Journal of Machine Learning Research 2009 (10) 1705-1736 Submitted 9/08; Published 7/09

L ear ning Per mutations with Exponential Weights*

David P. Helmbold DPH@CSE.UCSC.EDU
Manfred K. Warmuth' MANFRED@CSE.UCSC.EDU
Computer Science Department

University of California, Santa Cruz

Santa Cruz, CA 95064

Editor: Yoav Freund

Abstract

We give an algorithm for the on-line learning of permutasiorThe algorithm maintains its un-

certainty about the target permutation as a doubly stoichasight matrix, and makes predictions
using an efficient method for decomposing the weight matrig & convex combination of per-

mutations. The weight matrix is updated by multiplying therent matrix entries by exponential

factors, and an iterative procedure is needed to restorBlelatochasticity. Even though the re-
sult of this procedure does not have a closed form, a new sisapproach allows us to prove an
optimal (up to small constant factors) bound on the regretioflgorithm. This regret bound is sig-

nificantly better than that of either Kalai and Vempala’s eefficient Follow the Perturbed Leader
algorithm or the computationally expensive method of exji representing each permutation as
an expert.

Keywords: permutation, ranking, on-line learning, Hedge algoritithoubly stochastic matrix,
relative entropy projection, Sinkhorn balancing

1. Introduction

Finding a good permutation is a key aspect of many problems such as thegahkearch results
or matching workers to tasks. In this paper we present an efficientfieadiee on-line algorithm
for learning permutations in a model related to the on-line allocation model afifegwith experts
(Freund and Schapire, 1997). In each trial, the algorithm probabilistichtipses a permutation
and then incurs a linear loss based on how appropriate the permutatioontleatftrial. Theregret
is the total expected loss of the algorithm on the whole sequence of trials mantetdhloss of the
best permutation chosen in hindsight for the whole sequence, and thie gfind algorithms that
have provably small worst-case regret.

For example, one could consider a commuter airline which awasplanes of various sizes
and fliesn routes! Each day the airline must match airplanes to routes. If too small an airplane
is assigned to a route then the airline will loose revenue and reputation dusdovaed potential
passengers. On the other hand, if too large an airplane is used on eaoldegtiien the airline
could have larger than necessary fuel costs. If the number of ppasaenanting each flight were
known ahead of time, then choosing an assignment is a weighted matchinghpramblde on-line

x. An earlier version of this paper appearimceedings of the Twentieth Annual Conference on ComputationahiLear
ing Theory(COLT 2007), published by Springer as LNAI 4539.

T. Manfred K. Warmuth acknowledges the support of NSF grant3&5663.

1. We assume that each route starts and ends at the airline’s home. airpor

(©10 David P. Helmbold and Manfred K. Warmuth.

HELMBOLD AND WARMUTH

allocation model, the airline first chooses a distribution over possible assiggmiairplanes to
routes and then randomly selects an assignment from the distributiomegrieeof the airline is the
earnings of the single best assignment for the whole sequence ohgassequests minus the total
expected earnings of the on-line assignments. When airplanes andamaiezsch numbered from 1
to n, then an assignment is equivalent to selecting a permutation. The randonehes protect the
on-line algorithm from adversaries and allows one to prove good boomdlse algorithm’s regret
for arbitrary sequences of requests.

Since there ara! permutations om elements, it is infeasible to simply treat each permutation
as an expert and apply one of the expert algorithms that uses expbmazights. Previous work
has exploited the combinatorial structure of other large sets of expertsate@fficient algorithms
(see Helmbold and Schapire, 1997; Takimoto and Warmuth, 2003; Warnditueamin, 2008, for
examples). Our solution is to make a simplifying assumption on the loss functiom ahavs
the new algorithm, called PermELearn, to maintain a sufficient amount of infammabout the
distribution ovem! permutations while using onlg? weights.

We represent a permutation wfelements as an x n permutation matriX1 wherell; j = 1 if
the permutation maps elemerto positionj andll; ; = 0 otherwise. As the algorithm randomly
selects a permutatidﬁ at the beginning of a trial, an adversary simultaneously selects an arbitrary
loss matrix Le [0, 1]™" which specifies the loss of all permutations for the trial. Each dntyyf
the loss matrix gives the loss for mapping elemietot j, and the loss of any whole permutation is
the sum of the losses of the permutation’s mappings, that is, the loss of pgom{itas 3 L;) =
Yi,;MMijLi,j- Note that the per-trial expected losses can be as largeassopposed to the common
assumption for the expert setting that the losses are boundédljn In Section 3 we show how a
variety of intuitive loss motifs can be expressed in this matrix form.

This assumption that the loss has a linear matrix form ensures the expestetittos algorithm
can be expressed ds ;W L j, whereW = E(ﬁ). This expectatioW is ann x n weight matrix
which isdoubly stochasticthat is, it has non-negative entries and the property that every rdw an
column sums to 1. The algorithm’s uncertainty about which permutation is the imsgemmarized
by W; each weight\{ j is the probability that the algorithm predicts with a permutation mapping
element to positionj. It is worth emphasizing that th& matrix is only asummaryof the distribu-
tion over permutations used by any algorithm (it doesn't indicate which pations have non-zero
probability, for example). However, this summargisgficiento determine the algorithm’s expected
loss when the losses of permutations have the assumed loss matrix form.

Our PermELearn algorithm stores the weight ma@hand must conveiV into an efficiently
sampled distribution over permutations in order to make predictions. By Birkhidieorem, ev-
ery doubly stochastic matrix can be expressed as the convex combinatdmaistn® — 2n + 2
permutations (see, e.g., Bhatia, 1997). In Appendix A we show that ayraatching-based al-
gorithm efficiently decomposes any doubly stochastic matrix into a convexinatiun of at most
n? — 2n+ 2 permutations. Although the efficacy of this algorithm is implied by standard diioen
ality arguments, we give a new combinatorial proof that provides indepegmasight as to why the
algorithm finds a convex combination matching Birkhoff's bound. Our dlgor for learning per-
mutations predicts with a randofh sampled from the convex combination of permutations created
by decomposing weight matri/. It has been applied recently for pricing combinatorial markets
when the outcomes are permutations of objects (Chen et al., 2008).

The PermELearn algorithm updates the entries of its weight matrix using empahfactors
commonly used for updating the weights of experts in on-line learning algorithitiestone and

1706

LEARNING PERMUTATIONS

Warmuth, 1994; Vovk, 1990; Freund and Schapire, 1997): eack 8hiris multiplied by a factor
e ki, Heren is a positive learning rate that controls the “strength” of the update (Whero,
than all the factors are one and the update is vacuous). After this ugaweegight matrix no longer
has the doubly stochastic property, and the weight matrix must be projemt&drio the space of
doubly stochastic matrices (called “Sinkhorn balancing”, see Sectionfd)ebne next prediction
can be made.

In Theorem 4 we bound the expected loss of PermELearn over angrsegjaf trials by

ninn+nZpest
—_— =2 1
T en (1)

wheren is the number of elements being permutgds the learning rate, andpgtis the loss of
the best permutation on the entire sequence. If an upper hog§id> Lye5tiS known, them can
be tuned (as in Freund and Schapire, 1997) and the expected loskirEmomes

Lpestt vV 2LeshInn+ninn, 2

giving a bound of,/2LasnInn+ ninn on the worst case expected regret of the tuned PermELearn
algorithm. We also prove a matching lower bound (Theorem 8)(Qf LpegpInn) for the expected
regret of any algorithm solving our permutation learning problem.

A simpler and more efficient algorithm than PermELearn maintains the sum ofshenlatrices
on the the previous trials. Each trial it adds random perturbations to thela&tivedoss matrix and
then predicts with the permutation having minimum perturbed loss. This “Follow e¢ntiiBed
Leader” algorithm (Kalai and Vempala, 2005) has good regret botordsiany on-line learning
settings. However, the regret bound we can obtain for it in the permutatitimgsis about a factor
of nworse than the bound for PermELearn and the lower bound.

Although computationally expensive, one can also consider running ttigd-sdgorithm while
explicitly representing each of thié permutations as an expert.Tfis the sum of the loss matrices
over the past trials ang is then x n matrix with entriesk ; = e "Ti, then the weight of each
permutation experfl is proportional to the produdt]; F) and the normalization constant is
the permanent of the matrix. Calculating the permanent is a known #P-complete problem and
sampling from this distribution over permutations is very inefficient (Jerruah €2004). Moreover
since the loss range of a permutatiorjdsn], the standard loss bound for the algorithm that uses
one expert per permutation must be scaled up by a factorlmcoming

LpesttN Z%tln(n!)Jrnln(n!)szestJr 2Les2Inn+ninn,

This expected loss bound is similar to our expected loss bound for PermEbhezquation (2), ex-
cept that thenInn terms are replaced by Inn. Our method based on Sinkhorn balancing bypasses
the estimation of permanents and somehow PermELearn’s implicit represeratatigorediction
method exploit the structure of permutations and lets us obtain the improved.béralso give a
matching lower bound that shows PermELearn has the optimum regret fiquittda small constant
factor). It is an interesting open question whether the structure of peiiongaan be exploited to
prove bounds like (2) for the Hedge algorithm with one expert per petioaota

PermELearn’s weight updates belong to the Exponentiated Gradient famibgates (Kivinen
and Warmuth, 1997) since the componelts of the loss matrix that appear in the exponential

1707

HELMBOLD AND WARMUTH

factor are the derivatives of our linear loss with respect to the welghfs This family of up-

dates usually maintains a probability vector as its weight vector. In that casetmalization of
the weight vector is straightforward and is folded directly into the updatadta. Our new algo-
rithm PermELearn for learning permutations maintains a doubly stochastic méttrirdwveights.

The normalization alternately normalizes the rows and columns of the matrix untiegence
(Sinkhorn balancing). This may require an unbounded number of stebtha resulting matrix
does not have a closed form. Despite this fact, we are able to prove biourmds algorithm.

We first show that our update minimizes a tradeoff between the loss andtigeredatropy
between doubly stochastic matrices. This relative entropy becomes ounmaedgrogress in the
analysis. Luckily, the un-normalized multiplicative update already makesgbrmogress (towards
the best permutation) to achieve the loss bound quoted above. Finally, weréhtihe iterations
of Sinkhorn balancing as Bregman projections with respect to the sameeeaatropy and show
using the properties of Bregman projections that these projections camnondase the progress
and thus don’t hurt the analysis (Herbster and Warmuth, 2001).

Our new insight of splitting the update into an un-normalized step followed yaalization
step also leads to a streamlined proof of the loss bound for the Hedge alyadmittne standard
expert setting that is interesting in its own right. Since the loss in the allocationgsisttinear, the
bounds can be proven in many different ways, including potential bastidbds (see, e.g., Kivinen
and Warmuth, 1999; Gordon, 2006; Cesa-Bianchi and Lugosi, 26@8}he sake of completeness
we reprove our main loss bound for PermELearn using potential basedasethAppendix B. We
show how potential based proof methods can be extended to handle lipgdityeconstraints that
don’t have a solution in closed form, paralleling a related extension to lineguality constraints
in Kuzmin and Warmuth (2007). In this appendix we also discuss the relaipbstween the
projection and potential based proof methods. In particular, we showtteBregman projection
step corresponds to plugging in suboptimal dual variables into the potential.

The remainder of the paper is organized as follows. We introduce outioria the next
section. Section 3 presents the permutation learning model and givealsetigtive examples of
appropriate loss motifs. Section 4 gives the PermELearn algorithm andsésciis computational
requirements. One part of the algorithm is to decompose the current detoblyastic matrix into
a small convex combination of permutations using a greedy algorithm. Thellmuthe number
of permutations needed to decompose the weight matrix is deferred to Appgendle then bound
PermELearn’s regret in Section 5 in a two-step analysis that uses aeatatiropy as a measure
of progress. To exemplify the new techniques, we also analyze the baggetalgorithm with the
same methodology. The regret bounds for Hedge and PermELeare-preven in Appendix B
using potential based methods. In Section 6, we apply the “Follow the Pedtudader” algorithm
to learning permutations and show that the resulting regret bounds a&s igatod. In Section 7
we prove a lower bound on the regret when learning permutations that i \&itmall constant
factor of our regret bound on the tuned PermELearn algorithm. Thduating section describes
extensions and directions for further work.

2. Notation

All matrices will ben x n matrices. Wher is a matrix,A; ; denotes the entry ok in row i, and
columnj. We useAe B to denote the dot product between matriéendB, that is,y; ; A ;B ;. We
use single superscripts (e.4X) to identify matrices/permutations from a sequence.

1708

LEARNING PERMUTATIONS

Permutations om elements are frequently represented in two ways: as a bijective mapping of
the elementq1,...,n} into the positiong1,...,n} or as a permutation matrix which is anx n
binary matrix with exactly one “1” in each row and each column. We use théionfa (andfl) to
represent a permutation in either format, using the context to indicate thepajape representation.
Thus, for each € {1,...,n}, we usell(i) to denote the position that thith element is mapped to
by permutatiorf1, and matrix elemerl; j = 1 if (i) = j and 0 otherwise.

If L is a matrix withn rows then the produdiL permutes the rows df:

0100 11 12 13 1 21 22 23 2
0— 0 001 Lo 21 22 23 24 oL — 41 42 43 44
0 010 31 32 33 34 31 32 33 34
1 0 0 O 41 42 43 4 11 12 13 1
perm.(2,4,3,1) as matrix an arbitrary matrix permuting the rows

Convex combinations of permutations credtmubly stochastior balancedmatrices: non-
negative matrices whose rows andn columns each sum to one. Our algorithm maintains its
uncertainty about which permutation is best as a doubly stochastic weighx Maand needs to
randomly select a permutation from some distribution whose expectatgn By Birkhoff's The-
orem (see, e.g., Bhatia, 1997), for every doubly stochastic matiilkere is a decomposition into
a convex combination of at moset — 2n+ 2 permutation matrices. We show in Appendix A how
a decomposition of this size can be found effectively. This decompositi@s gi distribution over
permutations whose expectatiorVisthat now can be effectively sampled because its support is at
mostn? — 2n+ 2 permutations.

3. On-line Protocol

We are interested in learning permutations in a model related to the on-line alfocabidel of
learning with experts (Freund and Schapire, 1997). In that model #red experts and at the
beginning of each trial the algorithm allocates a probability distributioover the experts. The
algorithm picks experitwith probabilityw; and then receives a loss vector [0, 1]N. Each expert
i incurs loss¢; and the expected loss of the algorithmwis?. Finally, the algorithm updates its
distributionw for the next trial.

In case of permutations we could have one expert per permutation andtaldistribution
over then! permutations. Explicitly tracking this distribution is computationally expensivene
for moderaten. As discussed in the introduction, we assume that the losses in each triaé can
specified by a loss matrik € [0,1]™" where the loss of each permutatibinhas the linear form
YiLing = MeL. If the algorithm’s predictiorﬁ is chosen probabilistically in each trial then the
algorithm’s expected loss [l eL] =W e L, whereW = E[fi]. This expected predictiow is
ann x n doubly stochastic matrix and algorithms for learning permutations under the lossa
assumption can be viewed as implicitly maintaining such a doubly stochastic weigfht.ma

More precisely, the on-line algorithm follows the following protocol in ea@:tr

e The learner (probabilistically) chooses a permutaﬁbrand letW = E(ﬁ).

e Nature simultaneously chooses a loss mdtrix [0, 1]™" for the trial.

e At the end of the trial, the algorithm is givén The loss ofl is [e L and the expected loss
of the algorithm iV e L.

1709

HELMBOLD AND WARMUTH

¢ Finally, the algorithm updates its distribution over permutations for the nextimaljcitly
updating matrixyv.

Although our algorithm can handle arbitrary sequences of loss matrieef0, 1]"*", nature
could be significantly more restricted. Many ranking applications have socaded loss motiM
and nature is constrained to choose (row) permutation$ a$ its loss matrix. In effect, at each
trial nature chooses a “correct” permutatibnand uses the loss matrix= NM. Note that the
permutation left-multiplies the loss motif, and thus permutes the rovi.df nature chooses the
identity permutation then the loss mattixs the motifM itself. WhenM is known to the algorithm,
it suffices to give the algorithm only the permutatidnat the end of the trial, rather than the loss
matrix L itself. Figure 1 gives examples of loss motifs.

The last loss in Figure 1 is related to a competitive List Update Problem wheagarithm
services requests to a listmftems. In the List Update Problem the cost of a request is the requested
item’s current position in the list. After each request, the requested itemecarobed forward in
the list for free, and additional rearrangement can be done at afcose@er transposition. The
goal is for the algorithm to be cost-competitive with the best static orderingeotllments in
hindsight. Note that the transposition cost for additional list rearrangemmemt represented in
the permutation loss motif. Blum et al. (2003) give very efficient algorithmgie List Update
Problem that do not do additional rearranging of the list (and thus dmoot the cost neglect by
the loss motif). In our notation, their bound has the same form as ourst(®jthuthe ninn factors
replaced byO(n). However, our lower bound (see Section 7) shows thahthe factors in (2) are
necessary in the general permutation setting.

Note that many compositions of loss motifs are possible. For example, givembtts with
their associated losses, any convex combination of the motifs creates a ridwomthe same
convex combination of the associated losses. Other component-wise ctiorisra two motifs
(such as product or max) can also produce interesting loss motifs, bebthkination usually
cannot be distributed across the matrix dot-product calculation, andnsmiche expressed as a
simple linear function of the original losses.

4. PermELearn Algorithm

Our pernutation learing algorithm uses »@onenential weights and we call it PermELearn. It
maintains am x n doubly stochastic weight matrW as its main data structure, wheig; is the
probability that PermELearn predicts with a permutation mapping eleirterpositionj. In the
absence of prior information it is natural to start with uniform weights, thahis matrix with,—l1 in
each entry.

In each trial PermELearn does two things:
1. Choose a permutatid from some distribution such th&{r1] = W.

2. Create a new doubly stochastic matifor use in the next trial based on the current weight
matrix W and loss matrix..

1710

LEARNING PERMUTATIONS

loss£(1,N) motif M

01 1 1

= 10 1 1

the number of elementsvherel(i) # N L1 o 1

1110
1 n [G : 01 2 3
=1 Yie1 |M(i) = MN(i)|, how far the elements are 101 o
from their “correct” positions (the division hy— % 21 0 1

1 ensures that the entriesMdfare in[0, 1].)

3 210

Losh, ‘ﬁ('llff?(')‘ a position weighted version of 12 0 Y2 1
the above emphasizing the early position§lin 2/3 1/3 0 Y3
3/4 1/2 1/4 0

Wl

0 0 1 1
the number of elements mapped to the first half 0 0 1 1
by M but the second half bﬁ, or vice versa 1 1 0 0
1100

0 00 1 1

the number of elements mapped to the first two 0 00 1 1

positions byl that fail to appear in the top three 0 00 0 O

position off1 000 0 0

0 00 0Q

0 1 2 3

the number of links traversed to find the first ele- 1]/0 0 00
ment off1 in a list ordered by 310 0 0 o
0 00O

Figure 1: Loss motifs

Choosing a permutation is done by Algorithm 1. The algorithm greedily deceesé into a
convex combination of at most — 2n+ 2 permutations (see Theorem 7), and then randomly selects
one of these permutations for the predictfon.

Our decomposition algorithm uses a Temporary mairixitialized to the weight matrixVv.
Each iteration of Algorithm 1 finds a permutatibhwhere eacth;) > 0. This can be done by
finding a perfect matching on thex n bipartite graph containing the edgg wheneverA; ; > 0.
We shall soon see that each matiiis a constant times a doubly stochastic matrix, so the existence
of a suitable permutatiofl follows from Birkhoff's Theorem. Given such a permutatibin the
algorithm updates\ to A— all wherea = minj A n4). The updated matri¥\ has non-negative
entries and has strictly more zeros than the orighalSince the update decreases each row and

2. The decomposition is usually not unique and the implementation may Haas as to exactly which convex combi-
nation is chosen.

1711

HELMBOLD AND WARMUTH

Algorithm 1 PermELearn: Selecting a permutation
Require: a doubly stochastin x n matrix W
A=W, q=0;
repeat
q:=q+1;
Find permutatiorf19 such that; qq(j) is positive for each € {1,...,n}
Qg i= Min A ma)
A:=A—qgnd
until All entries of A are zero {at end of loopN = 5, aM*}
Randomly select and returnae {nt,...,N9} using probabilitiesy, . .., 0.

Algorithm 2 PermELearn: Weight Matrix Update
Require: learning rate), loss matrixL, and doubly stochastic weight matkix

CreateW’ where eachV/'; =W je % (3)

Create doubly slochastﬁ/ by re-balancing the rows and columnsWf (Sinkhorn balancing)
and updat&V toW.

column sum bya and the original matri¥V was doubly stochastic, each matfwill have rows
and columns that sum to the same amount. In other words, each dateated during Algorithm 1
is a constant times a doubly stochastic matrix, and thus (by Birkhoff’s Eneois a constant times
a convex combination of permutations.

After at mostn? — n iterations the algorithm arrives at a matixhaving exactlyn non-zero
entries, so thid\ is a constant times a permutation matrix. Therefore, Algorithm 1 decomposes the
original doubly stochastic matrix into the convex combination of (at mu’st) n+ 1 permutation
matrices. The more refined arguments in Appendix A shows that the Algorithevdr uses more
thann? — 2n+ 2 permutations, matching the bound given by Birkhoff's Theorem.

Several improvements are possible. In particular, we need not compiig@edect matching
from scratch. If onlyz entries ofA are zeroed by a permutation, then that permutation is still a
matching of sizen— zin the graph for the updated matrix. Thus we need to find a@lygmenting
paths to complete the perfect matching. The entire process thus requilieg @{n?) augmenting
paths at a cost dD(n?) each, for a total cost @d(n*) to decompose weight matri into a convex
combination of permutations.

4.1 Updating the Weights

In the second step, Algorithm 2 updates the weight matrix by multiplying #&grentry by the
factore ki, These factors destroy the row and column normalization, so the matrix must be
balanced to restore the doubly-stochastic property. There is no clogaddr the normalization
step. The standard iterative re-balancing method for non-negative ezaisicalledSinkhorn bal-
ancing This method first normalizes each row of the matrix to sum to one, and theratipes the
columns. Since normalizing the columns typically destroys the row normalizateprdtess must
be iterated until convergence (Sinkhorn, 1964).

1712

LEARNING PERMUTATIONS

1 1 ﬁ _ 1

5 5 Sinkhorn balancing 1+v2 1+V2
—

i1 1 V2

2 112 1442

Figure 2: Example where Sinkhorn balancing requires infinitely many steps.

Normalizing the rows corresponds to pre-multiplying by a diagonal matrix pfb@uct of these
diagonal matrices thus represents the combined effect of the multiple romahipation steps. Sim-
ilarly, the combined effect of the column normalization steps can be repeesley post-multiplying
the matrix by a diagonal matrix. Therefore we get the well known fact thrkh®rn balancing a
matrix A results in a doubly stochastic matRACwhereR andC are diagonal matrices. Each entry
Ri,i is the positive multiplier applied to roiyand each entrg; j is the positive multiplier of column
j needed to conveh into a doubly stochastic matrix.

In Figure 2 we give a rational matrix that balances to an irrational matrix.eS¥ach row and
column balancing step creates rationals, Sinkhorn balancing produagsnals only in the limit
(after infinitely many steps). Multiplying a weight matrix from the left and/or tigynon-negative
diagonal matrices (e.g., row or column normalization) preserves the ratimdéigt weights be-
tween permutations. That isAf = RAC, then for any two permutatiorid; andl»,

|_|iAi/7r|1(i) _ |_|iAi7rI1(i)Ri7iC”1(i):”1(i) _ |_|iAi,ﬂ1(i)
MiA e MiARGORICR6.G TiARG)

1/2 1/2
1/2 1

product weight between the two permutatiéhs?) and(2,1) is preserved. This mea%% =&

(1-a)?
and thusaa = T\/\éﬁ
This example leads to another important observation: PermELearn’s fiwadiare different
than Hedge’s when each permutation is treated as an expert. If eachigomis explicitly repre-
sented as an expert, then the Hedge algorithm predicts permuthtiatin probability proportional
to the product weightf]; e N2tk However, algorithm PermELearn predicts differently. With

the weight matrix in Figure 4.1, Hedge puts probabigtyjn permutation(1,2) and probability%
on permutation(2,1) while PermELearn puts probability% ~ 0.59 on permutatior{1,2) and

Therefore() must balance to a doubly stochastic maffi®, *,2) such that the ratio of the

probabilityr‘/\iﬁ ~ 0.41 on permutation (2,1).

There has been much written on the balancing of matrices, and we briefigldeenly a few
of the results here. Sinkhorn showed that this procedure convemgethat theRAC balancing of
any matrixA into a doubly stochastic matrix is unique (up to canceling multipleR ahdC) if it
exists (Sinkhorn, 1964).

A number of authors consider balancing a ma#igo that the row and column sums arg: &.
Franklin and Lorenz (1989) show th@tlength(A)/e) Sinkhorn iterations suffice, where leng#)
is the bit-length of matrixA’s binary representation. Kalantari and Khachiyan (1996) show that

. . (1 1 0
3. Some non-negative matrices, life 1 o], cannot be converted into doubly stochastic matrices because of their
0 1 1

pattern of zeros. The weight matrices we deal with have strictly positiveeenand thus can always be made doubly
stochastic with alRACbalancing.

1713

HELMBOLD AND WARMUTH

O(n4lngln minlm) operations suffice using an interior point method. Linial et al. (2000¢ giv
preprocessing step after which or®((n/g)?) Sinkhorn iterations suffice. They also present a
strongly polynomial time iterative procedure requirgﬁ7 log(1/¢)) iterations. Balakrishnan et al.
(2004) give an interior point method with complexi®(nflog(n/)). Finally, Firer (2004) shows
that if the row and column sums &f are 14 € then every matrix entry changes by at mdsie

whenA is balanced to a doubly stochastic matrix.

4.2 Dealing with Approximate Balancing

With slight modifications, Algorithm PermELearn can handle the situation wheweeitght matrix
is imperfectly balanced (and thus not quite doubly stochastic). As bééow¥, be the fully balanced
doubly stochastic weight matrix, but we now assume that only an approxirrtﬁﬁylcecw is
available to predict from. In particular, we assume that each row and cadtihrsum to 1t € for
someg < % Lets> 1— ¢ be the smallest row or column SUMW.

We modify Algorithm 1 in two ways. Firstj is initialized to %VA\/ rather tharlWW. This ensures
every row and column in the initiagh sums to at least one, to at mostBe, and at least one row
or column sums to exactly 1. Second, the loop exits as sodnhas an all-zero row or column.
Since the smallest row or column sum starts at 1, is decreasad bgch iteratiork, and ends at
zero, we have thgf,_, ax = 1 and the modified Algorithm 1 still outputs a convex combination of
permutation<C = S\ axlX. Furthermore, each ent(j < %VA\/.J We now bound the additional
loss of this modified algorithm.

Lemmal If the weight matrisV is approximately balanced so each row and column sumlis-ig
(fore < %) then the modified Algorithm 1 has an expected loss @t most3n®¢ greater than the
expected loss WL of the original algorithm that uses the completely balanced doubly sttichas
matrix W.

Proof Lets be the smallest row or column sum\i. Since each row and column sum glﬂ/
lies in[1,1+ 3¢], each entry oflsVA\/ is close to the corresponding entry of the fully balanéédin

particular eacI”éVA\/.J < W ; + 3ne (Furer, 2004). This allows us to bound the expected loss when
predicting with the convex combinatidd in terms of the expected loss using a decomposition of
the perfectly balanced/:

CelL < %vAv.L
W?j

27

< Z(V\,‘.7j+3ns)Li7j
1]

< WelL+3n%.

Therefore the extra loss incurred by using-approximately balanced weight matrix at a particular
trial is at most 8%, as desired. |

1714

LEARNING PERMUTATIONS

If in a sequence of trials the matrice$V aree = 1/(3T %) balanced (so that each row and
column sum is 1 1/(3Tn)) then Lemma 1 implies that the total additional expected loss for
using approximate balancing is at most 1. The algorithm of Balakrishndn(8084)e-balances a
matrix inO(nflog(n/¢)) time (note that this dominates the time for the loss update and constructing
the convex combination). This balancing algorithm wéts 1/(3T n®) together with the modified
prediction algorithm give a method requiri@fT nflog(T n)) total time over thd trials and having
a bound of,/2LggnInn+ninn+ 1 on the worst-case regret.

If the number of trialsT is not known in advance then settia@s a function of can be helpful.

A natural choice ig; = 1/(3t2n®). In this case the total extra regret for not having perfect balancing
is bounded bys{_; 1/t? < 5/3 and the total computation time over thdrials is still bounded by
O(TrPlog(Tn)).

One might be concerned about the effects of approximate balancinggatpg between trials.
However this is not an issue. In the following section we show that the |a$astep and balancing
can be arbitrarily interleaved. Therefore the modified algorithm can eitegp k cumulative loss
matrix L=t = Z}:l L' and create its nextvV by (approximately) balancing the matrix with entries

%e’”'-fil, or apply the multiplicative updates to the previous approximately balanced

5. Boundsfor PermEL earn

Our analysis of PermELearn follows the entropy-based analysis of gemertiated gradient family
of algorithms (Kivinen and Warmuth, 1997). This style of analysis firstxsha per-trial progress
bound using relative entropy to a comparator as a measure of progmelsthien sums this invariant
over the trials to bound the expected total loss of the algorithm. We also showdhaELearn’s
weight update belongs to the exponentiated gradient family of updateéséikiand Warmuth, 1997)
since it is the solution to a minimization problem that trades of the loss (in this caseaa loss)
against a relative entropy regularization.

Recall that the expected loss of PermELearn on a trial is a linear functiibs weight matrix
W. Therefore the gradient of the loss is independent of the curren¢ vdMV. This property of
the loss greatly simplifies the analysis. Our analysis for this setting providesdafgundation for
learning permutation matrices and lays the groundwork for the future studgher permutation
loss functions.

We start our analysis with an attempt to mimic the standard analysis (Kivinen anah,
1997) for the exponentiated gradient family updates which multiply by exg@idactors and re-
normalize. The per-trial invariant used to analyze the exponentiatedegtddmily bounds the
decrease in relative entropy from any (normalized) veattw the algorithm’s weight vector by a
linear combination of the algorithm’s loss and the lossuadn the trial. In our case the weight
vectors are matrices and we use the following (un-normalized) relativepgritetween matrice&
andB with non-negative entries:

Ai .

7J
B — A .
B, +Bij—Aj

AAB) =S Ajln
1]

Note that this is just the sum of the relative entropies between the cordiegaows (or equiva-
lently, between the corresponding columns):

AAB) =Y AA..B.) = AA.;.B.)
[]

1715

HELMBOLD AND WARMUTH

(hereA . is theith row of AandA, j is its jth column).

Unfortunately, the lack of a closed form for the matrix balancing proceduakes it difficult
to prove bounds on the loss of the algorithm. Our solution is to break Permi& eipdate (Algo-
rithm 2) into two steps, and use only the progress made to the intermediatéamadzhmatrix in
our per-trial bound (8). After showing that balancing to a doubly stsiihanatrix only increases
the progress, we can sum the per-trial bound to obtain our main theorem.

5.1 A Dead End

In each trial, PermELearn multiplies each entry of its weight matrix by an exp@ahéactor and
then uses one additional factor per row and column to make the matrix doubhasta (Algo-
rithm 2 described in Section 4.1):

\K/.?j = rich.,je’”'-‘-i 4)

where ther; andc; factors are chosen so that all rows and columns of the matsum to one.
We now show that PermELearn’s update (4) gives the matsglving the following minimiza-
tion problem:

argmin (A(AAW)+n (Ael)). (5)
ViiyjAj=1
VityiAj=1

Since the linear constraints are feasible and the divergence is strictlgxgdhere always is a
unigue solution, even though the solution does not have a closed form.

Lemma 2 PermELearn’s updated weight mathiX (4) is the solution of(5).

Proof We form a Lagrangian for the optimization problem:

I(Ap,Y) =AAW)+n (AeL)+ > pi(H Aj—D+ Vi Aj— 1)
]]]]

Setting the derivative with respect £ to 0 yieldsA; j = W je g Pie™Vi. By enforcing the
row and column sum constraints we see that the facterse™® andc; = e™Yi function as row and
column normalizers, respectively. |

We now examine the progreggU,W) — A(U,W) towards an arbitrary stochastic mattik
Using Equation (4) and noting that all three matrices are doubly stochastibefs entries sum to
n), we see that

AU,W) —AU,W) = —nUeL+ Y Inri+ Y Inc;.
[]

Making this a useful invariant requires lower bounding the sums on théytss constant times
W e L, the loss of the algorithm. Unfortunately we are stuck because; tued c; normalization
factors don't even have a closed form.

1716

LEARNING PERMUTATIONS

5.2 Successful Analysis

Our successful analysis splits the update (4) into two steps:
Wi i=W e and Wj = ricj W, 6)

where (as before) andc; are chosen so that each row and column of the mitrisum to one.

Using the Lagrangian (as in the proof of Lemma 2), it is easy to see that\WiemedW matrices
solve the following minimization problems:

W = argmin(A(AW)+n (AeL)) and W:= argmin AAW). (7)
A ViiyjAj=1
VitgiAj=1

The second problem shows that the doubly stochastic matii the projection of\ onto to the
linear row and column sum constraints. The strict convexity of the relatitregy between non-
negative matrices and the feasibility of the linear constraints ensure thatttiess for both steps
are unique.

We now lower bound the progreAsU,W) — A(U,W’) in the following lemma to get our per-
trial invariant.

Lemma 3 For anyn > 0, any doubly stochastic matrices U and W and any trial with loss matrix
L € [0,1)™"
AUW)—-AUW) > (1—-e M (WelL)—n(Uel),

where W is the unbalanced intermediate mat(&) constructed by PermELearn from W.

Proof The proof manipulates the difference of relative entropies and usesebeaaility e "* <
1— (1—e M)x, which holds for anyy and anyx € [0, 1]:

AUW)—AUW) = g(uiv,-lnvwv'fjJFV\/.,j—vv,jj)
= 3 (Uigin(e M) + W — W e 1)
> JZJ(—nLiijiﬁVVu—V\/l,j(l—(l—e_”)Li,j))
= ;Jq(U.L)+(1—e‘”)(WoL).

Relative entropy is a Bregman divergence, so the Generalized Py#izegdbneorem (Bregman,
1967) applies. Specialized to our setting, this theorem states Bt & closed convex set contain-
ing some matri) with non-negative entrie¥y’ is any matrix with strictly positive entries, aitd
is the relative entropy projection ¥¥' onto Sthen

AU,W') > A(U,W) +AW,W).

1717

HELMBOLD AND WARMUTH

Furthermore, this holds with equality whé&his affine, which is the case here sin8es the set
of matrices whose rows and columns each sum to 1. Rearranging and thatidgA, B) is non-
negative yields Corollary 3 of Herbster and Warmuth (2001), which is thguality we need:

AU,W') —A(U,W) = AW,W) > 0.
Combining this with the inequality of Lemma 3 gives the critical per-trial invariant:
A(UW) —AUW) > (1—eM)(WeL) —n(UeL). ®)

We now introduce some notation and bound the expected total loss by summiagahe
inequality over a sequence of trials. When considering a sequencelsf Itfiégs the loss matrix
at trialt, W'=1 is PermELearn’s weight matri at the start of triat (soW? is the initial weight
matrix) andW! is the updated weight matri#/ at the end of the trial.

Theorem 4 For any learning raten > 0, any doubly stochastic matrices U and initial%\and
any sequence of T trials with loss matricésd.[0,1]™" (for 1 <t < T), the expected loss of
PermELearn is bounded by:

U,WO —AU,WT) +n5{ U elL!
l1—en '

S witelt < A
A hE

Proof Applying (8) to trialt gives:
AU WY —AUWYH > (1—e MW telh) —n(U eLY).

By summing the above over dl trials we get:
T T
AUWO) —AUWT) > (1—e™) letfl. L'—n Zlu oL,
t= t=
The bound then follows by solving for the total expected I(ﬁgﬂwtflo L!, of the algorithm. W

When the entries ofV° are all initialized to% andU is a permutation theA(U,W°) = ninn.
Since each doubly stochastic mattixis a convex combination of permutation matrices, at least
one minimizer of the total losy; ;U e L will be a permutation matrix. If,egidenotes the loss of
such a permutatiod *, then Theorem 4 implies that the total loss of the algorithm is bounded by

AU* W) 41 Lpest
l—en '

If upper boundsA\(U*,WP) < Dest< ninn and Lest> Lyegtare known, then by choosing =
In <1+ 2‘?{"), and the above bound becomes (Freund and Schapire, 1997):

Lpestt V/2LesDest+ AU WP). 9)

A natural choice foDggtis ninn. In this case the tuned bound becomes

Lpestt vV 2LeshInn+ninn.

1718

LEARNING PERMUTATIONS

5.3 Approximate Balancing

The preceding analysis assumes that PermELearn’s weight matrix isthelfalanced each itera-
tion. However, balancing techniques are only capably of approximatindiag the weight matrix

in finite time, so implementations of PermELearn must handle approximately balaratgdes. In
Section 4.2, we describe an implementation that uses an approximately badndexd the start of
iterationt rather than the completely balandati of the preceding analysis. Lemma 1 shows that
when this implementation of PermELearn uses an approximately balaicédwhere each row
and column sum is in % &, then the expected loss on tridk at moswW! 1 e L' 4+ 3n%;. Summing
over all trials and using Theorem 4, this implementation’s total loss is at most

T 0y T T t T
Zl (Wt—l ° Lt + 3n38t) < A(U 7W) A(U 7W) +N zt:lU ol + 3n38t)
& l1-en &

As discussed in Section 4.2, setting= 1/(3n%t?) leads to an additional loss of less thaf85
over the bound of Theorem 4 and its subsequent tunings while incurtmtglaunning time (over
all T trials) in O(TnPlog(Tn)). In fact, the additional loss for approximate balancing can be made
less than any positive by settingg; = ¢/(5n°t?). Since the time to approximately balance depends
only logarithmically on e, the total time taken oveF trials remains irO(T rflog(Tn)).

5.4 Split Analysisfor the Hedge Algorithm

Perhaps the simplest case where the loss is linear in the parameter vectoonslitie allocation
setting of Freund and Schapire (1997). It is instructive to apply our mathelitting the update
in this simpler setting. There afé experts and the algorithm keeps a probability distribution
over the experts. In each trial the algorithm picks experith probabilityw; and then gets a loss
vector/ ¢ [0,1]N. Each expertincurs losg/; and the algorithm’s expected lossas/. Finally wis
updated tav for the next trial.

wie
This update can be motivated by a tradeoff between the un-normalizedeeaatropy to the old
weight vector and expected loss in the last trial (Kivinen and Warmutt9)199

The Hedge algorithm (Freund and Schapire, 1997) updates its weicfor vew; =

W := argmin(A(W,w) +n W-¢).
Siw=1

For vectors, the relative entropy is simpglyw,w) := 3; W;In % +Ww; —W;. As in the permutation
case, we can split this update (and motivation) into two steps: settingiéaehvie ™’ thenw =

W/ S iw. These are the solutions to:

w = argmin(A(W,w) +n W-¢) and W:= argminA(W,w).

W Ei Wi:l

1719

HELMBOLD AND WARMUTH

The following lower bound has been shown on the progress towardsrabgbility vectowu serving
as a comparatdt:

A(u,w) —A(u,w) = —nu-£—In Zwie—nfi
> —n U'f—anWi(l—(l—e_”)Ei)
> —nu-l+w-(1-ey, (10)

where the first inequality uses™ < 1— (1—e)x, for anyx € [0, 1], and the second usesn(1—
X) > x, for x € [0, 1]. Surprisingly the same inequality already holds for the un-normalized update:

A(uW) —AUW) = —nu-£+ Y wi(l-e) >w-£(1-e")—nu-¢.

Since the normalization is a projection w.r.t. a Bregman divergence onto a ¢ioesiraint satisfied
by the comparatau, A(u,w') —A(u, W) > 0 by the Generalized Pythagorean Theorem (Herbster and
Warmuth, 2001). The total progress for both steps is again Inequality (10

With the key Inequality (10) in hand, it is easy to introduce trial dependetfattion and sum
over trails (as done in the proof of Theorem 4, arriving at the familianddor Hedge (Freund and
Schapire, 1997): For any > 0, any probability vectora® andu, and any loss vecto$ ¢ [0,1]",

iwtl.gt _ DuwWO) —Auwh) +nyliued
- 1—e™n '

t=

(11)

Note that the r.h.s. is actually constant in the companatgtivinen and Warmuth, 1999), that is,
for all u,
AUW) —AUW) +n 3L uet —Inywle N
1—en B 1-€ '
The r.h.s. of the above equality is often used as a potential in proving béomebgoert algorithms.
We discuss this further in Appendix B.

5.5 When to Normalize?

Probably the most surprising aspect about the proof methodology is Kitalitg about how and
when to project onto the constraints. Instead of projecting a nonnegatitix onto all 2 con-
straints at once (as in optimization problem (7)), we could mimic the Sinkhorndiaaalgorithm
by first projecting onto the row constraints and then the column constraidtalgernating until
convergence. The Generalized Pythagorean Theorem shows ¢fettiplg ontoany convex con-
straint that is satisfied by the comparator class of doubly stochastic matricgs the weight matrix
closer toeverydoubly stochastic matrik. Therefore our bound of; W'~ e L' (Theorem 4) holds
if the exponential updates are interleaved with any sequence of progtti@ome subsets of the

4. This is essentially Lemma 5.2 of Littlestone and Warmuth (1994). Tieemefiation of this type of inequality with
relative entropies goes back to Kivinen and Warmuth (1999)

5. Note that if the algorithm does not normalize the weights thénno longer a distribution. Whep, w; < 1, the loss
w- L amounts to incurring O loss with probability-15; wi, and predicting as experwith probabilityw;.

6. There is a large body of work on finding a solution subject to constreimtterated Bregman projections (see, e.g.,
Censor and Lent, 1981).

1720

LEARNING PERMUTATIONS

constraints. However, if the normalization constraints are not enforeai\ths no longer a convex
combination of permutations. Furthermore, the exponential update factigrdecrease the entries
of W and without any normalization all of the entriesWfcan get arbitrarily small. If this is al-
lowed to happen then the “losgV e L can approach 0 for any loss matrix, violating the spirit of the
prediction model.

There is a direct argument that shows that the same final doubly stochmdtix is reached
if we interleave the exponential updates with projections to any of the cortstes long as all 2
constraints hold at the end. To see this we patrtition the class of matrices witivgestries into
equivalence classes. Call two such matridesdB equivalenif there are diagonal matricésand
C with positive diagonal entries such tHat= RAC Note thatRAG; j = RjA; jC;,j and therefore
B is just a rescaled version & Projecting onto any row and/or column sum constraints amounts
to pre- and/or post-multiplying the matrix by some positive diagonal matR@eslC. Therefore if
matricesA andB are equivalent then the projection&f{or B) onto a set of row and/or column sum
constraints results in another matrix equivalent to otndB.

The importance of equivalent matrices is that they balance to the same dmdbigstic matrix.

Lemma5 For any two equivalent matrices A and RAC, where the entries of A andiaberdhl
entries of R and C are positive,

argmin ~ A(AA) argmin A(A RAQ).
viiyALj=1 viiyAL=1
VitYiAj=1 VitTiAj=1

Proof The strict convexity of the relative entropy implies that both problems havecae matrix
as their solution. We will now reason that the unique solutions for both prabée the same. By
using a Lagrangian (as in the proof of Lemma 2) we see that the solution td#fthaptimization
problem is a square matrix withA; j ¢; in positioni, j. Similarly the solution of the problem on
the right hagiR;jA jCj j €j in positioni, j. Here the factors;,j function as row normalizers and
¢j,€; as column normalizers. Given a solution matgi)c; to the left problem, then; /R, ¢ /C; ;

is a solution of the right problem of the same value. Alsg,i€;’is a solution of right problem, then
iR i,€;Cj,j is a solution to the left problem of the same value.

This shows that both minimization problems have the same value and the matrix sofotion
both problems are the same and unique (even though the normalization factpod say the left
problem are not necessarily unique). Note that its crucial for the adnguenent that the diagonal
entries ofR,C are positive. |

The analogous phenomenon is much simpler in the weighted majority case: hamegative
vectorsa andb areequivalentf a = cb, wherec is any nonnegative scalar, and again each equiva-
lence class has exactly one normalized weight vector.

PermELearn’s intermediate matily’; := { ;e ki can be writteW o M whereo denotes the
Hadamard (entry-wise)Productand M; j = e ki, Note that the Hadamard product commutes
with matrix multiplication by diagonal matrices, @ is diagonal and® = (Ao B)C thenPR, j =
(AjBij)Cjj = (ALiCj,j)Bi,j so we also have = (AC) o B. Similarly, R(AcB) = (RA) o BwhenR
is diagonal.

1721

HELMBOLD AND WARMUTH

Hadamard products also preserve equivalence. For equivalent esatrend B = RAC (for
diagonalR andC) the matricesAo M andBo M are equivalent (although they are not likely to be
equivalent toA andB) sinceBoM = (RAC) oM = R(AoM)C.

This means that any two runs of PermELearn-like algorithms that have thelssgnaf loss
matrices and equivalent initial matrices end with equivalent final matricesittleey project onto
different subsets of the constraints at the end of the various trials.

In summary the proof method discussed so far uses a relative entropyiessare of progress
and relies on Bregman projections as its fundamental tool. In Appendix B dernive the bound for
PermELearn using the value of the optimization problem (5) as a potential. dlhis i expressed
using the dual optimization problem and intuitively the application of the GenedaRythagorean
Theorem now is replaced by plugging in a non-optimal choice for the darddhles. Both proof
techniques are useful.

5.6 Learning Mappings

We have an algorithm that has small regret against the best permutatiomutB&ons are a subset
of all mappings from{1,...,n} to{1,...,n}. We continue using@l for a permutation and introduce
Y to denote an arbitrary mapping frofd, ...,n} to {1,...,n}. Mappings differ from permutations
in that then dimensional vectofW(i)){_; can have repeats, that ¥g(i) might equaM(j) fori # j.
Again we alternately represent a mapphiicas ann x n matrix whereW; ; = 1 if W(i) = jand O
otherwise. Note that such squareapping matricelave the special property that they have exactly
one 1in each row. Again the loss is specified by a loss mhatard the loss of mapping/ is WeL.

It is straightforward to design an algoritiapELearnfor learning mappings with exponential
weights: Simply rum independent copies of the Hedge algorithm for each ointihews of the
received loss matrices. That is, théh copy of Hedge always receives thih row of the loss
matrix L as its loss vector. Even though learning mappings is easy, it is nevertiregsstive to
discuss the differences with PermELearn.

Note that MapELearn’s combined weight matrix is how a convex combinatianampings,
that is, a “singly” stochastic matrix with the constraint that each row sums toAuen, after the
exponential update (3), the constraints are typically not satisfied any maréhey can be easily
reestablished by simply normalizing each row. The row normalization onlysrtede done once in
each trial: no iterative process is needed. Furthermore, no fancyngesition algorithm is needed
in MapELearn: for (singly) stochastic weight mathi%, the prediction¥(i) is simply a random
element chosen from the row distributidv .. This sampling procedure produces a mappihg
such thaWW = E(W) and thusE(WeL) =W e L as needed.

We can use the same relative entropy between the single stochastic matitebe dower
bound on the progress for the exponential update given in Lemma 3 stib.h@ltbo our main
bound (Theorem 4) is still true for MapELearn and we arrive at the damed bound for the total
loss of MapELearn:

Lpestt V2LesDest+ AU, WO),

where Liyagi Lest andDestare now the total loss of the best mapping, a known upper bound on
Lpest and an upper bound a@x(U*,WP), respectively. Recall thatestandDestare needed to tune
then parameter.

7. In the case of mappings the restriction to square matrices is not eksentia

1722

LEARNING PERMUTATIONS

Our algorithm PermElearn for permutations may be seen as the above algfmithmappings
while enforcing the column sum constraints in addition to the row constraintsinddapELearn.
Since PermELearn’s row balancing “messes up” the column sums and v&s & interactive
procedure (i.e., Sinkhorn Balancing) is needed to create to a matrix in waathrewand col-
umn sums to one. The enforcement of the additional column sum constrantsria a doubly
stochastic matrix, an apparently necessary step to produce predictibastparmutations (and an
expected prediction equal to the doubly stochastic weight matrix).

When it is known that the comparator is a permutation, then the algorithm alaenefits
from enforcing the additional column constraints. In general we shduldya make use of any
constraints that the comparator is known to satisfy (see, e.g., Warmuth dndaviathan, 2005, for
a discussion of this).

As discussed in Section 4.1, Af is a Sinkhorn-balanced version of a non-negative makrix
then
MAMnG - MiA R
MiAnG A G

An analogous invariant holds for mappingsAlfis a row-balanced version of a non-negative matrix
A, then

for any permutation§l; andll,, (12)

iAW A W)

MiAwi) TIA w0

However it is important to note that column balancing does not preservebthe anvariant for
mappings. In fact, permutations are the subclass of mappings where m\iinolds.

There is another important difference between PermELearn and MapiLEor MapELearn,
the probability of predicting mappin® with weight matrixW is always the producf]; W yi)-
The analogous property doest hold for PermELearn. Consider the balanced2weight matrix
W on the right of Figure 2. This matrix decomposes i@ﬁ% times the permutatiofl, 2) plus

ﬁﬁ times the permutatio2,1). Thus the probability of predicting with permutatidh, 2) is

/2 times the probability of permutatigi®, 1) for the PermELearn algorithm. However, when the
probabilities are proportional to the intuitive product fo[fW (), then the probability ratio for
these two permutations is 2. Notice that this intuitive product weight measure digtribution
used by the Hedge algorithm that explicitly treats each permutation as ateepguart. Therefore
PermELearn is clearly different than a concise implementation of Hedgeforysations.

for any mapping$V; andWs,

6. Follow the Perturbed L eader Algorithm

Perhaps the simplest on-line algorithm is Bodlow the LeadefFL) algorithm: at each trial predict
with one of the best models on the data seen so far. Thus FL predicts atwiithl an expert in
argmin ¢! or any permutation in argmjyil e L<!, where “<t” indicates that we sum over the past
trials, that is,(" := 3 #. The FL algorithm is clearly non-optimal; in the expert setting there
is a simple adversary strategy that forces FL to have loss atrdmses larger than the loss of the
best expert in hindsight.

The expected total loss of tuned Hedge is one times the loss of the bedt@xpdower order
terms. Hedge achieves this by randomly choosing experts. The probalb‘iﬁtw}or choosing expert
i at trialt is proportional te 4", As the learning ratg — c, Hedge becomes FL (when there are

1723

HELMBOLD AND WARMUTH

no ties) and the same holds for PermELearn. Thus the exponential weightaederaten may be
seen as a soft min calculation: the algorithm hedges its bets and does @aditifsuprobability on
the expert with minimum loss so far.

The “Follow the Perturbed Leader” (FPL) algorithm of Kalai and Vemp2@90p) is an alternate
on-line prediction algorithm that works in a very general setting. It adddeom perturbations to the
total losses of the experts incurred so far and then predicts with thet@fpamimum perturbed
loss. Their FPE algorithm has bounds closely related to Hedge and other multiplicative weight
algorithms and in some cases Hedge can be simulated exactly (Kuzmin and Wa26Q&h by
judiciously choosing the distribution of perturbations. However, for thenpéation problem the
bounds we were able to obtain for FPare weaker than the the bound we obtained bounds for Per-
mELearn that uses exponential weights despite the apparent similarity betwerepresentations
and the general formulation of FPL

The FPL setting uses an abstr&etlimensional decision space used to encode predictors as
well as ak-dimensional state space used to represent the losses of the predittary. trial, the
current loss of a particular predictor is the dot product between tkdiqior’'s representation in the
decision space and the state-space vector for the trial. This general settiegplicitly represent
each permutation and its loss whke= n!. The FPL setting also easily handles the encodings of
permutations and losses used by PermELearn by representing eachatiemmatrix1 and loss
matrix L asn?-dimensional vectors.

The FPL algorithm (Kalai and Vempala, 2005) takes a parame#srd maintains a cumulative
loss matrixC (initially C is the zero matrix) At each trial, FPL

1. Generates a random perturbation mafriwhere each ; is proportional totr; ; wherer; j
is drawn from the standard exponential distribution.

2. Predicts with a permutatidii minimizing M e (C+ P).
3. After getting the loss matrik, update<C toC+ L.

Note that FPE is more computationally efficient than PermELearn. It takes @iy°) time
to make its prediction (the time to compute a minimum weight bipartite matching) andognfy
time to updateC. Unfortunately the generic FPLoss bounds are not as good as the bounds on
PermELearn. In particular, they show that the loss of F&tbany sequence of trials is at mbst

8n(1+Inn
(1+5)Lbest+7(+inn

whereg is a parameter of the algorithm. When the loss of the best expert is knowad ahgme,e
can be tuned and the bound becomes

Lbest+4\/2Lbesf‘3(1+|nn)+8n3(1+lnn) :

Although FPL gets the saméy,qgileading term, the excess loss over the best permutation grows
asn®Inn rather thenlnn growth of PermELearn’s bound. Of course, PermELearn pays for the
improved bound by requiring more computation.

8. Then?® terms in the bounds for FPL aretimes the sum of the entries in the loss matrix. So if the application has a
loss motif whose entries sum to orythen then® factors become?.

1724

LEARNING PERMUTATIONS

It is important to note that Kalai and Vempala also present a refined analyBBL* when
the perturbed leader changes only rarely. This analysis leads to bowatdaréhsimilar to the
bounds given by the entropic analysis of the Hedge algorithm (althougtotigant on the square-
root term is not quite as good). However, this refined analysis camndiréctly applied with the
efficient representations of permutations because the total perturbatisosiated with different
permutations are no longer independent exponentials. We leave thetamepitéhe refined analysis
to the permutation case as an open problem.

7. Lower Bounds

In this section we prove lower bounds on the worst-case regret oflgositam for our permutation
learning problem by reducing the expert allocation problermfexperts with loss rang@,n] to
the permutation learning problem. We then show in Appendix C a lower bourttifon expert
allocation problem that uses a known lower bound in the expert advicegseftimlosses irf0, 1].

For the reduction we choose any sengdermutationg %, ...,M"} that use disjoint positions,
that is, s, M' is then x n matrix of all ones. Using disjoint positions ensures that the losses of
thesen permutations can be set independently. EBtmmatrix in this set corresponds to tié
expert in then-expert allocation problem. To simulate arexpert trial with loss vectof € [0,n]"
we use a loss matrik s.t. ' oL = /(. This is done by setting all entries {iL,qi(q : 1 <gq<n}to
¢/ne€[0,1], thatis,L = 3;M' (¢ /n). Now for any doubly stochastic matri¥,

Mnew
n

WoL:Z 4.
|

Note that then dimensional vector with the componer(f@' ¢ W)/n is a probability vector and
therefore any algorithm for the-element permutation problem can be used as an algorithm for
the n-expert allocation problem with losses in the raf@a]. Thus any lower bound for the latter
model is also a lower bound on theslement permutation problem.

We first prove a lower bound for the case when at least one expeibsa zero for the entire
sequence of trials. If the algorithm allocates any weight to experts thathaady incurred positive
loss, then the adversary can assign loss only to those experts andherakgorithm increase its
expected loss without reducing the number of experts of loss zero. Wausn assume w.l.o.g.
that the algorithm allocates positive weight only to experts of zero loss.alfjweithm minimizes
its expected loss and the adversary maximizes it. We get a lower bound lyy tirdradversary:
This adversary assigns loego one of the experts which received the highest probability by the
algorithm and all other experts are assigned loss zero. Clearly the optiozten against such
an adversary uses the uniform distribution over those experts with zoTbe number of experts
with loss zero is reduced by one in each trial. Atttiat 1,...,n—1,n+ 1—t experts are left and
the expected loss % In the firstn — 1 trials the algorithm incurs expected loss

nn
ZZT ~ninn.
i=

When the loss of the best expert is large then the following theorem follmas €orollary 11:

1725

HELMBOLD AND WARMUTH

Theorem 6 There exists gisuch that for each dimensiorsnng, there is a | where for any number
of trials T > T, the following holds for any algorithm A for learning permutations of n elements in
the allocation setting: there is a sequence S of T trials such that

LpestS) <nT/2 and La(S) — LipestS) > v/ (nNT/2) ninn,

These two lower bounds can be combined to the following lower bound orxfleeed regret
for our permutation learning problem:

| |
max(m,nlnn) > m+n nn'

2

This means that the tuned upper bound on the expected regret of PeamEjieen after Theorem
4 cannot be improved by more than a small/@ constant factor.

8. Conclusions

We considered the problem of learning a permutation on-line, when thieigldpss is specified by
a matrixL € [0,1]™" and the loss of a permutation matfikis the linear los§1e L. The standard
approach would treat each permutation as an expert. However this is tairapally inefficient and
introduces an additional factor ofin the regret bounds (since the per-trial loss of a permutation
is [0,n] rather than0,1]). We do not know if this factor of is necessary for permutations, and
it remains open whether their special structure allows better regret bauntlte standard expert
algorithms when the experts are permutations.

We developed a new algorithm called PermELearn that uses a doublystiochatrix to main-
tain its uncertainty over the hidden permutation. PermELearn decomposesutbiy dtochastic
matrix into a small mixture of permutation matrices and predicts with a random pernmufiatio
this mixture. A similar decomposition was used by Warmuth and Kuzmin (2008) to ésawvell as
the best fixed-size subset of experts.

PermELearn belongs to the Exponentiated Gradient family of updates aaddhesis uses a
relative entropy as a measure of progress. The main technical insiglat ihéhper-trial progress
bound already holds for the un-normalized update and that re-balath&ngatrix only increases
the progress. Since the re-balancing step does not have a closedafmounting for it in the
analysis would otherwise be problematic. We also showed that the updéite idedge algorithm
can be split into an un-normalized update and a normalization. In this moredmdsig the per
trial progress bound also holds for the un-normalized update.

Our analysis techniques rely on Bregman projection methadd the regret bounds hold not
only for permutations but also for mixtures of permutations. This means that ifave additional
convex constraints that are satisfied by the mixture that we compare aglarstye can project
the algorithm’s weight matrix onto these constraints without hurting the analMsib$ter and
Warmuth, 2001). With these kinds of side constraints we can enforce saatimnships between
the parameters, such¥ag; > W (i is more likely mapped tg thank).

Our main contribution is showing how to apply the analysis techniques from frertexdvice
setting to the problem of efficiently learning a permutation. This means that niidimg tools from

9. Following Kuzmin and Warmuth (2007), we also showed in Appendix Bttieregret bounds proven in this paper
can be reproduced with potential based methods.

1726

LEARNING PERMUTATIONS

the expert setting are likely to carry over to permutations: lower boundingvélights when the
comparator is shifting (Herbster and Warmuth, 1998), long-term memory stiéing between a
small set of comparators (Bousquet and Warmuth, 2002), capping figatesérom the top if the
goal is to be close to the best set of disjoint permutations of fixed size (Waand Kuzmin, 2008),
adapting the updates to the multi-armed bandit setting when less feedbackickedr@Auer et al.,
2002)1% and PAC Bayes analysis of the exponential updates (McAllester, 2003).

We also applied the “Follow the Perturbed Leader” techniques to our peforupoblem. This
algorithm adds randomness to the total losses and then predicts with a minimumteseitatching
which costsO(n®) whereas our more complicated algorithm is at le@gt*) and has precision
issues. However the bounds currently provable for the*riRgorithm of Kalai and Vempala (2005)
are much worse than for our PermELearn algorithm. The key open pravlehether we can have
the best of both worlds: add randomness to the loss matrix so that the ekpgntsmum weighted
matching is the stochastic matrix produced by the PermELearn update (4jvdlismean that we
could use the faster algorithm together with our tighter analysis. In the simplighted majority
setting this has been done already (Kuzmin and Warmuth, 2005; Kalai,.280%}ever we do not
yet know how to simulate the PermELearn update this way.

Our on-line learning problem requires that the learner’s prediction tolaetal permutation.
This requirement makes sense for the linear loss we focus on in this papenay be less appro-
priate for on-line regression problems. Consider the case where brireddhe algorithm selects
a doubly stochastic matrid! while nature simultaneously picks a matdxe [0,1]"™" and a real
numbery. The prediction is>= M e X and the loss on the trial {§—y)2. With this convex quadratic
loss, it is generally better for the algorithm to hedge its bets between competimyifations and
select its doubly stochastic parameter matiixasM instead of a random permutation matfix
chosen s.tE(M) =W. The Exponentiated Gradient algorithm can be applied to this type of non-
linear regression problem (see, e.g., Helmbold et al., 1999) and SinBlataincing can project the
parameter matri¥V onto the row and column sum constraints.

We close with an open problem involving higher order loss functions. Inpdyier we consid-
ered linear losses specified by a square matwherel; ; gives the loss when ent(y, j) is used in
the permutation. Can one prove good regret bounds when the lossddepehow the permutation
assigns multiple elements? A pairwise loss could be represented with a foursitma matrix_
wherel; j x| is added to the loss only when the predicted permutation rbatbsi to j and kto .
The recently developed Fourier analysis techniques for permutatiomsl@et al., 2007; Huang
et al., 2009) may be helpful in generalizing our techniques to this kind othigtder loss.

Acknowledgments

We thank Vishy Vishwanathan for helping us simplify the lower bounds, aamddDesJardins for
helpful discussions and pointers to the literature on Sinkhorn Balancing.

10. Recently, a less efficient algorithm which explicitly maintains one expartpermutation has been analyzed in
the bandit setting by Cesa-Bianchi and Lugosi (2009). However thadsthey obtain have the loss range as an
additional factor in the regret bound (a factomdir permutations).

1727

HELMBOLD AND WARMUTH

Appendix A. Size of the Decomposition

Here we show that the iterative matching method of Algorithm 1 requires miesn+ 2 permu-
tations to decompose an doubly stochastic matrix. This matches the bound groyiBé&khoff’s
Theorem. Note that the discussion in Section 4 shows why Algorithm 1 caaysalfind a suitable
permutation.

Theorem 7 Algorithm 1 decomposes any doubly stochastic matrix into a convex cotmolpiind at
most ¥ — 2n+ 2 permutations.

Proof Let W be a doubly stochastic matrix and 8t,...,M, anday,...,a, be any sequence
of permutations and coefficients created by Algorithm 1 on ingutFor 0< j < ¢, defineM! =
W— ZLlGi MM;. By permuting rows and columns we can assume without loss of generalify et
the identity permutation. Le®/ (for 1 < j < /) be the (undirected) graph on thevertices{1, ...n}
where the undirected edd®,q} between nodep # q is present if and only if eithelY/I,J),q or Mé,p
is non-zero. Thus bot&!~1 andG' are the empty graph and ea@h*! has a (not necessarily strict)
subset of the edges @®&. Note the natural correspondences between vertices in the grapreand
and columns in the matrices.

The proof is based in the following key invariant:

of zero entries iMJ > j + (# connected components@i) — 1.

This holds for the initiaM°. Furthermore, when the connected componen@ja?tndeJrl are the
same, the algorithm insures thdi* has at least one more zero tHdh. We now analyze the case
when new connected components are created.

Let vertex seV be a connected component®i*! that was split off a larger connected com-
ponent inGl. We overload the notation, and ugealso for the set of matrix rows and/or columns
associated with the vertices in the connected component.

SinceV is a connected component 61 there are no edges going betwaéand the rest of
the graph, so iMi*1 is viewed as a (conserved) flow, there is no flow either into or oMt of

Mrjél Z/MHl
M2,

Thus all entries oM/ in the sets{M{. > 0:r e V,c ¢V} and{M ic>0:r¢V,ceV} are setto
zero inMI*1. SinceV was part of a larger connected componenGin at least one of these sets
must be non-empty. We now show that both these sets of entries are non-emp

Each row and column d¥!/ sumto 1- 5! , a;. Therefore

i no noo
l_Zai ’V’: Z/Zer{c: ;Zer{c
i= reveé=1t ceVr=

By splitting the inner sums we get:

2,2 Mt 3 3 M= 3 3 Mie 3, 3 Mie

1728

LEARNING PERMUTATIONS

By canceling the first sums and vieV_/it\lgj as a flow inG! we conclude that the total flow out f
in M1 equals the total flow int® in M!, that is,

2,2 M= 3, 5 e

and both set§M{c > 0:r ¢ V,c ¢V} and{M/c > 0:r ¢ V,c € V} sum to the same positive total,
and thus are non-empty.

This establishes the following fact that we can use in the remainder of to& ffoo each new
connected componeXtin Gl some entrWIr{c from a rowr in V was set to zero.

Now letk; (andkj1) be the number of connected components in g@plandGi*! respec-
tively). Since the edges i6i*1 are a subset of the edgesGh, Kj+1 > Kj. We already verified the
invariant wherk; = k.1, so we proceed assumiRg, 1 > k;. In this case at most; — 1 components
of G/ survive when going t&!*1, and at leask; 1 — (kj — 1) new connected components are cre-
ated. The vertex sets of the new connected components are disjoint, aeddanvicorresponding
to each new connected component there is at least one non-zero ekththat is zero inMi+1,
ThereforeMi*? has at leaskj ;1 — kj + 1 more zeros thaM!, verifying the invariant for the case
whenk;j 1 > kj.

SinceG!~1 hasn connected components, the invariant shows that the number of zevids in
is at least — 1+n— 1. FurthermoreM’ hasn more zeros tham‘~1, soM’ has at least +2n— 2
zeros. Sincél’ has onlyn? entriesn? > ¢ +2n— 2 and¢ < n? — 2n+ 2 as desired. []

The fact that Algorithm 1 uses at mast— 2n+ 2 permutations can also be established with a
dimensionality argument like that in Section 2.7 of Bazaraa et al. (1977).

Appendix B. Potential Based Bounds

Let us begin with the on-line allocation problem in the simpler expert settingeTdre always two
ways to motivate on-line updates. One trades the divergence to the la$it weigor against the
loss in the last trial, and the other trades the divergence to the initial weigtanagainst the loss
in all past trials (Azoury and Warmuth, 2001):

w = argmin(A(w,w) +nw-) whi= argmin(A(w,wP) +n w-£=Y).

Yiwi=1 Siwi=1

By differentiating the Lagrangian for each optimization problem we obtain ehgisns to both
minimization problems:

W=t e

where the signs of the Lagrange muItipIifél‘sandBt are unconstrained and their values are chosen
so that the equality constraints are satisfied. The left update can be dricodibtain

W = wfe N BT

This means the Lagrangian multipliers for both problems are related by thﬁtyeCE(gcglEq =p
et
""?ein'g. We use the value of the right convex

and both problems have the same solutibad =
ST awle "

11. The solutions can differ if the minimization is over linear inequality comsdKuzmin and Warmuth, 2007).

1729

HELMBOLD AND WARMUTH

optimization problem’s objective function as our potentfallts Lagrangian is
Wi WP <t
Z (Wilnwo+ D — Wi + Wil) +B (Zwi —1)
| | |

and since there is no duality gap:

V= min (AW,W) +nw-le) = m[?XZWP(l— e ") —p.

Yiwi=1

dual functiondt (B)

Heref is the (unconstrained) dual variable for the primal equality constrainttees;’s have been
optimized out. By differentiating we can optimian the dual problem and arrive at

Vi=—1n Zwioe*”fig.

This form of the potential has been used extensively for analyzingregfgorithms (see, e.g.,
Kivinen and Warmuth, 1999; Cesa-Bianchi and Lugosi, 2006). Oneeaaily show the following
key inequality (essentially Lemma 5.2 of Littlestone and Warmuth, 1994):

V-Vt = —n Zwioe‘”éiSt +In Z\Nioe‘”fi<t
= —In ZV\/}*le*”‘g}
> —Iny w1l (1-e M)

> (1-eMw it (13)

Summing over all trials and using = 0 gives the familiar bound:

v

.
1 .

Zivv‘*l-ﬁt S el B Smin (Dw, W) +nw-£=T).

t=

iWi=

Note that by Kivinen and Warmuth (1999)

T (Zw}‘le‘”g}) =A(u,wW b —AuW) +nu-£

and therefore the Inequality (13) is the same as Inequality (10). Since

T
Vv) =T = —in | S wle)
t;()=V n(lz € >

summing the bound (13) overcoincides with the bound (11).

12. There is no duality gap in this case because the primal problem isilléeamnvex optimization problem subject to
linear constraints.

1730

LEARNING PERMUTATIONS

We now reprove the key inequality (13) using the dual funcii8). Note ' maximizes this
function, that isy* = 6'(B'), and the optimal primal solution is = V\/Pe‘””igt‘ﬁt. Now,

Vvt o= eph -t
> et(Btfl)_etfl(Btfl)
_ zwioe—nzft—ﬁt’l(l_e—ﬂé})
| —’er
> YWl (1-(1-e M)

= (1-eMHwlgy

where we use@ ™% < 1— (1— e ") to get the fourth line. Notice that in the first inequality
above we use@'(B!) > 8'(B'"1). This is true becaus® maximizesd'(B) and the old choic@' !
is non-optimal. The dual paramet@gfr* assures that*~! is normalized and®" (3'!) is related to
plugging the intermediate unnormalized weight$:= vvioe‘”éig‘BH into the primal problem for
trial t. This means that the inequaliéy(8') > 6'(B'~1) corresponds to the Bregman projection of
the unnormalized update onto the equality constraint. The differ@ipe?) — 6'—1(B!1) in the
second line above is the progress in the value when going Worh at the end of triat — 1 to
the intermediate unnormalized upda\fé at trialt. Therefore this proof also does not exploit the
normalization.

The bound for the permutation problem follows the same outline. We use the ghline
following optimization problem as our potential:

Vie1 = min (A(AWO) 41 (Ae L))
ViryiAj=1
ViiyiA=1
- g]gxzvv,o] (1— e*n"fil*uifp’i) — ZO(i — Z Bj.
PR I J
6'(a,B)

Thea; and; are the dual variables for the row and column constraints. Now we cptifhize
out the dual variables in the dual functiéi{a,) does not have a maximum in closed form. Nev-
ertheless the above proof technique based on duality still worksa'Lastdp' be the optimizers of
0'(a,B). Then the optimum primal solution (the parameter vector of PermELearnjrigsco

\Nitj _ V\l,oje’”"fil’“}*ﬁti
and we can analyze the increase in value as before:
v _Vt—l — et(at’ Bt) _ et—l(at—l’ tfl)
t t—1/t—1 ot—1
(a1, 1) -6 (o 5,B)
t t—1 t—1 t-1
Z\Ni,ojeim_fj —aj B (17e7n|-i,j)
I7J

v

t—1
W

WL (1-e ML)
]
= (1-eMHwtlell.

1731

HELMBOLD AND WARMUTH

Summing over trials in the usual way gives the bound

.
1
WtiloLt< VT = min AA,WO + Ael
t; Tl-en 1-e i -1 (A()+n (<1))
VitSiAj=1

which is the same as the bound of Theorem 4.

Appendix C. Lower Boundsfor the Expert Advice Setting

We first modify a known lower bound from the expert advice setting with beohlute loss (Cesa-
Bianchi et al., 1997). We begin by describing that setting and show h@iatiess to the allocation
setting for experts.

In the expert advice setting there arexperts. Each trial starts with nature selectingpae-
diction % in [0,1] for each expert€ {1,...,n}. The algorithm is given these predictions and then
produces its own predictioyt & [0,1]. Finally, nature selectslabel y € {0,1} for the trial. The
algorithm is charged log§* —y!| and expert gets losgxt —y!|.

Any algorithm in the allocation setting leads to an algorithm in the above expédesskitting:
keep the weight update unchanged, predict with the weighted averagg eVt~ - x!) and define
the loss vector if' € [0,1]" in terms of the absolute loss:

WXy = IZWE*\XE —y = wh

¥ g}
where the first equality holds becauses [0,1] andy! € {0,1}. This means that any lower bound
on the regret in the above expert advice setting immediately leads to a lowst bouhe expected
loss in the allocation setting for experts when the loss vectors [i& .

We now introduce some more notation and state the lower bound from the agpiEe setting
that we build on. Lets, 1 be the set of all sequencesDftrials with n experts in the expert advice
setting with the absolute loss. L€t be the minimum over algorithms of the worst case regret
over sequences by 1.

Theorem 8 (Cesa-Bianchi et al., 1997, Theorem 4.5.2)

. . AV
lim lim L

This means that for all > 0 there exist$); such that for each > ng, there is &l , where for all

T>Ten,
Vot > (1—-€)/(T/2)Inn.

By further expanding the definition &, 1 we get the following version of the above lower bound
that avoids the use of limits:

Corollary 9 For all € > Othere exists aisuch that for each number of expertsme, there is a T
where for any number of trials B T , the following holds for any algorithm A in the expert advice
setting with the absolute loss: there is a sequence S of T trials with n expentthsitic

LA(S) — LpeslS) > (1—€)y/(T/2)Inn.

1732

LEARNING PERMUTATIONS

This lower bound on the regret depends on the number of frial¥e now use a reduction to bound
LpestS) by T/2. DefineR(S™) as the transformation that takes a sequesicef trials in S,_1.1

and produces a sequence of trialsSiyr by adding an extra expert whose predictions are simply
1 minus the predictions of the first expert. On each trial the absolute losg afdititional expert
on sequenc®(S) is 1 minus the loss of the first expert. Therefore either the first expeteor
additional expert will have loss at moBf2 onR(S™).

Theorem 10 For all € > Othere exists asuch that for each number of expertsm, there isa T,
where for any number of trials B T , the following holds for any algorithm A in the expert advice
setting with the absolute loss: there is a sequence S of T trials with n expentthstic

LpestS <T/2 and LA(S) — LpestS > (1-¢)/(T/2)Inn.
Proof We begin by showing that the regret on a transformed sequer¢¥81): S € S,_17}is

atleast1—¢/2)\/(T/2)In(n—1).

Note that for alR(S™), LpesfR(S™)) < T/2 and assume to the contrary that some algori#hm
has regret strictly less thdti—€/2) /(T /2)In(n— 1) on every sequence {R(S™) :S™ € Sn-11}.
We then create an algorithAr that runs transformatioR(-) on-the-fly and predicts a& does on
the transformed sequence. Thereféreon S~ andA on R(S™) make the same predictions and
have the same total loss. On every sequedice S, 11 We haveLyag(S) > LpestR(S) and
therefore

La(S)— LpesfS) < La(S) - LpesfR(S)
= La(R(S")) — LpestR(S))

< (1-¢/2)/(T/2)In(n—1).

Now if n— 1 is at least theyg, of Corollary 9 andT is at least thel, ,_; of the same corollary,
then this contradicts that corollary.
This means that for any algorith&and large enough andT, there is a sequen&for which

the algorithm has regret at legdt—€/2) /(T /2)In(n— 1) and LyesfS) < T/2. By choosing the
lower bound om large enough,

(1-¢/2)\/(T/2)In(n—=1) > (1—¢€)+/(T/2)Inn

and the theorem follows. []

Note that the tuned upper bounds in the allocation setting (9) have an addictea of /2. This is
due to the fact that in the allocation setting the algorithm predicts with the weigieeaoge and this
is non-optimal. In the expert setting with the absolute loss, the upper boasddimn a different
prediction function) and the lower bound on the regret are asymptotically (8ge Theorem 8).
We are now ready to prove our lower bound for the allocation setting witeréexgvhen the losses
of the experts are if0,n|" instead of|0, 1]".

Corollary 11 There exists gisuch that for each dimension>ang, there is a | where for any
number of trials T> T, the following holds for any algorithm A for allocation setting with n experts:
there is a sequence S of T trials with loss vector®jn]" such that

LpestS) <nT/2 and LA(S) — LigestS) > v/ (NT/2)nInn.

1733

HELMBOLD AND WARMUTH

Proof Via the reduction we stated at the beginning of the section, the following loaterdfor the
allocation setting wittm experts immediately follows from the previous theorem: For any algorithm
in the allocation setting fon experts there is a sequer8ef T trials where the losses of the experts
lie in [0,1] such that

LpestS <T/2 and La(S) — LpestS > /(T/2)Inn.

Now we simply scale the loss vectors by the faatpthat is, the scaled sequencgdave loss
vectors in the rangg0,n]" and Lje5{S) < nT/2. The lower bound becomes,/(T/2)Inn =

V(nT/2)nInn. [|

References

P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire. Thetocdmastic multiarmed bandit
problem.SIAM Journal on Computing2(1):48-77, 2002.

K. Azoury and M. K. Warmuth. Relative loss bounds for on-line densitiyredion with the expo-
nential family of distributionsJournal of Machine Learningd3(3):211-246, June 2001. Special
issue orirheoretical Advances in On-line Learning, Game Theory and Bog&ditgd by Yoram
Singer.

H. Balakrishnan, I. Hwang, and C. Tomlin. Polynomial approximation algmstfor belief matrix
maintenance in identity management.48rd IEEE Conference on Decision and Controhges
4874-4879, December 2004.

M. S. Bazaraa, J. J. Jarvis, and H. D. Sherainear Programming and Network FlowsNiley,
second edition, 1977.

R. Bhatia.Matrix Analysis Springer-Verlag, Berlin, 1997.

A. Blum, S. Chawla, and A. Kalai. Static optimality and dynamic search-optimality in dists
trees.Algorithmicg 36:249-260, 2003.

O. Bousquet and M. K. Warmuth. Tracking a small set of experts by mixas¢mosteriorsJournal
of Machine Learning ResearcB:363-396, 2002.

L. M. Bregman. The relaxation method of finding the common point of conetxand its applica-
tion to the solution of problems in convex programmikifs SR Computational Mathematics and
Physics 7:200-217, 1967.

Y. Censor and A. Lent. An iterative row-action method for interval carmegramming.Journal
of Optimization Theory and Application34(3):321-353, July 1981.

N. Cesa-Bianchi and G. LugosPrediction, Learning, and GamesCambridge University Press,
2006.

N. Cesa-Bianchi and G. Lugosi. Combinatorial banditsPiaceedings of the 22nd Annual Con-
ference on Learning Theory (COLT Q2009.

1734

LEARNING PERMUTATIONS

N. Cesa-Bianchi, Y. Freund, D. Haussler, D. P. Helmbold, R. E. Sehagnd M. K. Warmuth. How
to use expert advicelournal of the ACM44(3):427-485, May 1997.

Y. Chen, L. Fortnow, N. Lambert, D. Pennock, and J. Wortman. Complekitgmbinatorial market
makers. InlNinth ACM Conference on Electronic Commerce (EC !@8}M Press, July 2008.

J. Franklin and J. Lorenz. On the scaling of multidimensional matritésear Algebra and its
applications 114/115:717-735, 1989.

Y. Freund and R. E. Schapire. A decision-theoretic generalization-bherearning and an appli-
cation to BoostingJournal of Computer and System Sciené&&g1):119-139, August 1997.

M. Furer. Quadratic convergence for scaling of matricesPioceedings of ALENEX/ANALCO
pages 216-223. SIAM, 2004.

Geoffrey J. Gordon. No-regret algorithms for online convex progra In Bernhard Sahikopf,
John C. Platt, and Thomas Hoffman, editoi$PS pages 489-496. MIT Press, 2006.

D. P. Helmbold and R. E. Schapire. Predicting nearly as well as the heshpgrof a decision tree.
Machine Learning27(01):51-68, 1997.

D. P. Helmbold, J. Kivinen, and M. K. Warmuth. Relative loss bounds ifagle neurons.IEEE
Transactions on Neural Networks0(6):1291-1304, November 1999.

M. Herbster and M. K. Warmuth. Tracking the best expédvtachine Learning 32(2):151-178,
1998. Earlier version in 12th ICML, 1995.

M. Herbster and M. K. Warmuth. Tracking the best linear prediclournal of Machine Learning
Research1:281-309, 2001.

J. Huang, C. Guestrin, and L. Guibas. Fourier theoretic probabilisticenfe over permutations.
Journal of Machine Learning Researct0:997-1070, 2009.

M. Jerrum, A. Sinclair, and E. Vigoda. A polynomial-time approximation algorifonthe perma-
nent of a matrix with nonnegative entriekurnal of the ACM51(4):671-697, July 2004.

A. Kalai. Simulating weighted majority with FPL. Private communication, 2005.

A. Kalai and S. Vempala. Efficient algorithms for online decision problein€omput. Syst. Sci.
71(3):291-307, 2005. Special issue Learning Theory 2003.

B. Kalantari and L. Khachiyan. On the complexity of nonnegative-matm@iisg. Linear Algebra
and its applications240:87-103, 1996.

J. Kivinen and M. K. Warmuth. Additive versus exponentiated gradipdates for linear prediction.
Information and Computatiqri32(1):1-64, January 1997.

J. Kivinen and M. K. Warmuth. Averaging expert predictions. domputational Learning The-
ory, 4th European Conference (EuroCOLT '99), Nordkirchen, zamy, March 29-31, 1999,
Proceedingsvolume 1572 ol ecture Notes in Atrtificial Intelligenggages 153—-167. Springer,
1999.

1735

HELMBOLD AND WARMUTH

R. Kondor, A. Howard, and T. Jebara. Multi-object tracking with repraations of the symmetric
group. InProc. of the 11th International Conference on Atrtificial Intelligence atatistics
March 2007.

D. Kuzmin and M. K. Warmuth. Optimum follow the leader algorithm. Rroceedings of the
18th Annual Conference on Learning Theory (COLT ;@)ges 684—686. Springer-Verlag, June
2005. Open problem.

D. Kuzmin and M. K. Warmuth. Online Kernel PCA with entropic matrix updatef?rbceedings
of the 24rd international conference on Machine learning (ICML ;,0Fages 465-471. ACM
International Conference Proceedings Series, June 2007.

N. Linial, A. Samorodnitsky, and A. Wigderson. A deterministic strongly potyial algorithm for
matrix scaling and approximate permaneri@smbinatorica 20(4):545-568, 2000.

N. Littlestone and M. K. Warmuth. The weighted majority algorithinform. Comput. 108(2):
212-261, 1994. Preliminary version in FOCS ’89.

D. McAllester. PAC-Bayesian stochastic model selectidiachine Learning51(1):5-21, 2003.

R. Sinkhorn. A relationship between arbitrary positive matrices and datbdhastic matriceg.he
Annals of Mathematical Staticstic35(2):876—879, June 1964.

E. Takimoto and M. K. Warmuth. Path kernels and multiplicative updafesirnal of Machine
Learning Research:773-818, 2003.

V. Vovk. Aggregating strategies. IRroceedings of the Third Annual Workshop on Computational
Learning Theorypages 371-383. Morgan Kaufmann, 1990.

M. K. Warmuth and D. Kuzmin. Randomized PCA algorithms with regret bouratsate logarith-
mic in the dimensionJournal of Machine Learning Research2217—-2250, 2008.

M. K. Warmuth and S.V.N. Vishwanathan. Leaving the spanPioceedings of the 18th Annual
Conference on Learning Theory (COLT 'QBertinoro, Italy, June 2005. Springer-Verlag. Jour-
nal version in progress.

1736

