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Abstract
We give an algorithm for the on-line learning of permutations. The algorithm maintains its un-
certainty about the target permutation as a doubly stochastic weight matrix, and makes predictions
using an efficient method for decomposing the weight matrix into a convex combination of per-
mutations. The weight matrix is updated by multiplying the current matrix entries by exponential
factors, and an iterative procedure is needed to restore double stochasticity. Even though the re-
sult of this procedure does not have a closed form, a new analysis approach allows us to prove an
optimal (up to small constant factors) bound on the regret ofour algorithm. This regret bound is sig-
nificantly better than that of either Kalai and Vempala’s more efficient Follow the Perturbed Leader
algorithm or the computationally expensive method of explicitly representing each permutation as
an expert.
Keywords: permutation, ranking, on-line learning, Hedge algorithm,doubly stochastic matrix,
relative entropy projection, Sinkhorn balancing

1. Introduction

Finding a good permutation is a key aspect of many problems such as the ranking of search results
or matching workers to tasks. In this paper we present an efficient and effective on-line algorithm
for learning permutations in a model related to the on-line allocation model of learning with experts
(Freund and Schapire, 1997). In each trial, the algorithm probabilisticallychooses a permutation
and then incurs a linear loss based on how appropriate the permutation was for that trial. Theregret
is the total expected loss of the algorithm on the whole sequence of trials minus the total loss of the
best permutation chosen in hindsight for the whole sequence, and the goal is to find algorithms that
have provably small worst-case regret.

For example, one could consider a commuter airline which ownsn airplanes of various sizes
and fliesn routes.1 Each day the airline must match airplanes to routes. If too small an airplane
is assigned to a route then the airline will loose revenue and reputation due to unserved potential
passengers. On the other hand, if too large an airplane is used on a long route then the airline
could have larger than necessary fuel costs. If the number of passengers wanting each flight were
known ahead of time, then choosing an assignment is a weighted matching problem. In the on-line
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allocation model, the airline first chooses a distribution over possible assignments of airplanes to
routes and then randomly selects an assignment from the distribution. Theregretof the airline is the
earnings of the single best assignment for the whole sequence of passenger requests minus the total
expected earnings of the on-line assignments. When airplanes and routesare each numbered from 1
to n, then an assignment is equivalent to selecting a permutation. The randomness helps protect the
on-line algorithm from adversaries and allows one to prove good boundson the algorithm’s regret
for arbitrary sequences of requests.

Since there aren! permutations onn elements, it is infeasible to simply treat each permutation
as an expert and apply one of the expert algorithms that uses exponential weights. Previous work
has exploited the combinatorial structure of other large sets of experts to create efficient algorithms
(see Helmbold and Schapire, 1997; Takimoto and Warmuth, 2003; Warmuth and Kuzmin, 2008, for
examples). Our solution is to make a simplifying assumption on the loss function which allows
the new algorithm, called PermELearn, to maintain a sufficient amount of information about the
distribution overn! permutations while using onlyn2 weights.

We represent a permutation ofn elements as ann×n permutation matrixΠ whereΠi, j = 1 if
the permutation maps elementi to position j andΠi, j = 0 otherwise. As the algorithm randomly
selects a permutation̂Π at the beginning of a trial, an adversary simultaneously selects an arbitrary
loss matrix L∈ [0,1]n×n which specifies the loss of all permutations for the trial. Each entryLi, j of
the loss matrix gives the loss for mapping elementi to j, and the loss of any whole permutation is
the sum of the losses of the permutation’s mappings, that is, the loss of permutation Π is ∑i Li,Π(i) =

∑i, j Πi, jLi, j . Note that the per-trial expected losses can be as large asn, as opposed to the common
assumption for the expert setting that the losses are bounded in[0,1]. In Section 3 we show how a
variety of intuitive loss motifs can be expressed in this matrix form.

This assumption that the loss has a linear matrix form ensures the expected loss of the algorithm
can be expressed as∑i, j Wi, jLi, j , whereW = E(Π̂). This expectationW is ann×n weight matrix
which isdoubly stochastic, that is, it has non-negative entries and the property that every row and
column sums to 1. The algorithm’s uncertainty about which permutation is the target is summarized
by W; each weightWi, j is the probability that the algorithm predicts with a permutation mapping
elementi to position j. It is worth emphasizing that theW matrix is only asummaryof the distribu-
tion over permutations used by any algorithm (it doesn’t indicate which permutations have non-zero
probability, for example). However, this summary issufficientto determine the algorithm’s expected
loss when the losses of permutations have the assumed loss matrix form.

Our PermELearn algorithm stores the weight matrixW and must convertW into an efficiently
sampled distribution over permutations in order to make predictions. By Birkhoff’s Theorem, ev-
ery doubly stochastic matrix can be expressed as the convex combination ofat mostn2− 2n+ 2
permutations (see, e.g., Bhatia, 1997). In Appendix A we show that a greedy matching-based al-
gorithm efficiently decomposes any doubly stochastic matrix into a convex combination of at most
n2−2n+2 permutations. Although the efficacy of this algorithm is implied by standard dimension-
ality arguments, we give a new combinatorial proof that provides independent insight as to why the
algorithm finds a convex combination matching Birkhoff’s bound. Our algorithm for learning per-
mutations predicts with a random̂Π sampled from the convex combination of permutations created
by decomposing weight matrixW. It has been applied recently for pricing combinatorial markets
when the outcomes are permutations of objects (Chen et al., 2008).

The PermELearn algorithm updates the entries of its weight matrix using exponential factors
commonly used for updating the weights of experts in on-line learning algorithms(Littlestone and
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Warmuth, 1994; Vovk, 1990; Freund and Schapire, 1997): each entry Wi, j is multiplied by a factor
e−ηLi, j . Hereη is a positive learning rate that controls the “strength” of the update (Whenη = 0,
than all the factors are one and the update is vacuous). After this update,the weight matrix no longer
has the doubly stochastic property, and the weight matrix must be projected back into the space of
doubly stochastic matrices (called “Sinkhorn balancing”, see Section 4) before the next prediction
can be made.

In Theorem 4 we bound the expected loss of PermELearn over any sequence of trials by

nlnn+ηLbest
1−e−η , (1)

wheren is the number of elements being permuted,η is the learning rate, andLbestis the loss of
the best permutation on the entire sequence. If an upper boundLest≥ Lbestis known, thenη can
be tuned (as in Freund and Schapire, 1997) and the expected loss bound becomes

Lbest+
√

2Lestnlnn+nlnn, (2)

giving a bound of
√

2Lestnlnn+nlnn on the worst case expected regret of the tuned PermELearn
algorithm. We also prove a matching lower bound (Theorem 6) ofΩ(

√
Lbestnlnn) for the expected

regret of any algorithm solving our permutation learning problem.
A simpler and more efficient algorithm than PermELearn maintains the sum of the loss matrices

on the the previous trials. Each trial it adds random perturbations to the cumulative loss matrix and
then predicts with the permutation having minimum perturbed loss. This “Follow the Perturbed
Leader” algorithm (Kalai and Vempala, 2005) has good regret boundsfor many on-line learning
settings. However, the regret bound we can obtain for it in the permutation setting is about a factor
of n worse than the bound for PermELearn and the lower bound.

Although computationally expensive, one can also consider running the Hedge algorithm while
explicitly representing each of then! permutations as an expert. IfT is the sum of the loss matrices
over the past trials andF is then× n matrix with entriesFi, j = e−ηTi, j , then the weight of each
permutation expertΠ is proportional to the product∏i Fi,Π(i) and the normalization constant is
the permanent of the matrixF . Calculating the permanent is a known #P-complete problem and
sampling from this distribution over permutations is very inefficient (Jerrum et al., 2004). Moreover
since the loss range of a permutation is[0,n], the standard loss bound for the algorithm that uses
one expert per permutation must be scaled up by a factor ofn, becoming

Lbest+n

√
2
Lest

n
ln(n!)+nln(n!) ≈ Lbest+

√
2Lestn2 lnn+n2 lnn.

This expected loss bound is similar to our expected loss bound for PermELearn in Equation (2), ex-
cept that thenlnn terms are replaced byn2 lnn. Our method based on Sinkhorn balancing bypasses
the estimation of permanents and somehow PermELearn’s implicit representationand prediction
method exploit the structure of permutations and lets us obtain the improved bound. We also give a
matching lower bound that shows PermELearn has the optimum regret bound(up to a small constant
factor). It is an interesting open question whether the structure of permutations can be exploited to
prove bounds like (2) for the Hedge algorithm with one expert per permutation.

PermELearn’s weight updates belong to the Exponentiated Gradient family of updates (Kivinen
and Warmuth, 1997) since the componentsLi, j of the loss matrix that appear in the exponential
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factor are the derivatives of our linear loss with respect to the weightsWi, j . This family of up-
dates usually maintains a probability vector as its weight vector. In that case the normalization of
the weight vector is straightforward and is folded directly into the update formula. Our new algo-
rithm PermELearn for learning permutations maintains a doubly stochastic matrix with n2 weights.
The normalization alternately normalizes the rows and columns of the matrix until convergence
(Sinkhorn balancing). This may require an unbounded number of steps and the resulting matrix
does not have a closed form. Despite this fact, we are able to prove boundsfor our algorithm.

We first show that our update minimizes a tradeoff between the loss and a relative entropy
between doubly stochastic matrices. This relative entropy becomes our measure of progress in the
analysis. Luckily, the un-normalized multiplicative update already makes enough progress (towards
the best permutation) to achieve the loss bound quoted above. Finally, we interpret the iterations
of Sinkhorn balancing as Bregman projections with respect to the same relative entropy and show
using the properties of Bregman projections that these projections can onlyincrease the progress
and thus don’t hurt the analysis (Herbster and Warmuth, 2001).

Our new insight of splitting the update into an un-normalized step followed by a normalization
step also leads to a streamlined proof of the loss bound for the Hedge algorithm in the standard
expert setting that is interesting in its own right. Since the loss in the allocation setting is linear, the
bounds can be proven in many different ways, including potential basedmethods (see, e.g., Kivinen
and Warmuth, 1999; Gordon, 2006; Cesa-Bianchi and Lugosi, 2006). For the sake of completeness
we reprove our main loss bound for PermELearn using potential based methods in Appendix B. We
show how potential based proof methods can be extended to handle linear equality constraints that
don’t have a solution in closed form, paralleling a related extension to linearinequality constraints
in Kuzmin and Warmuth (2007). In this appendix we also discuss the relationship between the
projection and potential based proof methods. In particular, we show howthe Bregman projection
step corresponds to plugging in suboptimal dual variables into the potential.

The remainder of the paper is organized as follows. We introduce our notation in the next
section. Section 3 presents the permutation learning model and gives several intuitive examples of
appropriate loss motifs. Section 4 gives the PermELearn algorithm and discusses its computational
requirements. One part of the algorithm is to decompose the current doublystochastic matrix into
a small convex combination of permutations using a greedy algorithm. The bound on the number
of permutations needed to decompose the weight matrix is deferred to Appendix A. We then bound
PermELearn’s regret in Section 5 in a two-step analysis that uses a relative entropy as a measure
of progress. To exemplify the new techniques, we also analyze the basic Hedge algorithm with the
same methodology. The regret bounds for Hedge and PermELearn are re-proven in Appendix B
using potential based methods. In Section 6, we apply the “Follow the Perturbed Leader” algorithm
to learning permutations and show that the resulting regret bounds are notas good. In Section 7
we prove a lower bound on the regret when learning permutations that is within a small constant
factor of our regret bound on the tuned PermELearn algorithm. The concluding section describes
extensions and directions for further work.

2. Notation

All matrices will ben×n matrices. WhenA is a matrix,Ai, j denotes the entry ofA in row i, and
column j. We useA•B to denote the dot product between matricesA andB, that is,∑i, j Ai, jBi, j . We
use single superscripts (e.g.,Ak) to identify matrices/permutations from a sequence.
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Permutations onn elements are frequently represented in two ways: as a bijective mapping of
the elements{1, . . . ,n} into the positions{1, . . . ,n} or as a permutation matrix which is ann×n
binary matrix with exactly one “1” in each row and each column. We use the notation Π (andΠ̂) to
represent a permutation in either format, using the context to indicate the appropriate representation.
Thus, for eachi ∈ {1, . . . ,n}, we useΠ(i) to denote the position that theith element is mapped to
by permutationΠ, and matrix elementΠi, j = 1 if Π(i) = j and 0 otherwise.

If L is a matrix withn rows then the productΠL permutes the rows ofL:

Π =




0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0


 L =




11 12 13 14
21 22 23 24
31 32 33 34
41 42 43 44


 ΠL =




21 22 23 24
41 42 43 44
31 32 33 34
11 12 13 14


 .

perm.(2,4,3,1) as matrix an arbitrary matrix permuting the rows

Convex combinations of permutations createdoubly stochasticor balancedmatrices: non-
negative matrices whosen rows andn columns each sum to one. Our algorithm maintains its
uncertainty about which permutation is best as a doubly stochastic weight matrix W and needs to
randomly select a permutation from some distribution whose expectation isW. By Birkhoff’s The-
orem (see, e.g., Bhatia, 1997), for every doubly stochastic matrixW there is a decomposition into
a convex combination of at mostn2−2n+ 2 permutation matrices. We show in Appendix A how
a decomposition of this size can be found effectively. This decomposition gives a distribution over
permutations whose expectation isW that now can be effectively sampled because its support is at
mostn2−2n+2 permutations.

3. On-line Protocol

We are interested in learning permutations in a model related to the on-line allocation model of
learning with experts (Freund and Schapire, 1997). In that model thereareN experts and at the
beginning of each trial the algorithm allocates a probability distributionw over the experts. The
algorithm picks experti with probabilitywi and then receives a loss vectorℓ ∈ [0,1]N. Each expert
i incurs lossℓi and the expected loss of the algorithm isw · ℓ. Finally, the algorithm updates its
distributionw for the next trial.

In case of permutations we could have one expert per permutation and allocate a distribution
over then! permutations. Explicitly tracking this distribution is computationally expensive, even
for moderaten. As discussed in the introduction, we assume that the losses in each trial canbe
specified by a loss matrixL ∈ [0,1]n×n where the loss of each permutationΠ has the linear form
∑i Li,Π(i) = Π •L. If the algorithm’s prediction̂Π is chosen probabilistically in each trial then the

algorithm’s expected loss isE[Π̂ • L] = W • L, whereW = E[Π̂]. This expected predictionW is
an n× n doubly stochastic matrix and algorithms for learning permutations under the linear loss
assumption can be viewed as implicitly maintaining such a doubly stochastic weight matrix.

More precisely, the on-line algorithm follows the following protocol in each trial:

• The learner (probabilistically) chooses a permutationΠ̂, and letW = E(Π̂).

• Nature simultaneously chooses a loss matrixL ∈ [0,1]n×n for the trial.

• At the end of the trial, the algorithm is givenL. The loss of̂Π is Π̂•L and the expected loss
of the algorithm isW •L.
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• Finally, the algorithm updates its distribution over permutations for the next trial,implicitly
updating matrixW.

Although our algorithm can handle arbitrary sequences of loss matricesL ∈ [0,1]n×n, nature
could be significantly more restricted. Many ranking applications have an associated loss motifM
and nature is constrained to choose (row) permutations ofM as its loss matrixL. In effect, at each
trial nature chooses a “correct” permutationΠ and uses the loss matrixL = ΠM. Note that the
permutation left-multiplies the loss motif, and thus permutes the rows ofM. If nature chooses the
identity permutation then the loss matrixL is the motifM itself. WhenM is known to the algorithm,
it suffices to give the algorithm only the permutationΠ at the end of the trial, rather than the loss
matrixL itself. Figure 1 gives examples of loss motifs.

The last loss in Figure 1 is related to a competitive List Update Problem where an algorithm
services requests to a list ofn items. In the List Update Problem the cost of a request is the requested
item’s current position in the list. After each request, the requested item can be moved forward in
the list for free, and additional rearrangement can be done at a cost of one per transposition. The
goal is for the algorithm to be cost-competitive with the best static ordering of the elements in
hindsight. Note that the transposition cost for additional list rearrangement is not represented in
the permutation loss motif. Blum et al. (2003) give very efficient algorithms for the List Update
Problem that do not do additional rearranging of the list (and thus do notincur the cost neglect by
the loss motif). In our notation, their bound has the same form as ours (1) but with thenlnn factors
replaced byO(n). However, our lower bound (see Section 7) shows that thenlnn factors in (2) are
necessary in the general permutation setting.

Note that many compositions of loss motifs are possible. For example, given twomotifs with
their associated losses, any convex combination of the motifs creates a new motif for the same
convex combination of the associated losses. Other component-wise combinations of two motifs
(such as product or max) can also produce interesting loss motifs, but thecombination usually
cannot be distributed across the matrix dot-product calculation, and so cannot be expressed as a
simple linear function of the original losses.

4. PermELearn Algorithm

Our permutation learning algorithm uses exponenential weights and we call it PermELearn. It
maintains ann×n doubly stochastic weight matrixW as its main data structure, whereWi, j is the
probability that PermELearn predicts with a permutation mapping elementi to position j. In the
absence of prior information it is natural to start with uniform weights, that is, the matrix with1

n in
each entry.

In each trial PermELearn does two things:

1. Choose a permutation̂Π from some distribution such thatE[Π̂] = W.

2. Create a new doubly stochastic matrixW̃ for use in the next trial based on the current weight
matrixW and loss matrixL.

1710



LEARNING PERMUTATIONS

lossL(Π̂,Π) motif M

the number of elementsi whereΠ̂(i) 6= Π




0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0




1
n−1 ∑n

i=1 |Π̂(i)−Π(i)|, how far the elements are
from their “correct” positions (the division byn−
1 ensures that the entries ofM are in[0,1].)

1
3




0 1 2 3

1 0 1 2

2 1 0 1

3 2 1 0




1
n−1 ∑n

i=1
|Π̂(i)−Π(i)|

Π(i) , a position weighted version of
the above emphasizing the early positions inΠ

1
3




0 1 2 3

1/2 0 1/2 1

2/3 1/3 0 1/3

3/4 1/2 1/4 0




the number of elements mapped to the first half
by Π but the second half bŷΠ, or vice versa




0 0 1 1

0 0 1 1

1 1 0 0

1 1 0 0




the number of elements mapped to the first two
positions byΠ that fail to appear in the top three
position ofΠ̂




0 0 0 1 1

0 0 0 1 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0




the number of links traversed to find the first ele-
ment ofΠ in a list ordered bŷΠ

1
3




0 1 2 3

0 0 0 0

0 0 0 0

0 0 0 0




Figure 1: Loss motifs

Choosing a permutation is done by Algorithm 1. The algorithm greedily decomposesW into a
convex combination of at mostn2−2n+2 permutations (see Theorem 7), and then randomly selects
one of these permutations for the prediction.2

Our decomposition algorithm uses a Temporary matrixA initialized to the weight matrixW.
Each iteration of Algorithm 1 finds a permutationΠ where eachAi,Π(i) > 0. This can be done by
finding a perfect matching on then×n bipartite graph containing the edgei, j wheneverAi, j > 0.
We shall soon see that each matrixA is a constant times a doubly stochastic matrix, so the existence
of a suitable permutationΠ follows from Birkhoff’s Theorem. Given such a permutationΠ, the
algorithm updatesA to A−αΠ whereα = mini Ai,Π(i). The updated matrixA has non-negative
entries and has strictly more zeros than the originalA. Since the update decreases each row and

2. The decomposition is usually not unique and the implementation may have abias as to exactly which convex combi-
nation is chosen.
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Algorithm 1 PermELearn: Selecting a permutation
Require: a doubly stochasticn×n matrixW

A := W; q = 0;
repeat

q := q+1;
Find permutationΠq such thatAi,Πq(i) is positive for eachi ∈ {1, . . . ,n}
αq := mini Ai,Πq(i)

A := A−αqΠq

until All entries ofA are zero {at end of loopW = ∑q
k=1 αkΠk}

Randomly select and return âΠ ∈ {Π1, . . . ,Πq} using probabilitiesα1, . . . ,αq.

Algorithm 2 PermELearn: Weight Matrix Update
Require: learning rateη, loss matrixL, and doubly stochastic weight matrixW

CreateW′ where eachW′
i, j = Wi, je

−ηLi, j (3)

Create doubly stochastic̃W by re-balancing the rows and columns ofW′ (Sinkhorn balancing)
and updateW to W̃.

column sum byα and the original matrixW was doubly stochastic, each matrixA will have rows
and columns that sum to the same amount. In other words, each matrixA created during Algorithm 1
is a constant times a doubly stochastic matrix, and thus (by Birkhoff’s Theorem) is a constant times
a convex combination of permutations.

After at mostn2 − n iterations the algorithm arrives at a matrixA having exactlyn non-zero
entries, so thisA is a constant times a permutation matrix. Therefore, Algorithm 1 decomposes the
original doubly stochastic matrix into the convex combination of (at most)n2−n+ 1 permutation
matrices. The more refined arguments in Appendix A shows that the Algorithm 1never uses more
thann2−2n+2 permutations, matching the bound given by Birkhoff’s Theorem.

Several improvements are possible. In particular, we need not compute each perfect matching
from scratch. If onlyz entries ofA are zeroed by a permutation, then that permutation is still a
matching of sizen−z in the graph for the updated matrix. Thus we need to find onlyz augmenting
paths to complete the perfect matching. The entire process thus requires finding O(n2) augmenting
paths at a cost ofO(n2) each, for a total cost ofO(n4) to decompose weight matrixW into a convex
combination of permutations.

4.1 Updating the Weights

In the second step, Algorithm 2 updates the weight matrix by multiplying eachWi, j entry by the
factore−ηLi, j . These factors destroy the row and column normalization, so the matrix must bere-
balanced to restore the doubly-stochastic property. There is no closed form for the normalization
step. The standard iterative re-balancing method for non-negative matrices is calledSinkhorn bal-
ancing. This method first normalizes each row of the matrix to sum to one, and then normalizes the
columns. Since normalizing the columns typically destroys the row normalization, the process must
be iterated until convergence (Sinkhorn, 1964).
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(
1
2

1
2

1
2 1

)
Sinkhorn balancing

=⇒




√
2

1+
√

2
1

1+
√

2

1
1+

√
2

√
2

1+
√

2




Figure 2: Example where Sinkhorn balancing requires infinitely many steps.

Normalizing the rows corresponds to pre-multiplying by a diagonal matrix. Theproduct of these
diagonal matrices thus represents the combined effect of the multiple row normalization steps. Sim-
ilarly, the combined effect of the column normalization steps can be represented by post-multiplying
the matrix by a diagonal matrix. Therefore we get the well known fact that Sinkhorn balancing a
matrixA results in a doubly stochastic matrixRACwhereRandC are diagonal matrices. Each entry
Ri,i is the positive multiplier applied to rowi, and each entryCj, j is the positive multiplier of column
j needed to convertA into a doubly stochastic matrix.

In Figure 2 we give a rational matrix that balances to an irrational matrix. Since each row and
column balancing step creates rationals, Sinkhorn balancing produces irrationals only in the limit
(after infinitely many steps). Multiplying a weight matrix from the left and/or right by non-negative
diagonal matrices (e.g., row or column normalization) preserves the ratio of product weights be-
tween permutations. That is ifA′ = RAC, then for any two permutationsΠ1 andΠ2,

∏i A
′
i,Π1(i)

∏i A
′
i,Π2(i)

=
∏i Ai,Π1(i)Ri,iCΠ1(i),Π1(i)

∏i Ai,Π2(i)Ri,iCΠ2(i),Π2(i)
=

∏i Ai,Π1(i)

∏i Ai,Π2(i)
.

Therefore
(

1/2 1/2
1/2 1

)
must balance to a doubly stochastic matrix

(
a 1−a

1−a a

)
such that the ratio of the

product weight between the two permutations(1,2) and(2,1) is preserved. This means1/2
1/4 = a2

(1−a)2

and thusa =
√

2
1+

√
2
.

This example leads to another important observation: PermELearn’s predictions are different
than Hedge’s when each permutation is treated as an expert. If each permutation is explicitly repre-
sented as an expert, then the Hedge algorithm predicts permutationΠ with probability proportional
to the product weight,∏i e

−η∑t Lt
i,Π(i) . However, algorithm PermELearn predicts differently. With

the weight matrix in Figure 4.1, Hedge puts probability2
3 on permutation(1,2) and probability1

3

on permutation(2,1) while PermELearn puts probability
√

2
1+

√
2
≈ 0.59 on permutation(1,2) and

probability
√

1
1+

√
2
≈ 0.41 on permutation (2,1).

There has been much written on the balancing of matrices, and we briefly describe only a few
of the results here. Sinkhorn showed that this procedure converges and that theRACbalancing of
any matrixA into a doubly stochastic matrix is unique (up to canceling multiples ofR andC) if it
exists3 (Sinkhorn, 1964).

A number of authors consider balancing a matrixA so that the row and column sums are 1± ε.
Franklin and Lorenz (1989) show thatO(length(A)/ε) Sinkhorn iterations suffice, where length(A)
is the bit-length of matrixA’s binary representation. Kalantari and Khachiyan (1996) show that

3. Some non-negative matrices, like



1 1 0
0 1 0
0 1 1


 , cannot be converted into doubly stochastic matrices because of their

pattern of zeros. The weight matrices we deal with have strictly positive entries, and thus can always be made doubly
stochastic with anRACbalancing.
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O(n4 ln n
ε ln 1

minAi, j
) operations suffice using an interior point method. Linial et al. (2000) give a

preprocessing step after which onlyO((n/ε)2) Sinkhorn iterations suffice. They also present a
strongly polynomial time iterative procedure requiringÕ(n7 log(1/ε)) iterations. Balakrishnan et al.
(2004) give an interior point method with complexityO(n6 log(n/ε)). Finally, Fürer (2004) shows
that if the row and column sums ofA are 1± ε then every matrix entry changes by at most±nε
whenA is balanced to a doubly stochastic matrix.

4.2 Dealing with Approximate Balancing

With slight modifications, Algorithm PermELearn can handle the situation where itsweight matrix
is imperfectly balanced (and thus not quite doubly stochastic). As before,letW be the fully balanced
doubly stochastic weight matrix, but we now assume that only an approximatelybalancedŴ is
available to predict from. In particular, we assume that each row and columnof Ŵ sum to 1± ε for
someε < 1

3. Let s≥ 1− ε be the smallest row or column sum in̂W.

We modify Algorithm 1 in two ways. First,A is initialized to 1
sŴ rather thanW. This ensures

every row and column in the initialA sums to at least one, to at most 1+ 3ε, and at least one row
or column sums to exactly 1. Second, the loop exits as soon asA has an all-zero row or column.
Since the smallest row or column sum starts at 1, is decreased byαk each iterationk, and ends at
zero, we have that∑q

k=1 αk = 1 and the modified Algorithm 1 still outputs a convex combination of
permutationsC = ∑q

k=1 αkΠk. Furthermore, each entryCi, j ≤ 1
sŴi, j . We now bound the additional

loss of this modified algorithm.

Lemma 1 If the weight matrixŴ is approximately balanced so each row and column sum is in1±ε
(for ε ≤ 1

3) then the modified Algorithm 1 has an expected loss C•L at most3n3ε greater than the
expected loss W•L of the original algorithm that uses the completely balanced doubly stochastic
matrix W.

Proof Let s be the smallest row or column sum in̂W. Since each row and column sum of1
sŴ

lies in [1,1+3ε], each entry of1sŴ is close to the corresponding entry of the fully balancedW. In
particular each1

sŴi, j ≤ Wi, j + 3nε (Fürer, 2004). This allows us to bound the expected loss when
predicting with the convex combinationC in terms of the expected loss using a decomposition of
the perfectly balancedW:

C•L ≤ 1
s
Ŵ •L

= ∑
i, j

Ŵi, j

s
Li, j

≤ ∑
i, j

(Wi, j +3nε)Li, j

≤ W •L+3n3ε.

Therefore the extra loss incurred by using aε-approximately balanced weight matrix at a particular
trial is at most 3n3ε, as desired.
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If in a sequence ofT trials the matriceŝW areε = 1/(3Tn3) balanced (so that each row and
column sum is 1± 1/(3Tn3)) then Lemma 1 implies that the total additional expected loss for
using approximate balancing is at most 1. The algorithm of Balakrishnan et al. (2004)ε-balances a
matrix inO(n6 log(n/ε)) time (note that this dominates the time for the loss update and constructing
the convex combination). This balancing algorithm withε = 1/(3Tn3) together with the modified
prediction algorithm give a method requiringO(Tn6 log(Tn)) total time over theT trials and having
a bound of

√
2Lestnlnn+nlnn+1 on the worst-case regret.

If the number of trialsT is not known in advance then settingε as a function oft can be helpful.
A natural choice isεt = 1/(3t2n3). In this case the total extra regret for not having perfect balancing
is bounded by∑T

t=11/t2 ≤ 5/3 and the total computation time over theT trials is still bounded by
O(Tn6 log(Tn)).

One might be concerned about the effects of approximate balancing propagating between trials.
However this is not an issue. In the following section we show that the loss updates and balancing
can be arbitrarily interleaved. Therefore the modified algorithm can either keep a cumulative loss
matrix L≤t = ∑t

i=1Li and create its next̂W by (approximately) balancing the matrix with entries
1
ne−ηL≤t

i, j , or apply the multiplicative updates to the previous approximately balancedŴ.

5. Bounds for PermELearn

Our analysis of PermELearn follows the entropy-based analysis of the exponentiated gradient family
of algorithms (Kivinen and Warmuth, 1997). This style of analysis first shows a per-trial progress
bound using relative entropy to a comparator as a measure of progress,and then sums this invariant
over the trials to bound the expected total loss of the algorithm. We also show that PermELearn’s
weight update belongs to the exponentiated gradient family of updates (Kivinen and Warmuth, 1997)
since it is the solution to a minimization problem that trades of the loss (in this case a linear loss)
against a relative entropy regularization.

Recall that the expected loss of PermELearn on a trial is a linear function ofits weight matrix
W. Therefore the gradient of the loss is independent of the current value of W. This property of
the loss greatly simplifies the analysis. Our analysis for this setting provides a good foundation for
learning permutation matrices and lays the groundwork for the future study of other permutation
loss functions.

We start our analysis with an attempt to mimic the standard analysis (Kivinen and Warmuth,
1997) for the exponentiated gradient family updates which multiply by exponential factors and re-
normalize. The per-trial invariant used to analyze the exponentiated gradient family bounds the
decrease in relative entropy from any (normalized) vectoru to the algorithm’s weight vector by a
linear combination of the algorithm’s loss and the loss ofu on the trial. In our case the weight
vectors are matrices and we use the following (un-normalized) relative entropy between matricesA
andB with non-negative entries:

∆(A,B) = ∑
i, j

Ai, j ln
Ai, j

Bi, j
+Bi, j −Ai, j .

Note that this is just the sum of the relative entropies between the corresponding rows (or equiva-
lently, between the corresponding columns):

∆(A,B) = ∑
i

∆(Ai,⋆,Bi,⋆) = ∑
j

∆(A⋆, j ,B⋆, j)
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(hereAi,⋆ is theith row ofA andA⋆, j is its jth column).
Unfortunately, the lack of a closed form for the matrix balancing procedure makes it difficult

to prove bounds on the loss of the algorithm. Our solution is to break PermELearn’s update (Algo-
rithm 2) into two steps, and use only the progress made to the intermediate un-balanced matrix in
our per-trial bound (8). After showing that balancing to a doubly stochastic matrix only increases
the progress, we can sum the per-trial bound to obtain our main theorem.

5.1 A Dead End

In each trial, PermELearn multiplies each entry of its weight matrix by an exponential factor and
then uses one additional factor per row and column to make the matrix doubly stochastic (Algo-
rithm 2 described in Section 4.1):

W̃i, j := r ic jWi, je
−ηLi, j (4)

where ther i andc j factors are chosen so that all rows and columns of the matrixW̃ sum to one.
We now show that PermELearn’s update (4) gives the matrixA solving the following minimiza-

tion problem:

argmin
∀i : ∑ j Ai, j = 1
∀ j : ∑i Ai, j = 1

(∆(A,W)+η (A•L)) . (5)

Since the linear constraints are feasible and the divergence is strictly convex, there always is a
unique solution, even though the solution does not have a closed form.

Lemma 2 PermELearn’s updated weight matrix̃W (4) is the solution of(5).

Proof We form a Lagrangian for the optimization problem:

l(A,ρ,γ) = ∆(A,W)+η (A•L)+∑
i

ρi(∑
j

Ai, j −1)+∑
j

γ j(∑
i

Ai, j −1).

Setting the derivative with respect toAi, j to 0 yieldsAi, j = Wi, je
−ηLi, j e−ρi e−γ j . By enforcing the

row and column sum constraints we see that the factorsr i = e−ρi andc j = e−γ j function as row and
column normalizers, respectively.

We now examine the progress∆(U,W)−∆(U,W̃) towards an arbitrary stochastic matrixU .
Using Equation (4) and noting that all three matrices are doubly stochastic (so their entries sum to
n), we see that

∆(U,W)−∆(U,W̃) = −ηU •L+∑
i

ln r i +∑
j

lnc j .

Making this a useful invariant requires lower bounding the sums on the rhsby a constant times
W •L, the loss of the algorithm. Unfortunately we are stuck because ther i andc j normalization
factors don’t even have a closed form.
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5.2 Successful Analysis

Our successful analysis splits the update (4) into two steps:

W′
i, j := Wi, je

−ηLi, j and W̃i, j := r ic jW
′
i, j , (6)

where (as before)r i andc j are chosen so that each row and column of the matrixW̃ sum to one.
Using the Lagrangian (as in the proof of Lemma 2), it is easy to see that theseW′ andW̃ matrices
solve the following minimization problems:

W′ = argmin
A

(∆(A,W)+η (A•L)) and W̃ := argmin
∀i : ∑ j Ai, j = 1
∀ j : ∑i Ai, j = 1

∆(A,W′). (7)

The second problem shows that the doubly stochastic matrixW̃ is the projection ofW′ onto to the
linear row and column sum constraints. The strict convexity of the relative entropy between non-
negative matrices and the feasibility of the linear constraints ensure that the solutions for both steps
are unique.

We now lower bound the progress∆(U,W)−∆(U,W′) in the following lemma to get our per-
trial invariant.

Lemma 3 For anyη > 0, any doubly stochastic matrices U and W and any trial with loss matrix
L ∈ [0,1]n×n

∆(U,W)−∆(U,W′) ≥ (1−e−η)(W •L)−η(U •L),

where W′ is the unbalanced intermediate matrix(6) constructed by PermELearn from W.

Proof The proof manipulates the difference of relative entropies and uses the inequalitye−ηx ≤
1− (1−e−η)x, which holds for anyη and anyx∈ [0,1]:

∆(U,W)−∆(U,W′) = ∑
i, j

(
Ui, j ln

W′
i, j

Wi, j
+Wi, j −W′

i, j

)

= ∑
i, j

(
Ui, j ln(e−ηLi, j )+Wi, j −Wi, je

−ηLi, j
)

≥ ∑
i, j

(
−ηLi, jUi, j +Wi, j −Wi, j(1− (1−e−η)Li, j)

)

= −η(U •L)+(1−e−η)(W •L).

Relative entropy is a Bregman divergence, so the Generalized Pythagorean Theorem (Bregman,
1967) applies. Specialized to our setting, this theorem states that ifS is a closed convex set contain-
ing some matrixU with non-negative entries,W′ is any matrix with strictly positive entries, and̃W
is the relative entropy projection ofW′ ontoS then

∆(U,W′) ≥ ∆(U,W̃)+∆(W̃,W′).
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Furthermore, this holds with equality whenS is affine, which is the case here sinceS is the set
of matrices whose rows and columns each sum to 1. Rearranging and notingthat ∆(A,B) is non-
negative yields Corollary 3 of Herbster and Warmuth (2001), which is the inequality we need:

∆(U,W′)−∆(U,W̃) = ∆(W̃,W′) ≥ 0.

Combining this with the inequality of Lemma 3 gives the critical per-trial invariant:

∆(U,W)−∆(U,W̃) ≥ (1−e−η)(W •L)−η(U •L). (8)

We now introduce some notation and bound the expected total loss by summing theabove
inequality over a sequence of trials. When considering a sequence of trials, Lt is the loss matrix
at trial t, Wt−1 is PermELearn’s weight matrixW at the start of trialt (soW0 is the initial weight
matrix) andWt is the updated weight matrix̃W at the end of the trial.

Theorem 4 For any learning rateη > 0, any doubly stochastic matrices U and initial W0, and
any sequence of T trials with loss matrices Lt ∈ [0,1]n×n (for 1 ≤ t ≤ T), the expected loss of
PermELearn is bounded by:

T

∑
t=1

Wt−1•Lt ≤ ∆(U,W0)−∆(U,WT)+η∑T
t=1U •Lt

1−e−η .

Proof Applying (8) to trialt gives:

∆(U,Wt−1)−∆(U,Wt) ≥ (1−e−η)(Wt−1•Lt)−η(U •Lt).

By summing the above over allT trials we get:

∆(U,W0)−∆(U,WT) ≥ (1−e−η)
T

∑
t=1

Wt−1•Lt −η
T

∑
t=1

U •Lt .

The bound then follows by solving for the total expected loss,∑T
t=1Wt−1•Lt , of the algorithm.

When the entries ofW0 are all initialized to1
n andU is a permutation then∆(U,W0) = nlnn.

Since each doubly stochastic matrixU is a convex combination of permutation matrices, at least
one minimizer of the total loss∑T

t=1U •L will be a permutation matrix. IfLbestdenotes the loss of
such a permutationU∗, then Theorem 4 implies that the total loss of the algorithm is bounded by

∆(U∗,W0)+ηLbest
1−e−η .

If upper bounds∆(U∗,W0) ≤ Dest≤ nlnn andLest≥ Lbestare known, then by choosingη =

ln

(
1+

√
2Dest
Lest

)
, and the above bound becomes (Freund and Schapire, 1997):

Lbest+
√

2LestDest+∆(U∗,W0). (9)

A natural choice forDestis nlnn. In this case the tuned bound becomes

Lbest+
√

2Lestnlnn+nlnn.
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5.3 Approximate Balancing

The preceding analysis assumes that PermELearn’s weight matrix is perfectly balanced each itera-
tion. However, balancing techniques are only capably of approximately balancing the weight matrix
in finite time, so implementations of PermELearn must handle approximately balancedmatrices. In
Section 4.2, we describe an implementation that uses an approximately balancedŴt−1 at the start of
iterationt rather than the completely balancedWt−1 of the preceding analysis. Lemma 1 shows that
when this implementation of PermELearn uses an approximately balancedŴt−1 where each row
and column sum is in 1± εt , then the expected loss on trialt is at mostWt−1•Lt +3n3εt . Summing
over all trials and using Theorem 4, this implementation’s total loss is at most

T

∑
t=1

(
Wt−1•Lt +3n3εt

)
≤ ∆(U,W0)−∆(U,WT)+η∑T

t=1U •Lt

1−e−η +
T

∑
t=1

3n3εt .

As discussed in Section 4.2, settingεt = 1/(3n3t2) leads to an additional loss of less than 5/3
over the bound of Theorem 4 and its subsequent tunings while incurring atotal running time (over
all T trials) in O(Tn6 log(Tn)). In fact, the additional loss for approximate balancing can be made
less than any positivec by settingεt = c/(5n3t2). Since the time to approximately balance depends
only logarithmically on 1/ε, the total time taken overT trials remains inO(Tn6 log(Tn)).

5.4 Split Analysis for the Hedge Algorithm

Perhaps the simplest case where the loss is linear in the parameter vector is theon-line allocation
setting of Freund and Schapire (1997). It is instructive to apply our methodof splitting the update
in this simpler setting. There areN experts and the algorithm keeps a probability distributionw
over the experts. In each trial the algorithm picks experti with probabilitywi and then gets a loss
vectorℓ ∈ [0,1]N. Each experti incurs lossℓi and the algorithm’s expected loss isw· ℓ. Finally w is
updated tõw for the next trial.

The Hedge algorithm (Freund and Schapire, 1997) updates its weight vector to w̃i = wie−ηℓi

∑ j w j e
−ηℓ j

.

This update can be motivated by a tradeoff between the un-normalized relative entropy to the old
weight vector and expected loss in the last trial (Kivinen and Warmuth, 1999):

w̃ := argmin
∑i ŵi=1

(∆(ŵ,w)+η ŵ · ℓ) .

For vectors, the relative entropy is simply∆(ŵ,w) := ∑i ŵi ln
ŵi
wi

+ wi − ŵi . As in the permutation

case, we can split this update (and motivation) into two steps: setting eachw′
i = wie−ηℓi thenw̃ =

w′/∑i w
′
i . These are the solutions to:

w′ := argmin
ŵ

(∆(ŵ,w)+η ŵ · ℓ) and w̃ := argmin
∑i ŵi=1

∆(ŵ,w′).
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The following lower bound has been shown on the progress towards anyprobability vectoru serving
as a comparator:4

∆(u,w)−∆(u, w̃) = −η u· ℓ− ln∑
i

wie
−ηℓi

≥ −η u· ℓ− ln∑
i

wi(1− (1−e−η)ℓi)

≥ −η u· ℓ+w· ℓ (1−e−η) , (10)

where the first inequality usese−ηx ≤ 1−(1−e−η)x, for anyx∈ [0,1], and the second uses− ln(1−
x) ≥ x, for x∈ [0,1]. Surprisingly the same inequality already holds for the un-normalized update:5

∆(u,w)−∆(u,w′) = −η u· ℓ+∑
i

wi(1−e−ηℓi ) ≥ w· ℓ (1−e−η)−η u· ℓ.

Since the normalization is a projection w.r.t. a Bregman divergence onto a linearconstraint satisfied
by the comparatoru, ∆(u,w′)−∆(u, w̃)≥ 0 by the Generalized Pythagorean Theorem (Herbster and
Warmuth, 2001). The total progress for both steps is again Inequality (10).

With the key Inequality (10) in hand, it is easy to introduce trial dependent notation and sum
over trails (as done in the proof of Theorem 4, arriving at the familiar bound for Hedge (Freund and
Schapire, 1997): For anyη > 0, any probability vectorsw0 andu, and any loss vectorsℓt ∈ [0,1]n,

T

∑
t=1

wt−1• ℓt ≤ ∆(u,w0)−∆(u,wT)+η∑T
t=1u• ℓt

1−e−η . (11)

Note that the r.h.s. is actually constant in the comparatoru (Kivinen and Warmuth, 1999), that is,
for all u,

∆(u,w0)−∆(u,wT)+η∑T
t=1u• ℓt

1−e−η =
− ln∑i w

0
i e−ηℓ≤T

i

1−eη .

The r.h.s. of the above equality is often used as a potential in proving boundsfor expert algorithms.
We discuss this further in Appendix B.

5.5 When to Normalize?

Probably the most surprising aspect about the proof methodology is the flexibility about how and
when to project onto the constraints. Instead of projecting a nonnegativematrix onto all 2n con-
straints at once (as in optimization problem (7)), we could mimic the Sinkhorn balancing algorithm
by first projecting onto the row constraints and then the column constraints and alternating until
convergence. The Generalized Pythagorean Theorem shows that projecting ontoanyconvex con-
straint that is satisfied by the comparator class of doubly stochastic matrices brings the weight matrix
closer toeverydoubly stochastic matrix.6 Therefore our bound on∑t W

t−1 •Lt (Theorem 4) holds
if the exponential updates are interleaved with any sequence of projections to some subsets of the

4. This is essentially Lemma 5.2 of Littlestone and Warmuth (1994). The reformulation of this type of inequality with
relative entropies goes back to Kivinen and Warmuth (1999)

5. Note that if the algorithm does not normalize the weights thenw is no longer a distribution. When∑i wi < 1, the loss
w ·L amounts to incurring 0 loss with probability 1−∑i wi , and predicting as experti with probabilitywi .

6. There is a large body of work on finding a solution subject to constraintsvia iterated Bregman projections (see, e.g.,
Censor and Lent, 1981).
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constraints. However, if the normalization constraints are not enforced thenW is no longer a convex
combination of permutations. Furthermore, the exponential update factors only decrease the entries
of W and without any normalization all of the entries ofW can get arbitrarily small. If this is al-
lowed to happen then the “loss”W•L can approach 0 for any loss matrix, violating the spirit of the
prediction model.

There is a direct argument that shows that the same final doubly stochasticmatrix is reached
if we interleave the exponential updates with projections to any of the constraints as long as all 2n
constraints hold at the end. To see this we partition the class of matrices with positive entries into
equivalence classes. Call two such matricesA andB equivalentif there are diagonal matricesRand
C with positive diagonal entries such thatB = RAC. Note that[RAC]i, j = Ri,iAi, jCj, j and therefore
B is just a rescaled version ofA. Projecting onto any row and/or column sum constraints amounts
to pre- and/or post-multiplying the matrix by some positive diagonal matricesRandC. Therefore if
matricesA andB are equivalent then the projection ofA (or B) onto a set of row and/or column sum
constraints results in another matrix equivalent to bothA andB.

The importance of equivalent matrices is that they balance to the same doubly stochastic matrix.

Lemma 5 For any two equivalent matrices A and RAC, where the entries of A and the diagonal
entries of R and C are positive,

argmin
∀i : ∑ j Âi, j = 1
∀ j : ∑i Âi, j = 1

∆(Â,A) = argmin
∀i : ∑ j Âi, j = 1
∀ j : ∑i Âi, j = 1

∆(Â,RAC).

Proof The strict convexity of the relative entropy implies that both problems have a unique matrix
as their solution. We will now reason that the unique solutions for both problems are the same. By
using a Lagrangian (as in the proof of Lemma 2) we see that the solution of theleft optimization
problem is a square matrix with ˙r i Ai, j ċ j in position i, j. Similarly the solution of the problem on
the right has ¨r i Ri,iAi, jCj, j c̈ j in positioni, j. Here the factors ˙r i , r̈ i function as row normalizers and
ċ j , c̈ j as column normalizers. Given a solution matrix ˙r i , ċ j to the left problem, then ˙r i/Ri,i , ċ j/Cj, j

is a solution of the right problem of the same value. Also if ¨r i , c̈ j is a solution of right problem, then
r̈ iRi,i , c̈ jCj, j is a solution to the left problem of the same value.

This shows that both minimization problems have the same value and the matrix solutions for
both problems are the same and unique (even though the normalization factorsṙ i , ċ j of say the left
problem are not necessarily unique). Note that its crucial for the aboveargument that the diagonal
entries ofR,C are positive.

The analogous phenomenon is much simpler in the weighted majority case: Two non-negative
vectorsa andb areequivalentif a = cb, wherec is any nonnegative scalar, and again each equiva-
lence class has exactly one normalized weight vector.

PermELearn’s intermediate matrixW′
i, j := Wi, je−ηLi, j can be writtenW ◦M where◦ denotes the

Hadamard(entry-wise)Product and Mi, j = e−ηLi, j . Note that the Hadamard product commutes
with matrix multiplication by diagonal matrices, ifC is diagonal andP = (A◦B)C then Pi, j =
(Ai, jBi, j)Cj, j = (Ai, jCj, j)Bi, j so we also haveP = (AC)◦B. Similarly, R(A◦B) = (RA)◦B whenR
is diagonal.
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Hadamard products also preserve equivalence. For equivalent matricesA andB = RAC (for
diagonalR andC) the matricesA◦M andB◦M are equivalent (although they are not likely to be
equivalent toA andB) sinceB◦M = (RAC)◦M = R(A◦M)C.

This means that any two runs of PermELearn-like algorithms that have the samebag of loss
matrices and equivalent initial matrices end with equivalent final matrices even if they project onto
different subsets of the constraints at the end of the various trials.

In summary the proof method discussed so far uses a relative entropy as ameasure of progress
and relies on Bregman projections as its fundamental tool. In Appendix B we re-derive the bound for
PermELearn using the value of the optimization problem (5) as a potential. This value is expressed
using the dual optimization problem and intuitively the application of the Generalized Pythagorean
Theorem now is replaced by plugging in a non-optimal choice for the dual variables. Both proof
techniques are useful.

5.6 Learning Mappings

We have an algorithm that has small regret against the best permutation. Permutations are a subset
of all mappings from{1, . . . ,n} to {1, . . . ,n}. We continue usingΠ for a permutation and introduce
Ψ to denote an arbitrary mapping from{1, . . . ,n} to {1, . . . ,n}. Mappings differ from permutations
in that then dimensional vector(Ψ(i))n

i=1 can have repeats, that is,Ψ(i) might equalΨ( j) for i 6= j.
Again we alternately represent a mappingΨ as ann×n matrix whereΨi, j = 1 if Ψ(i) = j and 0
otherwise. Note that such square7 mapping matriceshave the special property that they have exactly
one 1 in each row. Again the loss is specified by a loss matrixL and the loss of mappingΨ is Ψ•L.

It is straightforward to design an algorithmMapELearnfor learning mappings with exponential
weights: Simply runn independent copies of the Hedge algorithm for each of then rows of the
received loss matrices. That is, ther ’th copy of Hedge always receives ther ’th row of the loss
matrix L as its loss vector. Even though learning mappings is easy, it is neverthelessinstructive to
discuss the differences with PermELearn.

Note that MapELearn’s combined weight matrix is now a convex combination ofmappings,
that is, a “singly” stochastic matrix with the constraint that each row sums to one. Again, after the
exponential update (3), the constraints are typically not satisfied any more,but they can be easily
reestablished by simply normalizing each row. The row normalization only needs to be done once in
each trial: no iterative process is needed. Furthermore, no fancy decomposition algorithm is needed
in MapELearn: for (singly) stochastic weight matrixW, the predictionΨ(i) is simply a random
element chosen from the row distributionWi,∗. This sampling procedure produces a mappingΨ
such thatW = E(Ψ) and thusE(Ψ•L) = W •L as needed.

We can use the same relative entropy between the single stochastic matrices, and the lower
bound on the progress for the exponential update given in Lemma 3 still holds. Also our main
bound (Theorem 4) is still true for MapELearn and we arrive at the sametuned bound for the total
loss of MapELearn:

Lbest+
√

2LestDest+∆(U∗,W0),

whereLbest, Lest, andDestare now the total loss of the best mapping, a known upper bound on
Lbest, and an upper bound on∆(U∗,W0), respectively. Recall thatLestandDestare needed to tune
theη parameter.

7. In the case of mappings the restriction to square matrices is not essential.
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Our algorithm PermElearn for permutations may be seen as the above algorithmfor mappings
while enforcing the column sum constraints in addition to the row constraints used in MapELearn.
Since PermELearn’s row balancing “messes up” the column sums and vice versa, an interactive
procedure (i.e., Sinkhorn Balancing) is needed to create to a matrix in which each rowand col-
umn sums to one. The enforcement of the additional column sum constraints results in a doubly
stochastic matrix, an apparently necessary step to produce predictions that are permutations (and an
expected prediction equal to the doubly stochastic weight matrix).

When it is known that the comparator is a permutation, then the algorithm alwaysbenefits
from enforcing the additional column constraints. In general we should always make use of any
constraints that the comparator is known to satisfy (see, e.g., Warmuth and Vishwanathan, 2005, for
a discussion of this).

As discussed in Section 4.1, ifA′ is a Sinkhorn-balanced version of a non-negative matrixA,
then

for any permutationsΠ1 andΠ2,
∏i Ai,Π1(i)

∏i Ai,Π2(i)
=

∏i A
′
i,Π1(i)

∏i A
′
i,Π2(i)

. (12)

An analogous invariant holds for mappings: IfA′ is a row-balanced version of a non-negative matrix
A, then

for any mappingsΨ1 andΨ2,
∏i Ai,Ψ1(i)

∏i Ai,Ψ2(i)
=

∏i A
′
i,Ψ1(i)

∏i A
′
i,Ψ2(i)

.

However it is important to note that column balancing does not preserve the above invariant for
mappings. In fact, permutations are the subclass of mappings where invariant 12 holds.

There is another important difference between PermELearn and MapELearn. For MapELearn,
the probability of predicting mappingΨ with weight matrixW is always the product∏i Wi,Ψ(i).
The analogous property doesnot hold for PermELearn. Consider the balanced 2×2 weight matrix
W on the right of Figure 2. This matrix decomposes into

√
2

1+
√

2
times the permutation(1,2) plus

1
1+

√
2

times the permutation(2,1). Thus the probability of predicting with permutation(1,2) is√
2 times the probability of permutation(2,1) for the PermELearn algorithm. However, when the

probabilities are proportional to the intuitive product form∏i Wi,Π(i), then the probability ratio for
these two permutations is 2. Notice that this intuitive product weight measure is the distribution
used by the Hedge algorithm that explicitly treats each permutation as a separate expert. Therefore
PermELearn is clearly different than a concise implementation of Hedge for permutations.

6. Follow the Perturbed Leader Algorithm

Perhaps the simplest on-line algorithm is theFollow the Leader(FL) algorithm: at each trial predict
with one of the best models on the data seen so far. Thus FL predicts at trialt with an expert in
argmini ℓ

<t
i or any permutation in argminΠ Π•L<t , where “< t” indicates that we sum over the past

trials, that is,ℓ<t
i := ∑t−1

q=1ℓ
q
i . The FL algorithm is clearly non-optimal; in the expert setting there

is a simple adversary strategy that forces FL to have loss at leastn times larger than the loss of the
best expert in hindsight.

The expected total loss of tuned Hedge is one times the loss of the best expert plus lower order
terms. Hedge achieves this by randomly choosing experts. The probabilitywt−1

i for choosing expert
i at trial t is proportional toe−ηℓ<t

i . As the learning rateη → ∞, Hedge becomes FL (when there are
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no ties) and the same holds for PermELearn. Thus the exponential weights with moderateη may be
seen as a soft min calculation: the algorithm hedges its bets and does not putall its probability on
the expert with minimum loss so far.

The “Follow the Perturbed Leader” (FPL) algorithm of Kalai and Vempala (2005) is an alternate
on-line prediction algorithm that works in a very general setting. It adds random perturbations to the
total losses of the experts incurred so far and then predicts with the expert of minimum perturbed
loss. Their FPL∗ algorithm has bounds closely related to Hedge and other multiplicative weight
algorithms and in some cases Hedge can be simulated exactly (Kuzmin and Warmuth, 2005) by
judiciously choosing the distribution of perturbations. However, for the permutation problem the
bounds we were able to obtain for FPL∗ are weaker than the the bound we obtained bounds for Per-
mELearn that uses exponential weights despite the apparent similarity between our representations
and the general formulation of FPL∗.

The FPL setting uses an abstractk-dimensional decision space used to encode predictors as
well as ak-dimensional state space used to represent the losses of the predictors.At any trial, the
current loss of a particular predictor is the dot product between that predictor’s representation in the
decision space and the state-space vector for the trial. This general settingcan explicitly represent
each permutation and its loss whenk = n!. The FPL setting also easily handles the encodings of
permutations and losses used by PermELearn by representing each permutation matrixΠ and loss
matrixL asn2-dimensional vectors.

The FPL∗ algorithm (Kalai and Vempala, 2005) takes a parameterε and maintains a cumulative
loss matrixC (initially C is the zero matrix) At each trial, FPL∗:

1. Generates a random perturbation matrixP where eachPi, j is proportional to±r i, j wherer i, j

is drawn from the standard exponential distribution.

2. Predicts with a permutationΠ minimizing Π• (C+P).

3. After getting the loss matrixL, updatesC to C+L.

Note that FPL∗ is more computationally efficient than PermELearn. It takes onlyO(n3) time
to make its prediction (the time to compute a minimum weight bipartite matching) and onlyO(n2)
time to updateC. Unfortunately the generic FPL∗ loss bounds are not as good as the bounds on
PermELearn. In particular, they show that the loss of FPL∗ on any sequence of trials is at most8

(1+ ε)Lbest+
8n3(1+ lnn)

ε

whereε is a parameter of the algorithm. When the loss of the best expert is known ahead of time,ε
can be tuned and the bound becomes

Lbest+4
√

2Lbestn
3(1+ lnn)+8n3(1+ lnn) .

Although FPL∗ gets the sameLbestleading term, the excess loss over the best permutation grows
as n3 lnn rather thenlnn growth of PermELearn’s bound. Of course, PermELearn pays for the
improved bound by requiring more computation.

8. Then3 terms in the bounds for FPL aren times the sum of the entries in the loss matrix. So if the application has a
loss motif whose entries sum to onlyn, then then3 factors becomen2.
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It is important to note that Kalai and Vempala also present a refined analysisof FPL∗ when
the perturbed leader changes only rarely. This analysis leads to bounds that are similar to the
bounds given by the entropic analysis of the Hedge algorithm (although theconstant on the square-
root term is not quite as good). However, this refined analysis cannot be directly applied with the
efficient representations of permutations because the total perturbationsassociated with different
permutations are no longer independent exponentials. We leave the adaptation of the refined analysis
to the permutation case as an open problem.

7. Lower Bounds

In this section we prove lower bounds on the worst-case regret of any algorithm for our permutation
learning problem by reducing the expert allocation problem forn experts with loss range[0,n] to
the permutation learning problem. We then show in Appendix C a lower bound for this n expert
allocation problem that uses a known lower bound in the expert advice setting with losses in[0,1].

For the reduction we choose any set ofn permutations{Π1, . . . ,Πn} that use disjoint positions,
that is,∑n

i=1 Πi is then×n matrix of all ones. Using disjoint positions ensures that the losses of
thesen permutations can be set independently. EachΠi matrix in this set corresponds to theith
expert in then-expert allocation problem. To simulate ann-expert trial with loss vectorℓ ∈ [0,n]n

we use a loss matrixL s.t. Πi •L = ℓi . This is done by setting all entries in{Lq,Πi(q) : 1≤ q≤ n} to
ℓi/n∈ [0,1], that is,L = ∑i Πi(ℓi/n). Now for any doubly stochastic matrixW,

W •L = ∑
i

Πi •W
n

ℓi .

Note that then dimensional vector with the components(Πi •W)/n is a probability vector and
therefore any algorithm for then-element permutation problem can be used as an algorithm for
then-expert allocation problem with losses in the range[0,n]. Thus any lower bound for the latter
model is also a lower bound on then-element permutation problem.

We first prove a lower bound for the case when at least one expert has loss zero for the entire
sequence of trials. If the algorithm allocates any weight to experts that have already incurred positive
loss, then the adversary can assign loss only to those experts and forcethe algorithm increase its
expected loss without reducing the number of experts of loss zero. Thuswe can assume w.l.o.g.
that the algorithm allocates positive weight only to experts of zero loss. Thealgorithm minimizes
its expected loss and the adversary maximizes it. We get a lower bound by fixing the adversary:
This adversary assigns lossn to one of the experts which received the highest probability by the
algorithm and all other experts are assigned loss zero. Clearly the optimal allocation against such
an adversary uses the uniform distribution over those experts with zero loss. The number of experts
with loss zero is reduced by one in each trial. At trialt = 1, . . . ,n−1, n+1− t experts are left and
the expected loss is n

n+1−t . In the firstn−1 trials the algorithm incurs expected loss

n

∑
i=2

n
i
≈ nlnn.

When the loss of the best expert is large then the following theorem follows from Corollary 11:
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Theorem 6 There exists n0 such that for each dimension n≥ n0, there is a Tn where for any number
of trials T ≥ Tn the following holds for any algorithm A for learning permutations of n elements in
the allocation setting: there is a sequence S of T trials such that

Lbest(S) ≤ nT/2 and LA(S)−Lbest(S) ≥
√

(nT/2) nlnn.

These two lower bounds can be combined to the following lower bound on the expected regret
for our permutation learning problem:

max
(√

Lbestnlnn,nlnn
)
≥
√
Lbestnlnn+nlnn

2
.

This means that the tuned upper bound on the expected regret of PermELearn given after Theorem
4 cannot be improved by more than a small (2

√
2) constant factor.

8. Conclusions

We considered the problem of learning a permutation on-line, when the per-trial loss is specified by
a matrixL ∈ [0,1]n×n and the loss of a permutation matrixΠ is the linear lossΠ•L. The standard
approach would treat each permutation as an expert. However this is computationally inefficient and
introduces an additional factor ofn in the regret bounds (since the per-trial loss of a permutation
is [0,n] rather than[0,1]). We do not know if this factor ofn is necessary for permutations, and
it remains open whether their special structure allows better regret boundson the standard expert
algorithms when the experts are permutations.

We developed a new algorithm called PermELearn that uses a doubly stochastic matrix to main-
tain its uncertainty over the hidden permutation. PermELearn decomposes this doubly stochastic
matrix into a small mixture of permutation matrices and predicts with a random permutation from
this mixture. A similar decomposition was used by Warmuth and Kuzmin (2008) to learn as well as
the best fixed-size subset of experts.

PermELearn belongs to the Exponentiated Gradient family of updates and theanalysis uses a
relative entropy as a measure of progress. The main technical insight is that the per-trial progress
bound already holds for the un-normalized update and that re-balancingthe matrix only increases
the progress. Since the re-balancing step does not have a closed form,accounting for it in the
analysis would otherwise be problematic. We also showed that the update forthe Hedge algorithm
can be split into an un-normalized update and a normalization. In this more basicsetting the per
trial progress bound also holds for the un-normalized update.

Our analysis techniques rely on Bregman projection methods9 and the regret bounds hold not
only for permutations but also for mixtures of permutations. This means that if we have additional
convex constraints that are satisfied by the mixture that we compare against,then we can project
the algorithm’s weight matrix onto these constraints without hurting the analysis (Herbster and
Warmuth, 2001). With these kinds of side constraints we can enforce some relationships between
the parameters, such asWi, j ≥Wi,k (i is more likely mapped toj thank).

Our main contribution is showing how to apply the analysis techniques from the expert advice
setting to the problem of efficiently learning a permutation. This means that many of the tools from

9. Following Kuzmin and Warmuth (2007), we also showed in Appendix B that the regret bounds proven in this paper
can be reproduced with potential based methods.
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the expert setting are likely to carry over to permutations: lower bounding theweights when the
comparator is shifting (Herbster and Warmuth, 1998), long-term memory when shifting between a
small set of comparators (Bousquet and Warmuth, 2002), capping the weights from the top if the
goal is to be close to the best set of disjoint permutations of fixed size (Warmuth and Kuzmin, 2008),
adapting the updates to the multi-armed bandit setting when less feedback is provided (Auer et al.,
2002),10 and PAC Bayes analysis of the exponential updates (McAllester, 2003).

We also applied the “Follow the Perturbed Leader” techniques to our permutation problem. This
algorithm adds randomness to the total losses and then predicts with a minimum weighted matching
which costsO(n3) whereas our more complicated algorithm is at leastO(n4) and has precision
issues. However the bounds currently provable for the FPL∗ algorithm of Kalai and Vempala (2005)
are much worse than for our PermELearn algorithm. The key open problemis whether we can have
the best of both worlds: add randomness to the loss matrix so that the expected minimum weighted
matching is the stochastic matrix produced by the PermELearn update (4). Thiswould mean that we
could use the faster algorithm together with our tighter analysis. In the simpler weighted majority
setting this has been done already (Kuzmin and Warmuth, 2005; Kalai, 2005). However we do not
yet know how to simulate the PermELearn update this way.

Our on-line learning problem requires that the learner’s prediction to be an actual permutation.
This requirement makes sense for the linear loss we focus on in this paper,but may be less appro-
priate for on-line regression problems. Consider the case where on each trial the algorithm selects
a doubly stochastic matrixM while nature simultaneously picks a matrixX ∈ [0,1]n×n and a real
numbery. The prediction is ˆy= M•X and the loss on the trial is(ŷ−y)2. With this convex quadratic
loss, it is generally better for the algorithm to hedge its bets between competing permutations and
select its doubly stochastic parameter matrixW asM instead of a random permutation matrixΠ
chosen s.t.E(Π) = W. The Exponentiated Gradient algorithm can be applied to this type of non-
linear regression problem (see, e.g., Helmbold et al., 1999) and SinkhornBalancing can project the
parameter matrixW onto the row and column sum constraints.

We close with an open problem involving higher order loss functions. In thispaper we consid-
ered linear losses specified by a square matrixL whereLi, j gives the loss when entry(i, j) is used in
the permutation. Can one prove good regret bounds when the loss depends on how the permutation
assigns multiple elements? A pairwise loss could be represented with a four-dimensional matrixL
whereLi, j,k,l is added to the loss only when the predicted permutation mapsboth i to j and k to l .
The recently developed Fourier analysis techniques for permutations (Kondor et al., 2007; Huang
et al., 2009) may be helpful in generalizing our techniques to this kind of higher order loss.
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Appendix A. Size of the Decomposition

Here we show that the iterative matching method of Algorithm 1 requires mostn2−2n+2 permu-
tations to decompose an doubly stochastic matrix. This matches the bound provided by Birkhoff’s
Theorem. Note that the discussion in Section 4 shows why Algorithm 1 can always find a suitable
permutation.

Theorem 7 Algorithm 1 decomposes any doubly stochastic matrix into a convex combination of at
most n2−2n+2 permutations.

Proof Let W be a doubly stochastic matrix and letΠ1, . . . ,Πℓ and α1, . . . ,αℓ be any sequence
of permutations and coefficients created by Algorithm 1 on inputW. For 0≤ j ≤ ℓ, defineM j =
W−∑ j

i=1 αiΠi . By permuting rows and columns we can assume without loss of generality thatΠℓ is
the identity permutation. LetG j (for 1≤ j ≤ ℓ) be the (undirected) graph on then vertices{1, . . .n}
where the undirected edge{p,q} between nodesp 6= q is present if and only if eitherM j

p,q or M j
q,p

is non-zero. Thus bothGℓ−1 andGℓ are the empty graph and eachG j+1 has a (not necessarily strict)
subset of the edges inG j . Note the natural correspondences between vertices in the graphs androws
and columns in the matrices.

The proof is based in the following key invariant:

# of zero entries inM j ≥ j + (# connected components inG j )−1.

This holds for the initialM0. Furthermore, when the connected components ofG j andG j+1 are the
same, the algorithm insures thatM j+1 has at least one more zero thanM j . We now analyze the case
when new connected components are created.

Let vertex setV be a connected component inG j+1 that was split off a larger connected com-
ponent inG j . We overload the notation, and useV also for the set of matrix rows and/or columns
associated with the vertices in the connected component.

SinceV is a connected component ofG j+1 there are no edges going betweenV and the rest of
the graph, so ifM j+1 is viewed as a (conserved) flow, there is no flow either into or out ofV:

∑
r∈V

∑
c6∈V

M j+1
r,c = ∑

r 6∈V
∑
c∈V

M j+1
r,c = 0.

Thus all entries ofM j in the sets{M j
r,c > 0 : r ∈ V,c 6∈ V} and{M j

r,c > 0 : r 6∈ V,c∈ V} are set to
zero inM j+1. SinceV was part of a larger connected component inG j , at least one of these sets
must be non-empty. We now show that both these sets of entries are non-empty.

Each row and column ofM j sum to 1−∑ j
i=1 αi . Therefore

(
1−

j

∑
i=1

αi

)
|V| = ∑

r∈V

n

∑
c=1

M j
r,c = ∑

c∈V

n

∑
r=1

M j
r,c.

By splitting the inner sums we get:

∑
r∈V

∑
c∈V

M j
r,c + ∑

r∈V
∑
c6∈V

M j
r,c = ∑

c∈V
∑
r∈V

M j
r,c + ∑

c∈V
∑
r 6∈V

M j
r,c.
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By canceling the first sums and viewingM j as a flow inG j we conclude that the total flow out ofV
in M j equals the total flow intoV in M j , that is,

∑
r∈V

∑
c6∈V

M j
r,c = ∑

c∈V
∑
r 6∈V

M j
r,c

and both sets{M j
r,c > 0 : r ∈V,c 6∈V} and{M j

r,c > 0 : r 6∈V,c∈V} sum to the same positive total,
and thus are non-empty.

This establishes the following fact that we can use in the remainder of the proof: for each new
connected componentV in G j+1, some entryM j

r,c from a rowr in V was set to zero.
Now let k j (andk j+1) be the number of connected components in graphG j (andG j+1 respec-

tively). Since the edges inG j+1 are a subset of the edges inG j , k j+1 ≥ k j . We already verified the
invariant whenk j = k j+1, so we proceed assumingk j+1 > k j . In this case at mostk j −1 components
of G j survive when going toG j+1, and at leastk j+1− (k j −1) new connected components are cre-
ated. The vertex sets of the new connected components are disjoint, and in the rows corresponding
to each new connected component there is at least one non-zero entry inM j that is zero inM j+1.
Therefore,M j+1 has at leastk j+1− k j +1 more zeros thanM j , verifying the invariant for the case
whenk j+1 > k j .

SinceGℓ−1 hasn connected components, the invariant shows that the number of zeros inMℓ−1

is at leastℓ−1+n−1. Furthermore,Mℓ hasn more zeros thanMℓ−1, soMℓ has at leastℓ+2n−2
zeros. SinceMℓ has onlyn2 entries,n2 ≥ ℓ+2n−2 andℓ ≤ n2−2n+2 as desired.

The fact that Algorithm 1 uses at mostn2−2n+2 permutations can also be established with a
dimensionality argument like that in Section 2.7 of Bazaraa et al. (1977).

Appendix B. Potential Based Bounds

Let us begin with the on-line allocation problem in the simpler expert setting. There are always two
ways to motivate on-line updates. One trades the divergence to the last weight vector against the
loss in the last trial, and the other trades the divergence to the initial weight vector against the loss
in all past trials (Azoury and Warmuth, 2001):

wt := argmin
∑i wi=1

(
∆(w,wt−1)+η w · ℓt) , wt := argmin

∑i wi=1

(
∆(w,w0)+η w · ℓ≤t) .

By differentiating the Lagrangian for each optimization problem we obtain the solutions to both
minimization problems:

wt
i = wt−1

i e−ηℓt
i +β̃t

, wt
i = w0

i e−ηℓ≤t
i +βt

,

where the signs of the Lagrange multipliersβ̃t andβt are unconstrained and their values are chosen
so that the equality constraints are satisfied. The left update can be unrolled to obtain

wt
i = w0

i e−ηℓ≤t
i +∑t

q=1 β̃q
.

This means the Lagrangian multipliers for both problems are related by the equality ∑t
q=1 β̃q = βt

and both problems have the same solution:11 wt
i =

w0
i e−ηℓ≤t

i

∑n
j=1 w0

j e
−ηℓ≤t

j
. We use the value of the right convex

11. The solutions can differ if the minimization is over linear inequality constraints (Kuzmin and Warmuth, 2007).
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optimization problem’s objective function as our potentialvt . Its Lagrangian is

∑
i

(
wi ln

wi

w0
i

+w0
i −wi +ηwiℓ

≤t
i

)
+β

(

∑
i

wi −1

)

and since there is no duality gap:12

vt := min
∑i wi=1

(
∆(w,w0)+η w · ℓ≤t

)
= max

β
∑

i

w0
i (1−e−ηℓ≤t

i −β)−β
︸ ︷︷ ︸

dual functionθt(β)

.

Hereβ is the (unconstrained) dual variable for the primal equality constraint andthewi ’s have been
optimized out. By differentiating we can optimizeβ in the dual problem and arrive at

vt = − ln∑
i

w0
i e−ηℓ≤t

i .

This form of the potential has been used extensively for analyzing expert algorithms (see, e.g.,
Kivinen and Warmuth, 1999; Cesa-Bianchi and Lugosi, 2006). One can easily show the following
key inequality (essentially Lemma 5.2 of Littlestone and Warmuth, 1994):

vt −vt−1 = − ln∑
i

w0
i e−ηℓ≤t

i + ln∑
i

w0
i e−ηℓ<t

i

= − ln∑
i

wt−1
i e−ηℓt

i

≥ − ln∑
i

wt−1
i (1− (1−e−η)ℓt

i)

≥ (1−e−η) wt−1 · ℓt . (13)

Summing over all trials and usingv0 = 0 gives the familiar bound:

T

∑
t=1

wt−1 · ℓt ≤ vT

1−e−η =
1

1−e−η min
∑i wi=1

(
∆(w,w0)+η w· ℓ≤T) .

Note that by Kivinen and Warmuth (1999)

vt −vt−1 = − ln

(

∑
i

wt−1
i e−ηℓt

i

)
= ∆(u,wt−1)−∆(u,wt)+η u· ℓt ,

and therefore the Inequality (13) is the same as Inequality (10). Since

T

∑
t=1

(vt −vt−1) = vT = − ln

(

∑
i

w0
i e−ηℓ≤t

i

)
,

summing the bound (13) overt coincides with the bound (11).

12. There is no duality gap in this case because the primal problem is a feasible convex optimization problem subject to
linear constraints.
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We now reprove the key inequality (13) using the dual functionθt(β). Noteβt maximizes this
function, that is,vt = θt(βt), and the optimal primal solution iswt

i = w0
i e−ηℓ≤t

i −βt
. Now,

vt −vt−1 = θt(βt)−θt−1(βt−1)

≥ θt(βt−1)−θt−1(βt−1)

= ∑
i

w0
i e−ηℓ<t

i −βt−1

︸ ︷︷ ︸
wt−1

i

(1−e−ηℓt
i )

≥ ∑
i

wt−1
i (1− (1− (1−e−η)ℓt

i))

= (1−e−η) wt−1 · ℓt

where we usede−ηℓt
i ≤ 1− (1− e−η)ℓt

i to get the fourth line. Notice that in the first inequality
above we usedθt(βt) ≥ θt(βt−1). This is true becauseβt maximizesθt(β) and the old choiceβt−1

is non-optimal. The dual parameterβt−1 assures thatwt−1 is normalized andθt(βt−1) is related to
plugging the intermediate unnormalized weightsw′ t

i := w0
i e−ηℓ≤t

i −βt−1
into the primal problem for

trial t. This means that the inequalityθt(βt) ≥ θt(βt−1) corresponds to the Bregman projection of
the unnormalized update onto the equality constraint. The differenceθt(βt−1)− θt−1(βt−1) in the
second line above is the progress in the value when going fromwt−1 at the end of trialt − 1 to
the intermediate unnormalized updatew′ t at trial t. Therefore this proof also does not exploit the
normalization.

The bound for the permutation problem follows the same outline. We use the value of the
following optimization problem as our potential:

vt+1 := min
∀i : ∑ j Ai, j = 1
∀ j : ∑i Ai, j = 1

(
∆(A,W0)+η (A•L≤t)

)

= max
αi ,β j

∑
i, j

W0
i, j(1−e−ηL≤t

i, j −αi−β j )−∑
i

αi −∑
j

β j

︸ ︷︷ ︸
θt(α,β)

.

The αi andβ j are the dual variables for the row and column constraints. Now we can’t optimize
out the dual variables in the dual functionθt(α,β) does not have a maximum in closed form. Nev-
ertheless the above proof technique based on duality still works. Letαt andβt be the optimizers of
θt(α,β). Then the optimum primal solution (the parameter vector of PermELearn) becomes

Wt
i, j = W0

i, je
−ηL≤t

i, j −αt
i−βt

j

and we can analyze the increase in value as before:

vt −vt−1 = θt(αt ,βt)−θt−1(αt−1,βt−1)

≥ θt(αt−1,βt−1)−θt−1(αt−1,βt−1)

= ∑
i, j

W0
i, je

−ηL<t
i, j −αt−1

i −βt−1
j

︸ ︷︷ ︸
Wt−1

i, j

(1−e−ηLt−1
i, j )

≥ ∑
i, j

Wt−1
i, j (1− (1−e−η)Lt

i, j)

= (1−e−η) Wt−1•Lt .
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Summing over trials in the usual way gives the bound

T

∑
t=1

Wt−1•Lt ≤ vT

1−e−η =
1

1−e−η min
∀i : ∑ j Ai, j = 1
∀ j : ∑i Ai, j = 1

(
∆(A,W0)+η (A•L≤T)

)

which is the same as the bound of Theorem 4.

Appendix C. Lower Bounds for the Expert Advice Setting

We first modify a known lower bound from the expert advice setting with the absolute loss (Cesa-
Bianchi et al., 1997). We begin by describing that setting and show how it relates to the allocation
setting for experts.

In the expert advice setting there aren experts. Each trialt starts with nature selecting apre-
diction xti in [0,1] for each experti ∈ {1, . . . ,n}. The algorithm is given these predictions and then
produces its own prediction ˆyt ∈ [0,1]. Finally, nature selects alabel yt ∈ {0,1} for the trial. The
algorithm is charged loss|ŷt −yt | and experti gets loss|xt

i −yt |.
Any algorithm in the allocation setting leads to an algorithm in the above expert advice setting:

keep the weight update unchanged, predict with the weighted average (i.e., ŷt = wt−1 ·xt) and define
the loss vector inℓt ∈ [0,1]n in terms of the absolute loss:

|wt−1 ·xt
︸ ︷︷ ︸

ŷt

−yt | = ∑
i

wt−1
i |xt

i −yt |︸ ︷︷ ︸
ℓt
i

= wt−1 · ℓt ,

where the first equality holds becausext
i ∈ [0,1] andyt ∈ {0,1}. This means that any lower bound

on the regret in the above expert advice setting immediately leads to a lower bound on the expected
loss in the allocation setting for experts when the loss vectors lie in[0,1]n.

We now introduce some more notation and state the lower bound from the expert advice setting
that we build on. LetSn,T be the set of all sequences ofT trials with n experts in the expert advice
setting with the absolute loss. LetVn,T be the minimum over algorithms of the worst case regret
over sequences inSn,T .

Theorem 8 (Cesa-Bianchi et al., 1997, Theorem 4.5.2)

lim
n→∞

lim
T→∞

Vn,T√
(T/2) lnn

= 1.

This means that for allε > 0 there existsnε such that for eachn≥ nε, there is aTε,n where for all
T ≥ Tε,n,

Vn,T ≥ (1− ε)
√

(T/2) lnn.

By further expanding the definition ofVn,T we get the following version of the above lower bound
that avoids the use of limits:

Corollary 9 For all ε > 0 there exists nε such that for each number of experts n≥ nε, there is a Tε,n
where for any number of trials T≥ Tε,n the following holds for any algorithm A in the expert advice
setting with the absolute loss: there is a sequence S of T trials with n experts such that

LA(S)−Lbest(S) ≥ (1− ε)
√

(T/2) lnn.
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This lower bound on the regret depends on the number of trialsT. We now use a reduction to bound
Lbest(S) by T/2. DefineR(S−) as the transformation that takes a sequenceS− of trials in Sn−1,T

and produces a sequence of trials inSn,T by adding an extra expert whose predictions are simply
1 minus the predictions of the first expert. On each trial the absolute loss of the additional expert
on sequenceR(S−) is 1 minus the loss of the first expert. Therefore either the first expert orthe
additional expert will have loss at mostT/2 onR(S−).

Theorem 10 For all ε > 0 there exists nε such that for each number of experts n≥ nε, there is a Tε,n
where for any number of trials T≥ Tε,n the following holds for any algorithm A in the expert advice
setting with the absolute loss: there is a sequence S of T trials with n experts such that

Lbest(S) ≤ T/2 and LA(S)−Lbest(S) ≥ (1− ε)
√

(T/2) lnn.

Proof We begin by showing that the regret on a transformed sequence in{R(S−) : S− ∈ Sn−1,T} is
at least(1− ε/2)

√
(T/2) ln(n−1).

Note that for allR(S−), Lbest(R(S−)) ≤ T/2 and assume to the contrary that some algorithmA
has regret strictly less than(1−ε/2)

√
(T/2) ln(n−1) on every sequence in{R(S−) : S− ∈ Sn−1,T}.

We then create an algorithmA− that runs transformationR(·) on-the-fly and predicts asA does on
the transformed sequence. ThereforeA− on S− andA on R(S−) make the same predictions and
have the same total loss. On every sequenceS− ∈ Sn−1,T we haveLbest(S

−) ≥ Lbest(R(S)) and
therefore

LA−(S−)−Lbest(S
−) ≤ LA−(S−)−Lbest(R(S−))

= LA(R(S−))−Lbest(R(S−))

< (1− ε/2)
√

(T/2) ln(n−1).

Now if n−1 is at least thenε/2 of Corollary 9 andT is at least theTε/2,n−1 of the same corollary,
then this contradicts that corollary.

This means that for any algorithmA and large enoughn andT, there is a sequenceS for which
the algorithm has regret at least(1− ε/2)

√
(T/2) ln(n−1) andLbest(S) ≤ T/2. By choosing the

lower bound onn large enough,

(1− ε/2)
√

(T/2) ln(n−1) ≥ (1− ε)
√

(T/2) lnn

and the theorem follows.

Note that the tuned upper bounds in the allocation setting (9) have an additional factor of
√

2. This is
due to the fact that in the allocation setting the algorithm predicts with the weighted average and this
is non-optimal. In the expert setting with the absolute loss, the upper bound (based on a different
prediction function) and the lower bound on the regret are asymptotically tight (See Theorem 8).
We are now ready to prove our lower bound for the allocation setting with experts when the losses
of the experts are in[0,n]n instead of[0,1]n.

Corollary 11 There exists n0 such that for each dimension n≥ n0, there is a Tn where for any
number of trials T≥Tn the following holds for any algorithm A for allocation setting with n experts:
there is a sequence S of T trials with loss vectors in[0,n]n such that

Lbest(S) ≤ nT/2 and LA(S)−Lbest(S) ≥
√

(nT/2)nlnn.
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Proof Via the reduction we stated at the beginning of the section, the following lower bound for the
allocation setting withn experts immediately follows from the previous theorem: For any algorithm
in the allocation setting forn experts there is a sequenceS̃of T trials where the losses of the experts
lie in [0,1] such that

Lbest(S̃) ≤ T/2 and LA(S̃)−Lbest(S̃) ≥
√

(T/2) lnn.

Now we simply scale the loss vectors by the factorn, that is, the scaled sequencesS have loss
vectors in the range[0,n]n andLbest(S) ≤ nT/2. The lower bound becomesn

√
(T/2) lnn =√

(nT/2)nlnn.
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