (n− p,λ2, . . .), and the Kronecker conditioning algorithm is called with a
likelihood function whose Fourier coefficients are nonzero only atρµ when µD (n−q,µ2, . . .), then
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the approximate Fourier coefficients of the posterior distribution are exact at the set of irreducibles:

ΛEXACT = {ρλ : λD (n−|p−q|, . . .)}.

Proof See Appendix D.

For example, if we call Kronecker conditioning by passing in third-order terms of the prior and
first-order terms of the likelihood, then all first and second-order (unordered and ordered) marginal
probabilities of the posterior distribution can be reconstructed without error.

7.2 Projecting to the Marginal Polytope

Despite the encouraging result of Theorem 12, the fact remains that consecutive conditioning steps
can propagate errors to all levels of the bandlimited Fourier transform, andin many circumstances,
result in a Fourier transform whose “marginal probabilities” correspond to no consistent joint dis-
tribution over permutations, and are sometimes negative. To combat this problem, we present a
method for projecting to the space of coefficients corresponding to consistent joint distributions
(which we will refer to as themarginal polytope) during inference.

We begin by discussing the first-order version of the marginal polytope projection problem.
Given ann×n matrix, M, of real numbers, how can we decide whether there exists some proba-
bility distribution which hasM as its matrix of first-order marginal probabilities? A necessary and
sufficient condition, as it turns out, is forM to bedoubly stochastic. That is, all entries ofM must be
nonnegative and all rows and columns ofM must sum to one (the probability that Alice is atsome
track is 1, and the probability thatsome identityis at Track 3 is 1). The double stochasticity condi-
tion comes from theBirkhoff-von Neumanntheorem (van Lint and Wilson, 2001) which states that
a matrix is doubly stochasticif and only if it can be written as a convex combination of permutation
matrices.

To “renormalize” first-order marginals to be doubly stochastic, some authors (Shin et al., 2003,
2005; Balakrishnan et al., 2004; Helmbold and Warmuth, 2007) have usedtheSinkhorn iteration,
which alternates between normalizing rows and columns independently until convergence is ob-
tained. Convergence is guaranteed under mild conditions and it can be shown that the limit is a
nonnegative doubly stochastic matrix which is closest to the original matrix in thesense that the
Kullback-Leibler divergence is minimized (Balakrishnan et al., 2004).

There are several problems which cause the Sinkhorn iteration to be an unnatural solution in
our setting. First, since the Sinkhorn iteration only works for nonnegativematrices, we would
have to first cap entries to lie in the appropriate range,[0,1]. More seriously, even though the
Sinkhorn iteration would guarantee a doubly stochastic higher order matrix of marginals, there are
several natural constraints which are violated when running the Sinkhorn iteration on higher-order
marginals. For example, with second-order (ordered) marginals, it seemsthat we should at least
enforce the following symmetry constraint:

P(σ : σ(k, ℓ) = (i, j)) = P(σ : σ(ℓ,k) = ( j, i)),

which says, for example, that the marginal probability that Alice is in Track 1 and Bob is in Track
2 is the same as the marginal probability that Bob is in Track 2 and Alice is in Track1. Another

1031



HUANG, GUESTRIN AND GUIBAS

natural constraint that can be broken is what we refer to aslow-order marginal consistency. For
example, it should always be the case that:

P( j) = ∑
i

P(i, j) = ∑
k

P( j,k).

It should be noted that the doubly stochastic requirement is a special caseof lower-order marginal
consistency—we require that higher-order marginals be consistent on the 0th order marginal.

While compactly describing the constraints of the marginal polytope exactly remains an open
problem, we propose a method for projecting onto arelaxedform of the marginal polytope which
addresses both symmetry and low-order consistency problems by operating directly on irreducible
Fourier coefficients instead of on the matrix of marginal probabilities. After each conditioning step,
we apply a ‘correction’ to the approximate posteriorP(t) by finding the bandlimited function in the
relaxed marginal polytope which is closest toP(t) in an L2 sense. To perform the projection, we
employ the Plancherel Theorem (Diaconis, 1988) which relates theL2 distance between functions
onSn to a distance metric in the Fourier domain.

Proposition 13 (Plancherel Theorem)

∑
σ

( f (σ)−g(σ))2 =
1
|G|∑ν

dρνTr
((

f̂ρν− ĝρν

)T ·
(

f̂ρν− ĝρν

))
. (21)

To find the closest bandlimited function in the relaxed marginal polytope, we formulate a quadratic
program whose objective is to minimize the right side of Equation 21, and whose sum is taken only
over the set of maintained irreducibles,Λ, subject to the set of constraints which require all marginal
probabilities to be nonnegative. We thus refer to our correction step asPlancherel Projection. Our
quadratic program can be written as:

minimizef̂ pro j ∑
λ∈Λ

dλTr
[(

f̂ − f̂ pro j)T
ρλ

(
f̂ − f̂ pro j)

ρλ

]

subject to:
[

f̂ pro j]
(n)

= 1,

CλMIN ·


 M

µDλMIN

KλMIN ,µ
M

ℓ=1

f̂ pro j
ρµ


 ·CT

λMIN




i j

≥ 0, for all (i, j),

whereKλMIN andCλMIN are the precomputed constants from Equation 6. We remark that even though
the projection will produce a Fourier transform corresponding to nonnegative marginals which are
consistent with each other, there might not necessarily exist a joint probability distribution onSn

consistent with those marginals except in the special case of first-order marginals.

Example 11 In Example 10, we ran the Kronecker conditioning algorithm using all of theFourier
coefficients. If only the first-order coefficients are available, however, then the expressions for zeroth
and first order terms of the posterior (Equations 16,17) become:

f̂ ·gρ(3)
=

1
3!
·
[

f̂ρ(3)
· ĝρ(3)

+4·
[
A(2,1)⊗(2,1)

]
1,1

]
,

f̂ ·gρ(2,1)
=

1
3!
·
[

f̂ρ(2,1)
· ĝρ(3)

+ f̂ρ(3)
· ĝρ(2,1)

+2·
[
A(2,1)⊗(2,1)

]
2:3,2:3

]
,
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Plugging in the same numerical values from Example 10 and normalizing appropriately yields the
approximate Fourier coefficients of the posterior:

[
P̂(σ|z)

]
ρ(3)

= 1
[
P̂(σ|z)

]
ρ(2,1)

=

[
−10/9 −77/400
77/400 4/3

]
,

which correspond to the following first-order marginal probabilities:

P̂τ(2,1)




A B C
Track 1 0 11/9 −2/9
Track 2 1 0 0
Track 3 0 −2/9 11/9


 .

In particular, we see that the approximate matrix of ‘marginals’ contains negative numbers. Apply-
ing the Plancherel projection step, we obtain the following marginals:

P̂τ(2,1)




A B C
Track 1 0 1 0
Track 2 1 0 0
Track 3 0 0 1


 ,

which happen to be exactly the true posterior marginals. It should be notedhowever, that rounding
the ‘marginals’ to be in the appropriate range would have worked in this particular example as
well.

8. Probabilistic Models of Mixing and Observations

While the algorithms presented in the previous sections are general in the sense that they work on all
mixing and observation models, it is not always obvious how to compute the Fourier transform of a
given model. In this section, we discuss a collection of useful models for which wecanefficiently
compute low-order Fourier coefficients or even provide a closed-formexpression. See Table 7 for a
summary of the various models covered in this section.

We consider bothmixing and observationmodels. In multiobject tracking, a mixing model
might account for the fact that two tracks may have swapped identities with some probability. Or
in card shuffling, a mixing model might reflect that a card has been insertedsomewhere into the
deck. In multiobject tracking, an observation model might tell us that Alice is atsome track with
probability one. Or it might reflect the fact that some subset of identities occupies some subset of
tracks with no order information, as in the case of thebluetooth model. In ranking applications, an
observation model might, for example, reflect that some object is ranked higher than, or preferred
over some other object.

This section is divided into three parts, each describing a different approach to computing the
Fourier coefficients of a model, with some being simpler or more efficient to implement in cer-
tain situations than others. Indirect constructions, we naively apply the definition of the Fourier
transform to obtain the Fourier coefficients of some model. Inmarginal based constructions,
we first compute the low-order ‘marginals’ of some probabilistic model, then project the result
onto the irreducible Fourier basis. Finally, incoset-based constructions, we introduce a family
of ‘atomic’ indicator functions of subgroups of the formSk ⊂ Sn which are then combined using
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Mixing Model Example Semantics Relevant Subgroup
Pairwise mixing Identity confusion at tracks 1 and 2 S2

k-subset mixing Identity confusion at tracks in{1,2,4,6} Sk

Insertion mixing Insert top card somewhere in the deck n/a

Observation Model Example Semantics Relevant Subgroup
Single track observation Alice is at Track 1 Sn−1

Multitrack observation Alice is at Track 1, Bob is at Track 2, etc. Sn−k

Bluetooth observation The girls occupy tracks{1,2,6,8} Sk×Sn−k

Pairwise ranking observation Apples are better than oranges Sn−2

Table 7: Several useful types of mixing and observation models are summarized in the above table.
In many of these cases, computing the appropriate Fourier transform reduces to computing
the Fourier transform of the indicator function of some related subgroup of Sn, and so we
also mention the relevant subgroup in the second column. In the third column weprovide
an example illustrating the semantics of each model.

scale/shift/convolution operations to form more complex models. As we discussin Section 11,
there also remains the open possibility of learning modelsdirectly in the Fourier domain. For the
sake of succinctness, many of the results in this section will be stated without proof.

8.1 Direct Construction

In some applications we are fortunate enough to have a model that can be “directly” transformed
efficiently using the definition of the Fourier transform (Definition 3). We provide two examples.

8.1.1 PAIRWISE M IXING

The simplest mixing model for identity management assumes that with probabilityp, nothing hap-
pens, and that with probability(1− p), the identities for tracksi and j are swapped. The probability
distribution for thepairwise mixing modelis therefore:

Qi j (π) =





p if π = ε
1− p if π = (i, j)

0 otherwise
. (22)

SinceQi j is such a sparse distribution (in the sense thatQi j (π) = 0 for mostπ), it is possible to
directly computeQ̂i j using Definition 3:

[
Q̂i j

]
ρλ

= pI +(1− p)ρλ((i, j)),

whereI refers to thedλ×dλ identity matrix (since any representation must map the identity element
ε to an identity matrix), andρλ((i, j)) is the irreducible representation matrixρλ evaluated at the
transposition(i, j) (which can be computed using the algorithms from Appendix C).
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8.1.2 INSERTIONM IXING

As another example, we can consider theinsertion mixing model(also called thetop-in shuffle
Diaconis 1988) in which we take the top card in some deck ofn cards, and with uniform probability,
insert it somewherein the deck, preserving all other original relative orderings. Insertions can be
useful in ranking applications where we might wish to add a new item into consideration without
disturbing the marginal probabilities over relative rankings of existing items. The distribution for
the insertion mixing model is given by:

Qinsertion(π) =

{ 1
n if π is a cycle of the form( j, j−1, . . . ,1) for somej ∈ {1, . . . ,n}
0 otherwise

.

Since the insertion mixing model is supported onn permutations, it is again simple to directly
construct the Fourier transform from the definition. We have:

Q̂insertion
ρλ

=
1
n

n

∑
j=1

ρλ( j, j−1, . . . ,1).

8.2 Marginal Based Construction

In marginal based constructions, we first compute the low-order ‘marginals’11 of some probabilistic
model, then project the result onto the irreducible Fourier basis. Thus given a functionf : Sn→
R, we compute, for example, the first-order marginalsf̂τ(n−1,1)

, and conjugate by an intertwining
operator (Equation 6) to obtain the Fourier coefficients at(n) and(n−1,1). Sometimes when the
Fourier transform off is provably non-zeroonly at low-order terms, a marginal based construction
might be the easiest method to obtain Fourier coefficients.

8.2.1 COLOR HISTOGRAM OBSERVATION

The simplest model assumes that we can get observations of the form: ‘track ℓ is colork’ (which is
essentially the model considered by Kondor et al. 2007). The probability of seeing colork at track
ℓ given data associationσ is

L(σ) = P(zℓ = k|σ) = ασ−1(ℓ),k,

where∑k ασ−1(ℓ),k = 1. For each identity, the likelihoodL(σ) = P(zℓ = k|σ) depends, for example,
on a histogram over all possible colors. If the number of possible colors isK, then the likelihood
model can be specified by ann×K matrix of probabilities. For example,

ασ(ℓ),k =




k = Red k = Orange k = Yellow k = Green
σ(Alice) = ℓ 1/2 1/4 1/4 0
σ(Bob) = ℓ 1/4 0 0 3/4

σ(Cathy) = ℓ 0 1/2 1/2 0


 . (23)

Since the observation model only depends on a single identity, the first-order terms of the Fourier
transform suffice to describe the likelihood exactly. To compute the first-order Fourier coefficients

11. The word ‘marginals’ is technically appropriate only when the functionin question is a legal probability distribution
(as opposed to likelihood functions, for example), however we use it to refer to similar summary statistics for general
functions.
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at irreducibles, we proceed by computing the first-order Fourier coefficients at the first-order per-
mutation representation (the first-order “marginals”), then transforming to irreducible coefficients.
The Fourier transform of the likelihood at the first-order permutation representation is given by:

[
L̂τ(n−1,1)

]
i j

= ∑
{σ:σ( j)=i}

P(zℓ = k|σ) = ∑
{σ:σ( j)=i}

ασ−1(ℓ),k.

To compute thei j -term, there are two cases to consider.

1. If i = ℓ (that is, if Tracki is the same as the track that was observed), then the coefficientL̂i j

is proportional to the probability that Identityj is colork.

L̂i j = ∑
{σ:σ( j)=i}

α j,k = (n−1)! ·α j,k. (24)

2. If, on the other hand,i 6= ℓ (Track i is not the observed track)), then the coefficientL̂i j is
proportional to the sum over

L̂i j = ∑
{σ:σ( j)=i}

ασ−1(ℓ),k = ∑
m6= j

∑
{σ:σ( j)=i andσ(m)=ℓ}

ασ−1(ℓ),k = ∑
m6= j

(n−2)! ·αm,k. (25)

Example 12 We will compute the first-order marginals of the likelihood function on S3 which arises
from observing a "Red blob at Track 1". Plugging the values from the “Red” column of theα matrix
(Equation 23) into Equation 24 and 25 yields the following matrix of first-ordercoefficients (at the
τ(n−1,1) permutation representation):

[
L̂(n−1,1)

]
i j

=




Track 1 Track 2 Track 3
Alice 1/4 1/2 3/4
Bob 1/4 1/2 3/4

Cathy 1 1/2 0


 .

The corresponding coefficients at the irreducible representations are:

L̂(3) = 1.5, L̂(2,1) =

[
0 0

−
√

3/4 −3/4

]
, L̂(1,1,1) = 0.

8.2.2 UNORDEREDSUBSET (BLUETOOTH) OBSERVATION

We sometimes receive measurements in the form of unordered lists. For example, thebluetooth
modelis the likelihood function that arises if tracks{1, . . . ,k} are within range of a bluetooth de-
tector and we receive a measurement that identities{1, . . . ,k} are in range. In sports, we might
observe that the firstk tracks belong to the red team and that the lastn−k tracks belong to the blue
team. And finally, inapproval voting, one specifies a subset of approved candidates rather than, for
example, picking a single favorite.

We consider two options for bluetooth-type situations. In the first option, weallow for some
error-tolerance by setting the likelihood to be proportional to the number of tracks that are correctly
returned in the measurement:

Pbluetooth(z{t1,...,tk} = {i1, . . . , ik}|σ) ∝ |{t1, . . . , tk}∩σ({i1, . . . , ik})|+U(σ), (26)
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whereU(σ) is a constant function onSn allowing for noisy observations. Our first bluetooth model
can be expressed using only first order terms (intuitively because eachtrack makes a linear contribu-
tion) and thusP̂bluetooth

λ is nonzero only at the first two partitionsλ = (n),(n−1,1). For simplicity,
we consider the Fourier transform of the function:f (σ) = |σ({1, . . . ,k})∩{1, . . . ,k}|. The first-
order ‘marginals’ off are covered in the following four cases:

• ( j ≤ k and i≤ k): Li j = ∑σ:σ( j)=i f (σ) = (k−1)2(n−2)! +(n−1)!

• ( j ≤ k and i> k): Li j = ∑σ:σ( j)=i f (σ) = k(k−1)(n−2)!

• ( j > k and i≤ k): Li j = ∑σ:σ( j)=i f (σ) = k(k−1)(n−2)!

• ( j > k and i> k): Li j = ∑σ:σ( j)=i f (σ) = k2(n−2)!

We discuss the second bluetooth-type model after discussing coset based constructions.

8.3 Coset-Based Construction

Most of the time, realistic models are not supported on only a handful of permutations. The ap-
proach we take now is to use a collection of ‘primitive’ functions to form more interesting models
via scale/shift/convolution operations. In particular, we will make use of indicator functions of sub-
sets of the formSX,Y ⊂ Sn, whereX = (x1, . . . ,xk) andY = (y1, . . . ,yk) are orderedk-tuples with
{x1, . . . ,xk} ⊂ {1, . . . ,n}, {y1, . . . ,yk} ⊂ {1, . . . ,n} and no repetitions are allowed.SX,Y denotes the
set of elements inSn which are constrained to map eachxi to yi :

SX,Y ≡ {σ ∈ Sn : σ(xi) = yi , for each i=1,. . . ,k}. (27)

TheSX,Y can also be thought of as two-sided cosets associated with subgroups ofthe formSn−k⊂Sn.
For example, ifX = (1,2) andY = (3,4) with n = 4, thenSX,Y is simply the set of all permutations
that map 17→ 3 and 27→ 4. Thus,SX,Y = {(1,3)(2,4),(1,3,2,4)}. Since|X|= |Y|= k, then|SX,Y|=
(n− k)!, and in the special case thatX = Y, we have thatSX,Y is in fact a subgroup isomorphic to
Sn−k.

As we show in Appendix C, the Fourier transform of the indicatorδSX,Y takes a particularly
simple (and low rank) form and can be efficiently computed. The method described in Appendix C is
based on the FFT and exploits the same structure of the symmetric group that is used by Kondor et al.
(2007). It is thus possible to understand why some observation models afford faster conditioning
updates based on sparsity in Fourier domain.

The functionsδSX,Y can be viewed as a set of function primitives for constructing more compli-
cated models via shift/scale/convolution operations in the Fourier domain. We now discuss the re-
maining models in Table 7 with the assumption that there exists some blackbox function which con-
structs the Fourier coefficients of the indicator function of (two-sided) cosets of the formSX,Y ⊂ Sn

(see Algorithm 5 in Appendix D).

8.3.1 k-SUBSETM IXING

It is not always appropriate to mix only two people at once (as in Equation 22) and so we would
like to formulate a mixing model which occurs over a subset of tracks,X = {t1, . . . , tk} ⊂ {1, . . . ,n}.
One way to ‘mimic’ the desired effect is to repeatedly draw pairs(i, j) from {t1, . . . , tk} and to
convolve against the pairwise mixing modelsQi j . A better alternative is to directly construct the
Fourier coefficient matrices for thek-subset mixing model, in which we allow the tracks inX to be
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randomly permuted with uniform probability. In the following,̄X denotes some fixed ordering of
the complement ofX. For example, ifn= 5, with X = {1,2,4}, thenX̄ is either(3,5) or (5,3). The
k-subset mixing model is defined as:

QX(π) =

{ 1
k! if π ∈ SX̄,X̄ ⊂ Sn

0 otherwise
. (28)

Note thatSX̄,X̄ is isomorphic toSk and that the pairwise mixing model is the special case wherek= 2.
Intuitively, Equation 28 fixes all of the tracks outside ofX and says that with uniform probability, the
set of tracks inX experience some permutation of their respective identities. Equation 28 can also
be written asQX(π) = 1

k! δSX̄,X̄
(π), and thus the mixing model is simply a multiple of the indicator

function ofSX̄,X̄.

8.3.2 SINGLE/MULTI -TRACK OBSERVATION

In thesingle track observation model(used in Shin et al. 2005, Schumitsch et al. 2005 and Kondor
et al. 2007, for example), we acquire an identity measurementzj at track j. In the simplest version
of the model, we write the likelihood function as:

P(zi = j|σ) =

{
π if σ( j) = i

1−π
n−1 otherwise

, (29)

where j ranges over alln possible identities.P(zi |σ) can also be written as a weighted sum of a
uniform distributionU , and an indicator function:

P(zi = j|σ) =

(
πn−1
n−1

)
δSj,i (σ)+

(
1−π
n−1

)
U(σ).

Equation 29 is useful when we receive measurements directly as single identities (“Alice is
at Track 1 with such and such probability”). It is, however, far more common to receive lower
level measurements thatdependonly upon a single identity, which we formalize with the following
conditional independence assumption:

P(zi |σ) = P(zi |σ( j)).

For example, as in Equation 23, we might have a color histogram over each individual (“Alice loves
to wear green”) and observe a single color per timestep. Or we might acquire observations in the
form of color histograms and choose to model a distribution over all possiblecolor histograms. If
for each identityj, P(zi |σ( j) = i) = α j , then we can write the likelihood function as a weighted
linear combination ofn indicators,

L(σ) = P(zi |σ) = ∑
j

α jδSj,i (σ),

and by the linearity of the Fourier transform, we can obtain the Fourier coefficients ofL:

L̂λ = ∑
j

α j

[
δ̂Sj,i

]
λ
.
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Finally, the single-track observations can be generalized to handle joint observations of multiple
tracks at once with a higher-order model:

P(z(t1,...,tk) = (i1, . . . , ik)|σ) =

{
π if σ(iℓ) = tℓ for eachℓ ∈ {1, . . . ,k}

1−π
n!

(n−k)!−1
otherwise . (30)

Unsurprisingly, while the Fourier coefficients of Equation 29 can be expressed exactly using first-
order terms, the Fourier coefficients of the multi-track observation model, Equation 30, requires
kth-order terms. It is important to note that joint multi-track observations are distinct from making
k independent identity observations at the same timestep—we can handle the lattercase by calling
the Kronecker conditioning algorithm with a single-track observation modelk times. Depending
upon the specific sensor setup, one model may be more natural than the other.

8.3.3 BLUETOOTH OBSERVATION

In contrast with the first bluetooth model (Equation 26), our second bluetooth-type model handles a
higher-order form of measurement. Like the single/multi-track observation models, it says that with
some probability we receive the correct unordered list, and with some probability, we receive some
other list drawn uniformly at random:

Pbluetooth2(z{t1,...,tk} = {i1, . . . , ik}|σ) =

{
π if σ({i1, . . . , ik}) = {t1, . . . , tk}

1−π
(n

k)−1
otherwise .

As with the single/multi-track observation models, the bluetooth model can be writtenas a weighted
linear combination of a uniform distribution and the indicator function of anSk×Sn−k-coset, where:

Sk×Sn−k = {σ ∈ Sn : σ({1, . . . ,k}) = {1, . . . ,k}}.

To compute the Fourier transform ofPbluetooth2, it is enough to note that the indicator function of
Sk×Sn−k can be thought of as a convolution of indicator functions ofSk andSn−k in a certain sense.
More precisely.

Proposition 14 Let X= (1, . . . ,k) and Y= (k+1, . . . ,n). Then:δSk×Sn−k = δSX,X ∗δSY,Y .

Invoking the convolution theorem (Proposition 8) shows that the Fourier coefficient matrices of
δSk×Sn−k can be constructed by first computing the Fourier coefficients ofSX,X andSY,Y, and point-
wise multiplying corresponding coefficient matrices. We have:

[
δ̂Sk×Sn−k

]
λ

=
[
δ̂SX,X

]
λ
·
[
δ̂SY,Y

]
λ
, for all partitionsλ.

An interesting fact about the bluetooth model is that its Fourier terms are zeroat all partitions
with more than two rows.

Proposition 15 Without loss of generality, assume that k≤ n
2. The Fourier transform of the blue-

tooth model,P̂bluetooth2
λ is nonzero only at partitions of the form(n−s,s) where s≤ k.
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8.3.4 PAIRWISE RANKING OBSERVATION

Finally in thepairwise ranking model, we consider observations of the form “objectj is ranked
higher than objecti” which can appear in various forms of voting and preference elicitation (“I like
candidatex better than candidatey”) or webpage/advertisement ranking. Here we think ofσ as a
mapping from objects to ranks. Our pairwise ranking model simply assigns higher probability to
observations which agree with the ordering ofi and j in σ.

Prank(zkℓ|σ) =

{
π if σ(k) < σ(ℓ)

1−π otherwise
.

Whenk = n−1, ℓ = n andπ = 1, we have:

Prank(zkℓ|σ) =

{
1 if σ(n−1) < σ(n)
0 otherwise

= ∑
i< j

δS(n−1,n),(i, j)
(σ).

Perhaps unsurprisingly, pairwise ranking models can be sufficiently captured by first-order and
second-order (ordered) Fourier coefficients12.

Proposition 16 The Fourier coefficients of the pairwise ranking model,P̂rank
λ , are nonzero only at

three partitions:λ = (n), (n−1,1), and(n−2,1,1).

9. Related Work

Rankings and permutations have recently become an active area of research in machine learning due
to their importance in information retrieval and preference elicitation. Rather than considering full
distributions over permutations, many approaches, like RankSVM (Joachims, 2002) and RankBoost
(Freund et al., 2003), have instead focused on learning a single ‘optimal’ranking with respect to
some objective function.

There are also several authors (from both the statistics and machine learning communities) who
have studied distributions over permutations/rankings (Mallows, 1957; Critchlow, 1985; Fligner and
Verducci, 1986; Meila et al., 2007; Taylor et al., 2008; Lebanon and Mao, 2008). Taylor et al. (2008)
consider distributions overSn which are induced by the rankings ofn independent draws fromn in-
dividually centered Gaussian distributions with equal variance. They compactly summarize their
distributions using anO(n2) matrix which is conceptually similar to our first-order summaries and
apply their techniques to ranking web documents. Most other previous approaches at directly mod-
eling distributions onSn, however, have relied on distance based exponential family models. For
example, the Mallows model (Mallows, 1957) defines a Gaussian-like distribution over permuta-
tions as:

P(σ;c,σ0) ∝ exp(−cd(σ,σ0)) ,

where the functiond(σ,σ0) is theKendall’s tau distancewhich counts the number of adjacent swaps
that are required to bringσ−1 to σ−1

0 .

12. Additionally,P̂rank
(n−1,1)

andP̂rank
(n−2,1,1)

are known to be rank 1 matrices, a fact which can potentially be exploited for
faster conditioning updates in practice.
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Distance based exponential family models have the advantage that they can compactly repre-
sent distributions for very largen, and admit conjugate prior distributions (Meila et al., 2007). Es-
timating parameters has been a popular problem for statisticians—recoveringthe optimalσ0 from
data is known as theconsensus rankingor rank aggregationproblem and is known to beNP-hard
(Bartholdi et al., 1989). Many authors have focused on approximation algorithms instead.

Like Gaussian distributions, distance based models also tend to lack flexibility, and so Lebanon
and Mao (2008) propose a nonparametric model of ranked (and partiallyranked) data based on
placing weighted Mallows kernels on top of training examples, which, as they show, can realize
a far richer class of distributions, and can be learned efficiently. However, they do not address
the inference problem, and it is not clear if one can efficiently perform inference operations like
marginalization and conditioning in such models.

As we have shown in this paper, Fourier based methods (Diaconis, 1988;Kondor et al., 2007;
Huang et al., 2007) offer a principled alternative method for compactly representing distributions
over permutations and performing efficient probabilistic inference operations. Our work draws from
two strands of research—one from the data association/identity managementliterature, and one
from a more theoretical area on Fourier analysis in statistics. In the following, we review several of
the works which have led up to our current Fourier based approach.

9.1 Previous Work in Identity Management

The identity management problem has been addressed in a number of previous works, and is closely
related to, but not identical with, the classical data association problem of maintaining correspon-
dences between tracks and observations. Both problems need to address the fundamental combina-
torial challenge that there is a factorial or exponential number of associations to maintain between
tracks and identities, or between tracks and observations respectively.A vast literature already ex-
ists on the the data association problem, beginning with themultiple hypothesis testingapproach
(MHT) of Reid (1979). The MHT is a ‘deferred logic’ method in which pastobservations are ex-
ploited in forming new hypotheses when a new set of observations arises.Since the number of
hypotheses can grow exponentially over time, various heuristics have been proposed to help cope
with the complexity blowup. For example, one can choose to maintain only thek besthypothe-
ses for some parameterk (Cox and Hingorani, 1994), using Murty’s algorithm (Murty, 1968). But
for such an approximation to be effective,k may still need to scale exponentially in the number
of objects. A slightly more recent filtering approach is thejoint probabilistic data association filter
(JPDA) (Bar-Shalom and Fortmann, 1988), which is a suboptimal single-stage approximation of the
optimal Bayesian filter. JPDA makes associations sequentially and is unable to correct erroneous
associations made in the past (Poore, 1995). Even though the JPDA is more efficient than the MHT,
the calculation of the JPDA association probabilities is still a #P-complete problem(Collins and
Uhlmann, 1992), since it effectively must compute matrix permanents. Polynomial approximation
algorithms to the JPDA association probabilities have recently been studied using Markov chain
Monte Carlo (MCMC) methods (Oh et al., 2004; Oh and Sastry, 2005).

The identity management problem was first explicitly introduced in Shin et al. (2003). Identity
management differs from the classical data association problem in that its observation model is
not concerned with the low-level tracking details but instead with high level information about
object identities. Shin et al. (2003) introduced the notion of thebelief matrixapproximation of
the association probabilities, which collapses a distribution over all possible associations to just
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its first-order marginals. In the case ofn tracks andn identities, the belief matrixB is an n×
n doubly-stochastic matrix of non-negative entriesbi j , wherebi j is the probability that identityi
is associated with trackj. As we already saw in Section 4, the belief matrix approximation is
equivalent to maintaining the zeroth- and first-order Fourier coefficients. Thus our current work is
a strict generalization and extension of those previous results.

An alternative representation that has also been considered is an information theoretic ap-
proach (Shin et al., 2005; Schumitsch et al., 2005, 2006) in which the density is parameterized
as:

P(σ;Ω) ∝ expTr
(
ΩT · τ(n−1,1)(σ)

)
.

In our framework, the information form approach can be viewed as a method for maintaining the
Fourier transform of thelog probability distribution at only the first two irreducibles. The infor-
mation matrix approach is especially attractive in a distributed sensor network setting, since, if the
columns of the information matrix are distributed to leader nodes tracking the respective targets,
then the observation events become entirely local operations, avoiding the more expensive Kro-
necker conditioning algorithm in our setting. On the other hand, the informationmatrix coefficients
do not have the same intuitive marginals interpretation afforded in our setting,and moreover, pre-
diction/rollup steps cannot be performed analytically in the information matrix form. As in many
classical data structures problems there are representation trade-off issues: some operations are
less expensive in one representation and some operations in the the other.The best choice in any
particular scenario will depend on the ratio between observation and mixing events.

9.2 Previous Work on Fourier-Based Approximations

The concept of using Fourier transforms to study probability distributions ongroups is not new,
with the earliest papers in this area having been published in the 1960s (Grenander, 1963). Will-
sky (1978) was the first to formulate the exact filtering problem in the Fourier domain for finite
and locally compact Lie groups and contributed the first noncommutative Fast Fourier Transform
algorithm (for Metacyclic groups). However, he does not address approximate inference, suggest-
ing instead to always transform to the appropriate domain for which either theprediction/rollup or
conditioning operations can be accomplished using a pointwise product. Whileproviding signifi-
cant improvements in complexity for smaller groups, his approach is still infeasible for our problem
given the factorial order of the Symmetric group.

Diaconis (1988) used the Fourier transform to analyze probability distributions on the Symmet-
ric group in order to study card shuffling and ranking problems. His worklaid the ground for much
of the progress made over the last two decades on probabilistic group theory and noncommutative
FFT algorithms (Clausen and Baum, 1993; Rockmore, 2000).

Kondor et al. (2007) was the first to show that the data association problem could be efficiently
approximated using FFT factorizations. In contrast to our framework where every model is assumed
to be have been specified in the Fourier domain, they work with an observation model which can be
written as the indicator function of cosets of subgroups of the formSk ⊂ Sn.

Conceptually, one might imagine formulating a conditioning algorithm which appliesthe In-
verse Fast Fourier Transform (IFFT) to the prior distribution, conditions in the primal domain using
pointwise multiplication, then transforms back up to the Fourier domain using the FFT to obtain
posterior Fourier coefficients. While such a procedure would ordinarilybe intractable because of
the factorial number of permutations, Kondor et al. (2007) elegantly shows that for certain coset-
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based observation models, it is not necessary to perform the full FFT recursion to do a pointwise
product. They exploit this observation to formulate an efficient conditioningalgorithm whose run-
ning time depends on the complexity of the observation model (which can roughly be measured by
the number of irreducibles required to fully specify it).

Our work generalizes the conditioning formulation from Kondor et al. (2007) in the sense that it
can work foranyobservation model and extends easily to similar filtering problems over any finite
group. In the case that the observation model is specified at sufficiently many irreducibles, our con-
ditioning algorithm (prior to the projection step) returns the same approximate probabilities as the
FFT-based algorithm. For example, we can show that the observation model given in Equation 29
is fully specified by two Fourier components, and that both algorithms have identical output. Addi-
tionally, Kondor et al. (2007) do not address the issue of projecting ontolegal distributions, which,
as we show in our experimental results is fundamental in practice.

10. Experimental Results
In this section we present the results of several experiments to validate ouralgorithm. We evaluate
performance first by measuring the quality of our approximation for problems where the true dis-
tribution is known. Instead of measuring a distance between the true distribution and the inverse
Fourier transform of our approximation, it makes more sense in our setting tomeasure error only
at the marginals which are maintained by our approximation. In the results reported below, we
measure theL1 error between the true matrix of marginals and the approximation. If nonnegative
marginal probabilities are guaranteed, it also makes sense to measure KL-divergence.

10.1 Simulated Data

We first tested the accuracy of a single Kronecker conditioning step by calling some number of
pairwise mixing events (which can be thought roughly as a measure of entropy), followed by a
single first-order observation. In they-axis of Figure 7(a), we plot the Kullback-Leibler divergence
between the true first-order marginals and approximate first-order marginals returned by Kronecker
conditioning. We compared the results of maintaining first-order, and second-order (unordered and
ordered) marginals. As shown in Figure 7(a), Kronecker conditioning ismore accurate when the
prior is smooth and unsurprisingly, when we allow for higher order Fourier terms. As guaranteed
by Theorem 12, we also see that the first-order terms of the posterior areexact when we maintain
second-order (ordered) marginals.

To understand how our algorithms perform over many timesteps (where errors can propagate to
all Fourier terms), we compared to exact inference on synthetic data sets inwhich tracks are drawn
at random to be observed or swapped. As a baseline, we show the accuracy of a uniform distribution.
We observe that the Fourier approximation is better when there are either more mixing events (the
fraction of conditioning events is smaller), or when more Fourier coefficients are maintained, as
shown in Figure 7(b). We also see that the Plancherel Projection step is fundamental, especially
when mixing events are rare.

Figures 10(a) and 10(b) show the per-timeslice accuracy of two typical runs of the algorithm.
The fraction of conditioning events is 50% in Figure 10(a), and 70% in Figure 10(b). What we
typically observe is that while the projected and nonprojected accuracies are often quite similar, the
nonprojected marginals can perform significantly worse during certain segments.
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Finally, we compared running times against an exact inference algorithm which performs pre-
diction/rollup in the Fourier domain and conditioning in the primal domain. While the predic-
tion/rollup step for pairwise mixing models can be implemented inO(n!) time (linear in the size
of the symmetric group), we show running times for the more general mixing models. Instead of
the naiveO((n!)2) complexity, its running time is a more efficientO(n3n!) due to the Fast Fourier
Transform (Clausen and Baum, 1993). It is clear that our algorithm scales gracefully compared
to the exact solution (Figure 10.1), and in fact, we could not run exact inference forn > 8 due to
memory constraints. In Figure 10.1, we show empirically that the Clebsch-Gordan coefficients are
indeed sparse, supporting a faster conjectured runtime.
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Figure 9: Clebsch-Gordan Sparsity: We measured the sparsity of the Clebsch-Gordan coefficients
matrices by plotting the number of nonzero coefficients in a Clebsch-Gordancoefficient
matrix against the number of total entries in the matrix for variousn and pairs of irre-
ducibles. For each fixed tensor product pair, we see that the number ofnonzero entries
scales sublinearly with respect to the total number of matrix elements.

10.2 Real Camera Network

We also evaluated our algorithm on data taken from a real network of eightcameras (Fig. 11(a)). In
the data, there aren= 11 people walking around a room in fairly close proximity. To handle the fact
that people can freely leave and enter the room, we maintain a list of the trackswhich are external
to the room. Each time a new track leaves the room, it is added to the list and a mixing event is
called to allow form2 pairwise swaps amongst themexternal tracks.

The number of mixing events is approximately the same as the number of observations. For
each observation, the network returns a color histogram of the blob associated with one track. The
task after conditioning on each observation is to predict identities for all tracks which are inside
the room, and the evaluation metric is the fraction of accurate predictions. We compared against
a baseline approach of predicting the identity of a track based on the most recently observed his-
togram at that track. This approach is expected to be accurate when there are many observations and
discriminative appearance models, neither of which our problem afforded. As Figure 11(b) shows,
both the baseline and first order model(without projection) fared poorly,while the projection step
dramatically boosted the prediction accuracy for this problem. To illustrate the difficulty of predict-
ing based on appearance alone, the rightmost bar reflects the performance of anomniscienttracker
who knows the result of each mixing event and is therefore left only with thetask of distinguishing
between appearances. We conjecture that the performance of our algorithm (with projection) is near
optimal.
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Figure 10: Accuracy as a function of time on two typical runs.

11. Future Research

There remain several possible extensions to the current work stemming from both practical and
theoretical considerations. We list a few open questions and extensions inthe following.

11.1 Adaptive Filtering

While our current algorithms easily beat exact inference in terms of running time, they are still
limited by a relatively high (though polynomial) time complexity. In practice however, it seems
reasonable to believe that the “difficult” identity management problems typically involve only a
small subset of people at a time. A useful extension of our work would be todevise anadaptive
version of the algorithm which allocates more Fourier coefficients towards the identities which
require higher order reasoning. We believe that this kind of extension would be the appropriate way
to scale our algorithm to handling massive numbers of objects at a time.

11.2 Characterizing the Marginal Polytope

In our paper, we presented a projection of the bandlimited distribution to a certain polytope, which
is exactly the marginal polytope for first-order bandlimited distributions, but strictly an outer bound
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Figure 11: Evaluation on data set from a real camera network. In this experiment, there aren = 11
people walking in a room begin tracked by 8 cameras.

for higher orders. An interesting project would be to generalize the Birkhoff-von Neumann theorem
by exactly characterizing the marginal polytope at higher order marginals.We conjecture that the
marginal polytope for low order marginals can be described with polynomially many constraints.

11.3 Learning in the Fourier Domain

Another interesting problem is whether we can learn bandlimited mixing and observation models
directly in the Fourier domain. Given fully observed permutationsσ1, . . . ,σm, drawn from a distri-
butionP(σ), a naive method for estimatinĝPρ at low-orderρ is to simply observe that:

P̂ρ = Eσ∼P[ρ(σ)],

and so one can estimate the Fourier transform by simply averagingρ(σi) over all σi . However,
since we typically do not observe full permutations in real applications like ranking or identity
management, it would be interesting to estimate Fourier transforms using partially observed data.
In the case of Bayesian learning, it may be possible to apply some of the techniques discussed in
this paper.

11.4 Probabilistic Inference on Other Groups

The Fourier theoretic framework presented in this paper is not specific to the symmetric group -
in fact, the prediction/rollup and conditioning formulations, as well as most of the results from
Appendix D hold over any finite or compact Lie group. As an example, the noncommutative group
of rotation operators in three dimensions,SO(3), appears in settings which model the pose of a
three dimensional object. Elements inSO(3) might be used to represent the pose of a robot arm
in robotics, or the orientation of a mesh in computer graphics; In many settings,it would be useful
to have a compact representation of uncertainty over poses. We believe that there are many other
application domains with algebraic structure where similar probabilistic inference algorithms might
apply, and in particular, that noncommutative settings offer a particularly challenging but exciting
opportunity for machine learning research.
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12. Conclusions

In this paper, we have presented a Fourier theoretic framework for compactly summarizing dis-
tributions over permutations. We showed that common probabilistic inference operations can be
performed completely in the Fourier domain and that, using the low-order terms of the Fourier ex-
pansion of a distribution, one can obtain polynomial time inference algorithms. Fourier theoretic
summaries are attractive because they have tuneable approximation quality, have intuitive interpre-
tations in terms of low-order marginals, and have allowed us to leverage results and insights from
noncommutative Fourier analysis to formulate our algorithms.

The main contributions of our paper include methods for performing general probabilistic in-
ference operations completely in the Fourier domain. In particular, we developed the Kronecker
conditioning algorithm, which conditions a distribution on evidence using Bayesrule while oper-
ating only on Fourier coefficients. While prediction/rollup operations can bewritten as pointwise
products in the Fourier domain, we showed that conditioning operations canbe written, in dual
fashion, as generalized convolutions in the Fourier domain. Our conditioning algorithm is general
in two senses: first, one can use Kronecker conditioning to handle any observation model which
can be written in the Fourier domain, and second, the same algorithm can be applied to condition
distributions over arbitrary finite groups. Due to this generality, we are ableto efficiently compute
the Fourier transforms of a wide variety of probabilistic models which may potentially be useful in
different applications.

We presented an analysis of the errors which can accumulate in bandlimited inference and ar-
gued that Fourier based approaches work well when the underlying distributions are diffuse and are
thus well approximated by low-frequency basis functions. During inference, errors in high-order
terms due to bandlimiting can be propagated to lower-order terms and bandlimited conditioning can,
on occasion, result in Fourier coefficients which correspond to no validdistribution. We showed,
however, that the problem can be remedied by projecting to a relaxation of the marginal polytope.

Finally, our evaluation on data from a camera network shows that our methods perform well
when compared to the optimal solution in small problems, or to an omniscient tracker in large
problems. Furthermore, we demonstrated that our projection step is fundamental in obtaining these
high-quality results.

Algebraic methods have recently enjoyed a surge of interest in the machine learning community.
We believe that our unified approach for performing probabilistic inference over permutations, as
well as our gentle exposition of group representation theory and noncommutative Fourier analysis
will significantly lower the barrier of entry for machine learning researchers who are interested
in using or further developing algebraically inspired algorithms which are useful for real-world
problems.
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Appendix A. Groups

This section is intended as a quick glossary for the group theoretic definitionsused in the paper.
Groups are a generalization of many of the spaces that we typically work with, such as the real
numbers, integers, vector spaces, and matrices. The definition of a group unifies all of these spaces
under a handful of axioms.

Definition 17 (Group) A groupis a set G together with a binary operation· : G×G→ G (called
thegroup operation) such that the followinggroup axiomshold:

1. (Associativity) The group operation isassociative. That is, for any group elements g1,g2,g3 ∈
G, we have:

(g1 ·g2) ·g3 = g1 · (g2 ·g3), for all g1,g2,g3 ∈G.

2. (Identity) There exists anidentity element (denoted byε) such that g· ε = ε · g = g for any
g∈G.

3. (Inverses) For every g∈G, there exists aninverse elementg−1 such that g·g−1 = g−1 ·g = ε.

Definition 18 (Abelian Group) If, for any group elements g1,g2∈G, we have g1 ·g2 = g2 ·g1, then
G is called anAbelianor commutativegroup.

Perhaps the most familiar group is the set of integers,Z, with respect to the addition operation. It is
well known that for any integersa,b,c∈ Z, a+(b+ c) = (a+b)+ c. The identity element in the
integers is zero, and every element has an additive inverse (a+(−a) = (−a)+a= 0). Additionally,
the integers are an Abelian group sincea+b= b+a for anya,b∈Z. Note that the natural numbers
N = {0,1,2,3, . . .} do not form a group with respect to addition because inverses do not exist.

The main example of a group in this paper, of course, is the symmetric group, the set of per-
mutations of{1, . . . ,n}. The group operation on permutations is function composition, which is
associative, and we discussed inverses and the identity element in Section 3.

Example 13 There are many groups besides the integers and the symmetric group. The following
are several examples.

• The positive real numbersR+ form a group with respect to multiplication. The identity ele-
ment ofR+ is the multiplicative identity,1, and given a real number x, there exists an inverse
element1x .

• As an example of a finite group, theintegers modulon, Z/nZ, form a group with respect to
addition modulo n.

• The invertible n× n matrices over the reals, GLn(R), form a group with respect to matrix
multiplication. The n× n identity matrix serves as the identity element in GLn(R), and by
assumption, every matrix in GLn(R) is invertible.

The group axioms impose strong structural constraints onG, and one of the ways that structure
is manifested in groups is in the existence ofsubgroups.
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Definition 19 (Subgroup) If G is a group (with group operation·), a subset H⊂ G is called a
subgroupif it is itself a group with respect to the same group operation. H is called atrivial
subgroupif it is either all of G or consists only of a single element.

Example 14 We have the following examples of subgroups.

• The even integers,2Z, form a subgroup of the integers since the sum of any two even integers
is an even integer, and the inverse (negative) of an even integer is again even. However, the
odd integers donot form a subgroup since the sum of two odd integers is not odd.

• The special orthogonal matrices (orthogonal matrices with determinant+1) form a sub-
group of the group of n×n matrices, GLn(R). This can be seen by using the facts (1), that
(detA)(detB) = det(AB) and (2), that the inverse of any orthogonal matrix is also orthogonal.

Appendix B. Constructing Irreducible Representation Matrices

In this section, we present (without proof) some standard algorithms for constructing the irreducible
representation matrices with respect to theGel’fand-Tsetlin (GZ) basis(constructed with respect
to the subgroup chainS1 ⊂ S2 ⊂ ·· · ⊂ Sn).13 None of the techniques in Appendix B are novel.
For a more elaborate discussion, see, for example, Kondor (2006), Chen (1989) and Vershik and
Okounkov (2006). There are several properties which make the irreducible representation matrices,
written with respect to the GZ basis, fairly useful in practice. They are guaranteed to be, for example,
real-valued and orthogonal. And as we will show, the matrices have certainuseful sparsity properties
that can be exploited in implementation.

We begin by introducing a few concepts relating toYoung tableauxwhich are like Young
tabloids with the distinction that the rows are considered asordered tuplesrather thanunordered
sets. For example, the following two diagrams are distinct as Youngtableaux, but not as Young
tabloids:

1 2 3
4 5

6= 1 3 2
5 4

(as Young tableaux).

A Young Tableaut is said to bestandardif its entries are increasing to the right along rows and
down columns. For example, the set of all standard Young Tableaux of shapeλ = (3,2) is:

{
1 3 5
2 4

, 1 2 5
3 4

, 1 3 4
2 5

, 1 2 4
3 5

, 1 2 3
4 5

}
. (31)

Given a permutationσ ∈ Sn, one can always applyσ to a Young tableaut to get a new Young
tableau, which we denote byσ◦ t, by permuting the labels within the tableau. For example,

(1,2)◦ 1 2 3
4 5

= 2 1 3
4 5

.

Note, however, that even ift is a standard tableau,σ◦ t is not guaranteed to be standard.
The significance of the standard tableaux is that the set of all standard tableaux of shapeλ can

be used to index the set of GZ basis vectors for the irreducible representation ρλ. Since there are

13. The irreducible representation matrices in this Appendix are also sometimes referred to asYoung’s Orthogonal Rep-
resentation (YOR).
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five total standard tableaux of shape(3,2), we see, for example, that the irreducible corresponding
to the partition(3,2) is 5-dimensional. There is a simple recursive procedure for enumerating the
set of all standard tableaux of shapeλ, which we illustrate forλ = (3,2).

Example 15 If λ = (3,2), there are only two possible boxes that the label 5 can occupy so that both
rows and columns are increasing. They are:

5 , and
5

.

To enumerate the set of all standard tableaux of shape(3,2), we need to fill the empty boxes in
the above partially filled tableaux with the labels{1,2,3,4} so that both rows and columns are
increasing. Enumerating the standard tableaux of shape(3,2) thus reduces to enumerating the set
of standard tableaux of shapes(2,2) and(3,1), respectively. For(2,2), the set of standard tableaux
(which, in implementation would be computed recursively) is:

{
1 3
2 4

, 1 2
3 4

}
,

and for(3,1), the set of standard tableaux is:

{
1 3 4
2

, 1 2 4
3

, 1 2 3
4

}
.

The entire set of standard tableaux of shape(3,2) is therefore:

{
1 3 5
2 4

, 1 2 5
3 4

}
[

{
1 3 4
2 5

, 1 2 4
3 5

, 1 2 3
4 5

}
.

Before explicitly constructing the representation matrices, we must define a signed distance on
Young Tableaux called theaxial distance.

Definition 20 Theaxial distance, dt(i, j), between entries i and j in tableau t, is defined to be:

dt(i, j)≡ (col(t, j)−col(t, i))− (row(t, j)− row(t, i)),

where row(t, i) denotes the row of label i in tableau t, and col(t, i) denotes the column of label i in
tableau t.

Intuitively, the axial distance betweeni−1 andi in a standard tableaut is equal to the (signed)
number of steps that are required to travel fromi−1 to i, if at each step, one is allowed to traverse a
single box in the tableau in one of the four cardinal directions. For example,the axial distance from
3 to 4 with respect to tableau:t = 1 2 3

4 5
is:

dt(3,4) =
(

col
(

1 2 3
4 5

,4
)
−col

(
1 2 3
4 5

,3
))
−
(

row
(

1 2 3
4 5

,4
)
− row

(
1 2 3
4 5

,3
))

= (1−3)− (2−1) =−3
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B.1 Constructing Representation Matrices for Adjacent Transpositions

In the following discussion, we will consider a fixed ordering,t1, . . . , tdλ , on the set of standard
tableaux of shapeλ and refer to both standard tableaux and columns ofρλ(σ) interchangeably.
Thust1 refers to first column,t2 refers to the second column and so on. And we will index elements
in ρλ(σ) using pairs of standard tableau,(t j , tk).

To explicitly define the representation matrices with respect to the GZ basis, wewill first con-
struct the matrices for adjacent transpositions (i.e., permutations of the form(i−1, i)), and then we
will construct arbitrary representation matrices by combining the matrices forthe adjacent transpo-
sitions. The rule for constructing the matrix coefficient[ρλ(i−1, i)]t j ,tk

is as follows.

1. Define the(t j , tk) coefficient ofρλ(i−1, i) to be zero if it is (1), off-diagonal (j 6= k) and (2),
not of the form(t j ,(i−1, i)◦ tk).

2. If (t j , tk) is a diagonal element, (i.e., of the form(t j , t j)), define:

[ρλ(i−1, i)]t j ,t j
= 1/dt j (i−1, i),

wheredt j (i−1, i) is the axial distance which we defined earlier in the section.

3. If (t j , tk) can be written as(t j ,(i−1, i)◦ t j) define:

[ρλ(i−1, i)]t j ,σ◦t j
=
√

1−1/d2
t j
(i−1, i).

Note that the only time that off-diagonal elements can be nonzero under the above rules is when
(i− i, i)◦t j happens to also be a standard tableau. If we apply an adjacent transposition, σ = (i−1, i)
to a standard tableaut, thenσ◦ t is guaranteed to be standard if and only ifi−1 andi were neither
in the same row nor column oft. This can be seen by examining each case separately.

1. i−1 and i are in the same row or same column oft. If i andi−1 are in the same row oft,
theni−1 lies to the left ofi. Applying σ ◦ t swaps their positions so thati lies to the left of
i−1, and so we see thatσ◦ t cannot be standard. For example,

(3,4)◦ 1 2 5
3 4

= 1 2 5
4 3

.

Similarly, we see that ifi andi−1 are in the same column oft, σ◦ t cannot be standard. For
example,

(3,4)◦ 1 3 5
2 4

= 1 4 5
2 3

.

2. i−1 and i are neither in the same row nor column oft. In the second case,σ ◦ t can be
seen to be a standard tableau due to the fact thati−1 andi are adjacent indices. For example,

(3,4)◦ 1 2 3
4 5

= 1 2 4
3 5

.

Therefore, to see if(i − 1, i) ◦ t is standard, we need only check to see thati − 1 and i are
in different rows and columns of the tableaut. The pseudocode for constructing the irreducible
representation matrices for adjacent swaps is summarized in Algorithm 3. Notethat the matrices
constructed in the algorithm are sparse, with no more than two nonzero elements in any given
column.
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Algorithm 3 : Pseudocode for computing irreducible representations matrices with respect to
the Gel’fand-Tsetlin basis at adjacent transpositions.

ADJACENTRHO

input : i ∈ {2, . . . ,n},λ
output: ρλ(i−1, i)
ρ← 0dλ×dλ ;1

foreachstandard tableaux t of shapeλ do2

d← (col(t, i)−col(t, i−1))− (row(t, i)− row(t, i−1));3

ρ(t, t)← 1/d;4

if i−1 and i are in different rows and columns of tthen5

ρ((i−1, i)◦ (t), t)←
√

1−1/d2;6

return ρ ;7

Example 16 We compute the representation matrix ofρ(3,2) evaluated at the adjacent transposition
σ = (i−1, i) = (3,4). For this example, we will use the enumeration of the standard tableaux of
shape(3,2) given in Equation 31.

For each(3,2)-tableau tj , we identify whetherσ◦ t j is standard and compute the axial distance
from3 to 4 on the tableau tj .

j 1 2 3 4 5

t j

1 3 5
2 4

1 2 5
3 4

1 3 4
2 5

1 2 4
3 5

1 2 3
4 5

(3,4)◦ t j

1 4 5
2 3

1 2 5
4 3

1 4 3
2 5

1 2 3
4 5

1 2 4
3 5

(3,4)◦ t j Standard? No No No Yes Yes
axial distance (dt j (3,4)) -1 1 1 3 -3

Putting the results together in a matrix yields:,

ρ(3,2)(3,4) =




t1 t2 t3 t4 t5
t1 −1
t2 1
t3 1

t4 1
3

√
8
9

t5
√

8
9 −1

3




,

where all of the empty entries are zero.

B.2 Constructing Representation Matrices for General Permutations

To construct representation matrices for general permutations, it is enough to observe that all per-
mutations can be factored into a sequence of adjacent swaps. For example, the permutation(1,2,5)
can be factored into:

(1,2,5) = (4,5)(3,4)(1,2)(2,3)(3,4)(4,5),
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Algorithm 4 : Pseudocode for computing irreducible representation matrices for arbitrary per-
mutations.

GETRHO

input : σ ∈ Sn,λ
output: ρλ(σ) (adλ×dλ matrix)
//Use Bubblesort to factorσ into a product of transpositions1

k← 0 ;2

f actors← /0;3

for i = 1,2, . . . ,n do4

for j = n,n−1, . . . , i +1 do5

if σ( j) < σ( j−1) then6

Swap(σ( j−1),σ( j)) ;7

k← k+1 ;8

f actors(k)← j ;9

//Construct representation matrix using adjacent transpositions10

ρλ(σ)← Idλ×dλ ;11

m← length( f actors);12

for j = 1, . . . ,mdo13

ρλ(σ)← GETADJACENTRHO( f actors( j),λ) ·ρλ(σ) ;14

and hence, for any partitionλ,

ρλ(1,2,5) = ρλ(4,5) ·ρλ(3,4) ·ρλ(1,2) ·ρλ(2,3) ·ρλ(3,4) ·ρλ(4,5),

sinceρλ is a group representation. Algorithmically, factoring a permutation into adjacent swaps
looks very similar to the Bubblesort algorithm, and we show the pseudocode inAlgorithm 4.

Appendix C. Fourier Transforming the Indicator Function δSX,Y

In this section, we derive the Fourier transform of the indicator function of the two-sided coset
SX,Y ⊂ Sn (see Equation 27). To do so, we will need to understand the Gel’fand-Tsetlin basis
at a slightly deeper level. For example, the fact that the basis elements are indexed by standard
tableaux has not been motivated and may seem unintuitive. We begin this section by motivating
the standard tableaux from the perspective of thebranching rule, a standard fact taken from the
representation theory of the symmetric group. We then show how the branching rule leads to a
method for computing the desired indicator functions.

C.1 Standard Tableaux and the Gel’fand-Tsetlin Basis

It is straightforward to see that any irreducible representationρλ of Sn, can also be seen as a rep-
resentation ofSn−1 when restricted to permutations inSn−1 (the set of elements which fixn). We
will denote the restricted representation byρλ ↓Sn

Sn−1. However, the irreducibility property may not
be preserved by restriction, which is to say that, as a representation ofSn−1, ρλ is not necessarily
irreducible and might decompose as Equation 2 would dictate. Thus, for allσ ∈ Sn−1 (or more
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precisely,σ ∈ Sn such thatσ(n) = n), there existsCλ and multiplicitieszλµ such that:

C−1
λ ·ρλ(σ) ·Cλ =

M

µ

zλµ
M

j=1

ρµ(σ),

whereµ ranges over the partitions ofn−1.
Thebranching ruleallows us to state the decomposition even more precisely. Given any parti-

tion λ of n, let λ− index over the set of partitions ofn−1 whose Ferrers diagrams differ fromλ in
a single box.

Theorem 21 (Branching Rule, see Vershik and Okounkov (2006) for aproof) For each irreducible
representationρλ of Sn, there exists a matrix Cλ such that:

C−1
λ ·ρλ(σ) ·Cλ =

M

λ−
ρλ−(σ)

holds for anyσ ∈ Sn−1.

Example 17 If λ = (3,2), then its corresponding Ferrers diagram is: , and the Ferrers dia-
grams corresponding to partitions of4 which differ fromλ in a single box are:

, .

Thus,λ− indexes over the set{(2,2),(3,1)}. The branching rule states that given an irreducible
matrix representationρ(3,2) of S5, then there is a matrix C(3,2) such that, for any permutationσ ∈ S5

such thatσ(5) = 5,

C−1
λ ·ρ(3,2)(σ) ·Cλ =

[
ρ(2,2)(σ) 0

0 ρ(3,1)(σ)

]
.

The Gel’fand-Tsetlin basis is constructed such that the branching rule holds with all Cλ = I .
Thus the irreducible representation matrices constructed with respect to theGZ basis have the prop-
erty that the equation:

ρλ(σ) =
M

λ−
ρλ−(σ)

holds identically for allσ ∈ Sn−1. We now can show how the branching rule naturally leads to
indexing the basis elements by standard tableaux. First observe that the branching rule allows us to
associate each column of the irreducibleρλ with some partition ofn−1.

If we recursively apply the branching rule again (thus restricting toSn−2), we see that the fol-
lowing decomposition holds:

ρλ(σ) =
M

λ−

[
M

λ−−
ρλ−−(σ)

]
,

whereλ−− indexes over partitions which differ fromλ− by a single box. Thus each column can
be associated with a partition ofn−1 and a partition ofn−2. Taking this logic even further, we
can restrict toSn−3, Sn−4, and so on until we can restrict no further, associating each column with a
sequence of partitions14 µ1 ⊢ 1,µ2 ⊢ 2. . . ,µn ⊢ n, where each partitionµi can be obtained by adding

14. Here we use theλ ⊢ n notation to denote the relation thatλ is a partition ofn. For example,(3,2,1) ⊢ 6.
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a single box to the Ferrers diagram ofµi−1, andµn = λ. We will refer to such a sequence as a
branching sequence. Since the branching rule guarantees multiplicity-free decompositions (that is,
zλµ = 1 for all pairs(λ,µ)), it turns out that each column ofρλ is uniquelyspecified by a branching
sequence.

Example 18 A possible branching sequence is:

→ → → → ,

or written as partitions,[(1)→ (2)→ (2,1)→ (3,1)→ (3,2)].

The set of all possible branching sequences ending inλ can be visualized using abranching tree
(shown forλ = (3,2) in Figure 12(a)), where each branching sequence is a path between theroot
and some leaf node. We will denote the branching tree corresponding to thepartition λ by T λ

and the set of nodes at ther th level of T λ by T λ
r (where the root node forms the zeroth level by

convention). We can rephrase the branching rule in terms of the branching tree.

Proposition 22 Let ρλ be an irreducible matrix representation of Sn (constructed with respect to
the Gel’fand-Tsetlin basis). For anyσ ∈ Sk ⊂ Sn, ρλ(σ) decomposes as:

ρλ(σ) =
M

µ∈T λ
n−k

ρµ(σ).

Example 19 As an example, consider applying Proposition 22 toρ(3,2) with k = 3. The(n− k)th

(second) level of the branching tree forλ = (3,2), T (3,2)
2 consists of two copies of the partition(2,1)

and a single copy of the partition(3). Thus for any elementσ ∈ S5 which fixes4 and5 (σ(4) = 4,
σ(5) = 5), we have:

ρ(3,2)(σ) =




ρ(2,1)(σ)

ρ(2,1)(σ)

ρ(3)(σ)


 .

As a final remark, observe that branching sequences can be compactlyrepresented asstandard
tableaux, where the number in each box indicates the point in the sequence at which the box was
added. For example, the following standard tableau and sequence of partitions are equivalent:

1 2 4
3 5

←→ [(1)→ (2)→ (2,1)→ (3,1)→ (3,2)] .

To summarize, the GZ basis (adapted to the subgroup chainS1 ⊂ ·· · ⊂ Sn) is defined so that the
branching rule holds as a matrix identity (with no need of a change of basis matrix), and furthermore,
each basis vector of the representation space forρλ can be associated with a branching sequence, or
equivalently, a standard tableau.

C.2 Fourier Transforming δSX,Y

We are now in a position to compute the Fourier transform of indicators of the form δSX,Y . First, as
a corollary of the branching rule, we see that we can decompose the Fourier transform of functions
that are supported onSn−1⊂ Sn.
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(a) T (3,2) (b) T (3,2)
3

Figure 12: (a) The branching tree forλ = (3,2). (b) The 3rd level ofT (3,2) (outlined) is denoted by

T
(3,2)

3 and consists of two copies of the partition(1,1) and three copies of the partition
(2).

Corollary 23 If f : Sn→R is supported on the subgroup Sn−1, then for each partitionλ, the Fourier
transform of f (with respect to the Gel’fand-Tsetlin basis adapted S1⊂ S2⊂ ·· · ⊂ Sn) decomposes
into a direct sum of Fourier transforms on Sn−1. Specifically, we have:

f̂λ =
M

λ−

[
f̂ ↓nn−1

]
λ− ,

where f↓nn−1 is defined to be the restriction of f to Sn−1.

Consider the Fourier transform of the indicator function ofSk ⊂ Sn:

δSk(σ) =

{
1 if σ( j) = j for j ∈ {k+1, . . . ,n}
0 otherwise

.

We now apply the branching rulen− k times to the indicator functionδSk. SinceδSk is supported
on Sk ⊂ Sn, the Fourier transform ofδSk at the irreducibleρλ can be written as a direct sum of
Fourier coefficient matrices at the irreducibles which appear in then− kth level of the branching
tree corresponding toλ. [

δ̂Sk

]
λ

=
M

µ∈T λ
n−k

[
δ̂Sk ↓nk

]
µ

Furthermore, since the restriction ofδSk to the subgroupSk is a constant function, we see that all of
the nontrivial irreducible summands are zero (since the Fourier transform of a constant function is
zero at all nontrivial terms) and that the trivial terms are exactlyk!. Because the trivial representation

is one-dimensional, only a subset of the diagonal elements of
[
δ̂Sk

]
λ

can be nonzero.
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Algorithm 5 : Pseudocode for computing the Fourier transform of the indicator function of
Sk ⊂ Sn at the partitionλ.

Sk-INDICATOR

input : k,n,λ (a partition ofn)

output:
[
δ̂Sk

]
λ[

δ̂Sk

]
λ
← 0dλ×dλ ;1

foreachstandard tableaux t of shapeλ do2

if t ↓nk= 1 2 3 · · · k then3 [
δ̂Sk

]
λ
(t, t)← k!;4

Algorithmically we can construct the Fourier transform ofδSk at λ by enumerating all of the

branching sequences forλ and setting the( j, j) diagonal element of
[
δ̂Sk

]
λ

to bek! if the corre-

spondingjth branching sequence contains the partition(k). Alternatively, we can state the proce-
dure in terms of standard tableaux. First, we define a restriction operation on a standard tableau
t.

Definition 24 Given a standard tableau t with n boxes and a positive integer k< n, we define the
restrictionof t to Sk (denoted by t↓nk) to be the standard tableau t after removing boxes containing
labels k+1, . . . , n.

To construct the Fourier transform ofδSk at λ, we iterate through the standard tableaux of shapeλ,

and set the( j, j) diagonal element of
[
δ̂Sk

]
λ

to bek! if the restriction of thejth tableau toSk, t j ↓nk,

takes the form1 2 3 · · · k . See Algorithm 5.

Example 20 We compute
[
δ̂S2

]
(3,2)

as an example. The branching sequences forλ = (3,2) are:

1 3 5
2 4

←→ [(1)→ (1,1)→ (2,1)→ (2,2)→ (3,2)],

1 2 5
3 4

←→ [(1)→ (2)→ (2,1)→ (2,2)→ (3,2)],

1 3 4
2 5

←→ [(1)→ (1,1)→ (2,1)→ (3,1)→ (3,2)],

1 2 4
3 5

←→ [(1)→ (2)→ (2,1)→ (3,1)→ (3,2)],

1 2 3
4 5

←→ [(1)→ (2)→ (3)→ (3,1)→ (3,2)].

Since there are only three sequences which contain the partition(2), only those three basis
elements have nonzero entries. And finally, noting that the appropriate normalization constant here
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is simply|S2|= 2! = 2, we see that:

[
δ̂S2

]
(3,2)

=




1 3 5
2 4

1 2 5
3 4

1 3 4
2 5

1 2 4
3 5

1 2 3
4 5

1 3 5
2 4

0 0 0 0 0

1 2 5
3 4

0 2 0 0 0

1 3 4
2 5

0 0 0 0 0

1 2 4
3 5

0 0 0 2 0

1 2 3
4 5

0 0 0 0 2




.

Our discussion has been focused on the indicator functionδSk, but computingδSX,Y with |X|= |Y|=
n−k can be accomplished by first constructing the Fourier coefficient matricesfor δSk, then relabel-
ing the tracks and identities using a change of basis. More precisely, suppose that, to achieve this
relabeling, we must permute theX (identities) using a permutationπ1 and theY (tracks) usingπ2.
TheShift Theorem(see Diaconis 1988) can be applied to reorder the Fourier coefficients according
to these new labels.

Proposition 25 (Shift Theorem) Given f : Sn→ R, define f′ : Sn→ R by f′(σ) = f (π1σπ2) for
some fixedπ1,π2 ∈ Sn. The Fourier transforms of f and f′ are related as:f̂ ′λ = ρλ(π1) · f̂λ ·ρλ(π2).

We conclude with a comment on sparsity. It is clear from Algorithm 5 that the coefficient

matrices of
[
δ̂SX,Y

]
λ

are all, up to an appropriate relabeling of identities and tracks, diagonal matrices

with at mostO(dλ) nonzero entries. In fact, we can sometimes show that a given model hasO(1)
nonzero entries.

Consider, for example, the indicator functionδSn−1, corresponding to observations of the form
(“Identity j is at tracki”), which is nonzero only at the first two partitions,(n), and(n−1,1). The

zeroth-order term is,
[
δ̂Sn−1

]
(n)

= (n−1)!. The first-order Fourier coefficient matrix,
[
δ̂Sn−1

]
(n−1,1)

,

is a matrix of all zeroes except for a single element on the diagonal,
[
δ̂Sn−1

]
(n−1,1)

(t, t), where

t = 1 2 3 · · ·
n

, which takes on the value(n−1)!.

Appendix D. Decomposing the Tensor Product Representation

We now turn to theTensor Product Decompositionproblem, which is that of finding the irreducible
components of the typically reducible tensor product representation. Ifρλ andρµ are irreducible
representations ofSn, then there exists an intertwining operatorCλµ such that:

Cλµ
−1 · (ρλ⊗ρµ(σ)) ·Cλµ =

M

ν

zλµν
M

ℓ=1

ρν(σ). (32)
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In this section, we will present a set of numerical methods for computing the Clebsch-Gordan series
(zλµν) and Clebsch-Gordan coefficients (Cλµ) for a pair of irreducible representationsρλ⊗ρµ. We
begin by discussing two methods for computing the Clebsch-Gordan series.In the second section,
we provide a general algorithm for computing the intertwining operators which relate two equivalent
representations and discuss how it can be applied to computing the Clebsch-Gordan coefficients
(Equation 32) and the matrices which relate marginal probabilities to irreducibleFourier coefficients
(Equation 6). The results of Appendix D.1 are specific to the symmetric group, while the results of
Appendix D.2 can be applied to arbitrary finite groups.

D.1 Computing the Clebsch-Gordan Series

We begin with a simple, well-known algorithm based ongroup charactersfor computing the Clebsch-
Gordan series that turns out to be computationally intractable, but yields several illuminating theo-
retical results. See Serre (1977) for proofs of the theoretical resultscited in this section.

One of the main results of representation theory was the discovery that there exists a relatively
compact way of encoding any representation up to equivalence with a vector which we call the
characterof the representation. Ifρ is a representation of a groupG, then the character of the
representationρ, is defined simply to be the trace of the representation at each elementσ ∈G:

χρ(σ) = Tr(ρ(σ)) .

The reason characters have been so extensively studied is that they uniquely characterize a repre-
sentation up to equivalence in the sense that two charactersχρ1 andχρ2 are equal if and only ifρ1

andρ2 are equivalent as representations. Even more surprising is that the space of possible group
characters is orthogonally spanned by the characters of the irreduciblerepresentations. To make this
precise, we first define an inner product on functions fromG.

Definition 26 Let φ,ψ be two real-valued functions on G. Theinner productof φ andψ is defined
to be:

〈φ,ψ〉 ≡ 1
|G| ∑

σ∈G

φ(σ)ψ(σ)

With respect to the above inner product, we have the following important result which allows us to
test a given representation for irreducibility, and to test two irreducibles for equivalence.

Proposition 27 Let χρ1 andχρ2 be characters corresponding to irreducible representations. Then

〈χρ1,χρ2〉=
{

1 if ρ1≡ ρ2

0 otherwise
.

Proposition 27 shows that the irreducible characters form an orthonormal set of functions. The
next proposition says that the irreducible charactersspanthe space of all possible characters.

Proposition 28 Supposeρ is any representation of G and which decomposes into irreducibles as:

ρ≡
M

λ

zλ
M

ℓ=1

ρλ,

whereλ indexes over all irreducibles of G. Then:
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1. The character ofρ is a linear combination of irreducible characters (χρ = ∑λ zλχρλ),

2. and the multiplicity of each irreducible, zλ, can be recovered using〈χρ,χρλ〉= zλ.

A simple way to decompose any group representationρ, is given by Proposition 28, which
says that we can take inner products ofχρ against the basis of irreducible characters to obtain the
irreducible multiplicitieszλ. To treat the special case of finding the Clebsch-Gordan series, one
observes that the character of the tensor product is simply the pointwise product of the characters of
each tensor product factor.

Theorem 29 Let ρλ andρµ be irreducible representations with charactersχλ,χµ respectively. Let
zλµν be the number of copies ofρν in ρλ⊗ρµ (hence, one term of the Clebsch-Gordan series). Then:

1. The character of the tensor product representation is given by:

χρλ⊗ρµ = χλ ·χµ = ∑
ν

zλµνχν.

2. The terms of the Clebsch-Gordan series can be computed using:

zλµν =
1
|G| ∑g∈G

χλ(g) ·χµ(g) ·χν(g),

and satisfy the following symmetry:

zλµν = zλνµ = zµλν = zµνλ = zνλµ = zνµλ. (33)

Dot products for characters on the symmetric group can be done inO(#(n)) time where #(n) is the
number of partitions of the numbern, instead of the naiveO(n!) time. In practice however, #(n)
also grows too quickly for the character method to be tractable.

D.1.1 MURNAGHAN’ S FORMULAS

A theorem by Murnaghan (1938) gives us a ‘bound’ on which representations can appear in the
tensor product decomposition onSn.

Theorem 30 Let ρ1,ρ2 be the irreducibles corresponding to the partition(n− p,λ2, . . .) and(n−
q,µ2, . . .) respectively. Then the productρ1⊗ρ2 does not contain any irreducibles corresponding
to a partition whose first term is less than n− p−q.

In view of the connection between the Clebsch-Gordan series and convolution of Fourier coeffi-
cients, Theorem 30 is analogous to the fact that for functions over the reals, the convolution of two
compactly supported functions is also compactly supported.

We can use Theorem 30 to show that Kronecker conditioning is exact at certain irreducibles.
Proof [of Theorem 12] LetΛ denote the set of irreducibles at which our algorithm maintains Fourier
coefficients. Since the errors in the prior come from setting coefficients outside ofΛ to be zero, we
see that Kronecker conditioning returns an approximate posterior which isexact at the irreducibles
in

ΛEXACT = {ρν : zλµν = 0, whereλ /∈ Λ andµD (n−q,µ2, . . .)}.
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Combining Theorem 30 with Equation 33: ifzλµν > 0, with λ = (n− p,λ2,λ3, . . .),µ = (n−
q,µ2,µ3, . . .) andν = (n− r,ν2,ν3, . . .), then we have that:r ≤ p+ q, p≤ q+ r, andq≤ p+ r.
In particular, it implies thatr ≥ p− q and r ≥ q− p, or more succinctly,r ≥ |p− q|. Hence, if
ν = (n− r,ν2, . . .), thenρν ∈ ΛEXACT wheneverr ≤ |p−q|, which proves the desired result.

The same paper (Murnaghan, 1938) derives several general Clebsch-Gordan series formulas for
pairs of low-order irreducibles in terms ofn, and in particular, derives the Clebsch-Gordan series
for many of the Kronecker product pairs that one would likely encounterin practice. For example,

• ρ(n−1,1)⊗ρ(n−1,1) ≡ ρ(n)⊕ρ(n−1,1)⊕ρ(n−2,2)⊕ρ(n−2,1,1)

• ρ(n−1,1)⊗ρ(n−2,2) ≡ ρ(n−1,1)⊕ρ(n−2,2)⊕ρ(n−2,1,1)⊕ρ(n−3,3)⊕ρ(n−3,2,1)

• ρ(n−1,1)⊗ρ(n−2,1,1) ≡ ρ(n−1,1)⊕ρ(n−2,2)⊕ρ(n−2,1,1)⊕ρ(n−3,2,1)⊕ρ(n−3,1,1,1)

• ρ(n−1,1)⊗ρ(n−3,3) ≡ ρ(n−2,2)⊕ρ(n−3,3)⊕ρ(n−3,2,1)⊕ρ(n−4,4)⊕ρ(n−4,3,1)

D.2 Computing the Clebsch-Gordan Coefficients

In this section, we consider the general problem of finding an orthogonal operator which decom-
poses an arbitrary complex representation,X(σ), of a finite groupG.15 Unlike the Clebsch-Gordan
series which are basis-independent, intertwining operators must be recomputed if we change the
underlying basis by which the irreducible representation matrices are constructed. However, for a
fixed basis, we remind the reader that these intertwining operators need only be computed once and
for all and can be stored in a table for future reference. LetX be any degreed group representation
of G, and letY be an equivalent direct sum of irreducibles, for example,

Y(σ) =
M

ν

zν
M

ℓ=1

ρν(σ), (34)

where each irreducibleρν has degreedν. We would like to compute an invertible (and orthogonal)
operatorC, such thatC·X(σ) =Y(σ) ·C, for all σ∈G. Throughout this section, we will assume that
the multiplicitieszν are known. To compute Clebsch-Gordan coefficients, for example, we would
setX = ρλ⊗ρµ, and the multiplicities would be given by the Clebsch-Gordan series (Equation32).
To find the matrix which relates marginal probabilities to irreducible coefficients, we would set
X = τλ, and the multiplicities would be given by the Kostka numbers (Equation 6).

We will begin by describing an algorithm for computing a basis for the space of all possible
intertwining operators which we denote by:

Int[X;Y] = {C∈ Rd×d : C ·X(σ) = Y(σ) ·C, ∀σ ∈G}.

We will then discuss some of the theoretical properties of Int[X;Y] and show how to efficiently select
anorthogonalelement of Int[X;Y].

15. Though the fundamental ideas in this section hold for a general finite group, we will continue to index irreducible
by partitions and think of representations as being real-valued. To generalize the results, one can simply replace all
transposes in this section by adjoints and think ofη as indexing over the irreducibles ofG rather than partitions.
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Our approach is to naively16 view the task of finding elements of Int[X;Y] as a similarity matrix
recovery problem, with the twist that the similarity matrix must be consistent over all group ele-
ments. To the best of our knowledge, the technique presented in this sectionis original. We first
cast the problem of recovering a similarity matrix as a nullspace computation.

Proposition 31 Let A,B,C be matrices and let KAB = I ⊗A−BT ⊗ I. Then AC= CB if and only if
vec(C) ∈ Nullspace(KAB).

Proof A well known matrix identity (van Loan, 2000) states that ifA,B,C are matrices, then
vec(ABC) =

(
CT ⊗A

)
vec(B). Applying the identity toAC= CB, we have:

vec(ACI) = vec(ICB),

and after some manipulation: (
I ⊗A−BT ⊗ I

)
vec(C) = 0,

showing that vec(C) ∈ Nullspace(KAB).

For eachσ ∈G, the nullspace of the matrixK(σ) constructed using the above proposition as:

K(σ) = I ⊗Y(σ)−X(σ)⊗ I , (35)

whereI is ad×d identity matrix, corresponds to the space of matricesCσ such that

Cσ ·X(σ) = Y(σ) ·C, for all σ ∈G.

To find the space of intertwining operators which are consistent across all group elements, we need
to find the intersection:

\

σ∈G

Nullspace(K(σ)).

At first glance, it may seem that computing the intersection might require examining n! nullspaces
if G = Sn, but as luck would have it, most of the nullspaces in the intersection are extraneous, as we
now show.

Definition 32 We say that a finite group G isgeneratedby a set ofgeneratorsS= {g1, . . . ,gm} if
every element of G can be written as a finite product of elements in S.

For example, the following three sets are all generators forSn:

• {(1,2),(1,3),. . . ,(1,n)},

• {(1,2),(2,3),(3,4),. . . ,(n−1,n)}, and

• {(1,2),(1,2,3,. . . ,n)}.

To ensure a consistent similarity matrix for all group elements, we use the following proposition
which says that it suffices to be consistent on any set of generators ofthe group.

16. In implementation, we use a more efficient algorithm for computing intertwining operators known as theEigenfunc-
tion Method(EFM) (Chen, 1989). Unfortunately, the EFM is too complicated for us to describe in this paper. The
method which we describe in this appendix is conceptually simpler than the EFMand generalizes easily to groups
besidesSn.
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Proposition 33 Let X and Y be representations of finite group G and suppose that G is generated by
the elementsσ1, . . . ,σm. If there exists an invertible linear operator C such that C·X(σi) =Y(σi) ·C
for each i∈ {1, . . . ,m}, then X and Y are equivalent as representations with C as the intertwining
operator.

Proof We just need to show thatC is a similarity transform for any other element ofG as well.
Let π be any element ofG and supposeπ can be written as the following product of generators:
π = ∏n

i=1 σi . It follows that:

C−1 ·Y(π) ·C = C−1 ·Y
(

∏
i

σi

)
·C = C−1 ·

(
∏

i
Y(σi)

)
·C

= (C−1 ·Y(σ1) ·C)(C−1 ·Y(σ2) ·C) · · ·(C−1 ·Y(σm) ·C)

= ∏
i

(
C−1 ·Y(σi) ·C

)
= ∏

i
X(σi) = X

(
∏

i
σi

)
= X(π).

Since this holds for everyπ ∈ G, we have shownC to be an intertwining operator between the
representationsX andY.

The good news is that despite havingn! elements,Sn can be generated by just two elements, namely,
(1,2) and(1,2, . . . ,n), and so the problem reduces to solving for the intersection of two nullspaces,
(K(1,2)∩K(1,2, . . . ,n)), which can be done using standard numerical methods. Typically, the
nullspace is multidimensional, showing that, for example, the Clebsch-Gordan coefficients forρλ⊗
ρµ are not unique even up to scale.

Because Int[X;Y] contains singular operators (the zero matrix is a member of Int[X;Y], for ex-
ample), not every element of Int[X;Y] is actually a legitimate intertwining operator as we require
invertibility. In practice, however, since the singular elements correspondto a measure zero subset
of Int[X;Y], one method for reliably selecting an operator from Int[X;Y] that “works” is to simply select
a random element from the nullspace to beC. It may, however, be desirable to have anorthogonal
matrixC which works as an intertwining operator. In the following, we discuss an object called the
Commutant Algebrawhich will lead to several insights about the space Int[X;Y], and in particular,
will lead to an algorithm for ‘modifying’ any invertible intertwining operatorC to be anorthogonal
matrix.

Definition 34 TheCommutant Algebraof a representation Y is defined to be the space of operators
which commute with Y :17

ComY = {S∈ Rd×d : S·Y(σ) = Y(σ) ·S, ∀σ ∈G}.

The elements of the Commutant Algebra ofY can be shown to always take on a particular con-
strained form (shown using Schur’s Lemma in Sagan 2001). In particular, every element of ComY
takes the form

S=
M

ν
(Mzν⊗ Idν) , (36)

whereMzν is somezν×zν matrix of coefficients andIdν is thedν×dν identity (recall that thezν are
the multiplicities from Equation 34). Moreover, it can be shown that every matrix of this form must
necessarily be an element of the Commutant Algebra.

17. Notice that the definition of the Commutant Algebra does not involve the representationX.
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The link between ComY and our problem is that the space of intertwining operators can be
thought of as a ‘translate’ of the Commutant Algebra.

Lemma 35 There exists a vector space isomorphism between Int[X;Y] and ComY.

Proof Let R be any invertible element of Int[X;Y] and define the linear mapf : ComY→ Rd×d by:
f : S 7→ (S·R). We will show that the image off is exactly the space of intertwining operators.
Consider any elementσ ∈G:

(S·R) ·X(σ) · (S·R)−1 = S·R·X(σ) ·R−1 ·S−1,

= S·Y(σ) ·S−1 (sinceR∈ Int[X;Y]),

= Y(σ) (sinceS∈ ComY).

We have shown thatS·R∈ Int[X;Y], and sincef is linear and invertible, we have that Int[X;Y] and
ComY are isomorphic as vector spaces.

Using the lemma, we can see that the dimension of Int[X;Y] must be the same as the dimension of
ComY, and therefore we have the following expression for the dimension of Int[X;Y].

Proposition 36
dimInt[X;Y] = ∑

ν
z2

ν.

Proof To compute the dimension of Int[X;Y], we need to compute the dimension of ComY, which
can be accomplished simply by computing the number of free parameters in Equation 36. Each
matrixMzν is free and yieldsz2

ν parameters, and summing across all irreduciblesν yields the desired
dimension.

To select an orthogonal intertwining operator, we will assume that we are given some invertible
R∈ Int[X;Y] which is not necessarily orthogonal (such as a random element of the nullspace ofK
, Equation 35). To find an orthogonal element, we will ‘modify’R to be an orthogonal matrix by
applying an appropriate rotation, such thatR·RT = I . We begin with a simple observation about
R·RT .

Lemma 37 If both X and Y are orthogonal representations and R is an invertible member of Int[X;Y],
then the matrix R·RT is an element of ComY.

Proof Consider a fixedσ ∈G. SinceR∈ Int[X;Y], we have that:

X(σ) = R−1 ·Y(σ) ·R.

It is also true that:
X(σ−1) = R−1 ·Y(σ−1) ·R. (37)

SinceX(σ) andY(σ) are orthogonal matrices by assumption, Equation 37 becomes:

XT(σ) = R−1 ·YT(σ) ·R.
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Algorithm 6 : Pseudocode for computing an orthogonal intertwining operators
INTXY
input : A degreed orthogonal matrix representationX evaluated at permutations(1,2) and

(1, . . . ,n), and the multiplicityzν, of the irreducibleρν in X
output: A matrix Cν with orthogonal rows such thatCT

ν ·⊕zνρν ·Cν = X
K1← Id×d⊗ (⊕zνρν(1,2))−X(1,2)⊗ Id×d;1

K2← Id×d⊗ (⊕zνρν(1, . . . ,n))−X(1, . . . ,n)⊗ Id×d;2

K← [K1;K2]; //Stack K1 and K23

v← SparseNullspace
(
K,z2

ν
)
; //Find the d2

ν-dimensional nullspace4

R← Reshape(v;zνdν,d); //Reshape v into a(zνdν)×d matrix5

M← KroneckerFactors(R·RT); //Find M such that R·RT = M⊗ Idν6

Sν← Eigenvectors(M) ;7

Cν← ST
ν ·R ;8

NormalizeRows(Cν);9

Taking transposes,

X(σ) = RT ·Y(σ) · (R−1)T .

We now multiply both sides on the left byR, and on the right byRT ,

R·X(σ) ·RT = R·RT ·Y(σ) · (R−1)T ·RT

= R·RT ·Y(σ).

SinceR∈ Int[X;Y],

Y(σ) ·R·RT = R·RT ·Y(σ),

which shows thatR·RT ∈ ComY.

We can now state and prove our orthogonalization procedure, which works by diagonalizing the
matrixR·RT . Due to its highly constrained form, the procedure is quite efficient.

Theorem 38 Let X be any orthogonal group representation of G and Y an equivalentorthogonal
irreducible decomposition (As in Equation 34). Then for any invertible element R∈ Int[X;Y], there
exists an (efficiently computable) orthogonal matrix T such that the matrix T·R is an element of
Int[X;Y] and isorthogonal.

Proof Lemma 37 and Equation 36 together imply that the matrixR·RT can always be written in
the form

R·RT =⊕ν (Mzν⊗ Idν)

SinceR·RT is symmetric, each of the matricesMzν is also symmetric and must therefore possess
an orthogonal basis of eigenvectors. Define the matrixSzν to be the matrix whose columns are the
eigenvectors ofMzν .

The matrixS=⊕ν(Szν⊗ Idν) has the following two properties:
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1. (ST ·R)(ST ·R)T is a diagonal matrix:

Each column ofSis an eigenvector ofR·RT by standard properties of the direct sum and Kro-
necker product. Since each of the matrices,Szν , is orthogonal, the matrixS is also orthogonal.
We have:

(ST ·R)(ST ·R)T = ST ·R·RT ·S,

= S−1 ·R·RT ·S,

= D,

whereD is a diagonal matrix of eigenvalues ofR·RT .

2. ST ·R∈ Int[X;Y]:

By Equation 36, a matrix is an element of ComY if and only if it takes the form⊕ν(Szν⊗ Idν).
SinceScan be written in the required form, so canST . We see thatST ∈ ComY, and by the
proof of Lemma 35, we see thatST ·R∈ Int[X;Y].

Finally, settingT = D1/2 ·ST makes the matrixT ·R orthogonal (and does not change the fact
thatT ·R∈ Int[X;Y]).

We see that the complexity of computingT is dominated by the eigenspace decomposition
of Mzν , which is O

(
z3

ν
)
. Pseudocode for computing orthogonal intertwining operators is given

Algorithm 6.
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