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Abstract

We consider the problems of estimating the parameters dsawéhe structure of binary-valued
Markov networks. For maximizing the penalized log-likeldd, we implement an approximate
procedure based on the pseudo-likelihood of Besag (19tbpaneralize it to a fast exact algo-
rithm. The exact algorithm starts with the pseudo-liketilgolution and then adjusts the pseudo-
likelihood criterion so that each additional iterationsva® it closer to the exact solution. Our
results show that this procedure is faster than the congetiact method proposed by Lee, Gana-
pathi, and Koller (2006a). However, we also find that the apipnate pseudo-likelihood as well
as the approaches of Wainwright et al. (2006), when impléeteasing the coordinate descent
procedure of Friedman, Hastie, and Tibshirani (2008b),naweh faster than the exact methods,
and only slightly less accurate.

Keywords: Markov networks, logistic regressiol; penalty, model selection, Binary variables

1. Introduction

In recent years a humber of authors have proposed the estimationreé spalirected graphical
models for continuous as well as discrete data through the uke @&sso) regularization. For
continuous data, one assumes that the observations have a multivarigga@alistribution with
meany and covariance matriX. Then anL; penalty is applied t® = = 1. That is, the penalized
log-likelihood?(©) — p||©||1 is maximized, wheré is the Gaussian log-likelihoo¢l@||1 is the sum
of the absolute values of the elementg®andp > 0 is a user-defined tuning parameter. Several
papers proposing estimation procedures for this Gaussian model ravputgished. Meinshausen
and Bihlmann (2006) develop a lasso based method for estimating the graph retraictligive
theoretical consistency results. Yuan and Lin (2007), Banerjee étCl8] and Dahl et al. (2008)
as well as Friedman, Hastie, and Tibshirani (2008a) propose algorithmssli/ing this penalized
log-likelihood with the procedure in Friedman, Hastie, and Tibshirani (2pQBegraphical lasso
being especially fast and efficient.

Here we focus on estimation of networks of discrete, more specificallyysirsdoed, units with
pairwise interactions. These are a special class of Markov netwohlesude ot.; penalties for this
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Figure 1: A simple graph for illustration.
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Table 1: Sample data for graph of Figure 1

special class as well as more general Markov networks was propgdese, Ganapathi, and Koller
(2006a). This problem is more difficult than the continuous Gaussiaiowebgcause of the need
to compute the first and second moments under the model, which are des\aitihe log-partition
function. Figure 1 shows an example, and Table 1 shows some samplectattifs graph. Given
this data and a model for binary graphical data (detailed later), we woultbliginfer a structure
something like that of Figure 1, and b) estimate the link parameters itself. FoataéndTable 1,
Figure 2 shows the path of solutions for varying penalty parameter. Mgsisefor;-norm< 2 are
correctly identified as in the graph in Figure 1. However, edg8) is absent in the true model but
included in thelL; penalized model relatively early.

Our main focus in this paper is to develop and implement fast approximate at poce-
dures for solving this class df;-penalized binary pairwise Markov networks and compare the
accuracy and speed of these to other methods proposed by Lee a@anapd Koller (2006a) and
Wainwright et al. (2006). Here, by “exact” procedures we referlgmi@ithms that find the exact
maximizer of the penalized log-likelihood of the model whereas “approximatetqalures only
find an approximate solution.

In Section 2 we describe the Ising model as well as the details of the competthgdaef
Lee, Ganapathi, and Koller (2006a) and Wainwright et al. (2006) ti@e8 then introduces the
basic pseudo-likelihood model and outlines the computational approachreasecthe speed of
the algorithm. The pseudo-likelihood is a very interesting and fast appréximethod which has
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Figure 2: Toy example: profiles of estimated edge parameters as the peaaraltygter is varied.

the added advantage that it can be used as a building block to a new algfmithmaximizing the
penalized log-likelihood exactly. The adjustments necessary to achievedlisscribed in Section
4. Finally, Section 5 discusses the results of the simulations with respectad apd accuracy of
the competing algorithms.

2. The Model and Competing Methods

In this section we briefly outline the competing methods for maximizing the penaligdikédihood.
Apart from the method proposed in Lee, Ganapathi, and Koller (2008agh we already men-
tioned above, we also discuss a very simple solution that was presentedinrifht et al. (2006).
We first describe the underlying model in more detail. Consider data gedewader the Ising
model

p(x,0) = exp [ Z/GSXS+ > B —W(O)].
SE (st)eE

for a single observatior = (Xy, ... ,xp)T € {0,1}P and model parametefs andbg; for s;t € V =
{1,...,p}. Here,V denotes the vertices aritlthe edges of a graph¥(0©) is the normalization
constant, which is also known as the log-partition function. By sefling- O for (s;t) € E, and
using the fact that is a binary vector we can write the log-likelihood as

BsixsXt — W(O)
1

M

[(x,©) =logp(x,0) =
s>t

(A%
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where® is a symmetrig x p matrix with 8ss= 05 for s=1,..., p. Note that for notational conve-
nience, we do not distinguish betwe@pnand6;s and therefore we enforce symmetry@tlthough
the log-likelihood only uses the lower-triangular matrix@f For thelL;-penalty letR be ap x p
lower triangular matrix of penalty parameters. The penalized log-likelihoodlFit observations
is

p
Y (XTX)st0st —NW(®) —N|[R*O)1
>1>

S| 1

wherex denotes component-wise multiplication.

The algorithms that we will discuss in the following sections could be genedat@zenore
general categorical variables or higher order interaction terms thamitimaded in the Ising model.
However, as we will see, solving these problems exactly is already commatififidemanding in
the pairwise binary case so that we chose not to adapt the algorithms tortbessgeneral settings.

2.1 The Lee, Ganapathi, and Koller (2006a) Method

The penalized log-likelihood is a concave function, so standard comag@anming techniques
can be used to maximize it. The main difficulty is that the log-partition func#®) is the sum
over 2 elements, and therefore it is computationally expensive to calcHabe its derivatives
in general. However, for sparse matrid®@salgorithms such as the junction tree algorithm exist
that can calculat and its derivatives efficiently. Therefore, it is especially important to mainta
sparsity of® for any optimization method. Lee, Ganapathi, and Koller (2006a) achievéyhis
optimizing the penalized log-likelihood only over a $ebf active variablesvhich they gradually
enlarge until an optimality criterion is satisfied.

To be more precise, they start out with a set of active variablesFy (e.g., the diagonal of
@ if it is unpenalized). Using either conjugate gradients or BFGS, the peddbgelikelihood is
maximized over the set of variabl€s Then one of the currently inactive variables is selected by
the grafting procedure (see Perkins et al., 2003) and added to the.s€éhese steps are repeated
until grafting does not add any more features. The algorithm can befaisetbre general Markov
networks, but for ease of implementation they choose to work with binagorarvariables and we
do the same as well.

Their procedure provides an exact solution to the problem when the jonitde algorithm
is used to calculat&’(©) and its derivatives. In their implementation, however, they used loopy
belief propagation, which is faster on denser matrices, but only proappsoximate results. In
their method as well as ours, any procedure to evaldd®) can be “plugged in” without any
further changes to the rest of the algorithm; we decided to evaluate the apdgerformance of
only the exact algorithms. The relative performance of an approximate thesiog loopy belief
propagation would likely be similar. They also provide a proof that undeaiceassumptions and
using thel; regularized log-likelihood, it is possible to recover the true expected legiHiod up
to an error.

2.2 The Wainwright et al. (2006) Method

Wainwright et al. (2006) propose estimation of the Markov network bylyapp a separate. ;-
penalized logistic regression to each of {heariables on the remaining variables. For evegy/V
regressts ontoxys = (X, ..., Xs-1,Xs1; - - - ,xp)T. Let thep x p matrix © denote the estimate @.
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Then seBss = Bo, the intercept of the logistic regression, ahg= Br, wherep; is the coefficient
associated witk in the regression.

In the outline above, we assumed tiais a symmetric matrix. However, due to the way it was
constructed® is not necessarily symmetric. We investigate two methods for symmetﬁiiﬁ'ghe

first way is to defin® as
O = Bre — ?st ?f |95t| > |9ts|
Bs if |Bst| < By
which we call “Wainwright-max”. Similarly, “Wainwright-min” is defined by

B . és’[ if ’ést’ < ’éts’
Bst=6s=14¢~ . ~ -
Bts if [Ost| > |Bys]

Wainwright et al. (2006) mainly intended their method to be used in order to dstilrepresence or
absence of an edge in the underlying graph of the model. They shownithet certain assumptions,
their method correctly identifies the non-zero edges in a Markov graph;-as even for increasing
number of parametersor neighborhood sizes of the graphas long a®N grows more quickly than
d3log p (see Wainwright et al., 2008). Due to the simplicity of the method it is obviousttbatld
also be used for parameter estimation itself and here we will compare its parfoe in these
cases to the pseudo-likelihood approach proposed below and thesekatidon of the penalized
log-likelihood. Furthermore, as an important part of this article is the compadsthe speeds of
the underlying algorithms, we implement their method, using the fast coordiestet algorithm
for logistic regression with a lasso penalty (see Friedman, Hastie, andraiisi2008b).

3. Pseudo-likelihood Model

In this section we first introduce an approximate method to infer the structihe graph that is
based on pseudo-likelihoods (Besag, 1975). As we will see in the simdatamiion, the results
are very close to the exact solution of the penalized log-likelihood. In tlke gextion, we use
the pseudo-likelihood model to design a very fast algorithm for findingxactesolution for the
penalized Ising model.

The main computational problem in the Ising model is the complexity of the partitiostiun.
One possibility in this case is to solve an approximate version of the likelihoodithségproaches
of this kind have been proposed in various papers in the statistical litekatoee, for example the
pseudo-likelihood approach of Besag (Besag, 1975) and the treatofie@utsposite likelihoods in
Lindsay (1998) and Cox and Reid (2004) among others. Here, wetoapply the approximation
proposed in Besag (1975) to our problem. This approach is also reldtesneethod of Wainwright
et al. (2006), however instead of performing separate logistic regnsstor every column of the
parameter matri®, the pseudo-likelihood approach here allows us to estimate all parametegs at
same time. This way, the resulting matfixis symmetric and no additional step like the max or
min-rule described above is necessary. The log-pseudo-likelihoodigihen by

B p
1(O[x) = ;IOQ P(Xs, O[x\s)

with
log p(Xs, OX\s) = Xi (Bss+ ; %0st) — Ws(X, O).
t#£s
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Here,Ws(x, ©) is the log-normalization constant when conditionig@n the other variables, which
is exactly the same as in logistic regression with a logit link-function, that is,

Ws(x,0) = log(1+ exp(Bss+ ; %Ost))
t#£s

where as above for notational convenience webget 6;s for t # s. Putting all this together, the
pseudo-likelihood for a single observatinis given by

O]x ZlZlXSXteSt ZWSXO

In the usual way, the pseudo-likelihood for Bllobservations is given by the sum of the pseudo-
likelihood of the individual observations

@|X Z| @|Xk

wherexy is thekth row of matrix with observationx € RN*P.
As this is just a sum of logistic likelihoods, the pseudo-likelihood is a concametibn and
therefore the_1-penalized pseudo-likelihood

N
> 1(@x) =N[|S+Ol[1
=1

is concave as well. Her® = 2R — diag(R) and is chosen to be roughly equivalent to the penalty
terms in the penalized log-likelihood. The penalty term is doubled on the afbda, as the
derivative of the pseudo-likelihood on the off-diagonal is roughly tveis¢arge as the derivative of
the log-likelihood (see Equation 1).

3.1 Basic Optimization Algorithm

Due to its simple structure, a wide range of standard convex programmingdaebk can be used to
solve this problem, although the non-differentiability of thepenalty poses a problem. Here, we
want to use a local quadratic approximation to the pseudo-likelihood. Asutmder of variables
is p(p+1)/2, the Hessian could get very large, we restrict our quadratic apprtgimta have a
diagonal Hessian.
In order to construct the approximation, we need the first and secaivétile of | w.rt .
These are
or
06t

ol — (XTX)es N
965 -2 P

where 1- psk = 1/(1+exp(Bss+ Y s XiBst)). The second derivatives are

= 2(XTX)st— (S Xt — (B{ X)s  s#t, €y

G2l N . P .

(9622 5 = — (X" diag(ps)diag(1— ps)X )it — (X" diag(pr)diag(1— pr)X)ss S#t,
S

Gl N

@67~ 2, oL P
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Algorithm 1: Estimation forL; penalized pseudo-likelihood

if ©© not giventhen
Sete(© — diag(logit(p(©)) wherept” = L SN | x

end

Set k:=0;

while not convergedio
With current estimat@™/, define local approximatiofigw (©) to I —N||S+ ) 1;
Find solution®* of f@a()(@);
Perform backtracking line search on the line fréff to ©* to find @k+b;

Set k:=k+1
end

Assume that at thieth step the parameter estimat€%). Then define the local approximation

to [ (©|X) —N||Sx0O||; as

2 (064)?

~ o
T (0) =C-+ 3 o (B 6L) + 5 (6w~ N+l

whereC is some constant. As stated above, this is just a quadratic approximation withténaa
equal to the gradient dfand a diagonal Hessian with diagonal elements equal to the diagonal of
the Hessian of. The main reasons for using this simple structure are that it keeps the coimputa
complexity per iteration low and it is very easy to solve thipenalized local approximation. Let

© be the minimizer of the unpenalizégj(k)(e), then

ol
b K 00
Bst = eét) - 62? .

(06st)?

As the Hessian is diagonal, the-penalized solutio®* of f@(k) (©) can be obtained by soft thresh-
olding as ~

e, —sign(B) (B —ss/az')
st st st t (aest)z . .

Using ©%, the next ste®@** can now be obtained by, for example, a backtracking line search.
The whole algorithm can be seen in Algorithm 1 and a proof of convem#érat closely follows
Lee, Lee, Abbeel, and Ng (2006b) is given in the appendix.

3.2 Speed Improvements

In practice, there are several things that can be done to speed up ahithaiggiven above. First
of all, as® will in general be sparse, all computations to calcufatshould exploit this sparse
structure. However, the sparsenes®afan also be used in another way:

3.2.1 WSING ACTIVE VARIABLES

As the solutions are usually sparse, calculating the gradient for all {esiatevery step is wasteful.
Most variables are zero and will not change from one iteration to the riexbrder to be more
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Algorithm 2: Pseudo-likelihood algorithm using active variables
if ©© not giventhen
| set0® — diag(logit(p(@)) wherept” = L N | xs

end

Set k:=0;

Set4 = {(s,t): s>1,0s # 0} as active variables;
repeat

while not converged over variables ii do

Find @1 using local approximation over variablesh
Set k:=k+1;

end

Setq = {(s,t) 1B % 0 or ‘%‘St‘ > sst};

until 4 did not change

efficient, itis possible to move variables that are zero only once in a whiler&8aifferent kinds of
methods have been proposed to exploit this situation, for example graférigriP et al., 2003) and
the implementation of the penalized logistic regression in Friedman, Hastie, astdraiti (2008b)
among others. In our case here, we use an outer and an inner loopufEndoop decides which
variables are active. The inner loop then optimizes over only the actiiebl@s until convergence
occurs. Active variables are those that are either non-zero, orakiatahgradient large enough so
that they would become non-zero in the next step. More details are givdgonithm 2.

When using this method, convergence is still guaranteed. In the outethaogrjterion chooses
variables to be active that are either non-zero already or will be nanatter one step of the local
approximation over all variables. Therefore, if the active set staysatime sno variables would be
moved in the next step as all active variables are already optimal anddieenek have a solution
over all variables. However, if the active set changes, the inner logpasanteed to improve the
penalized pseudo-likelihood and find the optimum for the given set ofeacéiviables. As there are
only a finite number of different active variables sets, the algorithm haerteetge after a finite
number of iterations of the outer loop.

3.2.2 SUBSTITUTING THE LINE SEARCH

Calculating the pseudo-likelihood is computationally expensive compared to#tef the local
approximation. Therefore, we save time by not performing a line seatehefery step. Instead,
we fix a step sizg and skip the line search. However, with this method, the algorithm may diverge
In order to detect this, we calculate the penalized pseudo-likelihood &@€riterations and check
that we improved during the last 100 steps. If yes, the step size remainantiee # no, reset the
variables to where they were 100 steps ago and divide the step sizeflllge2step size drops below

a pre-specified threshold, we revert to the original line-search algarifthis way, in most cases,
we do not have to perform the line-search. However, the algorithm is gtilagteed to converge
as it automatically detects convergence problems when the fixed step siee iangreverts to the
line-search algorithm, which as stated above is guaranteed to converge.
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4. Exact Solution Using Pseudo-likelihood

We now turn to our new method for optimizing the penalized log-likelihood. As thdiketjhood
is a concave function, there are several standard methods that caedéu maximizing it, for
example, gradient descent, BFGS and Newton’s method among othersaétorstep of these
methods, the gradient of the log-likelihood has to be calculated. This regh&eevaluation of the
partition function and its derivatives, which is computationally much more estpethan any other
part of the algorithms. Taking this into considerations, the standard method®neshabove have
the following drawbacks:

Gradient descent: It can take many steps to converge and therefore require many evatuafion
the partition function and its derivatives (using the junction tree algorithmp,Alsloes not
control the number of non-zero variables in intermediate steps well to whectutttime of
the junction tree algorithm is very sensitive. Therefore, intermediate steysike very long.

BFGS: Takes less steps than gradient descent, but similar to gradient destembeidiate steps
can have more non-zero variables than the solution. Thus, same as eboyritations of
intermediate steps can be slow.

Newton’s method: In order to locally fit the quadratic function, the second derivatives eialy-
likelihood are needed. Computing these is computationally prohibitive.

Lee, Ganapathi, and Koller (2006a) use the BFGS method only on a setivd gariables onto
which additional variables are “grafted” until convergence. This mitigétesproblem of slow
intermediate steps and makes using BFGS feasible. However, this comeseaptrse of an
increased total number of steps, as only one variable at a time is beingdgraftee, we want to
use the pseudo-likelihood in a new algorithm for maximizing the penalized lobjldael.

The functional form of the pseudo-likelihood is by its definition closely relatethe real like-
lihood and in Section 5 we will see that its solutions are also very similar, indici#idgt approxi-
mates the real likelihood reasonably well. Furthermore, we can also maximpedtdo-likelihood
very quickly. We want to leverage this by using a quasi-Newton method inhwhécfit a “tilted”
pseudo-likelihood instead of a quadratic function. Specifically, amongrdtions of the form

1- k k
fm = 51+ 3 (B Bat) v (B~ 6a¢)” ~N|IR + Ol

we fit the one that a®® is a first order approximation to the penalized log-likelihdodEssen-
tially, f o« is anLi-penalized pseudo-likelihood with an added linear term as well as a veryesimp
guadratic term for somg> 0. Here ag will be chosen so that the sub-gradient is equal to the penal-
ized log-likelihood at®®. The additional quadratic term with coefficignis only being included

to ensure the existence of a global maximum. In practice, we can-s€ unless a convergence
problem occurs. In our simulationg= 0 always worked very well.
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In particular, for the approximation &%, choosea; such that

N \

fon = 1( (O1X)+ 3 (Bt~ 6) (B(@")IX): + (B(OM) X)s—2-N-we(©¥)) +
(65

+Y (Bss— 68 (Zp xTX)ss—Z-N-wss(e<k>)>>—
S
; est— st —N[|R*0O|[1

whereW is a matrix with elementsis;(©) = %(@) = Eg(xsX) is the derivative of the partition
function andds is as defined in the pseudo-likelihood section.
For the algorithm, we need an initial parameter estin@f®, which we pick as follows: Let

Z(0) = 1+e9 be the logistic function and l&t~* denote its inverse. Then choose

0 _ 0 ifs#t
Tzt (Rshane) ifs=t

In this case we than haygk= & Sk %s Vkand also

Wy = (N TheaXes) (§ TheaXia) if s#t
) (% ZE:les) ifs=t

and together witly = 0 we then get that

1~
fgo = 51(OX) NI IR +O):

@(0)
and thus just a regular pseudo-likelihood step. The only slight differénthat in this case the
penalty term on the diagonal is twice as large as in the pseudo-likelihood m=senfed above.
However, in practice we recommend not to penalize the diagonal at all, sohtkadifference
vanishes. Therefore, this algorithm is a natural extension of the pdiketibood approach that
starts out by performing a regular pseudo-likelihood calculation and trereeds to converge to
the solution by a series of adjusted pseudo-likelihood steps.

The algorithm for maximizing the penalized log-likelihood is now very similar to the ne-
sented for maximizing the penalized pseudo-likelihood. Assume our ca@séntate 9. Then
approximate the log-likelihood locally b/« and find the maximize®* of .. This is essen-
tially the pseudo-likelihood and the algorithm presented above can easitjustead to accommo-
date the additional terms. Now, using a line search on the line bet@&eand®*, find the next
estimate®@®*1 . This algorithm is guaranteed to converge by the same argument as ti®pseu
likelihood algorithm. The proof that « approximates at ©® to first order can be found in
Appendix B, which is a prerequisite for the convergence proof of therdlgn in Appendix A.

4.1 Speed Improvement

As for the pseudo-likelihood algorithm, we can again save computationsihy the active vari-
ables technique presented above. Here, the savings in time are espejaliyua to a special fea-
ture of the junction tree algorithm that we use to calculate the derivative® gfdtiition function.
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Algorithm 3: Likelihood algorithm using active variables
if ©© not giventhen
| set@® — diaglogit 1(p(@)) wherept” = LN | xs

end

Set k:=0;

Set4 = {(s,t): s>1,0s # 0} as active variables;
repeat

while not converged over variables it do
Calculatew only over variables irf;
Find ©k+1 using local approximation over variablesh
Set k:=k+1;

end

Calculate the whole matriw/;

Setq = {(s,t) :Bst £ O or ‘%‘g‘ > rst};
until 4 did not change

In order to calculate derivatives with respect to non-zero variabldg, ane pass of the junction
tree algorithm is necessary. Howevppasses of the junction tree are needed in order to get the full
matrix of derivativedV. Therefore, depending on the sizemfusing only active variables can be
considerable faster. For details, see Algorithm 3.

4.2 Graphical Lasso for the Discrete Case

In the case of Gaussian Markov networks, the graphical lasso algqiséer-riedman, Hastie, and
Tibshirani, 2008a) is an very efficient method and implementation for solvimp;tpenalized log-
likelihood. In order to leverage this speed, we extended the methodology birtary case treated
in this article. However, the resultant algorithm was not nearly as fastescted. In the Gaussian
case, the algorithm is very fast as the approach to update the parameter@nattie row at a time
allows for a closed form solution and efficient calculations. In the binasg©n the other hand, the
computational bottleneck is not all of the calculation involved in the upda®, diut specifically
by a large margin the evaluations of the partition function itself. Therefonefast algorithm for
solving the penalized log-likelihood exactly has to use as few evaluationg gfattiition function
as possible. The graphical lasso approach is thus not suitable for g base as it takes a lot of
small steps towards the solution.

This observation also explains the improvement in speed of the pseudodit@liased exact
algorithm over the specific methods proposed in Lee, Lee, Abbeel, an200$Hb). Standard
convex optimization procedures often rely on either the first or secorvhtiees of the functions
they seek to optimize. Newton-like procedures that use the secondtieriviien converge in very
few steps, however these cannot be used here as it is prohibitivedynsixp to evaluate the second
derivative of the partition function, even in small examples. Approachesibkjugate gradients of
BFGS as proposed in Lee, Lee, Abbeel, and Ng (2006b) are somimgkatfficient and take more
steps. This is where the advantage of using the pseudo-likelihood ad appcaximation comes
into play. It usually only takes very few steps to converge and is thexdéster than standard
methods.
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5. Simulation Results

In order to compare the performance of the estimation methods for spaggtesgtescribed in this
article as well as Lee, Ganapathi, and Koller (2006a) and Wainwright(@0®6), we use simulated
data and compare the speed as well as the accuracy of these methods.

5.1 Setup

Before simulating the data it is necessary to generate a sparse symmetric@abipst, the di-
agonal is drawn uniformly from the s¢t-0.5,0,0.5}. Then, using the average number of edges
per node, upper-triangular elements®fare drawn uniformly at random to be non-zero. These
non-zero elements are then set to eith€5 or 05, again each uniformly. In order f@ to by
symmetric, the lower triangular matrix is set equal to the upper triangular matrexadtual data is
generated by Gibbs sampling usi®as described above.

With respect to the penalty parameters that we use for the different methedsways leave
the diagonal unpenalized and all off-diagonal elements have the saarmagiarp, that is we set

{o if s=t
st = .
p otherwise

and the penalty term matrix for the pseudo-likelihd®é 2R — diagR) as defined above. For the
Wainwright-methods, the penalty parametepisiith no penalty on the intercept. Although the
log-likelihood functions that are being penalized are somewhat diffaif@atchoice of parameters
makes them perform roughly equivalent, as can be seen in Figure 3wifieer of edges is plotted
against the penalty parameter used and all methods behave very similagvétpim order not to
confound some results by these slight differences of the effects oétradty, all the following plots
are with respect to the number of edges in the graph, not the penalty pardisef.

5.2 Speed Comparison

First, we compare the speed of the four methods forlthp@enalized model. We used an an-
nealing schedule for Lee, Ganapathi, and Koller (2006a) to improveecgence as suggested in
their article. Plots of the speeds of the exact methods can be seen in Figuttthe approxi-
mate methods are shown in Figure 5. Each plot shows the time the algorithndrieectverge
versus the number of edges in the estimated graph. As can be seen,utle-jilselihood based
exact algorithm described above is considerable faster than the gresprbin Lee, Ganapathi, and
Koller (2006a). For the approximate algorithms, we can see thap tbgistic regressions in the
Wainwright et al. (2006) algorithm take roughly the same amount of time asstalp-likelihood
algorithm presented above. This is not surprising due to the similarity of ttimiaption methods
and any difference that can be observed in Figure 5 is mostly due to thdicpaplementations
used. Furthermore, we would like to note that we decided to plot the spe@tsathe number of
edges in the graph instead of the penalty parameter, as the runtime of ththalgsivery closely
related to the actual sparseness of the graph.

Overall, when comparing the computation times for the exact algorithms to thexapate
algorithms, we can see that the approximate methods are orders of magasiedeind do not suffer
from an exponentially increasing computation time for decreasing sparsityeasxact methods.
Therefore, if an exact solution is required, our exact algorithm isepagfe. On the other hand, the
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superior speed of the pseudo-likelihood and Wainwright et al. (20@6)ithm warrants a closer
look at the trade-off with respect to accuracy.

5.3 Accuracy Comparisons

In this subsection we compare the algorithms mentioned above with respectaoctimracy with
which they recover the original model. As both dyrpenalized exact algorithm and the one by Lee,
Ganapathi, and Koller (2006a) find the exact maximizer oLtfipenalized log-likelihood, we only
use our algorithm in the comparison. The other 3 methods we compare to anewkight-min”,
“Wainwright-max” and the pseudo-likelihood.
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Figure 4: Computation time of the exact algorithms versus the number of morelegnents ir©.
Values are averages over 20 simulation runs, along wRlstandard error curves. Also,
p is the number of variables in the modllthe number of observations ahgighis the
average number of neighbors per node in the simulated data. Here opFSeaict refers
to the the exact solution algorithm that uses adjusted pseudo-likelihoodsesEnted in
Section 4.

First we investigate how closely the edges in the estimated graph correspehges in the true
graph. In Figure 6, ROC curves are shown, plotting the false positReréies against true positive
(TP) rates for edge identification, for various problem sizes. Note thigtpartial ROC curves are
shown since our method cannot estimate non-sparse graphs due tongmoloputation times.
Overall, we see that all approximate algorithms match the results of the ekatids@ery closely
and in some of the plots, the curves even lie almost on top of each other.
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Figure 5: Computation time for the approximate algorithms versus the numbemedeano ele-
ments in®. Values are averages over 20 simulation runs, along switfstandard error
curves. Also,p is the number of variables in the modal,the number of observations
andNeighis the average number of neighbors per node in the simulated data.

Apart from the accuracy of edge identification, we also consider oth@stics. The unpenal-
ized log-likelihood is a measure of how well the estimated model fits the obsdatad(higher
values are better). Again, the approximate solutions are all very close &x#ut solution (see
Figure 7) and the differences are always smaller than 2 standard desiatio Figure 8, we plot
the difference of the log-likelihood with respect to the exact solution. Alsthig plot, no clear
"winner” can be identified.

We also use the Kullback-Leibler divergerog| (P||Q), which is a measure of difference be-
tween a true probability distributiol® and an arbitrary other distributio. Here, for the true
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Figure 6: ROC curves: false positive versus true positive rate foe atkntification. Values are
averages over 20 simulation runs.

probability distribution we use the distribution of the binary Markov networkgishe true©-
matrix that was used to generate the simulated data. The distribQtiarour case is the binary
Markov network using the estimat&tmatrix. We can computBg (P||Q) as

Dk (P||Q) = ZIP’ )log ()) W(©o) —W(0) + 3 P(x)tr (xx (©—Op)) =

= W¥(Gg) — W(O) +1tr (Ep(xx" ) (©—Op)) .

If the distributionsP andQ are identical, theDk (P||Q) = 0. In our simulations, the exact solution
has lower KL-divergence than the other methods, however the diffesaare very small. For a plot
of the KL-divergence against the number of edges in the model seeeFgidgain, all approximate
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Figure 7: Log-likelihood of the estimated model vs number of edges in thehdmapdifferent
problem sizes, averaged over 20 simulations.

methods match the exact solution very closely and any differences arevitreh the 2 standard
deviation error band. In Figure 10 the differences of the KL-divecgeof the approximate to the
exact method can be seen. Again, all methods are very close with theopderlthood approach
performing the best in this case.

6. Discussion

When we embarked on this work, our goal was to find a fast method for margptizeL; penal-
ized log-likelihood of binary-valued Markov networks. We succeedatbing this, and found that
the resulting procedure is faster than competing exact methods. Howeter course of this work,
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we also learned something surprising: several approximate methods exiatémuchfaster and
only slightly less accurate than the exact methods. In addition, when a selnsien is required,
the exact methods become infeasible while the approximate methods can stiicbeQus imple-
mentation of the methods of Wainwright et al. (2006) uses the fast cotedilescent procedure
of Friedman, Hastie, and Tibshirani (2008b), a key to its speed. Thelpdikelihood algorithm
also uses similar techniques, which make it very fast as well. We concludihéhd/ainwright and
pseudo-likelihood methods should be seriously considered for compuitatidarkov networks.

In this article, we treated the case of pairwise Markov networks with a biegponse variable.

We think

these methods can also be extended to more general cases. Yétit teghe response

variables, a multinomial instead of a binary response could be used. itioadd this, it would
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Figure 9: Kullback-Leibler divergence of the estimated model vs. numftedges in the graph for
different problem sizes, averaged over 20 simulations.

also be possible to generalize the graph structure by introducing higtier imteraction terms.
Apart from these extensions, an interesting possibility for future workdevalso be to prove the
theoretical results of Wainwright et al. (2006) for the pseudo-likelihoulel. Furthermore, we
believe that both the exact and fast approximate methods can also be appiedlearning of
multilayer generative models, such as restricted Boltzmann machines (ser,2083).

An R language package for fitting sparse graphical models, both by ardcapproximate
methods, will be made available on the authors’ websites.
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Appendix A. Proof of Convergence for Penalized Pseudo-likinood and Penalized
Log-likelihood Algorithms

Lee, Lee, Abbeel, and Ng (2006b) gives a proof of convergeoicarf algorithm that solves dn
constrained problem by quadratic approximation of the objective functitere, we will follow
this proof very closely and make few changes to accommodate that welgnesorg a first order
approximation and are working with the Lagrangian form oflthe€onstrained problem instead of
the standard form.

Assume thag(©) is a strictly convex function with a global minimum that we want to mini-
mize. Furthermore, letg (©) be a first order approximation gfat ©y and assume théfig (©)
is strictly convex, has a global optimum and is jointly continuou$@g,®). Here, by first order
approximation a®g, we mean thaf@0 — g is twice continuously differentiable with derivative 0 at
®o. Assume that our algorithm works as follows:

initialize ©©;
Set k:=0;
while not convergedio
With current estimat®®, define local approximatiofiy . (©) to g;
Find solution®* of f@a()(@);
Perform backtracking line search on the line fr@f to ©* to find @+1);

Set k:i=k+1;
end

Then®® converges to the global minimizer gf®). In order to show this, we first need the
following lemma:

Lemma 1 Let ®g be any point that is not the global optimum. Then there is an open su@get S
and a constant B, such that for everypg in S, every iteration of the algorithm starting a®o
will return a point®; that improves the objective by at leaghK that is, ®1) < g(®o) —Kg, .

Proof First, let fG)o be an approximation tg at ©q with global optimum®;. Then set
0= feo(eo) — feo(el)

and we know thad > 0 as©y is not the global optimum. Now, there existsar 0 such that for
Po € S, :={0©:||©—0Op|[2 < £} the following holds:

19(©0) —g(Po)| <

ool on
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and

(o]

o, (®1) — T, (@) <

where®; is the global minimum offq)o. The existence of this follows from the continuity and
convexity of f andg. Then

0 30
chO(CDl) < feo(@]_) + Z- < f@0<@0) — Z =
30 fo)

=0(0o) — 7 S9(®o) 5.

With step size G< t < 1 in the line search, and using the previous result, it holds that

f, (@0 + (@1~ B0)) < (1 1)1y, (Po) +t ey, (B1) < g(Bo)

For the next step observe that the minimiggr of f¢0 is a continuous function oPg due to the
convexity of f in the second argument and the continuity in both arguments. Theg as a
compact set, there exists a compactlgt with ®1(®Po) € Tg, for all ®o € Sg . Thus, asfg isa
first order approximation of at g, there exists & such that for al® € To,

9(©) < fg,(©) +Cl|O— 3.
Therefore
3
9(®Po +1(®1— o)) < g(Po) —t +C¥||dy — Py} <
< g(CDO)—tg+IZCD2

)

whereD is the diameter ofg . Now sett” = min (1 ) and thus we know that it exists@"

) IC?
such that 5
0(®") < (o) ~t' +12CD2
SettingKg, =t*3 —t*2CD? > 0 now finishes the proof. m

Now, using the lemma the rest of the proof is again very similar as in Lee, Ldmel, and Ng
(2006b) and we only repeat it here for completeness.

Theorem 1 The algorithm converges in a finite number of steps.
Proof Pickd > 0 arbitrary. Let®* the global optimum an@®, the starting point of the algorithm.
Then there exists a compact sétsuch thatg(®©) > g(Qo) for every® ¢ K. DefinePs = {O:

||©— 07| > 8} NK. We will show convergence by showing that the algorithm can only spend a
finite number of steps iRs. For everyo in Ps there exists an open sf. So

P6 g UGGPB%
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As Ps is compact, Heine-Borel guarantees that there is a finit®gestich that

Furthermore, aQj is finite, define
Cs = min Kg.
° Ocs ©

As the lemma guarantees that every step of the algorithm iRgitkeproves the objective by at least
Cs and a global optimum exists by assumption, the algorithm can at most speiitg adimber of
steps inPs. Therefore, the algorithm has to converge in a finite number of steps. [ |

For the penalized pseudo-likelihood algorithm, by definition of the approximéttis evident
that it is a first order approximation. The situation for the penalized log-ligelihalgorithm is a
little more complicated and it will be shown in the next section of the appendix thairttposed
approximation is to first order and therefore satisfies the assumptions jfaibie

Appendix B. First Order Approximation of Log-likelihood

In Section 4, we defined a functiofy to calculate the next estima@**Y. The convergence
proof in Appendix A requires that@(k) is a first order approximation of the objectilf®|X) —

N||R x©||1. Here, we want to show that this is in fact the case. For this, we need vo thiad
fow —1(©]X) +NJ|R x©]|1 is twice continuously differentiable with derivative 0@,
First, insertingf@<k> from Section 4 yields

0 —1(O|X)+N|R*0O||1 =

dgo = T = I
2((@l><> 3 (6= 6) (PO TX)-+ (O )52 N @) 4
0

+5 (Bss— 6%) (Z Pesk(©M) + (XTX)ss—2-N -wss<e(k>)> > -

= Zv(est—eéh ~1(9[X)

which has derivative

od R R R R
S, = 2005t = (B(@)IX)c — (B(O) X)s+ (BOM)IX): + (B(O){ X)s~
—2-N- Wt (O®)) — 4y(Bgt — 8X) — 2(XTX )t +2- N - Wt ()
for s#t and
Zad@( = Psk(©@) + ) Psk(© XTX) 2'N‘Wss(e(k))—
365 ss= 2 Pal(®) 45 P

— 4y(Bss— és’>— 2(XTX)ss+2- N - Weg©)

for s=t. These are clearly continuous and differentiable. Furthermore, ing&tia o® yields
that the derivative is 0. Thereforé®(k) is a first order approximation and our proof holds.
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