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Abstract

Learning algorithms are based on samples which are oftawndradlependently from an identical
distribution (i.i.d.). In this paper we consider a differsmtting with samples drawn according to a
non-identical sequence of probability distributions. Eéme a sample is drawn from a different
distribution. In this setting we investigate a fully onlilg@rning algorithm associated with a general
convex loss function and a reproducing kernel Hilbert sg&t€HS). Error analysis is conducted
under the assumption that the sequence of marginal distitsuconverges polynomially in the
dual of a Hdlder space. For regression with least square or insem$itss, learning rates are given
in both the RKHS norm and thie? norm. For classification with hinge loss and support vector
machineg-norm loss, rates are explicitly stated with respect to #teess misclassification error.

Keywords: sampling with non-identical distributions, online leargj classification with a general
convex loss, regression with insensitive loss and leastredass, reproducing kernel Hilbert space

1. Introduction

In the literature of learning theory, samples for algorithms are often assumnfieddrawn indepen-
dently from an identical distribution. Here we consider a setting with sampesndfrom non-
identical distributions. Such a framework was introduced in Smale and Zf9) and Steinwart
et al. (2008) where online learning for least square regressionf&fideosupport vector machines
are investigated. We shall follow this framework and study a kernel bagéte learning algorithm
associated with a general convex loss function. Our analysis can liedafip various purposes
including regression and classification.

1.1 Sampling with Non-identical Distributions

Let (X,d) be a metric space called an input space for the learning problemY beta compact
subset ofR (output space) and =X x Y.

In our online learning setting, at each step- 1,2,..., a pairz = (X,Y;) is drawn from a
probability distributionp® onZ. The sampling sequence of probability distributing)}t:Lz,.‘. is

not identical. For convergence analysis, we shall assume that thenseré)}t:l,zw of marginal
distributions orX converges polynomially in the dual of thédlder spac€3(X) for some O< s< 1.
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Here the Holder spaceC®(X) is defined to be the space of all continuous functionsanith the

norm || fllesx) = I fllcx) + | flesx) finite, where] s, —sug(#y”(%(();;)(){)‘.

Definition 1 We say that the sequen{:pg)}tzlg,... converges polynomially to a probability distri-
butionpyx in (C3(X))* (0 < s< 1) if there exist C> 0 and b> 0 such that

Hpg) —Pxllicspxy: < ct®, teN. (1)

By the definition of the dual spa¢€®(X))*, decay condition (1) can be expressed as

\ [ 109d0) ~ [ 00dox

What measures quantitatively differences between our non-identttabsand the i.i.d. case is
the power index. Its impact on performance of online learning algorithms will be studied in this
paper. The i.i.d. case correspond$te co.

We describe three situations in which decay condition (1) is satisfied. Bésfivhen a distri-
bution px is perturbed by some noise and the noise level decreasasasases.

<CtUPfllesx),  VFeC(X)teN. (2)

Example 1 Let {hV} be a sequence of bounded functions on X suchstiigt , | (x)| < Ct°.
Then the sequend®y’ }_1 -... defined by g = dpx -+ h® (x)dpx satisfies (1) for anp < s < 1.

The proof follows from| fy f(x)h® (x)dpx | < sugex [N ()] fllcx) < Ct=°[| fllcs(x)- In this ex-
ample,h® is the density function of the noise distribution and we assume its bound (neédptte
decay polynomially asincreases.

The second situation when decay condition (1) is satisfied is generateddiiwéections of an
integral operator associated with a stochastic density kernel. We demonisisegguation by an
example orX = S 1, the unit sphere dR" with n> 2. LetdSbe the normalized surface element of
S*-1. The corresponding spaté(S'1) has an orthonormal basj¥/x: ¢ € Z, ,k=1,...,N(n,{)}
with N(n,0) = 1 andN(n, ¢) = 240=2 (””(63)1()” 2! HereY,y is a spherical harmonic of ordér
which is the restriction ont& ! of a homogeneous polynomial IR" of degree/ satisfying the
Laplace equatioAf = 0. In particularYpo = 1.

Example 2 Let X=9"1, 0 < a < 1, and € C(X x X) be given by

00 N(n,k‘) 00 N(n,(f)
WU =1+ S aYk()Yk(u) where 0<ax<a, S 5 ak|YulEx <1
(=1 k=1 =1 k=1

If (M is a square integrable density function on X and a sequence of density imfhid} is
defined by

h(t+1)( /quu udSu), xeX, teN,

then we know ® = Yo,0 + Zf le_ a/k <h< ),Yg,k>|_2(5171)Yg7k and ”h(t) —Y()?OHLZ(S“l—l) <

at=1||h(® [L2(g-1). It follows that the sequenc%pgz) = h®)(x)dS}_12.. of probability distribu-
tions on X converges polynomially to the uniform distributigex & dS on X and satisfies (1) for
any0<s<1.
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ONLINE LEARNING WITH NON-IDENTICAL DISTRIBUTIONS

In general, ifv is a strictly positive probability distribution o, and if € C(X x X) is strictly
positive satisfyingfy Y(x, u)dv(u) = 1 for eachx € X, then the sequenc{@g)} defined by

/{/ Y(x,u) dpX )}dv(u) on Borel sets ' C X

satisfies”pgz) —px|lcpxyy < Ca' for some (strictly positive) probability distributiopy on X and
constant€ > 0,0 < a < 1. Hence decay condition (1) is valid for any<0s < 1. For details, see
Smale and Zhou (2009).

The third situation to realize decay condition (1) is to induce distributions byrdigad systems.
Here we present a simple example.

Example 3 Let X=[—1/2,1/2] and for each & N, the probability distributiorpﬁ? on X has sup-
port [-27%, 271 and uniform densit@'~! on its support. Then withy being the delta distribution
at the origin, for eactd < s< 1 we have

‘/Xf(x)dp@—/xf(x)dao

Remark 2 Since|| f{|cx) < [/ f{lcsx), we see from (2) that decay condition (1) with dhy s <1

is satisfied when this ponnomlal convergence requirement is valid in $e<a0. This happens
in Examples 1 and 2. Note that wher-9, the dual spacéC(X))* is exactly the space of signed
finite measures on X. Each signed finite measure p on X ligS(X))* C (C3(X))* and satisfies

Il sy < Ml exyys < SxdlMl-

—t

2
<22 [ 1100 - 10)ldx< (29| e

1.2 Fully Online Learning Algorithm

In this paper we study a family of online learning algorithms associated witlodapimg kernel
Hilbert spaces and a general convex loss function.

A reproducing kernel Hilbert spad®kKHS) is induced by dercer kernel K X x X — R which
is a continuous and symmetric function such that the manbxi,xj))ﬁj:l is positive semidefinite
for any finite set of point§xs,---,x,} C X. The RKHS# is the completion (Aronszajn, 1950) of
the span of the set of functiod&y = K(x,-) : x € X} with the inner product given b{Ky, Ky)k =

K(X,y).

Definition 3 We say thatVY x R — R is a convex loss function if for eacheyY , the univariate
function (y,-) : R — R, is convex.

The convexity tells us (Rockafellar, 1970) that for edck R andy € Y, the left derivative
lims_o_(V(y, f+0)—V(y, f))/d exists and is no more than the right derivativegirg, (V (y, f +
0) —V(y, f))/d. An arbitrary number between them (which is a gradient) will be taken anoted
asaV (y, f) in our algorithm.

For the least square regression problem, we can\tayef ) = (y— f)2. For the binary classifi-
cation problem, we can také&(y, f) = @(y f) with ¢: R — R a convex function.

The online algorithm associated with the RKH and the convex losg is a stochastic gra-
dient descent method (Cesa-Bianchi et al., 1996; Kivinen et al., Z0f®4je and Yao, 2006; Ying
and Zhou, 2006; Ying, 2007).
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Definition 4 Thefully online learning algorithnis defined by = 0 and
ft_;,_]_ = ft — Nt {GV(yt, ft(Xt))th +)\t ft}, fort = 1,2, R (3)
where); > 0 is called theregularization parametandn; > 0 the step size

In this fully online algorithm, the regularization paramekeichanges with the learning stép
Throughout the paper we assume that; < A; for eacht € N. When the regularization parameter
At = A1 does not change as the steagevelops, we call scheme (Bartially online

The goal of this paper is to investigate the fully online learning algorithm (&nthe sampling
sequence is not identical. We will show that learning rates in the non-idesétiang can be the
same as those in the i.i.d. case when the power ibbdaxpolynomial decay condition (1) is large
enough, that is{pg)} converges fast tpx. Whenb is small, the non-identical effect becomes
crucial and the learning rates will depend essentiallyp.on

2. Error Bounds for Regression and Classification

As in the work on least square regression (Smale and Zhou, 2009)ssuena for the sampling
sequencdpt}i_1 »... that the conditional distributiop® (y|x) of eachp®) atx € X is independent
of t, denoted apy.

Throughout the paper we assume independence of the sampling, that4s(x,y:)}: is a
sequence of samples drawn from the product probability sface; ...(Z, p®).

Error analysis will be conducted for fully online learning algorithm (3) engolynomial decay
condition (1) for the sequence of marginal distributing)}. Let p be the probability distribution
on Z given by the marginal distributiopyx and the conditional distributiorns,. Essential difficulty
in our non-identical setting is caused by the deviatiof@? } from p.

The first novelty of our analysis is to deal with an error quantitynvolving p!) — p (defined
by (15) below) which occurs only in the non-identical setting. This is hahttle a general loss
functionV and output spac¥ by Lemma 18 in Section 3 under decay condition (1) for marginal
distributions{pg)} and Lipschitzs continuity of conditional distribution§py : x € X}.

Definition 5 We say that the set of distributiofigy : x € X} is Lipschitz s ifC5(Y))* if there exists
a constant g > 0 such that

[1Px — Pullcsv)) < Co(d(x,u))3, vx,u e X. 4)

Notice that on the compact sub¥etf R, the Holder spac€3(Y) and its dualC3(Y))* are well
defined. Eaclpy belongs toC3(Y))*.

The second novelty of our analysis is to show for the least square lessrilded in Section
3) and binary classification that Lipschigzontinuity (4) of{px : x € X} is the same as requiring
fp € C3(X) wheref,, is theregression functiodefined by

fo(X) = /Y ydpx(y),  xeX. (5)

Proposition6 Let 0 < s < 1. Condition (4) implies § € C3X) with |fylesx) <
Cp(1+21‘3)sugGY ly|. When Y= {1, -1}, f, € C5(X) also implies (4) and £< | fpcs(x)-
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The two-point nature of the output spac¢dor binary classification plays a crucial role in our
observation. The second statement of Proposition 6 is not true forajengput spac&'. Here is
one example.

Example 4 LetO < s<1and Y= {1,—1,0}. Then condition (4) holds if and only if £ C3(X)
and §,_1 € C3(X) where § _1 is the function on X given by, f1(X) = px({—1}).

Proofs of Proposition 6 and Example 4 will be given in the appendix.

Our third novelty is to understand some essential differences betweemotdentical setting
and the classical i.i.d. setting by pointing out the key role played by the podexlrof polynomial
decay conditiorﬂpg) — x|l ey < Ct~P in derived convergence rates in Theorems 7 and 10 for
regression and Theorem 11 for classification. Even for least sgegression our result improves

the error analysis in Smale and Zhou (2009) where a stronger expdrosuéy conditiorﬂpgp —
px || (csx))- < Catt is assumed.

Our error bounds for fully online algorithm (3) are comparable with thosafbatch learning
algorithm generated by the off-line regularization scheméfndefined with a sample := {z =
(%,Yt)}{_; and a regularization paramefer- 0 as

A
f,n=arg mln{ ziV W, f 2!”%}- (6)

Let us demonstrate our error analysis by learning rates for regresgltofeast square loss and
insensitive loss and for binary classification with hinge loss.

2.1 Learning Rates for Least Square Regression

Here we tak&/ = [~M,M] for someM > 0 and the least square 10és= Vs asVis(y, f) = (y— f)2.
Then the algorithm takes the form

A
fii1 = ft_zr]t{(ft<xt)_yt)KX¢+ztft}a fort=1,2,...

The following learning rates are derived by the procedure in Smale aod @909) where an
exponential decay condition is assumed. Here we only impose a much wesleomial decay
condition (1). We also assume the regularity condition (of ordei0)

fo = Lk (gp) for someg, € L3 (X), (7)

wherely is the integral operatdrf,X defined by

LKf /KXV dpx() xeX
with L, well-defined as a compact operator.

Theorem 7 Let0O<s< 1 5 and3 lar< 3. Assume Ke C?(X x X), regularity condition (7) for §
and (1) with b> 542 for {px } Take

A=MtET, g =nt

2877



HuU AND ZHOU

with A1n1 > 23, then
Ez...z (| frea—follk) < CT 2,
whereC is a constant independent of T.
Denote the constamt= maxcx \/W From the reproducing property
Ky, fk = f(x), xeX, feH (8)
of the RKHS#, we see that
HfHC(X)SKHfHKv vxe X, f e H.

Most error analysis in the literature of least square regression (ZBa64g; De Vito et al., 2005;
Smale and Yao, 2006; Wu et al., 2007) is aboutlth@orm || fr, 1 — fp||L%x orrisk in the i.i.d. case.
From a predictive viewpoint, in the non-identical setting, the effar, — f, should be measured
with respect to the distributiopg), not the limitpx. This can be done by boundirigr 1 — fo[lc(x)
(sincepg) changes witfT), which follows from estimates fdffr..1 — f,||k. So our bounds for the
error in the#H-norm provides useful predictive information about learning ability dif/fanline
algorithm (3) in the non-identical setting.

Remark 8 When Xc R" and K € C2™(X x X) for some me N, we know from Zhou (2003, 2008)
and Theorem 7 thaE,, . 7, (|| fr41— follomx)) = O(T‘%). So the regression function is learned
efficiently by the online algorithm not only in the usu%L Ispace, but also strongly in the space
C™M(X) implying the learning of gradients (Mukherjee and Wu, 2006).

In the special case af = % the learning rate in Theorem 7 is;E (||fT+1— fp||K) =

O(T*%), the same as those in the literature (Smale and Zhou, 200@sTand Yao, 2005; Smale and

Zhou, 2007). Here we assume polynomial convergence condition (1)awéige indexo > ﬁ

So the influence of the non-identical distributio{rrép} does not appear in the learning rates (it is
involved in the constarE). Instead of refining the analysis for smaltein Theorem 7, we shall
show the influence of the inddxon learning rates by the settings of regression with insensitive loss
and binary classification.

2.2 Learning Rates for Regression with Insensitive Loss

A large family of loss functions for regression take the forty, f) = W(y— f) wherey : R — R
is an even, convex and continuous function satisfyfiig) = 0. One example is the-insensitive
loss (Vapnik, 1998) witle > 0 where(u) = max{|u| — €,0}. We consider the case wher=0. In
this case the loss is called least absolute deviation or least absolute ereliiertiture of statistics
and finds applications in some important problems because of robustness.

Definition 9 The insensitive loss ¥ Vi, is given by Vi (y, f) = |y— f|.
Algorithm (3) now takes the form

f 1={ (L= = Nek, (%) 2 0,
’ (1—nA)f+ Ny, I F(X) < W

The following learning rates are new and will be proved in Section 5.
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Theorem 10 Let0< s< % and Ke C%(X x X). Assume regularity condition (7) fop fvith r > %

and polynomial convergence condition (1) {qnfp}. Suppose that for eachexX, px is the uniform
distribution on the interva[fy(x) — 1, fo(X) +1]. If Ay < (K||ng|_gx)2/(1‘2r>/2 andn; > 0, then

with a constan€ independent of T, whein<r < 3 3 we have

Ez.... (HfT+1—fp||K)<CT min{§51.3 - &) by takingh; = A1t~ &1 N =Nt~ 1

and wherr2 <r <1, we have

2r+1

Ezar (I fria—follig ) SCT-™Ms2d=a) with A = Agt ™52, e = nat™ 52,

Again, whenb > g2 X ¢ R" andK € C2"(X x X) for somem € N, Theorem 10 tells us that

Ez...z (Ifre1— follomx)) = O(T~ 6r+1) So the regression function is learned efficiently by the
online algorithm not onIy with respect to the risk, but also strongly in theesp&¢X) implying the
learning of gradients. _

Consider the case = When {pg(')} converges slowly withb < £, we see that

3
2
Ez .z (||fri1— follk) = O(T~(273)) which heavily depends on the indéxepresenting quan-

.....

titatively the deviation of{p; } from px Whenb is large enough witlp > ‘—;, the learning rate

77777 2 (|[fr41— foll) is of orderT ~$ which is independent df.
It would be interesting to extend Theorem 10 to situations wipgn x € X} are more general
bounded symmetric distributions.

2.3 Learning Rates for Binary Classification

The output spac¥ for the binary classification problem¥s= {1, —1} representing the set of two
classes. A binarglassifierC : X — Y makes a predictiog = C(x) € Y for each poink € X.

A real valued functionf : X — R can be used to generate a classifi¢x) = sgn(f (x)) where
sgnf(x)) = 1if f(x) > 0 and sgif(x)) = —1if f(x) < 0. A classifying convex los$: R — R, is
often used for the real valued functidnto measure the local errg(y f(x)) suffered from the use
of sgn(f) as a model for the process producingtx € X. TakeV (y, f) = @(yf) in out setting. Off-
line classification algorithm (6) has been extensively studied in the literdtuparticular, the error
analysis is well done when the samplis assumed to be an identical and independent drawer from
a probability measurp on Z. See, for example, Evgeniou et al. (2000), Steinwart (2002), Zhang
(2004) and Wu et al. (2007). Some analysis for off-line support veotchines with dependent
samples can be found in Steinwart et al. (2008).

When the sample siZE€ is very large, algorithm (6) might be practically challenging. Then
online learning algorithms can be applied, which provide more efficient metlooatlassification.
These algorithms are generalizations of the perceptron which has a léogyhiche error analysis
for online algorithm (3) has also been conducted for classification in the isiedting, see, for
example, Cesa-Bianchi et al. (2004), Ying and Zhou (2006), Yin@72@nd Ye and Zhou (2007).

Here we are interested in the error analysis for fully online algorithm (3)eémtn-identical
setting. The error is measured by tmésclassification errorR (C) defined to be the probability of
the event{ C(x) # y} for a classifierC

/pxy7éc ))dpx (X /px{ C(x)})dpx(X).
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The best classifier minimizing the misclassification error is calledBdnges rulg(e.g., Devroye et
al. 1997) and can be expressedfas- sgrn(f,).

We are interested in the classifier $én.1) produced by the real valued functidf_ 1 using
fully online learning algorithm (3). So our error analysis aims atdkeess misclassification error
R(sgr(fri1)) — R(fe).

We demonstrate our error analysis by a result, proved in Section 5, fdvinge lossp(x) =
(1—x)+ = max{1—x,0}. For this loss, the online algorithm (3) can be expressefd as0 and

f 1_{ (l—nt)\t)ft, if ytft(Xt)>l,
o (L—ndo) fe+neveKy,  iFyefe(x) < 1

Theorem 11 LetV(y, f) = (1—yf); and Ke C?(X x X) for some0d < s< 1. Assume € C5(X)
and the triple(px, fc,K) satisfies

| Ao :
flen}f&{uf_fCHL},X""E”fHK}gQ)O)\ VA>0 9)

for some0 < 3 < 1andDy > 0. Take

A=At A, =gt (B

whereA; > 0and0< n; < 2K271+)\1 If {pﬁ)}tzl,z,.i satisfies (1) with b> % then

Eo..z (R(SQN( fr41)) — R (fe)) < CpapT MME3+ 5033 (10)

where G s, = Gy, \,.x,20,8.5 IS @ constant depending on, A1, K, Do, 3,s and b.

In the i.i.d. case witth = «, the learning rate for fully online algorithm (3) we state in The-
orem 11 is of formO(T*m‘”{%’%z%}) which is better than that in Ye and Zhou (2007) of order
O(T*m"‘{%%*%}) with an arbitrarily smalk > 0. This improvement is realized by technical novelty
in our error analysis, as pointed out in Remark 27. So even in the i.i.d. @askarning rate for
fully online classification with the hinge loss under approximation error assom(®) is the best
in the literature.

Let us discuss the role of the power indefor the convergence o{fpgz)} to px played in the

learning rate in Theorem 11. Consider the cﬁs;e%. Whenb > 1%‘3 meaning fast convergence of
{pg)} to px, learning rate (10) takes the for@(T*%) which depends only on the approximation
ability of #Hx with respect to the functiofi, andpx. When% <b< 1;23 representing some slow
convergence o{pg)} to px, the learning rate takes the for@(T‘%) which depends only oh.

1

Whenp > 2, learning rate (10) is of ordg—(5+3) for b > 31 B (fast convergence dipd'})

and of ordem~(3-%) for % <b< %Jr 1% (slow convergence o{pg)}). It would be interesting to
know how online learning algorithms adapt when the time dependent distritariftsisufficiently
slowly (corresponding to very smdd).
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2.4 Approximation Error Involving a General Loss

Condition (9) concerns the approximation of the functfgin the spacé_gx by functions from the
RKHS #. In particular, when## is a dense subset @f(X) (i.e., K is a universal kernel), the
guantity on the left-hand side of (9) tends to O\as> 0. So (9) is a reasonable assumption, which
can be characterized by an interpolation space condition (Smale and2Z@3),Chen et al., 2004).

Assumptions like (9) are necessary to determine the regularization paraioretehieving
learning rate (10). This can be seen from the literature (Wu et al., 20@hd 2004; Caponnetto
et al., 2007) of off-line algorithm (6): learning rates are obtained by slgitehoices of the regular-
ization parametek = A1 = A1(T), according to the behavior of the approximation error estimated
from a priori conditions on the distributignand the spacgi .

For a general loss functiov, conditions like (9) can be stated as the approximation error or
regularization error.

Definition 12 The approximation erroD(A) associated with the tripléK,V,p) is
A
_ . \% n 2
o) = inf {20~ () + 11k}, )
where we define the generalization error forX — R as

=/ZV(y, ))dp = //V y, (X)) dpx(y)dpx

and f/ is a minimizer of£(f).

The approximation error measures the approximation ability of the sfia®éth respect to the
learning process involving andp. The denseness ok in C(X) implies limy_oD(A) =0. A
natural assumption would be

DA) < DoAP for some 0< B < 1 and Dy > 0. (12)

Throughout the paper we assume for the general loss funetitrat ||V || := sug.y V(y,0) +
sup{[V(y, ) =V(y,0)[/[f[:y € Y, [f] < 1} < oo,
Remark 13 SinceD(A) < E(0)+0 < ||V| for anyA > 0, we see that (12) always holds wfth= 0
and Dy = ||V||.

For the least square loSgy, f) = (y— f)?, the minimizerfF\)’ of E(f) is exactly the regression
function defined by (5) and approximation error (11) takes the ffah) = inf¢ . {||f — f[[2, +

PX

%H f||2} which measures the approximationfgfin '-;an by functions from the RKH .

For a general loss functiown, the minimizerf“)’ of E(f) is in general different fronf,. More-
over, the approximation errd?(A) involves the approximation o‘f)’ by # in some function spaces
which need not be3, .

Example 5 For the hinge loss W, f) = (1—yf),, the minimizer § is the Bayes rule }f = f
(Devroye et al., 1997). Moreover the uniform Lipschitz continuity of ¥) implies (Chen et al.,
2004)

£(1)~ £(1Y) = | oyT(0) =0y ()dp < [ 1100 fe(ldpx = | = fll .

2881



HuU AND ZHOU

So approximation error (11) can be estimated by approximation in the&t@wnd condition (9)
implies (12).

Consider the insensitive lo§6=Vi,. We can easily see that for eaxke X, f5"(x) equals the
median of the probability distributiop onY. That is,f,\fin (x) is uniquely determined by

=

px({yeY:y<fr(x)}) > and p({yeY:y=> fir(x)}) >

NI =

2
Whenpy is symmetric about its meafa (x), we havefﬁ\)’in (X) = fo(x).

Example 6 LetV =V, f, € C(X) and p> 1. If for each xc X, the conditional distributiomy is
given by

Bly—fo(q[P1dy, if [y— fo(x)[ <1
— 2 p ’ p =
b =1 § i ly— o] > 1.
then we have
1 1
E(f)—E(f9) = _—— _|f—f, Pt ——
(1) = E(f") p+1H p”LSIl P+ 1 J xex:|f (x)—fp(x)|>1}

1£(X) = fo(X) [P+ p— (1+ p)| F(x) — fo(x)|dpx.
It follows that

A
o) < inf {11~ I+ 5111R }

The conclusion of Example 6 will be proved in the appendix. The followingega result
follows from the same argument as in Wu et al. (2006).

Proposition 14 If the loss function V satisfig¥ (y, f1) —V(y, f2)| < |f1 — fa|forsome0 < c <1
and any ye Y, f, f, € R, then

A A
; __ fVyiC o 2V < __ fVyc n 2
D) < jinf {I1F = FIE, +ZITIkY < nf (1T =0 + 351l

If the univariate function Vy,-) is C' and satisfiedaV (y, f1) —aV(y, f2)| < |, — f2| for some
O<c<landanyyY,f, f € R, then

A A
D) = inf (1T = Tollige+ 31 Fllick < Inf AT =Torllz “+ STl

1+c
pr

3. Key Analysis for the Fully Online Non-identical Setting

Learning rates for fully online learning algorithm (3) such as those statéigeitast section for
regression and classification are obtained through analysis for apyation error and sample error.
The approximation error has been well understood (Smale and ZhoB;, 28@én et al., 2004). The
sample error for (3) will be estimated in the following two sections. Itis exqgesg| fr.1— f)\\’T Ik

wherefk’ is a regularizing function.
T
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Definition 15 For A > 0 the regularizing function)\\f € H is defined by
A
fy =arg inf S E(f)+ |||z 7. 13
Y —arg int { (1) + 311} 13)

Observe thaffy’ is a sample-free limit off,, defined by (6). It is natural to expect that the

function fr1 produced by online algorithm (3) approximates the regularizing fundt}fT)nNeII.
This is actually the case. Our main result on sample error analysis estimatéfettende fr, 1 —
f;/T in the Hk -norm for quite general situations. The estimation follows from an iteratiooguiure,
developed for online classification algorithms in Ying and Zhou (2006), Y2@§7) and Ye and
Zhou (2007), together with some novelty provided in the proof of Thed&nm the next section.
It is based on a one-step iteration boundijirfg.1 — fx ||k in terms of|| fy — fX_l|\K. The goal of this
section is to present our key analysis for one-step iteration in tackling tweksaarising from the
fully online non-identical setting.

3.1 Bounding Error Term Caused by Non-identical Sequence of Distbutions

The first part of our key analysis for one-step iteration is to tackle ama extor term); caused by
the non-identical sequence of distributions when boundifag; — fXHK by means of| f; — fXHK
with the fixed regularization parametar.

Lemma 16 Define{ f;} by (3). Then we have
Ex([lfera— B R) < (L—=neho)| fe— IR +20ele +NFE4 [0V (v, fr (%)) Ky +AchllR,  (14)
wherel; is defined by
b= [ {V00) Vi 00) pd [ —p]. (15)

Lemma 16 follows from the same procedure as in the proof of Lemma 3 in YingZzhod
(2006) and Ye and Zhou (2007). A crucial estimate is

(OV (¥, fu () K +Adke, fy, — ook < [V (%, i, (%)) + H Hﬁ]—[V(yt,ft(Xt)H%HftHﬁ]-

When we take the expectation with respectzo= (x,y:), we get [,V (y, fX(x))dp(t) (and
[V (y, f(x))dp®) on the right-hand side, nak(fY) = [zV(y, fy (x))dp. So compared with re-
sults in the i.i.d. case (Smale and Yao, 2006; Ying and Zhou, 2006; Ying,; ZG0rs and Yao,
2005; Ye and Zhou, 2007), an extra tefminvolving the difference measup!) — p appears. This
is the first barrier we need to tackle here.

WhenV is the least square loss, it can be easily handled by assuinii@S(X). In fact, from
V(y, f) = (y— f)? we see that

ac = [ im0 1000 + 100 - 2any) fa o o]
_ /X[fX(x)) ~ RO+ 109 — 265001 [p) —px]

This together with the relatiofthg||cs(x) < ||hl|cs(x) [|9llcs(x) Yields the following bound.
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Proposition 17 Let V(y, f) = (y— f)? and f, € C3(X). Then we have

B < {1 sy + 1 ellespx) + 20 st 119 = xlliosio 13 = feles)

For a general loss function and output spagesan be bounded under assumption (4). Itis a
special case of the following general result wiena f)\\{ andg = f;.

Lemma 18 Let h g € C5(X). If (4) holds, then we have

’/V y:h(x)) =V (y.9(x))d [p“)—pH
Bng (Il + 19llespx)) +2CoBng | Pk’ —pxlc
< 9 Bng csx) T 119lles(x) pBhg ( [IPx” — Pxll(cs(x))
where B,g and By are constants given by

Bng = sup{[oV(y, f)| :y € Y, |f| < max{|[hllcix), l9llcx) } }

and
Bng = sup{|IV (-, f)llcstv) 1 | < max{[[hllcix). 19l } -

Proof By decomposing the probability distributions drinto marginal and conditional distribu-
tions, we see

[ Vn09) =V g0)d [0 p] = [ [ V(3.n00) =V (5.900)dpx(y)d [ o5 —px].

By the definition of the norm ifC3(X))*, we obtain

‘/V y.h V(y,9(x))d [p(t) —p} ‘ < |lp% — Pxll(csx))+ [19llesex)

whereld is a function onX defined by

0= [ VN0 ~V(kg)dexy),  xeX.
The notion ofBy, 4 tells us thatV (y,h(x)) —V (y,9(x))| < Bng|h(x) —g(x)| for eachy € Y. Hence

9llcx) < Bngllh—dllcx)-
To bound|J|cs(x), letx,u € X. We can decomposKx) —J(u) as

xm—Jw>::Q/{thx ~V(%:909)] = V(W) -V (3. g(u)]}dpx(y)
+ [ IV eh(w) =V (y.g(u)Jdlpc—pul(y).
By the notionBy, g, part of the first term above can be bounded as
V(3 () V(3 h(W)] < Bghh(X) —~h(u)] < Brglhlcsix (@(x.u)*
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The same bound holds for the other part of the first term. So we get

[ (V0:) ~V10.0)] ~ V() V()] el
< Bhg {Ihlcsx) + |9lesx) F (d(x,u))°.

For the other term of the expression fix) — J(u), we apply condition (4) to

[V00) =V 50— 1l < o= Py

(y; h(u)) =V (y.9(u)) lles(v)
and find that

[V0:h000) Vi) pul)| < Gyl 2B
Combining the above two bounds, we see that

N —3I(u)

Dlcsx) = sup s < Bng { Ilesx) +19lcsx) } +2CoBhg:

xruex (A% U))

Then the desired bound follows and the lemma is proved. |

3.2 Bounding Error Term Caused by Varying Regularization Parameteas

The second part of our key analysis is to estimate the error term callecedoft|| fx - fXAHK
caused by the change of the regularization parameter Aomto A; in our fully online algorithm.
This is the second barrier we need to tackle here.

Definition 19 The drift error is defined as

o= [Ify — fir_,llk-

The drift error can be estimated by the approximation error, which hasdiadied for regres-
sion (Smale and Zhou, 2009) and for classification (Ye and Zhou, 2007)

Theorem 20 LetV be a convex loss functiori,’ by (13) and > A > 0. We have

I = ¥l < B - 0+ 10 < S - ) <\/@+W>

In particular, if with somed < y < 1 we take\; = Aqt Y fort > 1, then

1 < Zt%_lx/ @()\ﬂfy)/)\l.

Proof Taking derivative of the functionak(f) + %H f||Z at the minimizerf;p defined in (13), we
see that

/aV(y, £ (X)) Kedp + A £Y = 0.
Z
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It follows that 1 L
oY = Ll/ZaV(y, 1Y (X)) Kodlp — X/ZaV(y, £ (X)) Kyedlp.

Combining with the reproducing property (8), we kngfy’ — fY ||z = (Y — £}, fY — fY)x can be
expressed as

15 = 1% = [avn Y000 (5 = ) cado— 5 [ v ¥ 00) (1 1Y) (oce.

The convexity of the functioN (y, -) onR tells us that

OV (y, £ () (Y = £Y) (%) <V (v, Y (%) =V (y, fyf (x))

and
V(y, fY () () = £) (0 < V(y, Y (%)) =V (¥, £ (%).
Hence 11
1Y = fY & < (5~ ﬁ)(f(f&’) —E(f))).

¢ From the definition ofY, we see tha (fY) + 5| fY Iz — (E(fY) + 5[ 1/[Ik) < 0. It follows
that
" "
E(f)) - E(f)) < E(Hfmﬁ— IfY1R) < éHfX— Bl (I e+ 11 Tl

Then the desired inequality follows. |

4. Bounds for Sample Error in #k-norm

We are in a position to present our main result on the sample error measithetient4 -norm of
the differencefr 1 — fXT. This will be done by applying iteratively the key analysis in Lemma 16,
Lemma 18 and Theorem 20.

When applying Lemma 18, we need to bouiglicsix) in terms of||g||k.

Definition 21 We say that the Mercer kernel K satisfies #exnel conditionof order s if Ke
C3(X x X) and for somexys > 0,

IK(%,X) — 2K (x,u) + K(u,u)| < k34(d(x,u))*,  Yx,ueX. (16)

When 0< s < 1 andK € C(X x X), (16) holds true. The following result follows directly
from Zhou (2003), Zhou (2008) and Smale and Zhou (2009).

Lemma 22 If K satisfies the kernel condition of order s with (16) valid, then we have
[9llcsx) < (K+Kas)llgllk, Vg e F.

When using Lemma 16 and Lemma 18, we need incremental behaviors of ttieriosenV
to bound|| f¢||k.
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Definition 23 Denote
N =sup{|av(y. )| -y € .| /| < max{ K2V ||/ k/2IV /A } |

and

N = sup{ IV (- Dllcsy) -y € Y, 1] < max{kZIV | /A k 2V /AL }
We say that V hagicremental exponemt> 0 if for some N > 0 andA; > 0 we have
N(A) < Nl(%)p and N(\) < Nl(%)'“1 VO <A <Ag. (17)

We say thadV is locally Lipschitz at the origin if

[f]

Mo::sup{ :er,|f]§1}<oo. (18)

The following result can be proved by exactly the same procedure as itnd$ng and Zhou
(2006), Ying (2007) and Ye and Zhou (2007).

Lemma 24 Assume thadV is locally Lipschitz at the origin. Defingf;} by (3). If

Ne (K2(Mo+2N(Ay)) +A) <1 (19)
fort=1,...,T, then we have
||ft||K§K|l\VH, t=1.. . .T+1 (20)
t

For the insensitive loss, (18) is not satisfied, 8vty, f) is uniformly bounded by 1. For such
loss functions we can apply the following bound.

Lemma 25 Assume[oV (Y, f)|le := SURey rer [0V (Y, T)| < «. Define{fi} by (3). If for some
A1,n1 > 0andy,a > 0with A +a < 1, we takeA; = Mt Y, ne =Nt witht=1,...,T, then we

have c
HftHKS$7 t:177T+17 (21)

where Gy« is the constant given by

Guya = KIVY. D)l { M-+ A (22 0any) + (0 [@hama(a—2 )% ) |

Proof By taking norms in (3) we see that

[ ferallk < (2—nede) || Fellk +nek||OV (Y, T)lfe.

By iterating and the choicé = 0 we find
t
[frrallk < Zl”ti:iﬂ(l‘ NjADNIK([OV (Y, F)leo-
1=
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But 1-n;jA; < exp{—njA;}. It follows that

t t
[ ferallk < _erltj_i-i-lexp{_ > NjA; } Nik|[OV (Y, )]0
i=

j=1+1

Now we need the following elementary inequality with- 0,¢, > 0 and 0< g1 < 1:

t-1 q t q 201+02 1+ i%f .-
iexpd ¢y < (G, 22
;I exp{ CJ':|Z+1J } - c (ec(l—qul)> (22)

This elementary inequality can be found in, for example, Smale and Zho®)2d@kingg, =
a,q1 =Y+ a andc = A1ng we know that| fi11 ||k is bounded by

vy Ollo et 2+ (292 /hans) + (o) [@nna(a— 20 ) 7 v

Then our desired bound holds true. [ |

Now we can present our bound for the sample effrigr,1 — f;\’T Ik

Theorem 26 Suppose the following assumptions hold:
1. the kernel K satisfies the kernel condition of orded s:(s < 1) with (16) valid.
2. V has incremental exponentp0 with (17) valid anddV satisfies (18).
3. {p§§>}t:1,2,... converges polynomially tpx in (C3(X))* with (1) valid.
4. the distributiongpx : X € X} is Lipschitz s in(C3(Y))* with (4) valid.
5. the triple(K,V, p) has the approximation ability of powér< 3 < 1 stated by (12).

Take
A=At YN =nat™® (23)

with somei1,n; > 0 andy,a satisfying

2 y(3—P) 1
O<y< ——, 2p+ly<a<l-— , < — ) 24
V<5iap_p PPV LTy I NS v R
Then we have
Ez 2z (| fro1— B IR) < CkvpppsT ° (25)
where the power inde is given by
0:= min{Z—y(3— B)— 20,0 —y(2p+1),b—y(2+ p)}, (26)

and G vp.bp s iS a constant independent of T given explicitly in the proof.
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Proof We divide the proof into four steps.
First we bound);. SinceA; andn; take the form (23), we see from the lower bound doin
(24) thatpy < (2p+1)y < a. Hence foit € N,

Ne(K2(Mo+2N(A\t)) +At) < nat ™% (K2Mo + 2k*NgAL PEPY - At ™Y) < np(K®Mo + 2k2NgA; P 4-Ay).

So the last restriction of (24) implies (19), and by Lemma 24, we know thath(@ds true.
Taking f = 0in (13) yields

2|V}
IR <5 t=1..T
t

Putting these bounds into the definition of cons@yy, Bn g, we see by the notioN(\) that
Brv 1, <N(M), IA3Jf;§.,ft <N(M).
So by Lemma 18 and Lemma 22,
B < B = { (< +Kas) (v 2IV I[N+ KIV /AN + 2N | 1105 — pxlicsi
Putting this bound and (20) into (14) yields
Eazea (= RR) < 1Bz (1= IR ) +KMZNG) + [VID?+ 20187

Next we derive explicit bounds for the one-step iteration
Recall thaidt = Ity — Y |l Itgives|fi— £y 12 < |[f—fY (2 +2|[f— Y [kck+d?.
Taket = W By the upper bound fam in (24), we find 0< T < 1.

141(1-p)/2

TakeA; = ”?HW > 0. Applying the elementary inequality

2ab= 2[v/A1ab"/2|[b "2/ \/Ag] < Ara®bt +b> T /A (27)

toa=|/f—fy |k andb=d, we know that

Eaznas (I1fe— TIR) < (L4 M) Enzay (I~ B IIR) + 62 /A2
Using this bound and noticing the inequality— niA; ) (1+ Aadl) < 1+ Agdf —niA¢, we obtain
Enzooa(lfeea— IR) < (L4 Adf — NA)Ezzaa (e~ BV
+df /A A+ KENE(N(A) + IV[1)? + 20 By
By Theorem 20, condition (12) for the approximation error yields
th < 20/ DAL 21— 1YIB/21 < ptYI-B)/2 1 \yhereAy = 4/ DAY

Inserting the parameter foriy = A1t~Y into assumption (17) and applying condition (1), we
can bounds; as

B! < AgtVMHPD  \whereAs = {(K 1 Kas) (V2IV /A K|V /A1) + 2cp/xl} NiA; PC.
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Therefore, for the one-step iteration, by denotff\'flgas fi’o whent =1, we have foreach=1,... T,

Ez 27| frea — fV||K) (1+Ad{ —NA)Ez 25,2 4 (Hft fr. 1||K> +A4t (28)

where
0= min{2—y(2— B) —a, 2(a—py), a+b—y(1+ p)}

and
Ag = A3 AL+ AS+HKPNZ (NI P+ (V)% + 20 1A

Then we iterate the above one-step analysis. Inserting the parametefdoimnandrn);, we see
from the definition of the constawy; that

1+ Ardl — Nede < 14 AYARTVER2 g agt Y = 1 mzht v-a (29)

So the one-step analysis (28) yields

r]17\1 ]
Ez 2,z (I fea — fVHK) (1—2 )EZLZL “Z-1 <||ft )\t 1”K) + AL °.
Applying this bound iteratively for=1,..., T implies

NiAr g8
Ez 2.z (| frea— Y- IR) <A421n1 —t+1(1 — oo

A
i e

Finally we bound the above expressmns by two elementary inequalities. rherfe is (22).
Applying this inequality withc = ”1 L o1 =y+aandg, = 8, since 1-u < e Y for anyu > 0, the
first expression above can be bounded as

T T N N
Z\I-IJ ~a(1 nl)\lry IOt BS exp{_nl)\l z jya}tGSAsTVﬂxe,

whereAs is the constant given by

oy+a-+6+1

~ 1+6
2428 =g
P = N1A1 +l+<eﬂl)\1(1—2y+°_l)> '

For the second expression above, we have

T+1
ne l(1_”17)‘1'[ y=a) gexp{ ﬂ17\1 Zt - “} <exp{ n12>\1/ xV“dx}
1

gexp{z(l)\_lcl_m}e)(p{ z(lM\r;o()(TJrl)l y-a }
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Applying another elementary inequality
exp{—cx} < (%)ax‘a, ve,a, x>0

withc= 5 ML a—= 2 _ andx = (T + 1)1 Y% yields

2(1-y—a)’ 1-y—a
2
NiA1, { ANy }( 4 )1” 2
N (1-— -t %) <ex T2
=1(1= 75 )=eP i —y—a) f \aum
The above two estimates give the desired bound (25) vt —y— a and the constariy v o pp.s
given by
2
AiNa } ( 4 >1V 2|V
C = AgAs +ex { —_
K.,V,p,b,B3,s A5 p 2(1_y_a) e)\]_nl )\1
This proves the theorem. |

Remark 27 Some ideas in the above proof are from Ying and Zhou (2006), Ye and(ZB07) and
Smale and Zhou (2009). Two novel points are presented for the firshéree One is the bound for
A, dealing Withpgp —px, given in the first step of our proof in order to tackle the technical difficulty
arising from the non-identical sampling process. The same difficulty fdetis square regression
was overcome in Smale and Zhou (2009) by the special linear featureglitit expressions
offered by the least square loss. The second technical novelty is toung@parameter Ainto
elementary inequality (27). With this parameter, we can bdlmd\df — neA: by 1— %r]t)\t, shown

in (29). This improves the error bound even in the i.i.d. case presenteglamd® Zhou (2007) for
the fully online algorithm.

Let us discuss the role of parameters in Theorem 26. Whgismall enough and > % fully
online algorithm (3) becomes very close to the partially online schemeMithA;. By taking
o= % the rates in (25) are of ordél(T‘(%‘E)) with € arbitrarily small, which is a nice bound for
the sample errojf fr 1 — Y ||k. In this case, the difference betwe&f and fy', measured by the
approximation error, increases sinee= AT Y. To estimate the total error betweén, ; and fY,
we should take a balance for the indeaf the regularization parameter, as shown in Theorem 11.

For the insensitive loss, (18) is not satisfied. We can apply Lemma 25 daih ddmunds for
Ifr12— fY. || by the same proof as that for Theorem 26.

Proposition 28 Assume|dV (y, f)|| < c and all the conditions of Theorem 26 except (18). Take
{At,nt} by (23) with the restriction (24) without the last inequality. Then the sameszgance rate
(25) holds true with the power indéxgiven by (26).

5. Bounds for Binary Classification and Regression with Inserigve Loss

We demonstrate how to apply Theorem 26 by deriving learning rates ofdollge algorithm (3)
for binary classification and regression with insensitive loss.
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Theorem 29 Let V(y, f) = @(yf) whereg: R — R is a convex function satisfying
@ (U)] < NglulP,  @(u) < NguP™  W[u|>1 (30)

for some p>0and N, > 0. Suppose M:= sup{|¢_(u) —@_(0)|/|u] : Ju] < 1} < . Assume (16)
for K, (1) for {p{}, and (12) for(K,@,p). If f, € CS(X) and we choosdA,n;} as (23) with

0<Y< gy o = 22528 and b> y(2+4 p), andns < no, A1 < K2(@(0) + @ [|L=-1.0))/2,
then we have

_ min{ 2fv<5+610pr> 7 b—v<§+3p> w}

IEZ]_,..‘,ZT <Z(fT+l) - Z(f[;/)> S 6@B~VT ’

whereno = ooy with Ny = (Mg No-t @(0) + [0 luo(1.)K2P(0(0) + ¢ 1.4)°

and(f(p?&y is a constant depending an,A1,K, Do, B, @, and s.

Proof By the bounds fofj f;’T llk and|| fr+1|lk, we know from (30) that

2t - 2] = | [oyiraato)- eyt )dp
Ci @Mt Il Frs — £, [l < KOk AT Pl v — Bl
whereCy ¢ is a constant depending éhande.

It is easy to check that the lo¥]y, f) = @(yf) satisfies (17) with incremental exponemt

By Theorem 26 with 0< y < 545:—5,0 = 2:Y120-24B) gndb > y(2+ p), we have

Ez, sz (H fros—fy. HK) < /cKﬁvﬁp,b&ST—mi”{[2—v<5+4P—B>V6:[b—v<2+p>1/2}.

Also, we haveE( f;’;) — Z(fg’) <D(AT) < DOAE. Thus we get a bound for the excess general-
ization error

IN

2 (E(fri1) — E( fg/)) < écp.B VT—min{[2—v(5+10p—B)]/6,vB7[b—v(2+3p)]/2}’

whereCypy = KCk A1 *\/Civipbps + Q)o)\pf. This verifies the desired bound. |

Theorem 29 yields concrete learning rates with various loss functionenWis chosen to be
the hinge losg(x) = (1—X),, we can prove Theorem 11.

5.1 Proof of Theorem 11

When 0< s < 3 andK € C%(X x X), (16) holds true.

The loss functionp(x) = (1 — x); satisfiesg (x) = —1 for x < 1 and 0 otherwise. It follows
that (17) holds true witp = 0 andMy, = 0. By Example 5, (9) implies (12).

Thus all conditions in Theorem 29 are satisfied and by takirg0 andy = %1, we have

~ —minfi, B Bb_1
|E217W7ZT (f(fTJrl) — ‘Z(f[\!)) < C¢7B,VT mln{s+24v4’2 4}'
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An important relation concerning the hinge loss is the one (Zhang, 2004kbe the excess
misclassification error and the excess generalization error given jomaasurable functior :
X —=Ras

R(sgn(f)) — R (fe) < E(f) —E(fe).

Combining this relation with the above bound for the excess generalizatmmpeoves the conclu-
sion of Theorem 11. [ ]

Turn to the general losp. We give an additional assumption thgf0) exists and is positive.
Under this assumption it was proved in Chen et al. (2004) and Bartlett(@086) that there exists
a constant depending only on@ such that for any measurable functibn X — R,

R(sgr(1)) — R (fe) < co\/ E(F) — E(f9).
Then Theorem 29 gives the following learning rate.

Corollary 30 Let@be aloss function such thet (0) exists and is positive. Under the assumptions

of Theorem 29, iff = m, we have

Ez...z (R(SON(fr41)) — R(fe)) < C(p’BT_min{ 5+1(ﬁ)+5&’%_1w226321m}7

whereC, is a constant independent of T.

As an example, thg-norm SVM lossp(x) = ((1—x) )9 with g > 1 satisfiesp’(0) > 0 and (17)
with p=qg—1. So Corollary 30 yields the following rates.

Example 7 Let @(x) = ((1—x)+)9 with g > 1. Under the assumptions of Theorem 29y i

__ 89—6+4p3 60—2
O = 1oq 575 and b> T0q 5750" then

2
10q—5+5p°

; B 3q-1
Es..z (K(sgr(fT 1)) — R( fc)) -0 (T—mm{ 1oq5+5372_20q10+1os> ,
Finally we verify the learning rates for regression with insensitive lossdstat8ection 2.

5.2 Proof of Theorem 10
We need the regularizing functiofrj"s defined by (13) with the least square I&s- Vjs. It can be
found, for example, in Smale and Zhou (2007) that regularity conditiom{flies

A

2 1 3
Vis - b
13— follk < <2> ngHLgX, When2 <rs

2
and
v A
1= = follz, < (2> lgplliz . whenO<r<1.

It follows that whenA < 2(KngH|_gX)2/<1*2r), we have|| f’ — follcx) < 1. Thus by the special
form of the conditional distributiopy, we see from the conclusion of Example 6 wih= 1 that
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f/n = £ and bounds fof| fyi" — f, ||k and||fy" — follz, follow. Moreover, condition (12) for
D(A) is valid with3 = 1.

Now we check other conditions of Proposition 28.

Condition (16) is valid becaugé € C3(X x X) with 0 < s < 3.

By a simple computation, incremental condition (17) is verified with expopenD.

Note that|| fo||x < Kzr_lﬂngLgx and || fpllcsx) < (K +Kas)|| follk. Then for anyx,u € X and
g € C3(Y), we see from the uniform distributigey andp,, that

1

fo(0)+1 q fo(u)+1 g f f
- 2 - < X) — fo(u
> /fp(x)—l g(y)dy /fp<u)_1 a(y) y‘ <1gllce)l fp(x) = fo(u)|

lgllery) (k + Kas)k* i gplliz, (d(xu))*.

J atdpc—pu)
Y

IN

This verifies Lipschitscontinuous condition (4) fofpy} with constan€, = (K+Kas)k? ~2|gp || 2, -
Thus all conditions of Proposition 28 are satisfied and we obtain

V _
IEZl-,Zz-,'",ZT (H fT+1 - f)\: H%) < CK,V,p,b7[3,sT o

where

0.= min{2—2y—2cx,0(—y,b—2y}.

Finally we get

1
_ M) 2 1 3
Ez 2z ([ fr+1— follk) < /CkvpppsT oz 4 <2+ > ||gp||,_%x, Whené <r< 5

and

_ A '
Ezvzpzr (| fron—folliz ) < Ky/CrvpppsT 9/2+<T2“> Igelliz - whenO<r <1

Then our desired learning rates follow. [ |
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Appendix A.

This appendix includes some detailed proofs.
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A.1 Proof of Proposition 6

The first statement follows by takirgfy) =y onY because

1000~ t(0)] = | a0l < I~ ulls- Il

and||glcsy) = ll9llciy) + [9lesey) < SURey Y]+ 21*SSU|:3,EY ly|. Actually the above estimates tell us
that f, is continuous and belongs @5(X) with | fp|csx) < Cp(1+42179) SURey Y-
For the second statement, since= {1, -1}, we havef,(x) = px({1}) — px({—1}). It follows

that for eacty € Y andx € X, there holdpx({y}) = 1+yf"<x> . So for anyg € C5(Y) andx,u € X,

B ylfo() —fo(U)] _ < yo(y)
| atdipc—pu)(y) = 3T = 5 00— (vl
Now the conclusion follows from
/Y gy)d(Px—Pu) ()| < l19llcey) [ To(¥) — fo(u)] < [folesx) (d(x, )l gllesey)
This proves Proposition 6. |

A.2 Proof of Example 4

Forx € X, we havepy({1}) = fp —1(X) + fo(X) andpx({0}) = 1 —2f, _1(x) — fp(x). Hence for any
g e C3(Y),

/YQ(Y)dPx = o100 {9(1) —29(0) +9(=1)} + fo(x) {9(1) —9(0)} +9(0)

and foru € X,

J 9 = [fp-200 — fp-1(W] {0(1) — 29(0) +9(~1)} + [fo(X) — fo(W)}{0(2) ~9(0)}
Then our statement follows from the first part of Proposition 6. This ggahe conclusion of
Example 4. [ ]

A.3 Proof of Example 6

Letx € X. Whenf(x) > fVin (x), we see from the explicit form of the insensitive ld4sthat
/ Vin(y. (X)) dpx(y) — / Vin(y, fg™ (x))dpx(y)
/M)fv'n()—f 0 [, 100~ G0y
+ /f R ¥ (x) — 2ydpy.

It follows that

()~ 21 = [ {110~ 20018+ [ 1100 -yl dox @)
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where
Ax =

o (fyeY:y< ¥}) —ox (fye Yy > (0}

and I in the open interval betweel‘];.'n ) and f(x). The same relation (31) also holds when

F(x) < fyn (x).

Now we use the special assumption on the conditional distributions and $éectin@edian and
mean ofpy are equal:f[\)’in (x) = fp(x) for eachx € X. Moreover,Ay = 0 and whenf,(x) < f(x) <
fo(x) +1, we have

() — fp(x)[P**
p+1 ’

Z/H( W@rl/ -4&)u€@4m:
Ix

The same expression holds true whg(x) — 1 < f(x) < f(x). When|f(x) — fo(x)| > 1 sincepy

vanishes outsidg-fo(x) — 1, f(x) + 1], we have 2| [f(x) —y|dpx = |f(x) — fo(x)| - p+1 There-
fore, (31) is the same as
: f(x) — fo(x)|PFL
f(f)_f(f[\)/m) / (%) = fo(®)] dpx
{xeX:|f(x)—fo(x)|<1} p+1
+f - P
{xeX:|f(X)—fo(X)|>1} 109 = fo¥) p+ 1 dex.

This proves the desired expression #o(f ) — f(fp\)/i”) and hence the bound fdp(A). [ |
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