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Abstract

Learning algorithms are based on samples which are often drawn independently from an identical
distribution (i.i.d.). In this paper we consider a different setting with samples drawn according to a
non-identical sequence of probability distributions. Each time a sample is drawn from a different
distribution. In this setting we investigate a fully onlinelearning algorithm associated with a general
convex loss function and a reproducing kernel Hilbert space(RKHS). Error analysis is conducted
under the assumption that the sequence of marginal distributions converges polynomially in the
dual of a Ḧolder space. For regression with least square or insensitive loss, learning rates are given
in both the RKHS norm and theL2 norm. For classification with hinge loss and support vector
machineq-norm loss, rates are explicitly stated with respect to the excess misclassification error.

Keywords: sampling with non-identical distributions, online learning, classification with a general
convex loss, regression with insensitive loss and least square loss, reproducing kernel Hilbert space

1. Introduction

In the literature of learning theory, samples for algorithms are often assumedto be drawn indepen-
dently from an identical distribution. Here we consider a setting with samples drawn from non-
identical distributions. Such a framework was introduced in Smale and Zhou (2009) and Steinwart
et al. (2008) where online learning for least square regression and off-line support vector machines
are investigated. We shall follow this framework and study a kernel basedonline learning algorithm
associated with a general convex loss function. Our analysis can be applied for various purposes
including regression and classification.

1.1 Sampling with Non-identical Distributions

Let (X,d) be a metric space called an input space for the learning problem. LetY be a compact
subset ofR (output space) andZ = X×Y.

In our online learning setting, at each stept = 1,2, . . ., a pair zt = (xt ,yt) is drawn from a
probability distributionρ(t) onZ. The sampling sequence of probability distributions{ρ(t)}t=1,2,··· is

not identical. For convergence analysis, we shall assume that the sequence{ρ(t)
X }t=1,2,··· of marginal

distributions onX converges polynomially in the dual of the Hölder spaceCs(X) for some 0< s≤ 1.
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Here the Ḧolder spaceCs(X) is defined to be the space of all continuous functions onX with the
norm‖ f‖Cs(X) = ‖ f‖C(X) + | f |Cs(X) finite, where| f |Cs(X) := supx6=y

| f (x)− f (y)|
(d(x,y))s .

Definition 1 We say that the sequence{ρ(t)
X }t=1,2,··· converges polynomially to a probability distri-

butionρX in (Cs(X))∗ (0≤ s≤ 1) if there exist C> 0 and b> 0 such that

‖ρ(t)
X −ρX‖(Cs(X))∗ ≤Ct−b, t ∈ N. (1)

By the definition of the dual space(Cs(X))∗, decay condition (1) can be expressed as
∣∣∣∣
Z

X
f (x)dρ(t)

X −
Z

X
f (x)dρX

∣∣∣∣≤Ct−b‖ f‖Cs(X), ∀ f ∈Cs(X), t ∈ N. (2)

What measures quantitatively differences between our non-identical setting and the i.i.d. case is
the power indexb. Its impact on performance of online learning algorithms will be studied in this
paper. The i.i.d. case corresponds tob = ∞.

We describe three situations in which decay condition (1) is satisfied. The first is when a distri-
butionρX is perturbed by some noise and the noise level decreases ast increases.

Example 1 Let {h(t)} be a sequence of bounded functions on X such thatsupx∈X |h
(t)(x)| ≤Ct−b.

Then the sequence{ρ(t)
X }t=1,2,··· defined by dρ(t)

X = dρX +h(t)(x)dρX satisfies (1) for any0≤ s≤ 1.

The proof follows from
∣∣R

X f (x)h(t)(x)dρX
∣∣ ≤ supx∈X |h

(t)(x)|‖ f‖C(X) ≤ Ct−b‖ f‖Cs(X). In this ex-
ample,h(t) is the density function of the noise distribution and we assume its bound (noise level) to
decay polynomially ast increases.

The second situation when decay condition (1) is satisfied is generated by iterative actions of an
integral operator associated with a stochastic density kernel. We demonstratethis situation by an
example onX = Sn−1, the unit sphere ofRn with n≥ 2. LetdSbe the normalized surface element of
Sn−1. The corresponding spaceL2(Sn−1) has an orthonormal basis{Yℓ,k : ℓ∈ Z+,k = 1, . . . ,N(n, ℓ)}

with N(n,0) = 1 andN(n, ℓ) = 2ℓ+n−2
ℓ

(ℓ+n−3)!(n−2)!
(ℓ−1)! . HereYℓ,k is a spherical harmonic of orderℓ

which is the restriction ontoSn−1 of a homogeneous polynomial inRn of degreeℓ satisfying the
Laplace equation∆ f = 0. In particular,Y0,0 ≡ 1.

Example 2 Let X= Sn−1, 0 < α < 1, andψ ∈C(X×X) be given by

ψ(x,u) = 1+
∞

∑
ℓ=1

N(n,ℓ)

∑
k=1

aℓ,kYℓ,k(x)Yℓ,k(u) where 0≤ aℓ,k ≤ α,
∞

∑
ℓ=1

N(n,ℓ)

∑
k=1

aℓ,k‖Yℓ,k‖
2
C(X) < 1.

If h(1) is a square integrable density function on X and a sequence of density functions {h(t)} is
defined by

h(t+1)(x) =
Z

X
ψ(x,u)h(t)(u)dS(u), x∈ X, t ∈ N,

then we know h(t) = Y0,0 + ∑∞
ℓ=1 ∑N(n,ℓ)

k=1 at−1
ℓ,k 〈h(1),Yℓ,k〉L2(Sn−1)Yℓ,k and ‖h(t) − Y0,0‖L2(Sn−1) ≤

αt−1‖h(1)‖L2(Sn−1). It follows that the sequence{ρ(t)
X = h(t)(x)dS}t=1,2,... of probability distribu-

tions on X converges polynomially to the uniform distribution dρX = dS on X and satisfies (1) for
any0≤ s≤ 1.
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In general, ifν is a strictly positive probability distribution onX, and ifψ ∈C(X×X) is strictly

positive satisfying
R

X ψ(x,u)dν(u) = 1 for eachx∈ X, then the sequence{ρ(t)
X } defined by

ρ(t)
X (Γ) =

Z

Γ

{
Z

X
ψ(x,u)dρ(t−1)

X (x)

}
dν(u) on Borel sets Γ ⊆ X

satisfies‖ρ(t)
X −ρX‖(C(X))∗ ≤ Cαt for some (strictly positive) probability distributionρX on X and

constantsC > 0,0 < α < 1. Hence decay condition (1) is valid for any 0≤ s≤ 1. For details, see
Smale and Zhou (2009).

The third situation to realize decay condition (1) is to induce distributions by dynamical systems.
Here we present a simple example.

Example 3 Let X= [−1/2,1/2] and for each t∈ N, the probability distributionρ(t)
X on X has sup-

port [−2−t ,2−t ] and uniform density2t−1 on its support. Then withδ0 being the delta distribution
at the origin, for each0 < s≤ 1 we have

∣∣∣∣
Z

X
f (x)dρ(t)

X −
Z

X
f (x)dδ0

∣∣∣∣≤ 2t−1
Z 2−t

−2−t
| f (x)− f (0)|dx≤

(
2−s)t ‖ f‖Cs(X).

Remark 2 Since‖ f‖C(X) ≤ ‖ f‖Cs(X), we see from (2) that decay condition (1) with any0 < s≤ 1
is satisfied when this polynomial convergence requirement is valid in the case s= 0. This happens
in Examples 1 and 2. Note that when s= 0, the dual space(C(X))∗ is exactly the space of signed
finite measures on X. Each signed finite measure µ on X lies in(C(X))∗ ⊂ (Cs(X))∗ and satisfies
‖µ‖(Cs(X))∗ ≤ ‖µ‖(C(X))∗ ≤

R

X d|µ|.

1.2 Fully Online Learning Algorithm

In this paper we study a family of online learning algorithms associated with reproducing kernel
Hilbert spaces and a general convex loss function.

A reproducing kernel Hilbert space(RKHS) is induced by aMercer kernel K: X×X →R which
is a continuous and symmetric function such that the matrix(K(xi ,x j))

ℓ
i, j=1 is positive semidefinite

for any finite set of points{x1, · · · ,xℓ} ⊂ X. The RKHSHK is the completion (Aronszajn, 1950) of
the span of the set of functions{Kx = K(x, ·) : x∈ X} with the inner product given by〈Kx,Ky〉K =
K(x,y).

Definition 3 We say that V: Y×R → R+ is a convex loss function if for each y∈Y, the univariate
function V(y, ·) : R → R+ is convex.

The convexity tells us (Rockafellar, 1970) that for eachf ∈ R andy ∈ Y, the left derivative
limδ→0−(V(y, f + δ)−V(y, f ))/δ exists and is no more than the right derivative limδ→0+(V(y, f +
δ)−V(y, f ))/δ. An arbitrary number between them (which is a gradient) will be taken and denoted
as∂V(y, f ) in our algorithm.

For the least square regression problem, we can takeV(y, f ) = (y− f )2. For the binary classifi-
cation problem, we can takeV(y, f ) = φ(y f) with φ : R → R+ a convex function.

The online algorithm associated with the RKHSHK and the convex lossV is a stochastic gra-
dient descent method (Cesa-Bianchi et al., 1996; Kivinen et al., 2004;Smale and Yao, 2006; Ying
and Zhou, 2006; Ying, 2007).
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Definition 4 Thefully online learning algorithmis defined by f1 = 0 and

ft+1 = ft −ηt {∂V(yt , ft(xt))Kxt +λt ft} , for t = 1,2, . . . , (3)

whereλt > 0 is called theregularization parameterandηt > 0 thestep size.

In this fully online algorithm, the regularization parameterλt changes with the learning stept.
Throughout the paper we assume thatλt+1 ≤ λt for eacht ∈ N. When the regularization parameter
λt ≡ λ1 does not change as the stept develops, we call scheme (3)partially online.

The goal of this paper is to investigate the fully online learning algorithm (3) when the sampling
sequence is not identical. We will show that learning rates in the non-identical setting can be the
same as those in the i.i.d. case when the power indexb in polynomial decay condition (1) is large
enough, that is,{ρ(t)

X } converges fast toρX. Whenb is small, the non-identical effect becomes
crucial and the learning rates will depend essentially onb.

2. Error Bounds for Regression and Classification

As in the work on least square regression (Smale and Zhou, 2009), we assume for the sampling
sequence{ρ(t)}t=1,2,··· that the conditional distributionρ(t)(y|x) of eachρ(t) atx∈ X is independent
of t, denoted asρx.

Throughout the paper we assume independence of the sampling, that is,{zt = (xt ,yt)}t is a
sequence of samples drawn from the product probability spaceΠt=1,2,···(Z,ρ(t)).

Error analysis will be conducted for fully online learning algorithm (3) under polynomial decay
condition (1) for the sequence of marginal distributions{ρ(t)

X }. Let ρ be the probability distribution
on Z given by the marginal distributionρX and the conditional distributionsρx. Essential difficulty
in our non-identical setting is caused by the deviation of{ρ(t)} from ρ.

The first novelty of our analysis is to deal with an error quantity∆t involving ρ(t) −ρ (defined
by (15) below) which occurs only in the non-identical setting. This is handled for a general loss
functionV and output spaceY by Lemma 18 in Section 3 under decay condition (1) for marginal
distributions{ρ(t)

X } and Lipschitzscontinuity of conditional distributions{ρx : x∈ X}.

Definition 5 We say that the set of distributions{ρx : x∈ X} is Lipschitz s in(Cs(Y))∗ if there exists
a constant Cρ ≥ 0 such that

‖ρx−ρu‖(Cs(Y))∗ ≤Cρ(d(x,u))s, ∀x,u∈ X. (4)

Notice that on the compact subsetY of R, the Ḧolder spaceCs(Y) and its dual(Cs(Y))∗ are well
defined. Eachρx belongs to(Cs(Y))∗.

The second novelty of our analysis is to show for the least square loss (described in Section
3) and binary classification that Lipschitzs continuity (4) of{ρx : x∈ X} is the same as requiring
fρ ∈Cs(X) where fρ is theregression functiondefined by

fρ(x) =
Z

Y
ydρx(y), x∈ X. (5)

Proposition 6 Let 0 < s ≤ 1. Condition (4) implies fρ ∈ Cs(X) with | fρ|Cs(X) ≤
Cρ(1+21−s)supy∈Y |y|. When Y= {1,−1}, fρ ∈Cs(X) also implies (4) and Cρ ≤ | fρ|Cs(X).
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The two-point nature of the output spaceY for binary classification plays a crucial role in our
observation. The second statement of Proposition 6 is not true for general output spaceY. Here is
one example.

Example 4 Let 0 < s≤ 1 and Y= {1,−1,0}. Then condition (4) holds if and only if fρ ∈ Cs(X)
and fρ,−1 ∈Cs(X) where fρ,−1 is the function on X given by fρ,−1(x) = ρx({−1}).

Proofs of Proposition 6 and Example 4 will be given in the appendix.
Our third novelty is to understand some essential differences between ournon-identical setting

and the classical i.i.d. setting by pointing out the key role played by the power indexb of polynomial
decay condition‖ρ(t)

X −ρX‖(Cs(X))∗ ≤Ct−b in derived convergence rates in Theorems 7 and 10 for
regression and Theorem 11 for classification. Even for least squareregression our result improves
the error analysis in Smale and Zhou (2009) where a stronger exponential decay condition‖ρ(t)

X −
ρX‖(Cs(X))∗ ≤Cαt is assumed.

Our error bounds for fully online algorithm (3) are comparable with those for a batch learning
algorithm generated by the off-line regularization scheme inHK defined with a samplez := {zt =
(xt ,yt)}

T
t=1 and a regularization parameterλ > 0 as

fz,λ = arg min
f∈HK

{
1
T

T

∑
t=1

V(yt , f (xt))+
λ
2
‖ f‖2

K

}
. (6)

Let us demonstrate our error analysis by learning rates for regressionwith least square loss and
insensitive loss and for binary classification with hinge loss.

2.1 Learning Rates for Least Square Regression

Here we takeY = [−M,M] for someM > 0 and the least square lossV = Vls asVls(y, f ) = (y− f )2.
Then the algorithm takes the form

ft+1 = ft −2ηt

{
( ft(xt)−yt)Kxt +

λt

2
ft

}
, for t = 1,2, . . .

The following learning rates are derived by the procedure in Smale and Zhou (2009) where an
exponential decay condition is assumed. Here we only impose a much weakerpolynomial decay
condition (1). We also assume the regularity condition (of orderr > 0)

fρ = Lr
K(gρ) for somegρ ∈ L2

ρX
(X), (7)

whereLK is the integral operatorL2
ρX

defined by

LK f (x) =
Z

X
K(x,v) f (v)dρX(v), x∈ X

with Lr
K well-defined as a compact operator.

Theorem 7 Let 0 < s≤ 1
2 and 1

2 < r ≤ 3
2. Assume K∈C2s(X×X), regularity condition (7) for fρ

and (1) with b> 2r+2
2r+1 for {ρ(t)

X }. Take

λt = λ1t
− 1

2r+1 , ηt = η1t
− 2r

2r+1
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with λ1η1 > 2r−1
4r+2, then

IEz1,...,zT

(
‖ fT+1− fρ‖K

)
≤ C̃T− 2r−1

4r+2 ,

whereC̃ is a constant independent of T .

Denote the constantκ = maxx∈X

√
K(x,x). From the reproducing property

〈Kx, f 〉K = f (x), x∈ X, f ∈HK (8)

of the RKHSHK , we see that

‖ f‖C(X) ≤ κ‖ f‖K , ∀x∈ X, f ∈HK .

Most error analysis in the literature of least square regression (Zhang, 2004; De Vito et al., 2005;
Smale and Yao, 2006; Wu et al., 2007) is about theL2-norm‖ fT+1− fρ‖L2

ρX
or risk in the i.i.d. case.

From a predictive viewpoint, in the non-identical setting, the errorfT+1− fρ should be measured

with respect to the distributionρ(T)
X , not the limitρX. This can be done by bounding‖ fT+1− fρ‖C(X)

(sinceρ(T)
X changes withT), which follows from estimates for‖ fT+1− fρ‖K . So our bounds for the

error in theHK-norm provides useful predictive information about learning ability of fully online
algorithm (3) in the non-identical setting.

Remark 8 When X⊂ R
n and K∈C2m(X×X) for some m∈ N, we know from Zhou (2003, 2008)

and Theorem 7 thatIEz1,...,zT

(
‖ fT+1− fρ‖Cm(X)

)
= O(T− 2r−1

4r+2 ). So the regression function is learned
efficiently by the online algorithm not only in the usual L2

ρX
space, but also strongly in the space

Cm(X) implying the learning of gradients (Mukherjee and Wu, 2006).

In the special case ofr = 3
2, the learning rate in Theorem 7 is IEz1,...,zT

(
‖ fT+1− fρ‖K

)
=

O(T− 1
4 ), the same as those in the literature (Smale and Zhou, 2009; Tarrès and Yao, 2005; Smale and

Zhou, 2007). Here we assume polynomial convergence condition (1) witha large indexb > 2r+2
2r+1.

So the influence of the non-identical distributions{ρ(t)
X } does not appear in the learning rates (it is

involved in the constant̃C). Instead of refining the analysis for smallerb in Theorem 7, we shall
show the influence of the indexb on learning rates by the settings of regression with insensitive loss
and binary classification.

2.2 Learning Rates for Regression with Insensitive Loss

A large family of loss functions for regression take the formV(y, f ) = ψ(y− f ) whereψ : R → R+

is an even, convex and continuous function satisfyingψ(0) = 0. One example is theε-insensitive
loss (Vapnik, 1998) withε ≥ 0 whereψ(u) = max{|u|− ε,0}. We consider the case whenε = 0. In
this case the loss is called least absolute deviation or least absolute error in the literature of statistics
and finds applications in some important problems because of robustness.

Definition 9 The insensitive loss V= Vin is given by Vin(y, f ) = |y− f |.

Algorithm (3) now takes the form

ft+1 =

{
(1−ηtλt) ft −ηtKxt , if ft(xt) ≥ yt ,
(1−ηtλt) ft +ηtKxt , if ft(xt) < yt .

The following learning rates are new and will be proved in Section 5.
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Theorem 10 Let0< s≤ 1
2 and K∈C2s(X×X). Assume regularity condition (7) for fρ with r > 1

2,

and polynomial convergence condition (1) for{ρ(t)
X }. Suppose that for each x∈ X, ρx is the uniform

distribution on the interval[ fρ(x)− 1, fρ(x) + 1]. If λ1 ≤ (κ‖gρ‖L2
ρX

)2/(1−2r)/2 and η1 > 0, then

with a constant̃C independent of T , when1 < r ≤ 3
2 we have

IEz1,...,zT

(
‖ fT+1− fρ‖K

)
≤ C̃T−min{ 2r−1

6r+1 , b
2−

2
6r+1} by takingλt = λ1t

− 2
6r+1 , ηt = η1t

− 4r
6r+1

and when1
2 < r ≤ 1, we have

IEz1,...,zT

(
‖ fT+1− fρ‖L2

ρX

)
≤ C̃T−min{ r

3r+2 , b
2−

1
3r+2} with λt = λ1t

− 1
3r+2 , ηt = η1t

− 2r+1
3r+2 .

Again, whenb > 4r+2
6r+1, X ⊂ R

n andK ∈C2m(X×X) for somem∈ N, Theorem 10 tells us that

IEz1,...,zT

(
‖ fT+1− fρ‖Cm(X)

)
= O(T− 2r−1

6r+1 ). So the regression function is learned efficiently by the
online algorithm not only with respect to the risk, but also strongly in the spaceCm(X) implying the
learning of gradients.

Consider the caser = 3
2. When {ρ(i)

X } converges slowly withb < 4
5, we see that

IEz1,...,zT

(
‖ fT+1− fρ‖K

)
= O(T−( b

2−
1
5)) which heavily depends on the indexb representing quan-

titatively the deviation of{ρ(t)
X } from ρX. Whenb is large enough withb ≥ 4

5, the learning rate

IEz1,...,zT

(
‖ fT+1− fρ‖K

)
is of orderT− 1

5 which is independent ofb.
It would be interesting to extend Theorem 10 to situations when{ρx : x∈ X} are more general

bounded symmetric distributions.

2.3 Learning Rates for Binary Classification

The output spaceY for the binary classification problem isY = {1,−1} representing the set of two
classes. A binaryclassifierC : X →Y makes a predictiony = C (x) ∈Y for each pointx∈ X.

A real valued functionf : X → R can be used to generate a classifierC (x) = sgn( f (x)) where
sgn( f (x)) = 1 if f (x)≥ 0 and sgn( f (x)) =−1 if f (x) < 0. A classifying convex lossφ : R → R+ is
often used for the real valued functionf , to measure the local errorφ(y f(x)) suffered from the use
of sgn( f ) as a model for the process producingy atx∈ X. TakeV(y, f ) = φ(y f) in out setting. Off-
line classification algorithm (6) has been extensively studied in the literature.In particular, the error
analysis is well done when the samplez is assumed to be an identical and independent drawer from
a probability measureρ on Z. See, for example, Evgeniou et al. (2000), Steinwart (2002), Zhang
(2004) and Wu et al. (2007). Some analysis for off-line support vector machines with dependent
samples can be found in Steinwart et al. (2008).

When the sample sizeT is very large, algorithm (6) might be practically challenging. Then
online learning algorithms can be applied, which provide more efficient methods for classification.
These algorithms are generalizations of the perceptron which has a long history. The error analysis
for online algorithm (3) has also been conducted for classification in the i.i.d.setting, see, for
example, Cesa-Bianchi et al. (2004), Ying and Zhou (2006), Ying (2007) and Ye and Zhou (2007).

Here we are interested in the error analysis for fully online algorithm (3) in the non-identical
setting. The error is measured by themisclassification errorR (C ) defined to be the probability of
the event{C (x) 6= y} for a classifierC

R (C ) =
Z

X
ρx(y 6= C (x))dρX(x) =

Z

X
ρx({−C (x)})dρX(x).
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The best classifier minimizing the misclassification error is called theBayes rule(e.g., Devroye et
al. 1997) and can be expressed asfc = sgn( fρ).

We are interested in the classifier sgn( fT+1) produced by the real valued functionfT+1 using
fully online learning algorithm (3). So our error analysis aims at theexcess misclassification error
R (sgn( fT+1))−R ( fc).

We demonstrate our error analysis by a result, proved in Section 5, for thehinge lossφ(x) =
(1−x)+ = max{1−x,0}. For this loss, the online algorithm (3) can be expressed asf1 = 0 and

ft+1 =

{
(1−ηtλt) ft , if yt ft(xt) > 1,
(1−ηtλt) ft +ηtytKxt , if yt ft(xt) ≤ 1.

Theorem 11 Let V(y, f ) = (1−y f)+ and K∈C2s(X×X) for some0 < s≤ 1
2. Assume fρ ∈Cs(X)

and the triple(ρX, fc,K) satisfies

inf
f∈HK

{‖ f − fc‖L1
ρX

+
λ
2
‖ f‖2

K} ≤D0λβ ∀λ > 0 (9)

for some0 < β ≤ 1 andD0 > 0. Take

λt = λ1t
− 1

4 ,ηt = η1t
−( 1

2+ β
12)

whereλ1 > 0 and0 < η1 ≤
1

2κ2+λ1
. If {ρ(t)

X }t=1,2,··· satisfies (1) with b> 1
2, then

IEz1,...,zT (R (sgn( fT+1))−R ( fc)) ≤Cβ,s,bT−min{ β
4 , 1

8+ β
24, b

2−
1
4}, (10)

where Cβ,s,b = Cη1,λ1,κ,D0,β,s is a constant depending onη1,λ1,κ,D0,β,s and b.

In the i.i.d. case withb = ∞, the learning rate for fully online algorithm (3) we state in The-

orem 11 is of formO(T−min{ β
4 , 1

8+ β
24}) which is better than that in Ye and Zhou (2007) of order

O(T−min{ β
4 , 1

8−
ε
2}) with an arbitrarily smallε > 0. This improvement is realized by technical novelty

in our error analysis, as pointed out in Remark 27. So even in the i.i.d. case,our learning rate for
fully online classification with the hinge loss under approximation error assumption (9) is the best
in the literature.

Let us discuss the role of the power indexb for the convergence of{ρ(t)
X } to ρX played in the

learning rate in Theorem 11. Consider the caseβ ≤ 3
5. Whenb≥ 1+β

2 meaning fast convergence of

{ρ(t)
X } to ρX, learning rate (10) takes the formO(T− β

4 ) which depends only on the approximation
ability of HK with respect to the functionfc andρX. When 1

2 < b < 1+β
2 representing some slow

convergence of{ρ(t)
X } to ρX, the learning rate takes the formO(T− 2b−1

4 ) which depends only onb.

Whenβ > 3
5, learning rate (10) is of orderT−( 1

8+ β
24) for b > 3

4 + β
12 (fast convergence of{ρ(t)

X })

and of orderT−( b
2−

1
4) for 1

2 < b≤ 3
4 + β

12 (slow convergence of{ρ(t)
X }). It would be interesting to

know how online learning algorithms adapt when the time dependent distributiondrifts sufficiently
slowly (corresponding to very smallb).
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2.4 Approximation Error Involving a General Loss

Condition (9) concerns the approximation of the functionfc in the spaceL1
ρX

by functions from the
RKHS HK . In particular, whenHK is a dense subset ofC(X) (i.e., K is a universal kernel), the
quantity on the left-hand side of (9) tends to 0 asλ → 0. So (9) is a reasonable assumption, which
can be characterized by an interpolation space condition (Smale and Zhou,2003; Chen et al., 2004).

Assumptions like (9) are necessary to determine the regularization parameterfor achieving
learning rate (10). This can be seen from the literature (Wu et al., 2007; Zhang, 2004; Caponnetto
et al., 2007) of off-line algorithm (6): learning rates are obtained by suitable choices of the regular-
ization parameterλ ≡ λ1 = λ1(T), according to the behavior of the approximation error estimated
from a priori conditions on the distributionρ and the spaceHK .

For a general loss functionV, conditions like (9) can be stated as the approximation error or
regularization error.

Definition 12 The approximation errorD(λ) associated with the triple(K,V,ρ) is

D(λ) = inf
f∈HK

{
E( f )−E( fV

ρ )+
λ
2
‖ f‖2

K

}
, (11)

where we define the generalization error for f: X → R as

E( f ) =
Z

Z
V(y, f (x))dρ =

Z

X

Z

Y
V(y, f (x))dρx(y)dρX

and fVρ is a minimizer ofE( f ).

The approximation error measures the approximation ability of the spaceHK with respect to the
learning process involvingV andρ. The denseness ofHK in C(X) implies limλ→0D(λ) = 0. A
natural assumption would be

D(λ) ≤D0λβ for some 0≤ β ≤ 1 andD0 > 0. (12)

Throughout the paper we assume for the general loss functionV that‖V‖ := supy∈YV(y,0)+
sup{|V(y, f )−V(y,0)|/| f | : y∈Y, | f | ≤ 1} < ∞.

Remark 13 SinceD(λ)≤E(0)+0≤ ‖V‖ for anyλ > 0, we see that (12) always holds withβ = 0
andD0 = ‖V‖.

For the least square lossV(y, f ) = (y− f )2, the minimizerfV
ρ of E( f ) is exactly the regression

function defined by (5) and approximation error (11) takes the fromD(λ) = inf f∈HK
{‖ f − fρ‖

2
L2

ρX
+

λ
2‖ f‖2

K} which measures the approximation offρ in L2
ρX

by functions from the RKHSHK .
For a general loss functionV, the minimizerfV

ρ of E( f ) is in general different fromfρ. More-
over, the approximation errorD(λ) involves the approximation offV

ρ byHK in some function spaces
which need not beL2

ρX
.

Example 5 For the hinge loss V(y, f ) = (1− y f)+, the minimizer fVρ is the Bayes rule fVρ = fc
(Devroye et al., 1997). Moreover the uniform Lipschitz continuity of V(·, f ) implies (Chen et al.,
2004)

E( f )−E( fV
ρ ) =

Z

Z
φ(y f(x))−φ(y fc(x))dρ ≤

Z

X
| f (x)− fc(x)|dρX = ‖ f − fc‖L1

ρX
.
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So approximation error (11) can be estimated by approximation in the space L1
ρX

and condition (9)
implies (12).

Consider the insensitive lossV = Vin. We can easily see that for eachx∈ X, fVin
ρ (x) equals the

median of the probability distributionρx onY. That is, fVin
ρ (x) is uniquely determined by

ρx({y∈Y : y≤ fVin
ρ (x)}) ≥

1
2

and ρx({y∈Y : y≥ fVin
ρ (x)}) ≥

1
2
.

Whenρx is symmetric about its meanfρ(x), we havefVin
ρ (x) = fρ(x).

Example 6 Let V = Vin, fρ ∈C(X) and p≥ 1. If for each x∈ X, the conditional distributionρx is
given by

dρx(y) =

{ p
2 |y− fρ(x)|p−1dy, if |y− fρ(x)| ≤ 1,
0, if |y− fρ(x)| > 1,

then we have

E( f )−E( fVin
ρ ) =

1
p+1

‖ f − fρ‖
p+1

Lp+1
ρX

−
1

p+1

Z

{x∈X:| f (x)− fρ(x)|>1}

| f (x)− fρ(x)|
p+1 + p− (1+ p)| f (x)− fρ(x)|dρX.

It follows that

D(λ) ≤ inf
f∈HK

{
‖ f − fρ‖

p+1

Lp+1
ρX

+
λ
2
‖ f‖2

K

}
.

The conclusion of Example 6 will be proved in the appendix. The following general result
follows from the same argument as in Wu et al. (2006).

Proposition 14 If the loss function V satisfies|V(y, f1)−V(y, f2)| ≤ | f1− f2|c for some0 < c≤ 1
and any y∈Y, f1, f2 ∈ R, then

D(λ) ≤ inf
f∈HK

{‖ f − fV
ρ ‖

c
L1

ρX
+

λ
2
‖ f‖2

K} ≤ inf
f∈HK

{‖ f − fV
ρ ‖

c
L2

ρX
+

λ
2
‖ f‖2

K}.

If the univariate function V(y, ·) is C1 and satisfies|∂V(y, f1)− ∂V(y, f2)| ≤ | f1 − f2|c for some
0 < c≤ 1 and any y∈Y, f1, f2 ∈ R, then

D(λ) ≤ inf
f∈HK

{‖ f − fV
ρ ‖

1+c
L1+c

ρX

+
λ
2
‖ f‖2

K} ≤ inf
f∈HK

{‖ f − fV
ρ ‖

1+c
L2

ρX
+

λ
2
‖ f‖2

K}.

3. Key Analysis for the Fully Online Non-identical Setting

Learning rates for fully online learning algorithm (3) such as those stated inthe last section for
regression and classification are obtained through analysis for approximation error and sample error.
The approximation error has been well understood (Smale and Zhou, 2003; Chen et al., 2004). The
sample error for (3) will be estimated in the following two sections. It is expressed as‖ fT+1− fV

λT
‖K

where fV
λT

is a regularizing function.
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Definition 15 For λ > 0 the regularizing function fVλ ∈HK is defined by

fV
λ = arg inf

f∈HK

{
E( f )+

λ
2
‖ f‖2

K

}
. (13)

Observe thatfV
λ is a sample-free limit offz,λ defined by (6). It is natural to expect that the

function fT+1 produced by online algorithm (3) approximates the regularizing functionfV
λT

well.
This is actually the case. Our main result on sample error analysis estimates the difference fT+1−
fV
λT

in theHK-norm for quite general situations. The estimation follows from an iteration procedure,
developed for online classification algorithms in Ying and Zhou (2006), Ying(2007) and Ye and
Zhou (2007), together with some novelty provided in the proof of Theorem26 in the next section.
It is based on a one-step iteration bounding‖ ft+1− fV

λt
‖K in terms of‖ ft − fV

λt−1
‖K . The goal of this

section is to present our key analysis for one-step iteration in tackling two barriers arising from the
fully online non-identical setting.

3.1 Bounding Error Term Caused by Non-identical Sequence of Distributions

The first part of our key analysis for one-step iteration is to tackle an extra error term∆t caused by
the non-identical sequence of distributions when bounding‖ ft+1− fV

λt
‖K by means of‖ ft − fV

λt
‖K

with the fixed regularization parameterλt .

Lemma 16 Define{ ft} by (3). Then we have

IEzt (‖ ft+1− fV
λt
‖2

K) ≤ (1−ηtλt)‖ ft − fV
λt
‖2

K +2ηt∆t +η2
t IEzt ‖∂V(yt , ft(xt))Kxt +λt ft‖

2
K , (14)

where∆t is defined by

∆t =
Z

Z

{
V(y, fV

λt
(x))−V(y, ft(x))

}
d
[
ρ(t)−ρ

]
. (15)

Lemma 16 follows from the same procedure as in the proof of Lemma 3 in Ying andZhou
(2006) and Ye and Zhou (2007). A crucial estimate is

〈∂V(yt , ft(xt))Kxt +λt ft , fV
λt
− ft〉K ≤ [V(yt , fV

λt
(xt))+

λt

2
‖ fV

λt
‖2

K ]− [V(yt , ft(xt))+
λt

2
‖ ft‖

2
K ].

When we take the expectation with respect tozt = (xt ,yt), we get
R

ZV(y, fV
λt

(x))dρ(t) (and
R

ZV(y, ft(x))dρ(t)) on the right-hand side, notE( fV
λt

) =
R

ZV(y, fV
λt

(x))dρ. So compared with re-
sults in the i.i.d. case (Smale and Yao, 2006; Ying and Zhou, 2006; Ying, 2007; Tarr̀es and Yao,
2005; Ye and Zhou, 2007), an extra term∆t involving the difference measureρ(t)−ρ appears. This
is the first barrier we need to tackle here.

WhenV is the least square loss, it can be easily handled by assumingfρ ∈Cs(X). In fact, from
V(y, f ) = (y− f )2, we see that

∆t =
Z

X

{
Z

Y
[ fV

λt
(x))− ft(x)][ f

V
λt

(x)+ ft(x)−2y]dρx(y)

}
d
[
ρ(t)

X −ρX

]

=
Z

X
[ fV

λt
(x))− ft(x)][ f

V
λt
(x)+ ft(x)−2 fρ(x)]d

[
ρ(t)

X −ρX

]
.

This together with the relation‖hg‖Cs(X) ≤ ‖h‖Cs(X)‖g‖Cs(X) yields the following bound.
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Proposition 17 Let V(y, f ) = (y− f )2 and fρ ∈Cs(X). Then we have

∆t ≤
{
‖ fV

λt
‖Cs(X) +‖ ft‖Cs(X) +2‖ fρ‖Cs(X)

}
‖ρ(t)

X −ρX‖(Cs(X))∗‖ fV
λt
− ft‖Cs(X).

For a general loss function and output space,∆t can be bounded under assumption (4). It is a
special case of the following general result whenh = fV

λt
andg = ft .

Lemma 18 Let h,g∈Cs(X). If (4) holds, then we have

∣∣∣∣
Z

Z
V(y,h(x))−V(y,g(x))d

[
ρ(t)−ρ

]∣∣∣∣

≤
{

Bh,g
(
‖h‖Cs(X) +‖g‖Cs(X)

)
+2CρB̃h,g

}
‖ρ(t)

X −ρX‖(Cs(X))∗ ,

where Bh,g andB̃h,g are constants given by

Bh,g = sup
{
|∂V(y, f )| : y∈Y, | f | ≤ max{‖h‖C(X),‖g‖C(X)}

}

and
B̃h,g = sup

{
‖V(·, f )‖Cs(Y) : | f | ≤ max{‖h‖C(X),‖g‖C(X)}

}
.

Proof By decomposing the probability distributions onZ into marginal and conditional distribu-
tions, we see

Z

Z
V(y,h(x))−V(y,g(x))d

[
ρ(t)−ρ

]
=

Z

X

Z

Y
V(y,h(x))−V(y,g(x))dρx(y)d

[
ρ(t)

X −ρX

]
.

By the definition of the norm in(Cs(X))∗, we obtain
∣∣∣∣
Z

Z
V(y,h(x))−V(y,g(x))d

[
ρ(t)−ρ

]∣∣∣∣≤ ‖ρ(t)
X −ρX‖(Cs(X))∗‖J‖Cs(X),

whereJ is a function onX defined by

J(x) =
Z

Y
V(y,h(x))−V(y,g(x))dρx(y), x∈ X.

The notion ofBh,g tells us that|V(y,h(x))−V(y,g(x))| ≤Bh,g|h(x)−g(x)| for eachy∈Y. Hence
‖J‖C(X) ≤ Bh,g‖h−g‖C(X).

To bound|J|Cs(X), let x,u∈ X. We can decomposeJ(x)−J(u) as

J(x)−J(u) =
Z

Y
{[V(y,h(x))−V(y,g(x))]− [V(y,h(u))−V(y,g(u))]}dρx(y)

+
Z

Y
[V(y,h(u))−V(y,g(u))]d[ρx−ρu](y).

By the notionBh,g, part of the first term above can be bounded as

|V(y,h(x))−V(y,h(u))| ≤ Bh,g|h(x)−h(u)| ≤ Bh,g|h|Cs(X)(d(x,u))s.
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The same bound holds for the other part of the first term. So we get
∣∣∣∣
Z

Y
{[V(y,h(x))−V(y,g(x))]− [V(y,h(u))−V(y,g(u))]}dρx(y)

∣∣∣∣

≤ Bh,g
{
|h|Cs(X) + |g|Cs(X)

}
(d(x,u))s.

For the other term of the expression forJ(x)−J(u), we apply condition (4) to
∣∣∣∣
Z

Y
[V(y,h(u))−V(y,g(u))]d[ρx−ρu](y)

∣∣∣∣≤ ‖ρx−ρu‖(Cs(Y))∗‖V(y,h(u))−V(y,g(u))‖Cs(Y)

and find that ∣∣∣∣
Z

Y
[V(y,h(u))−V(y,g(u))]d[ρx−ρu](y)

∣∣∣∣≤Cρ(d(x,u))s2B̃h,g.

Combining the above two bounds, we see that

|J|Cs(X) = sup
x6=u∈X

|J(x)−J(u)|

(d(x,u))s ≤ Bh,g
{
|h|Cs(X) + |g|Cs(X)

}
+2CρB̃h,g.

Then the desired bound follows and the lemma is proved.

3.2 Bounding Error Term Caused by Varying Regularization Parameters

The second part of our key analysis is to estimate the error term called drifterror ‖ fV
λt
− fV

λt−1
‖K

caused by the change of the regularization parameter fromλt−1 to λt in our fully online algorithm.
This is the second barrier we need to tackle here.

Definition 19 The drift error is defined as

dt = ‖ fV
λt
− fV

λt−1
‖K .

The drift error can be estimated by the approximation error, which has been studied for regres-
sion (Smale and Zhou, 2009) and for classification (Ye and Zhou, 2007).

Theorem 20 Let V be a convex loss function, fV
λ by (13) and µ> λ > 0. We have

‖ fV
λ − fV

µ ‖K ≤
µ
2
(
1
λ
−

1
µ
)(‖ fV

λ ‖K +‖ fV
µ ‖K) ≤

µ
2
(
1
λ
−

1
µ
)

(√
2D(λ)

λ
+

√
2D(µ)

µ

)
.

In particular, if with some0 < γ ≤ 1 we takeλt = λ1t−γ for t ≥ 1, then

dt+1 ≤ 2t
γ
2−1
√
D(λ1t−γ)/λ1.

Proof Taking derivative of the functionalE( f )+ λ
2‖ f‖2

K at the minimizerf φ
λ defined in (13), we

see that
Z

Z
∂V(y, fV

λ (x))Kxdρ+λ fV
λ = 0.
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It follows that

fV
λ − fV

µ =
1
µ

Z

Z
∂V(y, fV

µ (x))Kxdρ−
1
λ

Z

Z
∂V(y, fV

λ (x))Kxdρ.

Combining with the reproducing property (8), we know‖ fV
λ − fV

µ ‖
2
K = 〈 fV

λ − fV
µ , fV

λ − fV
µ 〉K can be

expressed as

‖ fV
λ − fV

µ ‖
2
K =

1
µ

Z

Z
∂V(y, fV

µ (x))
(

fV
λ − fV

µ

)
(x)dρ−

1
λ

Z

Z
∂V(y, fV

λ (x))
(

fV
λ − fV

µ

)
(x)dρ.

The convexity of the functionV(y, ·) onR tells us that

∂V(y, fV
µ (x))

(
fV
λ − fV

µ

)
(x) ≤V(y, fV

λ (x))−V(y, fV
µ (x))

and
∂V(y, fV

λ (x))
(

fV
µ − fV

λ
)
(x) ≤V(y, fV

µ (x))−V(y, fV
λ (x)).

Hence

‖ fV
λ − fV

µ ‖
2
K ≤ (

1
λ
−

1
µ
)(E( fV

µ )−E( fV
λ )).

¿From the definition offV
µ , we see thatE( fV

µ )+ µ
2‖ fV

µ ‖
2
K − (E( fV

λ )+ µ
2‖ fV

λ ‖
2
K) ≤ 0. It follows

that
E( fV

µ )−E( fV
λ ) ≤

µ
2
(‖ fV

λ ‖
2
K −‖ fV

µ ‖
2
K) ≤

µ
2
‖ fV

λ − fV
µ ‖K(‖ fV

λ ‖K +‖ fV
µ ‖K).

Then the desired inequality follows.

4. Bounds for Sample Error in HK-norm

We are in a position to present our main result on the sample error measured with theHK-norm of
the differencefT+1− fV

λT
. This will be done by applying iteratively the key analysis in Lemma 16,

Lemma 18 and Theorem 20.
When applying Lemma 18, we need to bound‖g‖Cs(X) in terms of‖g‖K .

Definition 21 We say that the Mercer kernel K satisfies thekernel conditionof order s if K∈
Cs(X×X) and for someκ2s > 0,

|K(x,x)−2K(x,u)+K(u,u)| ≤ κ2
2s(d(x,u))2s, ∀x,u∈ X. (16)

When 0< s≤ 1
2 andK ∈ C2s(X ×X), (16) holds true. The following result follows directly

from Zhou (2003), Zhou (2008) and Smale and Zhou (2009).

Lemma 22 If K satisfies the kernel condition of order s with (16) valid, then we have

‖g‖Cs(X) ≤ (κ+κ2s)‖g‖K , ∀g∈HK .

When using Lemma 16 and Lemma 18, we need incremental behaviors of the lossfunctionV
to bound‖ ft‖K .
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Definition 23 Denote

N(λ) = sup
{
|∂V(y, f )| : y∈Y, | f | ≤ max

{
κ2‖V‖/λ,κ

√
2‖V‖/λ

}}

and
Ñ(λ) = sup

{
‖V(·, f )‖Cs(Y) : y∈Y, | f | ≤ max

{
κ2‖V‖/λ,κ

√
2‖V‖/λ

}}
.

We say that V hasincremental exponentp≥ 0 if for some N1 > 0 andλ1 > 0 we have

N(λ) ≤ N1(
1
λ
)p and Ñ(λ) ≤ N1(

1
λ
)p+1 ∀0 < λ ≤ λ1. (17)

We say that∂V is locally Lipschitz at the origin if

M0 := sup

{
|∂V(y, f )−∂V(y,0)|

| f |
: y∈Y, | f | ≤ 1

}
< ∞. (18)

The following result can be proved by exactly the same procedure as those in Ying and Zhou
(2006), Ying (2007) and Ye and Zhou (2007).

Lemma 24 Assume that∂V is locally Lipschitz at the origin. Define{ ft} by (3). If

ηt
(
κ2(M0 +2N(λt))+λt

)
≤ 1 (19)

for t = 1, . . . ,T, then we have

‖ ft‖K ≤
κ‖V‖

λt
, t = 1, . . . ,T +1. (20)

For the insensitive loss, (18) is not satisfied, but∂V(y, f ) is uniformly bounded by 1. For such
loss functions we can apply the following bound.

Lemma 25 Assume‖∂V(y, f )‖∞ := supy∈Y, f∈R
|∂V(y, f )| < ∞. Define{ ft} by (3). If for some

λ1,η1 > 0 and γ,α > 0 with λ + α < 1, we takeλt = λ1t−γ,ηt = η1t−α with t = 1, . . . ,T, then we
have

‖ ft‖K ≤
CV,γ,α

λt
, t = 1, . . . ,T +1, (21)

where CV,γ,α is the constant given by

CV,γ,α = κ‖∂V(y, f )‖∞

{
λ1η1 +λ1

(
2γ+2α/(λ1η1)+

(
(1+α)/[eλ1η1(1−2γ+α−1)]

) 1+α
1−γ−α

)}
.

Proof By taking norms in (3) we see that

‖ ft+1‖K ≤ (1−ηtλt)‖ ft‖K +ηtκ‖∂V(y, f )‖∞.

By iterating and the choicef1 = 0 we find

‖ ft+1‖K ≤
t

∑
i=1

Πt
j=i+1(1−η jλ j)ηiκ‖∂V(y, f )‖∞.
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But 1−η jλ j ≤ exp
{
−η jλ j

}
. It follows that

‖ ft+1‖K ≤
t

∑
i=1

Πt
j=i+1exp

{
−

t

∑
j=i+1

η jλ j

}
ηiκ‖∂V(y, f )‖∞.

Now we need the following elementary inequality withc > 0,q2 ≥ 0 and 0< q1 < 1:

t−1

∑
i=1

i−q2 exp

{
−c

t

∑
j=i+1

j−q1

}
≤


2q1+q2

c
+

(
1+q2

ec(1−2q1−1)

) 1+q2
1−q1


 tq1−q2. (22)

This elementary inequality can be found in, for example, Smale and Zhou (2009). Takingq2 =
α,q1 = γ+α andc = λ1η1 we know that‖ ft+1‖K is bounded by

κ‖∂V(y, f )‖∞

{
η1t

−α +

(
2γ+2α/(λ1η1)+

(
(1+α)/[eλ1η1(1−2γ+α−1)]

) 1+α
1−γ−α

)
tγ
}

.

Then our desired bound holds true.

Now we can present our bound for the sample error‖ fT+1− fV
λT
‖K .

Theorem 26 Suppose the following assumptions hold:

1. the kernel K satisfies the kernel condition of order s (0 < s≤ 1) with (16) valid.

2. V has incremental exponent p≥ 0 with (17) valid and∂V satisfies (18).

3. {ρ(t)
X }t=1,2,··· converges polynomially toρX in (Cs(X))∗ with (1) valid.

4. the distributions{ρx : x∈ X} is Lipschitz s in(Cs(Y))∗ with (4) valid.

5. the triple(K,V,ρ) has the approximation ability of power0 < β ≤ 1 stated by (12).

Take
λt = λ1t

−γ,ηt = η1t
−α (23)

with someλ1,η1 > 0 andγ,α satisfying

0 < γ <
2

5+4p−β
, (2p+1)γ < α < 1−

γ(3−β)

2
, η1 ≤

1

κ2M0 +2κ2N1λ−p
1 +λ1

. (24)

Then we have
IEz1,z2,···,zT (‖ fT+1− fV

λT
‖2

K) ≤CK,V,ρ,b,β,sT
−θ (25)

where the power indexθ is given by

θ := min

{
2− γ(3−β)−2α,α− γ(2p+1),b− γ(2+ p)

}
, (26)

and CK,V,ρ,b,β,s is a constant independent of T given explicitly in the proof.
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Proof We divide the proof into four steps.
First we bound∆t . Sinceλt andηt take the form (23), we see from the lower bound forα in

(24) thatpγ ≤ (2p+1)γ ≤ α. Hence fort ∈ N,

ηt(κ2(M0 +2N(λt))+λt) ≤ η1t
−α(κ2M0 +2κ2N1λ−p

1 t pγ +λ1t
−γ) ≤ η1(κ2M0 +2κ2N1λ−p

1 +λ1).

So the last restriction of (24) implies (19), and by Lemma 24, we know that (20) holds true.
Taking f = 0 in (13) yields

‖ fV
λt
‖2

K ≤
2‖V‖

λt
, t = 1, . . . ,T.

Putting these bounds into the definition of constantBh,g, B̃h,g, we see by the notionN(λ) that

BfV
λt

, ft ≤ N(λt), B̃fV
λt

, ft ≤ N(λt).

So by Lemma 18 and Lemma 22,

∆t ≤ B∗
t :=

{
(κ+κ2s)(

√
2‖V‖/λt +κ‖V‖/λt)N(λt)+2CρÑ(λt)

}
‖ρ(t)

X −ρX‖(Cs(X))∗ .

Putting this bound and (20) into (14) yields

IEz1,z2,···,zt (‖ ft+1− fV
λt
‖2

K) ≤ (1−ηtλt)IEz1,z2,···,zt−1

(
‖ ft − fV

λt
‖2

K

)
+κ2η2

t (N(λt)+‖V‖)2 +2ηtB
∗
t .

Next we derive explicit bounds for the one-step iteration.
Recall thatdt = ‖ fV

λt
− fV

λt−1
‖K . It gives‖ ft − fV

λt
‖2

K ≤ ‖ ft − fV
λt−1

‖2
K +2‖ ft − fV

λt−1
‖Kdt +d2

t .

Takeτ = γ+α
1−γ(1−β)/2. By the upper bound forα in (24), we find 0< τ < 1.

TakeA1 =
η1λ1+τ(1−β)/2

1

21+2τD
τ/2
0

> 0. Applying the elementary inequality

2ab= 2[
√

A1abτ/2][b1−τ/2/
√

A1] ≤ A1a2bτ +b2−τ/A1 (27)

to a = ‖ ft − fV
λt−1

‖K andb = dt , we know that

IEz1,z2,···,zt−1

(
‖ ft − fV

λt
‖2

K

)
≤ (1+A1dτ

t )IEz1,z2,···,zt−1

(
‖ ft − fV

λt−1
‖2

K

)
+d2−τ

t /A1 +d2
t .

Using this bound and noticing the inequality(1−ηtλt)(1+A1dτ
t ) ≤ 1+A1dτ

t −ηtλt , we obtain

IEz1,z2,···,zt (‖ ft+1− fV
λt
‖2

K) ≤ (1+A1dτ
t −ηtλt)IEz1,z2,···,zt−1

(
‖ ft − fV

λt−1
‖2

K

)

+d2−τ
t /A1 +d2

t +κ2η2
t (N(λt)+‖V‖)2 +2ηtB

∗
t .

By Theorem 20, condition (12) for the approximation error yields

dt ≤ 2
√
D0λ(β−1)/2

1 (t −1)γ(1−β)/2−1 ≤ A2t
γ(1−β)/2−1 whereA2 = 4

√
D0λ(β−1)/2

1 .

Inserting the parameter formλt = λ1t−γ into assumption (17) and applying condition (1), we
can boundB∗

t as

B∗
t ≤ A3t

γ(1+p)−b whereA3 =
{
(κ+κ2s)(

√
2‖V‖/λ1 +κ‖V‖/λ1)+2Cρ/λ1

}
N1λ−p

1 C.

2889



HU AND ZHOU

Therefore, for the one-step iteration, by denotingfV
λ1

as fV
λ0

whent = 1, we have for eacht = 1, . . . ,T,

IEz1,z2,···,zt (‖ ft+1− fV
λt
‖2

K) ≤ (1+A1dτ
t −ηtλt)IEz1,z2,···,zt−1

(
‖ ft − fV

λt−1
‖2

K

)
+A4t

−θ̃, (28)

where

θ̃ = min

{
2− γ(2−β)−α, 2(α− pγ), α+b− γ(1+ p)

}

and
A4 = A2−τ

2 /A1 +A2
2 +κ2η2

1(N1λ−p
1 +‖V‖)2 +2η1A3.

Then we iterate the above one-step analysis. Inserting the parameter formsfor λt andηt , we see
from the definition of the constantA1 that

1+A1dτ
t −ηtλt ≤ 1+A1Aτ

2t
τ(γ(1−β)/2−1)−η1λ1t

−γ−α = 1−
η1λ1

2
t−γ−α. (29)

So the one-step analysis (28) yields

IEz1,z2,···,zt (‖ ft+1− fV
λt
‖2

K) ≤

(
1−

η1λ1

2
t−γ−α

)
IEz1,z2,···,zt−1

(
‖ ft − fV

λt−1
‖2

K

)
+A4t

−θ̃.

Applying this bound iteratively fort = 1, . . . ,T implies

IEz1,z2,···,zT (‖ fT+1− fV
λT
‖2

K) ≤ A4

T

∑
t=1

ΠT
j=t+1(1−

η1λ1

2
j−γ−α)t−θ̃

+

{
ΠT

t=1(1−
η1λ1

2
t−γ−α)

}
‖ f1− fV

λ1
‖2

K .

Finally we bound the above expressions by two elementary inequalities. The first one is (22).
Applying this inequality withc = η1λ1

2 ,q1 = γ+α andq2 = θ̃, since 1−u≤ e−u for anyu≥ 0, the
first expression above can be bounded as

T

∑
t=1

ΠT
j=t+1(1−

η1λ1

2
j−γ−α)t−θ̃ ≤

T

∑
t=1

exp

{
−

η1λ1

2

T

∑
j=t+1

j−γ−α

}
t−θ̃ ≤ A5Tγ+α−θ̃,

whereA5 is the constant given by

A5 =
2γ+α+θ̃+1

η1λ1
+1+

(
2+2θ̃

eη1λ1(1−2γ+α−1)

) 1+θ̃
1−γ−α

.

For the second expression above, we have

ΠT
t=1(1−

η1λ1

2
t−γ−α) ≤ exp

{
−

η1λ1

2

T

∑
j=1

t−γ−α

}
≤ exp

{
−

η1λ1

2

Z T+1

1
x−γ−αdx

}

≤ exp

{
λ1η1

2(1− γ−α)

}
exp

{
−

λ1η1

2(1− γ−α)
(T +1)1−γ−α

}
.
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Applying another elementary inequality

exp{−cx} ≤
( a

ec

)a
x−a, ∀c,a,x > 0

with c = λ1η1
2(1−γ−α) , a = 2

1−γ−α andx = (T +1)1−γ−α yields

ΠT
t=1(1−

η1λ1

2
t−γ−α) ≤ exp

{
λ1η1

2(1− γ−α)

}(
4

eλ1η1

) 2
1−γ−α

T−2.

The above two estimates give the desired bound (25) withθ = θ̃− γ−α and the constantCK,V,ρ,b,β,s

given by

CK,V,ρ,b,β,s = A4A5 +exp

{
λ1η1

2(1− γ−α)

}(
4

eλ1η1

) 2
1−γ−α 2‖V‖

λ1
.

This proves the theorem.

Remark 27 Some ideas in the above proof are from Ying and Zhou (2006), Ye and Zhou (2007) and
Smale and Zhou (2009). Two novel points are presented for the first timehere. One is the bound for

∆t , dealing withρ(t)
X −ρX, given in the first step of our proof in order to tackle the technical difficulty

arising from the non-identical sampling process. The same difficulty for theleast square regression
was overcome in Smale and Zhou (2009) by the special linear feature andexplicit expressions
offered by the least square loss. The second technical novelty is to introduce a parameter A1 into
elementary inequality (27). With this parameter, we can bound1+A1dτ

t −ηtλt by1− 1
2ηtλt , shown

in (29). This improves the error bound even in the i.i.d. case presented in Ye and Zhou (2007) for
the fully online algorithm.

Let us discuss the role of parameters in Theorem 26. Whenγ is small enough andb > 2
3, fully

online algorithm (3) becomes very close to the partially online scheme withλt ≡ λ1. By taking
α = 2

3, the rates in (25) are of orderO(T−( 2
3−ε)) with ε arbitrarily small, which is a nice bound for

the sample error‖ fT+1− fV
λT
‖K . In this case, the difference betweenfV

λT
and fV

ρ , measured by the
approximation error, increases sinceλT = λ1T−γ. To estimate the total error betweenfT+1 and fV

ρ ,
we should take a balance for the indexγ of the regularization parameter, as shown in Theorem 11.

For the insensitive loss, (18) is not satisfied. We can apply Lemma 25 and obtain bounds for
‖ fT+1− fV

λT
‖K by the same proof as that for Theorem 26.

Proposition 28 Assume‖∂V(y, f )‖∞ < ∞ and all the conditions of Theorem 26 except (18). Take
{λt ,ηt} by (23) with the restriction (24) without the last inequality. Then the same convergence rate
(25) holds true with the power indexθ given by (26).

5. Bounds for Binary Classification and Regression with Insensitive Loss

We demonstrate how to apply Theorem 26 by deriving learning rates of fullyonline algorithm (3)
for binary classification and regression with insensitive loss.
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Theorem 29 Let V(y, f ) = φ(y f) whereφ : R → R+ is a convex function satisfying

|φ′
−(u)| ≤ Nφ|u|

p, φ(u) ≤ Nφup+1 ∀|u| ≥ 1 (30)

for some p≥ 0 and Nφ > 0. Suppose Mφ := sup{|φ′
−(u)−φ′

−(0)|/|u| : |u| ≤ 1} < ∞. Assume (16)

for K, (1) for {ρ(t)
X }, and (12) for(K,φ,ρ). If fρ ∈ Cs(X) and we choose{λt ,ηt} as (23) with

0 < γ < 2
5+10p−β ,α = 2+γ(2p−2+β)

3 and b> γ(2+ p), andη1 < η0, λ1 ≤ κ2(φ(0)+‖φ′
−‖L∞[−1,1])/2,

then we have

IEz1,...,zT

(
E( fT+1)−E( fV

ρ )
)
≤ C̃φ,β,γT

−min
{

2−γ(5+10p−β)
6 , b−γ(2+3p)

2 ,γβ
}

,

whereη0 := 1
κ2Mφ+2κ2N1λ−p

1 +λ1
with N1 = (Mφ +Nφ +φ(0)+‖φ′

−‖L∞[−1,1])κ2p(φ(0)+‖φ′
−‖L∞[−1,1])

p

andC̃φ,β,γ is a constant depending onη1,λ1,κ,D0,β,φ,β and s.

Proof By the bounds for‖ fV
λT
‖K and‖ fT+1‖K , we know from (30) that

∣∣E( fT+1)−E( fV
λT

)
∣∣ =

∣∣∣∣
Z

Z
φ(y fT+1(x))−φ(y fV

λT
(x))dρ

∣∣∣∣

≤ CK,φλ−p
T ‖ fT+1− fV

λT
‖∞ ≤ κCK,φλ−p

T ‖ fT+1− fV
λT
‖K ,

whereCK,φ is a constant depending onK andφ.
It is easy to check that the lossV(y, f ) = φ(y f) satisfies (17) with incremental exponentp.
By Theorem 26 with 0< γ < 2

5+10p−β ,α = 2+γ(2p−2+β)
3 andb > γ(2+ p), we have

IEz1,z2,···,zT

(∥∥ fT+1− fV
λT

∥∥
K

)
≤
√

CK,V,ρ,b,β,sT
−min{[2−γ(5+4p−β)]/6,[b−γ(2+p)]/2}.

Also, we haveE( f φ
λT

)−E( fV
ρ ) ≤D(λT) ≤D0λβ

T . Thus we get a bound for the excess general-
ization error

IEz1,...,zT (E( fT+1)−E( fV
ρ )) ≤ C̃φ,β,γT

−min{[2−γ(5+10p−β)]/6,γβ,[b−γ(2+3p)]/2},

whereC̃φ,β,γ = κCK,φλ−p
1

√
CK,V,ρ,b,β,s+D0λβ

1. This verifies the desired bound.

Theorem 29 yields concrete learning rates with various loss functions. Whenφ is chosen to be
the hinge lossφ(x) = (1−x)+, we can prove Theorem 11.

5.1 Proof of Theorem 11

When 0< s≤ 1
2 andK ∈C2s(X×X), (16) holds true.

The loss functionφ(x) = (1− x)+ satisfiesφ′
−(x) = −1 for x ≤ 1 and 0 otherwise. It follows

that (17) holds true withp = 0 andMφ = 0. By Example 5, (9) implies (12).
Thus all conditions in Theorem 29 are satisfied and by takingp = 0 andγ = 1

4, we have

IEz1,...,zT

(
E( fT+1)−E( fV

ρ )
)
≤ C̃φ,β,γT

−min
{

1
8+ β

24, β
4 , b

2−
1
4

}

.
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An important relation concerning the hinge loss is the one (Zhang, 2004) between the excess
misclassification error and the excess generalization error given for any measurable functionf :
X → R as

R (sgn( f ))−R ( fc) ≤ E( f )−E( fc).

Combining this relation with the above bound for the excess generalization error proves the conclu-
sion of Theorem 11.

Turn to the general lossφ. We give an additional assumption thatφ′′(0) exists and is positive.
Under this assumption it was proved in Chen et al. (2004) and Bartlett et al.(2006) that there exists
a constant dependingcφ only onφ such that for any measurable functionf : X → R,

R (sgn( f ))−R ( fc) ≤ cφ

√
E( f )−E( f φ

ρ ).

Then Theorem 29 gives the following learning rate.

Corollary 30 Letφ be a loss function such thatφ′′(0) exists and is positive. Under the assumptions
of Theorem 29, ifγ = 2

5+10p+5β , we have

IEz1,...,zT (R (sgn( fT+1))−R ( fc)) ≤ C̃φ,βT−min{ β
5+10p+5β , b

4−
2+3p

10+20p+10β},

whereC̃φ,β is a constant independent of T .

As an example, theq-norm SVM lossφ(x) = ((1−x)+)q with q> 1 satisfiesφ′′(0) > 0 and (17)
with p = q−1. So Corollary 30 yields the following rates.

Example 7 Let φ(x) = ((1− x)+)q with q > 1. Under the assumptions of Theorem 29, ifγ =
2

10q−5+5β , α = 8q−6+4β
10q−5+5β and b> 6q−2

10q−5+5β , then

IEz1,...,zT

(
R (sgn( fT+1))−R ( fc)

)
= O

(
T−min{ β

10q−5+5β , b
4−

3q−1
20q−10+10β

)
.

Finally we verify the learning rates for regression with insensitive loss stated in Section 2.

5.2 Proof of Theorem 10

We need the regularizing functionfVls
λ defined by (13) with the least square lossV = Vls. It can be

found, for example, in Smale and Zhou (2007) that regularity condition (7)implies

‖ fVls
λ − fρ‖K ≤

(
λ
2

)r− 1
2

‖gρ‖L2
ρX

, when
1
2

< r ≤
3
2

and

‖ fVls
λ − fρ‖L2

ρX
≤

(
λ
2

)r

‖gρ‖L2
ρX

, when 0< r ≤ 1.

It follows that whenλ ≤ 2(κ‖gρ‖L2
ρX

)2/(1−2r), we have‖ fVls
λ − fρ‖C(X) ≤ 1. Thus by the special

form of the conditional distributionρx, we see from the conclusion of Example 6 withp = 1 that
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fVin
λ = fVls

2λ and bounds for‖ fVin
λ − fρ‖K and‖ fVin

λ − fρ‖L2
ρX

follow. Moreover, condition (12) for

D(λ) is valid with β = 1.
Now we check other conditions of Proposition 28.
Condition (16) is valid becauseK ∈C2s(X×X) with 0 < s≤ 1

2.
By a simple computation, incremental condition (17) is verified with exponentp = 0.
Note that‖ fρ‖K ≤ κ2r−1‖gρ‖L2

ρX
and‖ fρ‖Cs(X) ≤ (κ + κ2s)‖ fρ‖K . Then for anyx,u ∈ X and

g∈Cs(Y), we see from the uniform distributionρx andρu that

∣∣∣∣
Z

Y
g(y)d(ρx−ρu)

∣∣∣∣ =
1
2

∣∣∣∣
Z fρ(x)+1

fρ(x)−1
g(y)dy−

Z fρ(u)+1

fρ(u)−1
g(y)dy

∣∣∣∣≤ ‖g‖C(Y)| fρ(x)− fρ(u)|

≤ ‖g‖C(Y)(κ+κ2s)κ2r−1‖gρ‖L2
ρX

(d(x,u))s.

This verifies Lipschitzscontinuous condition (4) for{ρx}with constantCρ = (κ+κ2s)κ2r−1‖gρ‖L2
ρX

.

Thus all conditions of Proposition 28 are satisfied and we obtain

IEz1,z2,···,zT (‖ fT+1− fVin
λT

‖2
K) ≤CK,V,ρ,b,β,sT

−θ

where

θ := min

{
2−2γ−2α,α− γ,b−2γ

}
.

Finally we get

IEz1,z2,···,zT (‖ fT+1− fρ‖K) ≤
√

CK,V,ρ,b,β,sT
−θ/2 +

(
λT+1

2

)r− 1
2

‖gρ‖L2
ρX

, when
1
2

< r ≤
3
2

and

IEz1,z2,···,zT (‖ fT+1− fρ‖L2
ρX

) ≤ κ
√

CK,V,ρ,b,β,sT
−θ/2 +

(
λT+1

2

)r

‖gρ‖L2
ρX

, when 0< r ≤ 1.

Then our desired learning rates follow.
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Appendix A.

This appendix includes some detailed proofs.
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A.1 Proof of Proposition 6

The first statement follows by takingg(y) = y onY because

| fρ(x)− fρ(u)| =

∣∣∣∣
Z

Y
g(y)d(ρx−ρu)(y)

∣∣∣∣≤ ‖ρx−ρu‖(Cs(Y))∗‖g‖Cs(Y)

and‖g‖Cs(Y) = ‖g‖C(Y) + |g|Cs(Y) ≤ supy∈Y |y|+21−ssupy∈Y |y|. Actually the above estimates tell us
that fρ is continuous and belongs toCs(X) with | fρ|Cs(X) ≤Cρ(1+21−s)supy∈Y |y|.

For the second statement, sinceY = {1,−1}, we havefρ(x) = ρx({1})−ρx({−1}). It follows

that for eachy∈Y andx∈ X, there holdsρx({y}) =
1+y fρ(x)

2 . So for anyg∈Cs(Y) andx,u∈ X,

Z

Y
g(y)d(ρx−ρu)(y) = ∑

y∈Y

g(y)
y[ fρ(x)− fρ(u)]

2
= ∑

y∈Y

yg(y)
2

[ fρ(x)− fρ(u)].

Now the conclusion follows from
∣∣∣∣
Z

Y
g(y)d(ρx−ρu)(y)

∣∣∣∣≤ ‖g‖C(Y)| fρ(x)− fρ(u)| ≤ | fρ|Cs(X)(d(x,u))s‖g‖Cs(Y).

This proves Proposition 6.

A.2 Proof of Example 4

Forx∈ X, we haveρx({1}) = fρ,−1(x)+ fρ(x) andρx({0}) = 1−2 fρ,−1(x)− fρ(x). Hence for any
g∈Cs(Y),

Z

Y
g(y)dρx = fρ,−1(x){g(1)−2g(0)+g(−1)}+ fρ(x){g(1)−g(0)}+g(0)

and foru∈ X,
Z

Y
g(y)d(ρx−ρu) = [ fρ,−1(x)− fρ,−1(u)]{g(1)−2g(0)+g(−1)}+[ fρ(x)− fρ(u)]{g(1)−g(0)} .

Then our statement follows from the first part of Proposition 6. This proves the conclusion of
Example 4.

A.3 Proof of Example 6

Let x∈ X. When f (x) ≥ fVin
ρ (x), we see from the explicit form of the insensitive lossVin that

Z

Y
Vin(y, f (x))dρx(y)−

Z

Y
Vin(y, fVin

ρ (x))dρx(y)

=
Z

y≥ f (x)
fVin
ρ (x)− f (x)dρx +

Z

y≤ f
Vin
ρ (x)

f (x)− fVin
ρ (x)dρx

+
Z

f
Vin
ρ (x)<y< f (x)

f (x)+ fVin
ρ (x)−2ydρx.

It follows that

E( f )−E( fVin
ρ ) =

Z

X

{
| f (x)− fVin

ρ (x)|∆x +2
Z

Ix
| f (x)−y|dρx

}
dρX (31)
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where
∆x :=

∣∣∣ρx

(
{y∈Y : y≤ fVin

ρ (x)}
)
−ρx

(
{y∈Y : y > fVin

ρ (x)}
)∣∣∣

and Ix in the open interval betweenfVin
ρ (x) and f (x). The same relation (31) also holds when

f (x) < fVin
ρ (x).

Now we use the special assumption on the conditional distributions and see that the median and
mean ofρx are equal:fVin

ρ (x) = fρ(x) for eachx∈ X. Moreover,∆x = 0 and whenfρ(x) ≤ f (x) ≤
fρ(x)+1, we have

2
Z

Ix
| f (x)−y|dρx = 2

Z f (x)− fρ(x)

0
( f (x)− fρ(x)−u)

p
2

up−1du=
| f (x)− fρ(x)|p+1

p+1
.

The same expression holds true whenfρ(x)−1≤ f (x) < fρ(x). When| f (x)− fρ(x)| > 1, sinceρx

vanishes outside[− fρ(x)−1, fρ(x)+1], we have 2
R

Ix | f (x)−y|dρx = | f (x)− fρ(x)|−
p

p+1. There-
fore, (31) is the same as

E( f )−E( fVin
ρ ) =

Z

{x∈X:| f (x)− fρ(x)|≤1}

| f (x)− fρ(x)|p+1

p+1
dρX

+
Z

{x∈X:| f (x)− fρ(x)|>1}
| f (x)− fρ(x)|−

p
p+1

dρX.

This proves the desired expression forE( f )−E( fVin
ρ ) and hence the bound forD(λ).
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