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Abstract

A Boolean functionf is correlation immuneif each input variable is independent of the output,
under the uniform distribution on inputs. For example, the parity function is correlation immune.
We consider the problem of identifying relevant variables of a correlation immune function, in the
presence of irrelevant variables. We address this problem in two different contexts. First, we ana-
lyze Skewing, a heuristic method that was developed to improve the ability of greedy decision tree
algorithms to identify relevant variables of correlation immune Boolean functions, given examples
drawn from the uniform distribution (Page and Ray, 2003). Wepresent theoretical results revealing
both the capabilities and limitations of skewing. Second, we explore the problem of identifying
relevant variables in theProduct Distribution Choice(PDC) learning model, a model in which the
learner can choose product distributions and obtain examples from them. We prove a lemma estab-
lishing a property of Boolean functions that may be of independent interest. Using this lemma, we
give two new algorithms for finding relevant variables of correlation immune functions in the PDC
model.
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1. Introduction

A Boolean functionf : {0,1}n→ {0,1} is correlation immuneif for every input variablexi , the
values ofxi and f (x1, . . . ,xn) are independent, with respect to the uniform distribution on{0,1}n
(cf. Roy, 2002). Examples of correlation immune functions include parity ofk≥ 2 variables, the
constant functionsf ≡ 1 and f ≡ 0, and the functionf (x) = 1 iff all bits of x are equal.

If a function f is not correlation immune, then given access to examples off drawn from the
uniform distribution, one can easily identify (at least one) relevant variable of f by finding an input
variable that is correlated with the output off . This approach clearly fails iff is correlation immune.

We consider the problem of identifying relevant variables of a correlationimmune function, in
the presence of irrelevant variables. This problem has been addressed by machine learning practi-
tioners through the development of heuristics, and by computational learning theorists, who have
analyzed the problem in standard learning models. We were motivated by work from both commu-
nities, and present results related to both types of work. First, we present a theoretical analysis of
skewing, a heuristic method that was developed to improve the ability of greedy decisiontree learn-
ing algorithms to identify relevant variables of correlation immune functions, given examples drawn
from the uniform distribution (Page and Ray, 2003; Ray and Page, 2004). Second, we present algo-
rithms for identifying relevant variables in theProduct Distribution Choice(PDC) model of learn-
ing. The PDC model, which we introduce below, is a variant of the standard PAC learning model
(Valiant, 1984) in which the learner can specify product distributions andsample from them.1

Greedy decision tree learning algorithms perform poorly on correlation immune functions be-
cause they rely on measures such as Information Gain (Quinlan, 1997) and Gini gain (Breiman
et al., 1984) to choose which variables to place in the nodes of the decision tree. The correlation
immune functions are precisely those in which every attribute has zero gain under all standard gain
measures, when the gain is computed on the complete data set (i.e., the truth table)for the function.
Thus when examples of a correlation immune function are drawn uniformly at random from the
complete data set, the learning algorithms have no basis for distinguishing between relevant and
irrelevant attributes.

Experiments have shown skewing to be successful in learning many correlation immune func-
tions (Page and Ray, 2003). One of the original motivations behind skewing was the observation
that obtaining examples from non-uniform product distributions can be helpful in learning particular
correlation immune functions such as parity. Skewing works by reweighting the given training set
to simulate receiving examples from a subclass of product distributions called skeweddistributions.
In a skewed distribution, each input variablexi is independently set to 1 with probabilitypi ; further,
there is a fixed probabilityp, such that eachpi is either equal top or to 1− p.

However, simulating alternative distributions is not the same as sampling directly from them.
TheProduct Distribution Choice(PDC) model allows such direct sampling. This model can be seen
as a variant of the PAC model, and has similarities with other learning models studied previously
(see Section 5). In the PDC model, the learner has access to an oracle from which it can request
examples. Before requesting an example, the learner specifies a product distribution. The oracle
then supplies an example drawn from that distribution. In our study of the PDC model, we focus

1. Our PDC model algorithms could be presented independently of any discussion of the skewing heuristic. However,
the algorithms rely on technical results that we originally proved to analyze skewing, and we present those technical
results as part of our discussion of skewing. Readers who are only interested in understanding the PDC algorithms
will need to read some of the material on skewing, but can skip Sections 9.3 and 11.
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on a fundamental learning task: the problem of identifying relevant variables in the presence of
irrelevant ones.

Note that by setting the parameters of the product distribution to be equal to 0 and 1, one
can simulate membership queries in the PDC model. However, we are particularlyinterested in
exploring learning in the PDC model when the parameters of the chosen product distributions are
bounded away from 0 and 1.

Our interest in the PDC model is motivated not just by our study of skewing, but by a more
general question: In learning, how much does it help to have access to data from different distribu-
tions? In practice, it may be possible to obtain data from different distributions by collecting it from
different sources or populations. Alternatively, one may be able to alter environmental conditions to
change the distribution from which data is obtained. In such settings, it can be expensive to sample
from too many distributions, and it may be difficult or impossible to sample from “extreme” distri-
butions. Thus in the PDC model, we are concerned not just with time and sample complexity, but
also in the number and type of product distributions specified.

2. Summary of Results

We begin by showing that, given a complete data set, skewing will succeed. That is, given the com-
plete truth table of a target Boolean function as the training set, skewing will find a relevant variable
of that function. (More particularly, under any random choice of skewing parameters, a single round
of the skewing procedure will find a relevant variable with probability 1.) This result establishes
that the approach taken by skewing is fundamentally sound. However, it says nothing about the ef-
fectiveness of skewing when, as is typically the case, the training set contains only a small fraction
of the examples in the truth table. In particular, this result does not addressthe question of whether
skewing would be effective given only a polynomial-size sample and polynomial time.

We also analyze a variant of skewing calledsequential skewing(Ray and Page, 2004), in the case
that the full truth table is given as input. Experiments indicate that sequential skewing scales better
to higher dimensional problems than standard skewing. We show here, however, that even when the
entire truth table is available as the training set, sequential skewing is ineffective for a subset of the
correlation immune functions known as the2-correlation immunefunctions. A Boolean function
f : {0,1}n→ {0,1} is 2-correlation immune if, for every pair of distinct input variablesxi and
x j , the variablesxi , x j , and f (x1, . . . ,xn) are mutually independent. Thus, any practical advantage
sequential skewing has over standard skewing comes at the cost of notworking on this subset of
functions.

We present two new algorithms in the PDC model for identifying a relevant variable of ann-
variable Boolean function withr relevant variables. The first algorithm uses onlyr distinctp-biased
distributions (i.e., distributions in which each input variable is independently set to 1 with some
fixed probabilityp). It runs in time polynomial inn and its sample size, which isO((r +1)2r ln 2nr

δ ).
(The algorithm is randomized, but we also give a deterministic version achieving slightly different
bounds.) The second algorithm usesO(e3r ln 1

δ) p-biased distributions, and runs in time polynomial
in n and the sample size,O(e9r(r + ln n

δ) ln(1
δ)). Both algorithms choose the distributions they use

non-adaptively. Forr = O(logn), only the second algorithm runs in time polynomial inn, but the
first usesO(logn) distributions, whereas the second uses a number of distributions that depends
polynomially onn.
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The second of our two algorithms is based on a new sample complexity result that we prove
using martingales.

Previous algorithms for identifying relevant variables in the PDC model, and achieving bounds
similar to ours, use distributions that are notp-biased, and choose the distributions they use adap-
tively. Independently, Arpe and Mossel (to appear) have recently developed an algorithm that is
similar to our first algorithm. We discuss these related algorithms further in Sections 5 and 10.

Sincep-biased distributions are skewed distributions, our algorithms can be viewedas skewing
algorithms for a setting in which it is possible to sample directly from skewed distributions, rather
than to just simulate those distributions.

We also examine skewing in the context for which it was originally designed: learning from a
random sample drawn from the uniform distribution. We prove a negative result in this context, a
sample complexity lower bound for the problem of learning parity functions. Technically, we prove
the bound for a variant of skewing, called skewing with independent samples, that is more amenable
to analysis than standard skewing. For intuitive reasons, and based on experimental evidence, we
think it likely that the bound also holds for standard skewing. The bound implies that skewing with
independent samples requires a sample of size at leastnΩ(logn) to find (with constant probability of
failure) a relevant variable of ann-variable Boolean function computing the parity of logn of its
variables.

Correlation immunity is defined in terms of the uniform distribution. We discuss a natural
extension of correlation immunity to non-uniform product distributions. We give a simple example
of a function that is correlation immune with respect to a non-uniform product distribution. Thus
while functions like parity are difficult for greedy learners when examplescome from the uniform
distribution, other functions can be difficult when examples come from another product distribution.

Our analysis of skewing given a complete data set, and our two new algorithmsin the PDC
model, are both based on a lemma that we prove which shows that Boolean functions have a certain
useful property. Specifically, we show that every non-constant Boolean functionf on{0,1}n has a
variablexi such that induced functionsfxi←0 and fxi←1 on {0,1}n−1 (produced by hardwiringxi to
0 and 1) do not have the same number of positive examples of Hamming weightk, for somek. This
lemma may be of independent interest.

3. Organization of the Paper

We first give some background on skewing in Section 4. In Section 5, we discuss related work.
Section 6 contains basic definitions and lemmas, including characterizations ofcorrelation immune
functions, and simple lemmas on quantities such as Gini gain and the magnitude of the first-order
Fourier coefficients. It also contains a simple example of a function that is correlation immune with
respect to a non-uniform product distribution. Section 7 discusses sample complexity bounds used
later in the paper, and proves an upper bound on the estimation of Gini gain,based on martingales.

In Section 8, we prove the lemma showing the useful property of Boolean functions.
We begin our analysis of skewing in Section 9 with results for the setting in whichthe entire

truth table is given as the training set.
Section 10 contains our two new algorithms for the PDC model. It also contains adiscussion of

two PDC algorithms that are implicit in the literature.
Finally, Section 11 contains our sample complexity lower bounds on learning parity functions

using skewing with independent samples.
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4. Background on Skewing

As a motivating example, suppose we have a Boolean functionf (x1, . . . ,xn) whose value is the par-
ity of r of its variables. Functionf is correlation immune. With respect to the uniform distribution
on the domain off , all n variables off have zero gain. Equivalently, the first-order Fourier coef-
ficients of f are all zero (cf. Section 6.3). But, with respect to other product distributions on the
examples, ther relevant variables off have non-zero gain, while then− r irrelevant variables still
have zero gain (see Page and Ray, 2003; Arpe and Reischuk, 2007). This suggests that learning cor-
relation immune functions might be easier if examples could be obtained from non-uniform product
distributions.

In many machine learning applications, however, we have little or no control over the distribu-
tion from which we obtain training data. The approach taken by skewing is to reweight the training
data, to simulate receiving examples from another distribution. More particularly, the skewing algo-
rithm works by choosing a “preferred setting” (either 0 or 1) for everyvariablexi in the examples,
and a weighting factorp where 1

2 < p < 1. These choices define a product distribution over ex-
amplesx ∈ {0,1}n in which each variablexi has its preferred setting with probabilityp, and the
negation of that setting with probability 1− p.

To simulate receiving examples from this product distribution, the skewing algorithm begins
by initializing the weight of every example in the training set to 1. Then, for each xi , and each
example, it multiplies the weight of the example byp if the value ofxi in the example matches its
preferred setting, and by 1− p otherwise. This process is called “skewing” the distribution. The
algorithm computes the gain of each variable with respect to the reweighting. The algorithm repeats
this procedure a number of times, with different preferred settings chosen each time. Finally, it
uses all the calculated gains to determine which variable to output. The exact method used varies in
different skewing implementations. In the paper that introduced skewing, thevariable chosen was
the one whose calculated gains exceeded a certain threshold the maximum number of times (Page
and Ray, 2003).

In the context of decision tree learning, skewing is applied at every nodeof the decision tree,
in place of standard gain calculations. After running skewing on the trainingset at that node, the
variable chosen by the skewing procedure is used as the split variable atthat node.

In investigating skewing, we are particularly interested in cases in which the number of rele-
vant variables is much less than the total number of variables. Optimally, we would like sample
complexity and running time to depend polynomially onn and 2r (and on log1

δ ), so that we have a
polynomial-time algorithm whenr = O(logn).

5. Related Work

Throughout this paper, we focus on the problem of finding a relevant variable of a target Boolean
function, given a labeled sample drawn from the uniform distribution. Given a procedure that finds
a single relevant variablexi of a Boolean functionf (for any f with at mostr relevant variables),
it is usually easy to extend the procedure to find all relevant variables of the target by recursively
applying it to the induced functions obtained by hardwiringxi to 1 and 0 respectively.

It is a major open problem whether there is a polynomial-time algorithm for findingrelevant
variables of a Boolean function of logn relevant variables (out ofn total variables) using examples
from the uniform distribution (cf. Blum, 2003). Mossel et al. (2003) gave an algorithm for learning

2379



HELLERSTEIN, ROSELL, BACH, RAY AND PAGE

arbitrary functions onr relevant variables, using examples drawn from the uniform distribution, in
time polynomial inncr and ln(1/δ), for somec < 1. This improves on the naı̈ve algorithm which
requires time polynomial innr for small r. The heart of the algorithm is a procedure to find a
relevant variable. The algorithm of Mossel et al. uses both Gaussian elimination and estimates of
Fourier coefficients, and is based on structural properties of Booleanfunctions.

Mossel et al. also briefly considered the question of finding a relevant variable, given examples
drawn from a single product distribution[p1, . . . , pn].2 They stated a result that is similar to our
Theorem 9.1, namely that if a product distribution is chosen at random, thenwith probability 1,
the Fourier coefficient (for that distribution) associated with any relevant variable will be non-zero.
The important difference between that result and Theorem 9.1 is that ourtheorem applies not to all
random product distributions, but just to random skewed distributions. Since skewed distributions
have measure zero within the space of all product distributions, the resultof Mossel et al. does not
imply anything about skewed distributions.

In interesting recent work that was done independently of this paper, Arpe and Mossel (to ap-
pear) addressed the problem of finding relevant variables of a Boolean function, using examples
from biased distributions. If an input to a Boolean functionf is drawn from ap-biased distribution,
the output off on that input is a random variable. Arpe and Mossel observed that the expectation
of this random variable is a polynomial in the bias, and expressed the Maclaurin series for this
polynomial in terms of the Fourier coefficients off . They used this expression to develop a family
of algorithms for identifying relevant variables. For a function withr relevant variables, thes-th
algorithm estimates Fourier coefficients of Hamming weight up tos, using aboutr/s distributions.
They also extended their algorithms to allow estimation of biases by sampling, a problem we do not
address here.

Applying the results of Arpe and Mossel fors= 1 to the case of uniformly spaced biases yields
an algorithm that is almost the same as our first algorithm, with a very differentcorrectness proof.
Although Arpe and Mossel did not give the sample size of their algorithm explicitly, some compu-
tations show that it is larger than the sample size we give (in Theorem 10.1), by a factor roughly
equal to 16r . Like us, they used a large deviation bound to derive a sample size, but they did not
estimate parameters for this bound in the best way known. If that is done, following the approach
of Furst et al. (1991), the discrepancy vanishes.

The problem of learning parity functions has been extensively studied in various learning mod-
els. It is a well-known open question whether it is possible to PAC-learn parity functions in poly-
nomial time, using examples drawn from the uniform distribution, in the presence of random clas-
sification noise. This problem is at least as difficult as other open problemsin learning; in fact,
a polynomial time algorithm for this problem would imply a polynomial-time algorithm for the
problem mentioned above, learning functions of logn relevant variables using examples from the
uniform distribution (Feldman et al., 2006).

Our lower bound result for parity in Section 11 relies on Fourier-based techniques previously
used to prove lower bounds for learning parity in statistical query (SQ) learning learning models
(Blum et al., 1994; Jackson, 2003). Roughly speaking, statistical query learning algorithms learn
a target function by adaptively specifying predicates that are defined over labeled examples of the

2. They also claimed that this result implies an algorithm for learning functions with r relevant variables in time poly-
nomial in 2r , n, and ln(1/δ), given examples drawn from almost any product distribution. However, the justification
for their claim was faulty, since it does not take into account the magnitude of the non-zero Fourier coefficient.
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function. For each such predicate, the algorithm obtains an estimate (within a certain tolerance) of
the probability that a random labeled example of the function satisfies the given predicate.

Jackson (2003) proved that that any “SQ-based” algorithm for learning the class of all parity
functions takes timeΩ(2n/2). Jackson also showed that a more complex argument could be used
to prove a stronger bound ofΩ(2n). For the problem of learning just the parity functions having

r relevant variables, rather than all parity functions, these bounds become Ω(
(n

r

)1/2
) andΩ(

(n
r

)

)
respectively. Although skewing with independent samples is not an SQ-based algorithm, we prove
a bound that is similar to the weaker of these two bounds, using a similar technique. (Our bound
is for identifying a single relevant variable of the target parity function, rather than for learning the
function.) The proof of Jackson’s stronger bound relies on properties of SQ-based algorithms that
are not shared by skewing with independent samples, and it is an open question whether a similar
bound is achievable for skewing with independent samples.

Subsequent to Jackson’s work, Yang gave lower bounds for learning parity using “honest” statis-
tical queries (Yang, 2001, 2005). While the gain estimates performed in skewing seem to correspond
to honest statistical queries, the correspondence is not direct. One cannot determine the gain of a
variable with respect to a skewed distribution by using only a single honest statistical query. Be-
cause lower bounds in statistical query models rely on the fact that only limited information can be
obtained from the examples in the sample used to answer a single query, lowerbounds for learning
with honest statistical queries do not directly imply lower bounds for skewingwith independent
samples. Further, we were unable to verify relevant lower bounds given by Yang.3

At the other extreme from correlation-immune functions are functions for which all first order
Fourier coefficients are non-zero (i.e., all relevant variables have non-zero gain). This is true of
monotone functions (see Mossel et al., 2003). Arpe and Reischuk, extending previous results, gave
a Fourier-based characterization of the class of functions that can be learned using a standard greedy
covering algorithm (Arpe and Reischuk, 2007; Akutsu et al., 2003; Fukagawa and Akutsu, 2005).
This class is a superset of the set of functions for which all relevant variables have non-zero degree-1
Fourier coefficients.

The PDC model investigated in this paper has some similarity to the extended statistical query
model of Bshouty and Feldman (2002). In that model, the learner can specify a product distribution
in which each variable is set to 1 with probabilityρ,1/2 or 1−ρ, for some constant 1/2 > ρ > 0.
The learner can then ask astatistical querywhich will be answered with respect to the specified
distribution. In the PDC model the user can specify an arbitrary product distribution, and can ask
for random examples with respect to that distribution. One could simulate the extended statistical
query model in the PDC model by using random examples (drawn with respect to the specified
distribution) to answer the statistical queries.

A PDC algorithm for finding relevant variables is implicit in the work of Bshoutyand Feldman
(2002). We discuss this algorithm in some detail in Section 10. Its running time is polynomial
in n and its sample size, which isO(n216r log2 n

δ + nr216r log n
δ). It usesn distributions. Like our

second new algorithm, whenr = O(logn) it runs in time polynomial inn and log1
δ . Unlike our

new algorithms, it chooses its distributions adaptively, and uses distributionsthat are notp-biased.

3. Yang (2001) gives an explicit lower bound for learning parity with honest statistical queries, and credits Jackson for
proving this implicitly (Jackson, 2003). However, Jackson’s proof is for a different statistical query learning model,
and his proof does not work for honest statistical queries. Yang (2005) states a general lower bound that can be
applied to parity. Its proof, in particular the discussion of “bad queries,”seems to us to be incomplete.
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Nevertheless, the distributions used by this algorithm are simple. In each, one parameter of the
distribution is equal to 1/2, while the others are all equal to 1/4.

As noted in the introduction, it is possible to simulate membership queries in the PDC model
by setting the parameters of the chosen product distribution to 0 and 1. The problem of efficiently
learning Boolean functions with few relevant variables, using membership queries alone, has been
addressed in a number of papers (Blum et al., 1995; Bshouty and Hellerstein, 1998; Damaschke,
2000). The goal in these papers is to haveattribute-efficientalgorithms that use a number of queries
that is polynomial inr, the number of relevant variables, but only logarithmic inn, the total number
of variables. Guijarro et al. (1999) investigated the problem of identifyingrelevant variables in the
PAC model with membership queries.

In Section 10 we briefly describe a simple adaptive algorithm for identifying relevant variables
using membership queries and uniform random examples. The algorithm is not novel; a similar
approach is used in a number of algorithms for related problems (see, e.g., Arpe and Reischuk, 2007;
Guijarro et al., 1999; Blum et al., 1995; Damaschke, 2000; Bshouty and Hellerstein, 1998). The
algorithm runs in time polynomial inn and log1

δ , and uses logn+ 1 distinct product distributions.
The time and sample complexity are lower for this algorithm than for the other PDC algorithms
discussed in this paper, and forr = Ω(logn), the number of product distributions used is lower as
well. However, the other algorithms use only distributions whose parameters are bounded away
from 0 and 1.

We use Fourier-based techniques in proving some of our results. Thereis an extensive literature
on using Fourier methods in learning, including some of the papers mentioned above. Some of the
most important results are described in the excellent survey of Mansour (1994).

Correlation immune functions andk-correlation immune functions have applications to secure
communication, and have been widely studied in that field (see Roy, 2002, for a survey). Recent
citations stem from the work of Siegenthaler (1984), but research on correlation immune functions
predates those citations. Golomb (1999) has pointed out that his work in the 1950’s on the clas-
sification of Boolean functions (Golomb, 1959) was motivated by the problem,useful for missile
guidance, of designing bit sequences that would resist prediction methodsbased on correlation.
During that period, as he states, such military applications “were not explicitlymentioned in the
open literature.”

Correlation immune functions have also been studied in other fields under different guises. The
truth table of ak-correlation immune function corresponds to a certain orthogonal array (Camion
et al., 1991). Orthogonal arrays are used in experimental design. Thepositive examples of ak-
correlation immune function form ak-wise independent set. Such sets are used in derandomization
(see, e.g., Alon, 1996).

It is natural to ask how manyn-variable Boolean functions are correlation immune, since these
actuallyneedskewing. The question has been addressed in a number of different papers, as de-
scribed by Roy (2002). Counts of correlation immune functions up ton= 6, separated by Hamming
weight, were computed by Palmer et al. (1992). For largern one can use the analytic approximation
22n ·Pn, where

Pn =
1
2

(

8
π

)n/2

2−n2/2
(

1− n2

4·2n

)

.

Since there are 22
n

Boolean functions in all,Pn approximates the probability that a random Boolean
function is correlation immune. Its main term was found by Denisov (1992), and the rest is the
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beginning of an asymptotic series investigated by Bach (to appear). Even for smalln, the above
approximation is fairly accurate. For example, there are 503483766022188 6-variable correlation
immune functions, and the above formula gives 4.99×1014.

Skewing was developed as an applied method for learning correlation-immuneBoolean func-
tions. Skewing has also been applied to non-Boolean functions, and to Bayes nets (Lantz et al.,
2007; Ray and Page, 2005).

The main results in Sections 8 and 9 of this paper appeared in preliminary formin Rosell et al.
(2005).

6. Preliminaries

We begin with basic definitions and fundamental lemmas.

6.1 Notation and Terminology

We consider two-class learning problems, where the features, or variables, are Boolean. Atarget
function is a Boolean functionf (x1, . . . ,xn). An exampleis an element of{0,1}n. Examplea ∈
{0,1}n is apositive exampleof Boolean functionf (x1, . . . ,xn) if f (a) = 1, and anegative example
of f if f (a) = 0. A labeled exampleis an element(a,b) ∈ {0,1}n×{0,1}; it is a labeled example
of f if f (a) = b.

Let f (x1, . . . ,xn) be a Boolean function. The functionf is a mapping from{0,1}n to {0,1}. An
assignment a= (a1, . . . ,an) to the variablesx1, . . . ,xn is an element of{0,1}n. The assignment ob-
tained froma by negating theith bit of a is denoted bya¬xi . Given a Boolean functionf (x1, . . . ,xn),
variablexi is arelevant variableof f if there existsa∈ {0,1}n such thatf (a) 6= f (a¬xi ).

A parity functionis a Boolean functionf (x1, . . . ,xn) such that for someI ⊆ {1, . . . ,n}, f (x) =
(∑i∈I xi) mod 2 for allx∈ {0,1}n.

Forσ∈ {0,1}n, letσi = (σ1, . . . ,σi−1,σi+1, . . . ,σn), that is,σi denotesσ with its ith bit removed.
A truth tablefor a functionf over a set of variables is a list of all assignments over the variables,

together with the mapping off for each assignment. Fori ∈ [1. . .n] andb∈ {0,1}, fxi←b denotes
the function onn−1 variables produced by “hardwiring” theith variable off to b. More formally,
fxi←b : {0,1}n−1→{0,1} such that for alla∈{0,1}n−1, fxi←b(a)= f (a1,a2, . . . ,ai−1,b,ai , . . . ,an−1).

The integers between 1 andn are denoted by[1. . .n]. For reala andb, (a,b) denotes the open
interval froma to b.

For any probability distributionD, we use PrD andED to denote the probability and expectation
with respect to distributionD. WhenD is defined on a finite setX andA⊆ X, we define PrD(A) to
be equal to∑a∈APrD(a). We omit the subscriptD when it is clear from context.

Given a probability distributionD on {0,1}n, and a Boolean functionf : {0,1}n→ {0,1}, a
random example of f drawn with respect to Dis an example(x, f (x)) wherex is drawn with respect
to D.

A training setT for learning ann-variable Boolean function is a multiset consisting of elements
in {0,1}n×{0,1}. It defines an associated distribution on{0,1}n×{0,1} sometimes known as
the empirical distribution. For each(a,y) ∈ {0,1}n×{0,1}, the probability of(a,y) under this
distribution is defined to be the fraction of examples in the training set that are equal to(a,y). In
the absence of noise, a training set for learning a functionf : {0,1}n→ {0,1} is a set of labeled
examples(x, f (x)). The empirical distribution on such a training set can be viewed as a distribution
on{0,1}n, rather than on{0,1}n×{0,1}.
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A product distributionD on{0,1}n is a distribution defined by a parameter vector[p1, . . . , pn] in
[0,1]n where for allx∈ {0,1}n, PrD[x] = (∏i:xi=1 pi)(∏i:xi=0(1− pi)). The uniform distribution on
{0,1}n is the product distribution defined by[1/2,1/2, . . . ,1/2]. For fixedp∈ (0,1), we useD[p] to
denote the product distribution defined by[p, . . . , p]. DistributionD[p] is thep-biased distribution.

A skewis a pair(σ, p) whereσ ∈ {0,1}n is an assignment, andp∈ (0,1). We refer toσ as the
orientationof the skew, andp as theweighting factor.

Each skew(σ, p) induces a probability distributionD(σ,p) on the 2n assignments in{0,1}n as
follows. Let τp : {0,1}×{0,1} → {p,1− p} be such that forb,b′ ∈ {0,1}, τp(b,b′) = p if b =
b′ and τp(b,b′) = 1− p otherwise. For eacha ∈ {0,1}n, distributionD(σ,p) assigns probability
Πn

i=1τp(σi ,ai) to a. Thus distributionD(σ,p) is a product distribution in which every variable is
set to 1 either with probabilityp, or with probability 1− p. We call distributionsD(σ,p) skewed
distributions. Whenσ = (1, . . . ,1), the distributionD(σ,p) is thep-biased distributionD[p].

We note that in other papers on skewing,p is required to be in(1/2,1), rather than in(0,1).
Here it is more convenient for us to letp be in(0,1). Given any orientationσ, and anyp∈ (0,1),
skew(σ̄,1− p), whereσ̄ is the bitwise complement ofσ, induces the same distribution as(σ, p).
Thus allowingp to be in(0,1) does not change the class of skewed distributions, except that we
also include the uniform distribution.

Given a,b ∈ {0,1}n, let ∆(a,b) = |{i ∈ [1, . . . ,n]|ai 6= bi}|, that is, ∆(a,b) is the Hamming
distance betweena andb. For a,b∈ {0,1}n, let a+ b denote the componentwise mod 2 sum ofa
andb. Givenc∈ {0,1}n, we usew(c) to denote the Hamming weight (number of 1’s) ofc. Thus
w(a+b) = ∆(a,b).

In theproduct distribution choice(PDC) learning model, the learning algorithm has access to
a special type of random example oracle for a target functionf (x1, . . . ,xn). This random example
oracle takes as input the parameters[p1, . . . , pn] of a product distributionD over unlabeled exam-
ples(x1, . . . ,xn). The oracle responds with a random example(x1, . . . ,xn) drawn according to the
requested distributionD, together with the value of the targetf on that example. The learning algo-
rithm is given as input a confidence parameterδ, where 0< δ < 1. The algorithm is also givenn as
input.

6.2 Gain

Greedy tree learners partition a data set recursively, choosing a “splitvariable” at each step. They
differ from one another primarily in their measures of “goodness” for split variables. The measure
used in the well-known CART system isGini gain (Breiman et al., 1984). Gini gain was also used
in the decision tree learners employed in experimental work on skewing (Page and Ray, 2003; Ray
and Page, 2004). In this paper, we use the term “gain” to denote Gini gain.

Gini gain is defined in terms of another quantity called theGini index. Let Sbe a (multi) set of
labeled examples. LetS1 = {(x,y) ∈ S|y = 1} andS0 = {(x,y) ∈ S|y = 0}. The Gini index ofS is
2|S1||S0|
|S|2 . Let H̃(S) denote the Gini index ofS.

Let xi be a potential split variable. LetT1 = {(x,y)∈ S|xi = 1} andT0 = {(x,y)∈ S|xi = 0}. The
Gini index ofS conditional on xi is defined to bẽH(S|xi) := |T1|

|S| H̃(T1) + |T0|
|S| H̃(T0). In decision tree

terms, this is the weighted sum of the Gini indices of the child nodes resulting from a split onxi .
TheGini gainof xi with respect toS is

G(S,xi) = H̃(S)− H̃(S|xi).
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The Gini gain is always a value in the interval[0,1/2]. Some definitions of Gini gain and Gini
index differ from the one above by a factor of 2; our definition follows that of Breiman et al. (1984).

Now suppose that each example in our (multi) setS has an associatedweight, a real number
between 0 and 1. We can define the gain on this weighted set by modifying the above definitions
in the natural way: each time the definitions involve the size of a set, we instead use the sum of the
weights of the elements in the set.

We can also define Gini index and Gini gain of variablexi with respect tof : {0,1}n→ {0,1}
under a distributionD on {0,1}n. The Gini index of f with respect to a probability distribution
D on {0,1}n is 2PrD[ f = 1](1−PrD[ f = 1]). Let H̃D( f ) denote the Gini index off with respect
to D. For any potential split variablexi , the Gini index of f with respect toD, conditional on xi
is H̃D( f |xi) := PrD[xi = 0]H̃D( fxi←0)+ PrD[xi = 1]H̃D( fxi←1). TheGini gain of a variablexi with
respect tof , under distributionD, is

GD( f ,xi) = H̃D( f )− H̃D( f |xi).

The Gini gain ofxi with respect tof , under the uniform distribution on{0,1}n, is equal to the
Gini gain ofxi with respect to the training setT consisting of all entries in the truth table off .

Given a skew(σ, p) and a functionf , the Gini gain of a variablexi with respect tof under
distribution D(σ,p) is equivalent to the gain that is calculated, using the procedure describedin
Section 4, by applying skew(σ, p) to the training setT consisting of the entire truth table for
f .

The following lemma relates the size of the Gini gain with respect to a distributionD to the
difference in the conditional probabilities PrD[ f = 1|xi = 1]−PrD[ f = 1|xi = 0].

Lemma 1 Let f be an n-variable Boolean function, and let D be a distribution on{0,1}n such that
Pr[xi = 1] is strictly between 0 and 1. Then GD( f ,xi), the Gini gain of variable xi with respect to f ,
under distribution D, is equal to

2pi(1− pi)(PrD[ f = 1|xi = 1]−PrD[ f = 1|xi = 0])2

where pi = PrD[xi = 1].

Proof. Let p = pi , β = PrD[ f = 1], β1 = PrD[ f = 1|xi = 1], andβ0 = PrD[ f = 1|xi = 0]. Thus
β = pβ1 +(1− p)β0.

The Gini gain ofxi with respect tof is

2(β(1−β)− p(β1(1−β1))− (1− p)(β0(1−β0)))

= 2(β(1−β)− (pβ1 +(1− p)β0))+ pβ2
1 +β2

0(1− p)

= 2(β(1−β)−β+ pβ2
1 +β2

0(1− p))

= 2(−β2 + pβ2
1 +β2

0(1− p)).

Substitutingpβ1 +(1− p)β0 for β, we get that the last quantity is

= 2(−p2β2
1−2p(1− p)β0β1− (1− p)2β2

0 + pβ2
1 +β2

0(1− p))

= 2((1− p)p(β2
1−2β0β1 +β2

0))

= 2p(1− p)(β1−β0)
2
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�

Under distributionD on{0,1}n, xi and (the output of)f are independent iffGD( f ,xi) = 0.

6.3 Fourier Coefficients

Given a Boolean functionf : {0,1}n→ {0,1}, define an associated functionF = 1−2 f . That is,
F : {0,1}n→{1,−1} is such thatF(x) = 1−2 f (x) for all x∈ {0,1}n. The functionF can be seen
as an alternative representation of Boolean functionf , using−1 and 1 respectively to represent true
and false outputs, rather than 1 and 0.

For everyz∈ {0,1}n, let χz : {0,1}n→ {1,−1} be such thatχz(x) = (−1)∑n
i=1 xizi . Thusχz is

the alternative representation of the function computing the parity of the variables set to 1 byz. For
z∈ {0,1}n, n-variable Boolean functionf , and associatedF = 1−2 f , theFourier coefficientf̂ (z)
is

f̂ (z) := E[F(x)χz(x)]

where the expectation is with respect to the uniform distribution onx∈ {0,1}n.
Thedegreeof Fourier coefficientf̂ (z) is w(z), the Hamming weight ofz. The Fourier coefficient

associated with the variable xi is f̂ (z) wherez is the characteristic vector ofxi (i.e., zi = 1 and
for j 6= i, zj = 0). In an abuse of notation, we will usêf (xi) to denote this Fourier coefficient.
Thus f̂ (xi) = E[F(x)(1−2xi)]. The functionF can be expressed by its Fourier series, as we have
F(x) = ∑z∈{0,1}n f̂ (z)χz(x).

Fourier coefficients can be generalized from the uniform distribution to product distributions, as
described by Furst et al. (1991). LetD be a product distribution on{0,1}n defined by parameters
[p1, . . . , pn], all of which are strictly between 0 and 1. Forz∈ {0,1}n, let φD,z : {0,1}n→ {0,1}
be such thatφD,z(x) = ∏i:zi=1

µi−xi
σi

whereµi = pi is ED[xi ] andσi =
√

pi(1− pi) is the standard

deviation ofxi underD. The Fourier coefficient̂fD(z), for product distributionD, is

f̂D(z) := ED[F(x)φD,z(x)].

WhenD is the uniform distribution, this is the ordinary Fourier coefficient.
Parseval’s identity, applied to the Fourier coefficients of product distributions, states that

∑
z∈{0,1}n

f̂D
2
(z) = 1.

The Fourier coefficient associated with the variablexi , with respect to product distributionD, is
f̂D(z), wherez is the characteristic vector ofxi . Abusing notation as before, we will usêfD(xi) to
denote this Fourier coefficient. Thus

f̂D(xi) =
piED[F(x)]−ED[xiF(x)]

√

pi(1− pi)
.

The next lemma shows that the gain of a variable and its Fourier coefficient are closely related.

Lemma 2 Let f be an n-variable Boolean function, and let D be a product distributionover{0,1}n
defined by[p1, . . . , pn], such that each pi ∈ (0,1). Then

f̂D(xi) = 2
√

pi(1− pi)(PrD[ f = 1|xi = 1]−PrD[ f = 1|xi = 0])

and
GD( f ,xi) = f̂ 2

D(xi)/2.
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Proof. By definition,

f̂ (xi) =
piED[F(x)]−ED[xiF(x)]

√

pi(1− pi)
.

Let β = PrD[ f = 1] (which equals PrD[F = −1]), β1 = PrD[ f = 1|xi = 1], andβ0 = PrD[ f =
1|xi = 0].

SincepiED[F(x)] = pi(1−2β), ED[F(x)xi ] = pi(1−2β1), andβ = piβ1+(1− pi)β0, it follows
that

piED[F(x)]−ED[xiF(x)] = 2pi(−β+β1)

= 2pi(−piβ1− (1− pi)β0 +β1)

= 2pi(1− pi)(β1−β0).

Dividing by
√

pi(1− pi), we have that

f̂D(xi) = 2
√

pi(1− pi)(PrD[ f = 1|xi = 1]−PrD[ f = 1|xi = 0]).

The lemma follows immediately from Lemma 1. �

The following important facts about first-order Fourier coefficients forproduct distributions are
easily shown. ForD a product distribution on{0,1}n where eachpi ∈ (0,1),

1. If xi is an irrelevant variable of a Boolean functionf , then f̂D(xi) = 0.

2. GD( f ,xi) = 0 iff f̂D(xi) = 0.

6.4 Correlation Immune Functions

Fork≥ 1, a Boolean function is defined to bek-correlation immuneif for all 1 ≤ d≤ k, all degree-d
Fourier coefficients off are equal to 0. An equivalent definition is as follows (Xiao and Massey,
1988; Brynielsson, 1989). Letx1, . . . ,xn be random Boolean variables, each chosen uniformly and
independently. Lety = f (x1, . . . ,xn). Then f is k-correlation immune if and only if, for any distinct
variablesxi1, . . . ,xik of f , the variablesy,xi1,xi2, . . . ,xik are mutually independent.

A greedy decision tree learner would have difficulty learningk-correlation immune functions us-
ing onlyk-lookahead; to find relevant variables in the presence of irrelevant ones for such functions,
it would need to usek+1-lookahead.

A Boolean function iscorrelation immuneif it is 1-correlation immune. Equivalently, a Boolean
function f is correlation immune if all variables off have zero gain forf , with respect to the uniform
distribution on{0,1}n. As can be seen from Lemma 1, this is the case iff for every input variable
xi of the function, Pr[ f = 1|xi = 1] = Pr[ f = 1|xi = 0], where probabilities are with respect to the
uniform distribution on{0,1}n. The following alternative characterization of correlation-immune
functions immediately follows: A Boolean function is correlation-immune iff

|{a∈ {0,1}n | f (a) = 1 andai = 1}|= |{a∈ {0,1}n | f (a) = 1 andai = 0}|.
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6.5 Correlation Immune Functions for Product Distributions

Correlation immune functions are defined with respect to the uniform distribution. Here we extend
the definition to apply to arbitrary product distributions with parameters strictly between 0 and 1. In
particular, for such a product distributionD, we can define a function to becorrelation immune for
D if either (1) The degree-1 Fourier coefficients with respect toD are all 0, or (2) the gain of every
variable with respect toD is 0, or (3) PrD[ f = 1|xi = 1]−PrD[ f = 1|xi = 0] = 0 for all variablesxi

of f . By the results in Section 6, these conditions are equivalent.4

A natural question is whether there are (non-constant) correlation immune functions for non-
uniform product distributionsD. There are, as illustrated by the following example, which can be
easily generalized to other similar product distributions.

6.5.1 EXAMPLE

Let n be a multiple of 3, and letD be the product distribution defined by[2/3,2/3, . . . ,2/3].
For anyn that is a multiple of 3, we will show that the following functionf is correlation

immune with respect toD.
Let f be then-variable Boolean function such thatf (x) = 1 if x = 110110110110. . . (i.e., n/3

repetitions of 110), or whenx is equal to one of the two right-shifts of that vector. For all otherx,
f (x) = 0.

To prove correlation immunity, it suffices to show that for eachxi , PrD[ f = 1|xi = 1] = PrD[ f =
1].

Each positive example off has the same probability. It is easy to verify that for eachxi , 2/3 of
the positive examples havexi = 1. Thus PrD[ f = 1 andx = 1] = 2/3PrD[ f = 1]. So,

PrD[ f = 1|x = 1] = PrD[ f = 1 andx = 1]/PrD[x = 1]

= (2/3PrD[ f = 1])/(2/3)

= PrD[ f = 1]

�

In Section 9 we will give examples of product distributionsD for which there are no correlation-
immune functions.

7. Estimating First-order Fourier Coefficients and Gain

Fourier-based learning algorithms work by computing estimates of selected Fourier coefficients
using a sample. Given a training setS= {(x(1),y(1)), . . . ,(x(m),y(m))} for a Boolean functionf
and z∈ {0,1}n, the estimated Fourier coefficient for z, calculated on S, with respect to product
distribution D,is

f̂S,D(z) :=
1
m

m

∑
j=1

(1−2y( j))φD,z(x
( j)).

We will use f̂S,D(xi) to denotef̂S,D(z), wherez is the characteristic vector ofxi .

4. We do not extend the definition of correlation-immunity to non-product distributions. With respect to a non-product
distribution, it is possible for both relevant and irrelevant variables to have non-zero gain.
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To simplify notation, whereD is clear from context, we will often writêfS(z) instead off̂S,D(z).
SinceφD,z depends onD, calculating f̂S(z) from S requires knowledge ofD. Since we will apply
this lemma in the context of the PDC model, in whichD is known, this is not a problem for us.

If S is a random sample off drawn with respect toD, then f̂D(z) = ED[(1−2 f (x))φD,z(x)] and
f̂S,D(z) is the estimate of the expectationED[(1−2 f (x))φD,z(x)] on sampleS.

In Section 10, there are situations in which we will know that, with respect to a known product
distributionD, there exists a relevant variable of a functionf whose first-order Fourier coefficient
has magnitude at leastq, for some valueq. As mentioned earlier, the first-order Fourier coefficients
of irrelevant variables are zero. Thus if one can estimate first-order Fourier coefficients off so the
estimates each have additive error less thanq/2, then a non-empty subset of the relevant variables
of f can be constructed by taking all variables whose Fourier coefficient estimates are at leastq/2.
The following lemma gives an upper bound on the sample size that would be needed to produce the
desired estimates with high probability (by settingε = q/2). The lemma is implicit in the paper of
Furst et al. (1991), and follows from a standard bound of Hoeffding.

Lemma 3 Let f be an n-variable Boolean function and let D be a product distribution over{0,1}n
defined by[p1, . . . , pn]. Letβ = maxi{1/pi ,1/(1− pi)}, ε > 0, and0< δ < 1. If S is a set of at least

1
ε22(β−1) ln

2n
δ

random examples of f , drawn from distribution D, then with probability at least 1− δ, | f̂S,D(xi)−
f̂D(xi)|< ε for all variables xi of f .

The above lemma is useful only in situations in which the parameters ofD are known, so that
f̂D can be computed. A similar bound can be applied whenD is an unknown product distribution,
and its parameters are estimated from the sample (see Furst et al., 1991).

Skewing works by estimating gain, rather than by estimating first-order Fourier coefficients.
More generally, one can use gain estimates rather than Fourier coefficient estimates to try to identify
relevant variables of a function (assuming some have non-zero gain). Below in Lemma 6 we give a
sample-complexity bound for estimating gain. We prove this bound using martingales. In contrast to
the bound given in Lemma 3, this bound can be applied in cases where the distribution is unknown
and arbitrary (i.e., it does not have to be a product distribution).

Before presenting the martingale-based bound, however, we first prove a bound that easily fol-
lows from the work of Furst et al. (1991) and the relationship between gain and first-order Fourier
coefficients given in Lemma 2. The bound itself is the same as the bound for estimating Fourier
coefficients given in Lemma 3. Algorithmically, the bound applies to the following procedure for
estimatingG(D,xi), whenD is a known product distribution. Given a sampleS, use it to com-
pute the estimatêfS(xi) of the Fourier coefficient ofxi . If f̂S(xi) is in the interval[−1,1], then let
f̃S(xi) = f̂S(xi), otherwise, letf̃S(xi) = 1 if f̂S(xi) is positive, andf̃S(xi) =−1 otherwise. Thus̃fS(xi)
is f̂S(xi), restricted to the interval [-1,1]. Output( f̃S(xi))

2/2 as the estimate forGD( f ,xi).

Lemma 4 Let f be an n-variable Boolean function and let D be a product distribution over{0,1}n
defined by[p1, . . . , pn]. Letβ = maxi{1/pi ,1/(1− pi)}, ε > 0, and0 < δ < 1. If S is a set of

1
ε22(β−1) ln

2n
δ
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random examples of f , drawn from distribution D, then with probability at least 1−δ, |( f̃S(xi))
2/2−

GD( f ,xi)| ≤ ε.

Proof. By Lemma 2,GD( f ,xi) =
f̂ 2
D(xi)

2 . LetY = f̂D(xi) and letỸ = f̃S(xi). By Lemma 3, with
probability at least 1− δ, | f̂S(xi)−Y| < ε. As noted by Furst et al. (1991), sinceY is a Fourier co-
efficient,Y ∈ [−1,1], and thus restricting the estimate ofY to [−1,1] can only increase its accuracy.
Thus|Ỹ−Y|< ε as well. It follows that|Ỹ2/2−GD( f ,xi)|= |Ỹ2/2−Y2/2|= 1

2|(Ỹ−Y)(Ỹ+Y)| ≤
ε, since|Ỹ +Y| ≤ 2. �

The bound in the above lemma is similar to the martingale-based bound we give below in
Lemma 6. The main difference is that it has a factor of(β− 1), meaning that it depends onpi .
In Section 10, Theorem 10.2, we apply Lemma 6 to prove a sample complexity result for an algo-
rithm in the PDC model. In this context,pi is not constant, and applying the bound in Lemma 4
instead would yield a slightly worse sample complexity for the algorithm (by a factor of O(r)). We
now proceed with the presentation of the martingale-based bound. The bound is based on a standard
large deviation estimate, which can be thought of as a “vector” version of the Chernoff bound. It
implies that a martingale is unlikely to wander too far from its initial value.

We recall some definitions. LetZ(0),Z(1), . . . be a discrete-time Markov process inR
k with

differences bounded byc. That is,Z(0),Z(1), . . . are random variables taking values inR
k, such

that the distribution ofZ(t + 1) given Z(u) for all u≤ t depends only onZ(t), and for each pair
Z(t),Z(t + 1) the L2 norm ||Z(t + 1)−Z(t)|| is at mostc. We call the process amartingaleif for
all t ≥ 0, E[Z(t)] exists, andE[Z(t +1)|Z(t)] = Z(t). (More general definitions exist, but this will
suffice for our purpose.)

Lemma 5 Let Z(t) be a martingale in Rk with differences bounded by c. Then for anyλ > 0,

Pr[ ||Z(t)−Z(0)|| ≥ λ ]≤ 2exp(
−λ2

2tc2 ). (1)

Proof See, for example, Pinelis (1992). �

Lemma 6 Let f be an n-variable Boolean function and let D be a product distribution over{0,1}n
whose parameters are in(0,1). Letε > 0, and0 < δ < 1. If S is a set of at least

256ln(2n/δ)/ε2

random examples of f , drawn from distribution D, then with probability at least 1− δ, |G(S,xi)−
GD( f ,xi)| ≤ ε for all variables xi of f .

Proof Let xi be a variable, and consider the 2×2 table

f = 0 f = 1

xi = 0 a1 a2

xi = 1 a3 a4

In this table, thea j ’s are probabilities, so thata1 denotes the probability (underD) thatxi = f = 0,
and similarly for the others. Therefore, 0≤ a j ≤ 1, and∑a j = 1.
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By drawing a random sampleS of f from distributionD, we get countsm1,m2,m3,m4 corre-
sponding to thea j ’s. For example,m2 is the number of examples inS for which xi = 0 and f = 1.
We can view the sampling procedure as happening over time, where thetth example is drawn at
time t.

At timest = 0,1,2, . . ., we can observe

Z(t) := (m1−a1t,m2−a2t,m3−a3t,m4−a4t).

By the definition ofZ,

E[Z(t +1)−Z(t)|Z(t)] = a1(1−a1,−a2,−a3,−a4)+a2(−a1,1−a2,−a3,−a4)

+a3(−a1,−a2,1−a3,−a4)+a4(−a1,−a2,−a3,1−a4)

= (0,0,0,0)

where the last equation follows because∑a j = 1. ThusZ(0),Z(1), . . . is a martingale inR4. Also,
Z(t +1)−Z(t) equals, up to symmetry,(1−a1,−a2,−a3,−a4). Sincea2

2 +a2
3 +a2

4≤ 1,

(1−a1)
2 +a2

2 +a2
3 +a2

4≤ 2,

and the martingale has differences bounded byc =
√

2.
The gain ofxi in f with respect to distributionD is

GD( f ,xi) = 2[β(1−β)− pβ1(1−β1)− (1− p)β0(1−β0)]

where
β = Pr[ f = 1] = a2 +a4,

p = Pr[xi = 1] = a3 +a4,

β0 = Pr[ f = 1|xi = 0] =
a2

a1 +a2
,

and
β1 = Pr[ f = 1|xi = 1] =

a4

a3 +a4
.

Substituting these into the above gain formula and simplifying, we get

GD( f ,xi) = 2

[

(a1 +a3)(a2 +a4)−
a3a4

a3 +a4
− a1a2

a1 +a2

]

.

Define the functionG(a1, . . . ,a4) to be equal to the right hand side of the above equation. This is a
continuous function of thea j ’s, on the simplexa j ≥ 0, ∑a j = 1.

Observe that

0 <
∂

∂a j

(

a jak

a j +ak

)

=
1

(a j/ak +1)2 < 1,

if a j ,ak > 0, and

0≤ ∂
∂a j

(a1 +a3)(a2 +a4)≤∑ai = 1.

This implies that
∣

∣∂G/∂a j
∣

∣≤ 2 in the interior of the simplex.

2391



HELLERSTEIN, ROSELL, BACH, RAY AND PAGE

Suppose thatb = (b1,b2,b3,b4) and c = (c1,c2,c3,c4) are two points on the interior of the
simplex with maxj{|c j−b j |}= µ. Let a(t) = b+ t(c−b) be the the parametric equation of the line
from b to c, and letG̃(t) = G(a(t)).

Lettingai(t) be theith coordinate ofa(t), and applying the chain rule, we get that

∂G̃
∂t

= ∑
i

∂G̃
∂ai

dai

dt
. (2)

SinceG̃(0) = G(b) andG̃(1) = G(c), by the mean value theorem, there existst∗ ∈ [0,1] such
that

∂G̃
∂t

(t∗) = G(c)−G(b). (3)

For(a1, . . . ,a4) in the interior of the simplex,
∣

∣∂G̃/∂ai
∣

∣≤ 2. By the definition ofa(t), |dai/dt|=
|ci−bi | ≤ µ. Thus (2) and (3) imply that

|G(c)−G(b)| ≤ 8µ. (4)

SinceG is continuous, this holds even for probability vectorsb andc on the boundary.
We seek a sample sizem large enough that (for all variablesxi)

Pr[ |G(S,xi)−GD( f ,xi)| ≥ ε ]≤ δ
n
.

Let the empirical frequencies be ˆa j = mi/m, i = 1, . . . ,4. By (4), it will suffice to makem large
enough that, with probability at least 1−δ/n, we observe|â j−a j |< ε/8 for all j. Let’s call a sample
“bad” if for some j, |mj/m−a j | ≥ ε/8. SinceZ(0) =~0, this implies that||Z(m)−Z(0)|| ≥ εm/8.
If we takeλ = εm/8, c =

√
2, andt = m in the Chernoff bound (1), we see that

Pr[ bad sample]≤ 2e−
ε2m
256 .

This will be less thanδ/n as soon as

m≥ 256ln(2n/δ)

ε2 .

�

8. A Property of Non-constant Boolean Functions

In this section we prove a property of Boolean functions that we will use repeatedly in subsequent
sections. The property is given in the following lemma.

Fork∈ [0, . . . ,n], letWk( f ) denote the number of positive assignments off of Hamming weight
k.

Lemma 7 Let f be a non-constant Boolean function on{0,1}n. Then there exists a variable xi of
f and a number k∈ [0, . . . ,n−1] such that Wk( fxi←0) 6= Wk( fxi←1).

2392



EXPLOITING PRODUCT DISTRIBUTIONS

Proof. Assume no such variablexi exists.
Without loss of generality, assume thatf (0n) = 1. We prove that for alla∈ {0,1}n, f (a) = 1.

The proof is by induction on the Hamming weight ofa, w(a). The base case clearly holds.
Now let j ∈ [0, . . . ,n− 1]. Assume inductively that all assignmentsx of Hamming weightj

satisfy f (x) = 1. Let l ∈ [1, . . . ,n]. Let t ∈ {0,1}n be an arbitrary assignment of Hamming weightj
such thattl = 0; t exists becausej < n. By the initial assumption,Wj( fxl←0) = Wj( fxl←1). Further,
by the inductive assumption, for every assignmentu such thatw(u) = j, f (u) = 1. There are
precisely

(n−1
j

)

assignmentsu such thatw(u) = j andul = 0. All these assignmentsu satisfy f (u) =

1, and thusWj( fxl←0) =
(n−1

j

)

. ThereforeWj( fxl←1) =
(n−1

j

)

also. The quantity
(n−1

j

)

is equal to

the total number of assignments in{0,1}n−1 of Hamming weightj. It follows that fxl←1(b) = 1
for all b∈ {0,1}n−1 of Hamming weightj, and hencef (a) = 1 for all a∈ {0,1}n suchal = 1 and
w(a) = j +1. Since indexl is arbitrary, and each assignment of Hamming weightj +1 has at least
one variable set to 1, it follows thatf (a) = 1 for all a∈ {0,1}n of Hamming weightj +1.

We have thus shown by induction thatf (a) = 1 for all a∈ {0,1}n. This contradicts the property
that f is a non-constant function. �

Lemma 7 can be restated using the terminology ofweight enumerators. Given a binary code
(i.e., a subsetC of {0,1}n, for somen), the weight enumerator of this code is the polynomial
P(z) = ∑kWkzk, whereWk is the number of codewords (elements ofC) of Hamming weightk.
Lemma 7 states that iff is a non-constant Boolean function, then it has a relevant variablexi such
that codesC0 := {x∈{0,1}n−1| fxi←0(x) = 1}, andC1 := {x∈{0,1}n−1| fxi←1(x) = 1} have different
weight enumerators.

Lemma 7 proves the existence of a variablexi with a given property. One might conjecture
that all relevant variables off would share this property, but this is not the case, as shown in the
following simple example.

8.1 Example

Let f (x1,x2,x3) = (¬x1∨¬x2∨ x3)(x1∨ x2∨¬x3). Let σ = (0,0,0). Since f (1,1,0) 6= f (0,1,0),
x1 is a relevant variable off . It is straightforward to verify that, fork ∈ {0,1,2}, Wk( fx1←0) =
Wk( fx1←1). The same holds forx2 by symmetry. Variablex3 is the only one satisfying the property
of Lemma 7.

9. Skewing Given the Entire Truth Table

In this section, we analyze skewing in an idealized setting, where the availabledata consists of the
full truth table of a Boolean function. We then do an analysis of sequential skewing in the same
setting.

9.1 A Motivating Example

Recall that a correlation immune functionf (x1, . . . ,xn) is one such that for every variablexi , the
gain of xi with respect tof is 0 under the uniform distribution on{0,1}n. We are interested in
the following question: When skewing is applied to a correlation immune function,will it cause a
relevant variable to have non-zero gain under the skewed distribution? (Equivalently, will it cause
one of the first-order Fourier coefficients to become non-zero?) We show that, in the idealized
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setting, the answer to this question is “yes” for nearly all skews. The answer is somewhat different
for sequential skewing.

When we use a skew(σ, p) to reweight a data set that consists of an entire truth table, the
weight assigned to each assignmenta in the truth table by the skewing procedure isPD(σ,p)(a),
whereD(σ, p) is the skewed distribution defined by(σ, p). Moreover, the gain of a variablexi as
measured on the weighted truth table is precisely the gain with respect toD(σ, p). By Lemma 1,
it follows that a variablexi will have gain on the skewed (weighted) truth table data set iffPD( f =
1|xi = 1)−PD( f = 1|xi = 0) 6= 0, whereD = D(σ, p). If xi is a relevant variable, the difference
PD( f = 1|xi = 1)−PD( f = 1|xi = 0) can be expressed as a polynomialh(p) in p of degree at most
r−1, wherer is the number of relevant variables off . If xi is an irrelevant variable,PD( f = 1|xi =
1)−PD( f = 1|xi = 0) = 0. The main work in this section will be to show that for some relevant
variablexi , this polynomial is not identically 0. Having proved that, we will know that for at most
r−1 values of weight factorp (the roots ofh), h(p) = 0. For all other values ofp, h(p) 6= 0, andxi

has gain inf with respect toD(σ, p).
We give an example construction of the polynomialh(p) for a particular function and skew.

Consider a Boolean functionf over 5 variables whose positive examples are(0,0,0,1,0),
(0,0,1,0,0), (1,0,1,1,0). Assume a skew(σ, p) whereσ = (1, . . . ,1) and p is some arbitrary
value in (0,1). Let D = D(σ,p). There are two positive examples off settingx1 = 0, namely
(0,0,0,1,0) and (0,0,1,0,0). It is easy to verify thatPD( f = 1|x1 = 0) = 2p(1− p)3. Simi-
larly, PD( f = 1|x1 = 1) = p2(1− p)2. Let h(p) = PD( f = 1|x1 = 1)−PD( f = 1|x1 = 0). Then
h(p) = p2(1− p)2−2p(1− p)3, which is a degree-4 polynomial inp. This polynomial has at most
4 roots, and it is not identically 0. It follows that for all but at most 4 choices of p, h(p) is not zero.
Thus if we choosep uniformly at random from(0,1), with probability 1,x1 has gain for( f ,σ, p).

9.2 Analysis of Skewing Given the Complete Truth Table

For f : {0,1}n→ {0,1} a Boolean function,k∈ [1. . .n], andσ ∈ {0,1}n, letW( f ,σ,k) denote the
number of assignmentsb∈ {0,1}n such thatf (b) = 1 and∆(b,σ) = k.

Using the symmetry of the Boolean hypercube, we can generalize Lemma 7 to obtain the fol-
lowing lemma, which we will use in our analysis of skewing.

Lemma 8 Let f be a non-constant Boolean function on{0,1}n, σ ∈ {0,1}n be an orientation, and
i ∈ [1. . .n]. Then there exists a variable xi of f and k∈ [0, . . . ,n−1] such that W( fxi←1,σi ,k) 6=
W( fxi←0,σi ,k).

Proof. Recall that given two assignmentsa andb, we usea+b to denote componentwise addi-
tion mod 2. Letf ′ : {0,1}n→{0,1} be such thatf ′(x) = f (x+σ).

Applying Lemma 7 to functionf ′, let xi andk be such thatWk( f ′xi←1) 6= Wk( f ′xi←0).
For all a ∈ {0,1}n−1, f ′xi←σi

(a) = 1 andw(a) = k iff fxi←0(a+ σi) = 1 and∆(a+ σi ,σi) =
w((a+ σi)+ σi) = k. It follows thatWk( f ′xi←σi

) = W( fxi←0,σi ,k). The analogous statement holds
for Wk( f ′xi←¬σi

). ThusW( fxi←1,σi ,k) 6= W( fxi←0,σi ,k). �

We now show the connection between the above lemma and gain.

Lemma 9 Let f be a Boolean function on{0,1}n, σ ∈ {0,1}n be an orientation, and i∈ [1. . .n].
Let r be the number of relevant variables of f . If W( fxi←1,σi , j) = W( fxi←0,σi , j) for all j ∈
[1. . .n−1], then for all weighting factors p∈ (0,1), xi does not have gain for( f ,σ, p). Conversely,
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if W( fxi←1,σi , j) 6= W( fxi←0,σi , j) for some j∈ [1. . .n−1], then for all but at most r−1 weighting
factors p∈ (0,1), xi has gain for( f ,σ, p).

Proof. Let f0 denotefxi←0 and f1 denotefxi←1. Let σ ∈ {0,1}n be an orientation.
For real valued variablesy andz and fora ∈ {0,1}n, let Tσ,a(y,z) be the multiplicative term

yn−dzd, whered = ∆(σ,a), the Hamming distance betweenσ anda. So, for example, ifσ = (1,1,1)
anda = (1,0,0), Tσ,a(y,z) = yz2. Note that forp∈ (0,1), Tσ,a(p,1− p) is the probability assigned
to a by distributionD(σ,p). For σ ∈ {0,1}n and f a Boolean function on{0,1}n, let gf ,σ be the
polynomial iny andzsuch that

gf ,σ(y,z) = ∑
a∈{0,1}n: f (a)=1

Tσ,a(y,z). (5)

Thus, for example, iff is the two-variable disjunctionf (x1,x2) = x1∨ x2, andσ = (1,1), then
gf ,σ = y1z1 +y1z1 +y2z0 = y2 +2yz.

Define g′(y,z) = gf1,σi (y,z)− gf0,σi (y,z), whereg is as given in Equation 5. The quantity
W( f ,σ,k) is the value of the coefficient of the termyn−kzk in gf ,σ. Thusg′(y,z) = ∑n−1

j=0 c jyn−1− jzj ,
where for all j ∈ [0. . .n−1], c j = W( f1,σi , j)−W( f0,σi , j).

Let p ∈ (0,1). Under distributionD(σ,p), Pr( f = 1|xi = 0) and Pr( f = 1|xi = 1) are equal to
gf0,σi (p,1− p) and gf1,σi (p,1− p) respectively. Thus by Lemma 1,xi has gain for( f ,σ, p) iff
g′(p,1− p) = 0.

Let h(p) be the polynomial inp such thath(p) = g′(p,1− p).
If xi is irrelevant, then for all fixedp∈ (0,1), xi has no gain for( f ,σ, p). Further,W( f1,σi , j) =

W( f0,σi , j) for all j ∈ [0. . .n−1]. Thus the lemma holds ifxi is irrelevant. In what follows, assume
xi is relevant.

If W( f1,σi , j) = W( f0,σi , j) for all j ∈ [0. . .n−1], thenh(p) is identically 0 and for all fixed
p∈ (0,1), xi has no gain for( f ,σ, p).

Suppose conversely thatW( f1,σi , j) 6=W( f0,σi , j) for somej. Theng′(y,z) is not identically 0.
We will show thath(p) = g′(p,1− p) is a polynomial of degree at mostr−1 that is not identically
0.

We begin by showing thath(p) has degree at mostr−1. Letxl 6= xi be an irrelevant variable of
f . Assume without loss of generality thatσl = 1. Then sincef (axl←1) = 1 iff f (axl←0) = 1,

gf ,σ(p,1− p) = ∑
a∈{0,1}n: f (a)=1,al =1

pTσl ,al (p,1− p)+ ∑
a∈{0,1}n: f (a)=1,al =0

(1− p)Tσl ,al (p,1− p)

= ∑
a∈{0,1}n: f (a)=1,al =0

Tσl ,al (p,1− p)

= ∑
b∈{0,1}n−1: fxl←0(b)=1

Tσl ,b(p,1− p)

= gfxl←0,σl (p,1− p).

That is,gf ,σ(p,1− p) is equal to the corresponding polynomial for the functiongfxl←0,σl (p,1− p)
produced by hardwiring irrelevant variablexl to 0. By repeating this argument, we get thatgf ,σ =
g f̃ ,σ̃ where f̃ is the function obtained fromf by hardwiring all of its irrelevant variables to 0, and
σ̃ is σ restricted to the relevant variables off . Thusg has degree at mostr andh(p) = g′(p,1− p)
has degree at mostr−1.
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Let j ′ be the smallestj such thatW( f1,σi , j) 6= W( f0,σi , j). Thenc j ′ is non-zero, and all (non-
zero) terms ofg′(y,z) have the formc jyr−1− jzj where j ≥ j ′. We can thus factor outzj ′ from g′(y,z)
to getg′(y,z) = zj ′g′′(y,z), whereg′′(y,z) = ∑r−1

j= j ′ c jyr−1− jzj− j ′ . One term ofg′′ is c j ′yr−1− j ′ , while
all other terms have a non-zero power ofz. Thus forp = 1, g′′(p,1− p) = c j ′ which is non-zero,
proving thatg′′(p,1− p) is not identically 0. Henceh(p) = zj ′g′′(p,1− p) is the product of two
polynomials that are not identically 0, and soh(p) is not identically 0.

Finally, sinceh(p) is a polynomial of degree at mostr−1 that is not identically 0, it has at most
r−1 roots. It follows that there are at mostr−1 values ofp in (0,1) such thatxi does not have gain
for ( f ,σ, p). �

We now present the main theorem of this section.

Theorem 9.1 Let f be a non-constant Boolean function on{0,1}n. Letσ ∈ {0,1}n be an orienta-
tion, and let p be chosen uniformly at random from(0,1). Then with probability 1 there exists at
least one variable xi such that xi has gain for( f ,σ, p).

Proof. Let σ ∈ {0,1}n be a fixed orientation. Letr be the number of relevant variables off .
Let xi be the variable off whose existence is guaranteed by Lemma 8. ThusW( fxi←1,σi , j) 6=
W( fxi←0,σi , j) for somej. By Lemma 9, for all but at mostr−1 weighting factorsp∈ (0,1), xi has
gain for( f ,σ, p). With probability 1, a randomp chosen uniformly from(0,1) will not be equal to
one of thoser−1 weighting factors. �

Using the techniques above, one can also show that for certainp-biased distributionsD[p], there
do not exist any non-constant correlation immune functions with respect toD[p]. Let f be a non-
constant Boolean function defined on{0,1}n. By Lemma 8 and the proof of Lemma 9, there is
some variablexi such that associated polynomialh(p) (defined with respect toσ = (1, . . . ,1)) is
not identically 0. It follows that for anyp that is not a root ofh, xi has gain for( f ,(1, . . . ,1), p),
and thusf is not correlation immune with respect to distributionD[p]. The polynomialh(p) has
degree at mostn−1 and integer coefficients with magnitude at most 2n, which restricts its possible
roots. For example, every root ofh must be algebraic. Thus for any non-algebraicp, there are no
Boolean functions that are correlation immune with respect toD[p]. Similarly, sinceh has integral
coefficients with magnitude bounded by 2n, an elementary theorem on polynomials (sometimes
called the “Rational Zeroes Theorem”) immediately implies that any rational zeroof h must have
magnitude at least 1/2n. Thus for anyp such that 0< p < 1/2n, there are non-variable Boolean
functions that are correlation immune with respect toD[p].

With Theorem 9.1 we have shown that for any non-constant function andany orientationσ,
there exists at least one variablexi such that ifp is chosen randomly, then, with probability 1,xi

has gain with respect tof under the distributionD(σ,p). However, the theorem says nothing about
the magnitude of the gain. If the chosenp is close to a root of the polynomialh(p), defined in the
proof of Lemma 9, then the gain will be very small. Moreover, the gain can vary depending on the
function and on the skew. (We will prove a result later in the paper, in Lemma 11, which shows that
with a certain probability, a randomly chosenp will causexi to have reasonably large gain.)

The identity of the variable(s) having gain can also depend on the skew. There may be relevant
variables other thanxi that don’t have gain for anyp. In the example given following the proof of
Lemma 7, variablesx1 andx2 will have no gain for( f ,(0, . . . ,0), p) no matter the choice ofp.

Theorem 9.1 suggests that skewing is an effective method for finding relevant variables of a non-
constant Booleanf , because for nearly all skews, there will be at least one variable with non-zero
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gain. Equivalently, for nearly all skewed distributions, functionf is not correlation immune with
respect to that distribution. However, in practice—even in a noiseless situation where examples are
all labeled correctly according to a functionf —we do not usually have access to the entire truth
table, and thus are not able to compute the exact gain of a variable under distributionD(σ,p) defined
by the skew. We can only estimate that gain. Moreover, in practice we cannot sample from the
distributionD(σ,p). Instead, we simulateD(σ,p) by reweighting our sample.

9.3 Analysis of Sequential Skewing

Sequential skewingis a variant of skewing. In sequential skewing,n iterations of reweighting are
performed, wheren is the number of input variables of the target function. On thej th iteration,
examples are reweighted according to the preferred setting of thej th variable alone; if the setting of
the j th variable matches the preferred setting, the example is multiplied byp, otherwise the example
is multiplied by 1− p. The reweighting in thejth iteration is designed to simulate the product
distribution in which each variable other thanx j is 1 with probability 1/2, and variablex j has its
preferred setting with probabilityp. In addition to then iterations of reweighting, the gain of every
variable is also calculated with respect to the original, unweighted, data set. As in standard skewing,
the algorithm uses the calculated gains to determine which variable to output.

In the reweighting done by sequential skewing, there is a chosen variablexi , a preferred setting
c ∈ {0,1} of that variable, and a weight factorp ∈ (0,1). We thus define a (sequential) skew to
be a triple(i,c, p), wherei ∈ [1. . .n], c∈ {0,1}, andp∈ (0,1). Define the probability distribution
D(i,c,p) on {0,1}n such that fora∈ {0,1}n, D(i,c,p) assigns probabilityp · (1

2)n−1 to a if ai = c, and
(1− p) · (1

2)n−1 otherwise. ThusD(i,c,p) is the distribution that would be generated by applying
sequential skewing, with parametersxi , c andp, to the entire truth table.

Let f be a Boolean function on{0,1}n. We say that variablex j has gain for( f , i,c, p) if under
distributionD(i,c,p), G( f |x j) > 0. By Lemma 1,x j has gain for(i,c, p) iff under distributionD(i,c,p),
Pr[ f = 1|x j = 1] 6= Pr[ f = 1|x j = 0].

We will use the following lemma.

Lemma 10 A Boolean function f is 2-correlation immune iff it is 1-correlation immune, and for all
pairs i < j, the inputs xi and xj are independent given f(x1, . . . ,xn).

Proof. We first prove the forward direction. Iff is 2-correlation immune, then it is certainly
1-correlation immune, and all triples( f ,xi ,x j) are mutually independent.

The reverse direction is a calculation. Letα,β,γ ∈ {0,1}. Using pairwise independence, and
then 1-correlation immunity, we get

Pr[ f = α,xi = β,x j = γ] = Pr[ f = α]Pr[xi = β,x j = γ | f = α]

= Pr[ f = α]Pr[xi = β | f = α]Pr[x j = γ | f = α]

= Pr[ f = α]Pr[xi = β]Pr[x j = γ].

This holds even if Pr[ f = α] = 0, for then both sides vanish. �

The constant functionsf = 0 and f = 1 are 2-correlation immune, as is any parity function
on 3 or more variables. We have enumerated the 2-correlation immune functions up ton = 5 and
found that whenn≤ 4, the only such functions are as above, but forn = 5, others begin to appear.
Specifically, there are 1058 2-correlation immune functions of 5 variables,but only 128 parity
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functions and complements of these (with no constraint on the relevant variables). (Our enumeration
method works as follows. Vanishing of the relevant Fourier coefficients can be expressed as a linear
system with 0-1 solutions, which we can count by a “splitting” process reminiscent of the time-
space tradeoff for solving subset sum problems, Odlyzko 1980.) Denisov (1992) gave an asymptotic
formula for the number of 2-correlation immune functions, and from this workit follows that for
largen, only a small fraction of the 2-correlation immune functions will be parity functions.

The following theorem shows that, in our idealized setting, sequential skewing can identify a
relevant variable of a function, unless that function is 2-correlation immune. It follows that sequen-
tial skewing will be ineffective in finding relevant variables of a parity function, even with unlimited
sample sizes. In contrast, standard skewing can identify relevant variables of a parity function if the
sample size is large enough.

Theorem 9.2 Let f be a correlation-immune Boolean function on{0,1}n, let i ∈ [1. . .n], and let
c ∈ {0,1}. Let p be chosen uniformly at random from(0,1). If the function f is 2-correlation
immune, then for all j∈ [1. . .n], xj has no gain for( f , i,c, p). Conversely, if f is not 2-correlation
immune, then for some j∈ [1. . .n], xj has gain for( f , i,c, p) with probability 1.

Proof. Let f be a correlation immune function. Leti ∈ [1. . .n] andc∈ {0,1}.
Assumec = 1. The proof forc = 0 is symmetric and we omit it. Consider skew(i,c, p), where

p∈ (0,1). Let f−1(1) = {x∈ {0,1}∗| f (x) = 1}.
Let j ∈ [1. . .n]. Let A1 = |{a ∈ f−1(1) | ai = c anda j = 1}|, andB1 = |{a ∈ f−1(1) | ai 6=

c anda j = 1}|. Similarly, let A0 = |{a ∈ f−1(1) | ai = c anda j = 0}|, B0 = |{a ∈ f−1(1) | ai 6=
c anda j = 0}|.

Under distributionD(i,c,p), if j 6= i, Pr[ f = 1|x j = 1] = (A1p+B1(1− p))
(

1
2

)n−2
. If j = i, then

becausec = 1, Pr[ f = 1|x j = 1] = A1
(

1
2

)n−1
. Similarly, if j 6= i, Pr[ f = 1|x j = 0] = (A0p+B0(1−

p))
(

1
2

)n−2
. If j = i, Pr[ f = 1|x j = 0] = B0

(

1
2

)n−1
.

The difference Pr[ f = 1|x j = 1]−Pr[ f = 1|x j = 0] is a linear function inp. If i 6= j, this function
is identically zero iffA1 = A0 andB1 = B0. If it is not identically 0, then there is at most one value
of p∈ (0,1) for which it is 0. If i = j, this function is identically zero iffA1 = B0. Also note that
for i = j, A0 = 0 andB1 = 0 by definition.

In addition, sincef is correlation immune,A1 + A0 = B1 + B0. If i = j, then Pr[ f = 1|x j =
1]−Pr[ f = 1|x j = 0] is therefore identically zero andxi has no gain for( f , i,c, p). If j 6= i, then
x j has no gain for( f , i,c, p) iff A1 = A0 = B1 = B0. This latter condition is precisely the condition
that Pr[xi = α∧ x j = β| f = γ] = Pr[xi = α| f = γ]Pr[x j = β| f = γ] under the uniform distribution
on {0,1}n. If this condition holds for all pairsi 6= j, no variablex j has gain for( f , i,c, p), and by
Lemma 10,f is 2-correlation immune. Otherwise for somei 6= j, x j has gain for( f , i,c, p) for all
but at most 1 value ofp. The theorem follows. �

10. Exploiting Product Distributions

Until now we havesimulatedalternative product distributions through skewing. But simulating al-
ternative distributions is not the same as sampling directly from them. In particular, skewing can
magnify idiosyncracies in the sample in a way that does not occur when sampling from true alter-
native distributions. We now consider the PDC model, in which the learning algorithm can specify
product distributions and request random examples from those distributions. In practice it might be
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possible to obtain examples from such alternative distributions by working witha different popu-
lation or varying an experimental set-up. Intuitively, one might expect a high degree of overhead
in making such changes, in which case it would be desirable to keep the number of alternative
distributions small.

10.1 FindRel1: Finding a Relevant Variable Usingr Distributions

Let Booleanr,n denote the Boolean functions onn variables that have at mostr relevant variables. We
first present a simple algorithm that we call FindRel1, based on Theorem 9.1. It identifies a relevant
variable of any target function in Booleanr,n, with probability 1− δ, by estimating the first-order
Fourier coefficient ofxi for r distinct product distributions. The algorithm assumes thatr is known.
If not, standard techniques can be used to compensate. For example, onecan repeat the algorithm
with increasing values ofr (perhaps using doubling), until a variable is identified as being relevant.

The algorithm works as follows. Forj ∈ {1, . . . , r}, let D j denote the product distribution that
sets each of then input variables to 1 with probabilityj/(r +1). For eachD j , the algorithm requests
a sampleSj of sizem0 (we will specifym0 in the proof below). Then, for each of then input variables
xi , it estimates the associated first-order Fourier coefficients from sampleSj by computingf̂S,D j (xi).
At the end, the algorithm outputs the set of all variablesxi whose gain on someSj exceeded a
thresholdθ0 (also specified below).

Theorem 10.1 For all non-constant f∈ Booleanr,n, with probability at least1− δ FindRel1 will
output a non-empty subset of the relevant variables of f . FindRel1 uses a total of O((r +1)2r ln 2nr

δ )
examples, drawn from r distinct p-biased distributions. The running time ofFindRel1 is polynomial
in 2r ln r , n, andln 1

δ .

Proof. Since f is non-constant, it has at least one relevant variable. Recall that for distribution
D on{0,1}n, GD( f ,xi) denotes the gain ofxi with respect tof under distributionD. Recall also that
D[p] denotes the product distribution that sets each variablexi to 1 with probabilityp.

By the arguments in Section 9, for each relevant variablexi , PrD[p][ f = 1|xi = 1]−PrD[p][ f =
1|xi = 0] can be written as a polynomial of degreer −1 in p. Call this polynomialhi(p). For all
irrelevant variablesxi of f , hi(p) is identically 0.

Now let xi be a relevant variable such thathi(p) is not identically 0. By Theorem 9.1,f has at
least one such relevant variable. The polynomialhi(p) has degree at mostr −1 and hence has at
mostr−1 roots. Therefore, for at least onej ∈ {1, . . . , r}, hi( j/(r +1)) 6= 0.

Let j∗ ∈ {1, . . . , r} be such thathi( j∗/(r + 1)) 6= 0. Sincehi has integer coefficients and is of
degree at mostr − 1, it follows thathi( j∗/(r + 1)) = b/(r + 1)r−1, for some integerb. Thus the
absolute value ofhi( j∗/(r + 1)) is at least 1/(r + 1)r−1, and by Lemma 2, the first-order Fourier

coefficient (for distributionD j∗) associated withxi has magnitude at least 2

√

j∗
(r+1) (1−

j∗
r+1)

(r+1)(r−1) , which is

lower bounded byq := 2

√

1
(r+1) (1−

1
r+1)

(r+1)(r−1) . Setθ0 in the description of FindRel1 to beq/2=
√

r/(r +1)r .

For any singleD j , it follows from Lemma 3 that ifm0 = 2(r +1)2r r−1 ln 2nr
δ , if we use a sample

of sizem0 drawn fromD j and estimate alln first-order Fourier coefficients for distributionD j using
that sample, then with probability at least 1− δ

r , each of the estimates will have additive error less
thanq/2. Thus with probability at least 1−δ, this will hold for all r of theD j . The total number of
examples drawn by FindRel1 isrm0 = 2(r +1)2r ln 2nr

δ .
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Since for some relevant variable, the associated Fourier coefficient is at leastq for someD j , and
for all irrelevant variables, the associated Fourier coefficient is 0 forall D j , the theorem follows.�

Skewing uses gain estimates, rather than estimates of the first-order Fouriercoefficients. Find-
Rel1 can be modified to use gain estimates. By a similar argument as above, it follows from
Lemma 1 that for distribution D j∗ , some relevant variable has gain at least
q′ = 2 1

r+1(1− 1
r+1)( 1

r+1)2r−2 with respect to that distribution. We could thus modify FindRel1
to output the variables whose gain exceedsq′/2. Then Lemma 6 implies that a sample of size
m0 = O(r4r−2 ln nr

δ ) would suffice for the modified FindRel1 to output a non-empty subset of rele-
vant variables. This sample complexity bound is higher than the bound for theoriginal FindRel1
based on Fourier coefficients.

10.2 FindRel2: Lowering the Sample Complexity

We now present our second algorithm, FindRel2. As discussed in the introduction, it has an advan-
tage over FindRel1 in terms of running time and sample complexity, but requires examples from a
larger number of distinct distributions. FindRel2 is based on the following lemma.

Lemma 11 Let f have r≥ 1 relevant variables. Suppose p is chosen uniformly at random from
(0,1). Then there exists a relevant variable xi of f , and a valueτ≥ 2e−3r such that with probability
at leastτ/2 (with respect to the choice of p), GD[p]( f ,xi)≥ τ/2.

Proof By Theorem 9.1 and its proof, there exists a variablexi of f such that PrD[p][ f = 1|xi =
1]−PrD[p][ f = 1|xi = 0] can be expressed as a polynomialhi(p), which has integer coefficients and
is not identically 0. Letg(p) = GD[p]( f ,xi). By Lemma 1,

g(p) = 2p(1− p)hi(p)2.

Then there are integersγ0, . . . ,γ2r such thatg(p) = 2∑2r
j=0 γ j p j . Sinceg(p) is non-negative but not

identically 0, we have

τ :=
Z 1

0
g(p)dp= 2

2r

∑
j=0

γ j

j +1
> 0.

This is at least 2/L, whereL is the least common multiple of{1, . . . ,2r +1}. Observe that for each
prime, the number of times it appears in the prime factorization ofL equals the number of its powers
that are≤ 2r +1. By an explicit form of the prime number theorem,

logL = ∑
pk≤2r+1

k≥1

logp≤ 3r.

(This can be checked directly forr = 1, and forr ≥ 2 we can use Theorem 12 of Rosser and
Schoenfeld 1962.) Thus,τ ≥ 2e−3r . Now let α be the fraction ofp∈ (0,1) for which g(p) ≥ τ/2.
Then,

τ =
Z

g≥τ/2
g+

Z

g<τ/2
g≤ α+(τ/2)(1−α).

This impliesα≥ τ/(2− τ) > τ/2, and the lemma follows. �

Note that the proof of the above lemma relies crucially on the non-negativity ofthe gain function,
and thus the same proof technique could not be applied to first-order Fourier coefficients, which can
be negative.
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It is possible that the bounds in the above result could be improved by exploiting how g comes
from the Boolean functionf . Without such information, however, the bounds are essentially the best
possible. Indeed, by properly choosingg, one can use this idea to estimate the density of primes
from below, and get within a constant factor of the prime number theorem. See Montgomery (1994)
for a discussion of this point.

FindRel2, our second algorithm for finding a relevant variable, follows easily from the above
lemma. We describe the algorithm in terms of two size parametersm1 andm2, and a classification
thresholdθ1.

The algorithm begins by choosingm1 values forp, uniformly at random from(0,1). Let P be
the set of chosen values. For each valuep∈ P, the algorithm requestsm2 random examples drawn
with respect to distributionD[p], forming a sampleSp. Then, for each of then input variablesxi , it
computesG(Sp,xi), the gain ofxi on the sampleSp. At the end, the algorithm outputs all variables
xi such thatG(Sp,xi) > θ1 for at least one of the generated samplesSp.

Using Lemma 11, we can give values to parametersm1, m2, andθ1 in FindRel2 and prove the
following theorem.

Theorem 10.2 For all non-constant f∈ Booleanr,n, with probability at least1− δ, FindRel2 will
output a non-empty subset of the relevant variables of f . FindRel2 uses O(e9r(r + ln(n/δ)) ln(1/δ))
examples, drawn from O(e3r log 1

δ) product distributions. The running time is polynomial in2r , n,
and log 1

δ .

Proof. As in the proof of Theorem 10.1,f has at least one relevant variablexi for which hi(p)
is not identically 0. Letxi∗ denote this variable. Letδ1 = δ2 = δ/2.

If the statement of Lemma 11 holds for any value ofτ at all, it holds for the lower bound.
We therefore letτ = 2e−3r . By Lemma 11, for at least aτ/2 fraction of the values ofp ∈ (0,1),
GD[p]( f ,xi∗)≥ τ/2. Let us call these “good” values ofp. If a singlep is chosen uniformly at random
from (0,1), then the probabilityp is good is at leastτ/2.

Let m1 = e3r ln 1
δ1

= 2
τ ln 1

δ1
. If the algorithm choosesm1 independent random values ofp to form

the setP, the probability thatP does not contain any goodp’s is at most(1−τ/2)m1 ≤ e−m1τ/2 = δ1.
SupposeP contains at least one goodp. Let p∗ be such ap. Let γ = GD[p∗]( f ,xi∗). Then,

γ≥ τ/2 = e−3r . Setθ1 in the algorithm toe−3r/2, the resulting lower bound forγ/2.
Setm2 in the algorithm to be equal to 256ln(2nm1/δ2)/θ2

1.
Consider anyp ∈ P. Then by Lemma 6, with probability at least 1− δ2/m1, |G(Sp,xi)−

GD[p](xi)| < γ/2 for all variablesxi . Since|P| = m1, it follows that |G(Sp,xi)−GD[p](xi)| < γ/2
holds for all variablesxi and for allp∈ P, with probability at least 1−δ2.

AssumingP has at least one goodp∗, GD[p∗](xi∗) ≥ γ, while for all p∈ P and all irrelevantxi ,
andGD[p](xi) = 0. Thus if|G(Sp,xi)−GD[p](xi)|< γ/2 holds for everyxi andp∈ P, andP contains
at least one goodp, then FindRel2 outputs a non-empty subset of relevant variables off .

It follows that the the probability that the algorithm does not output a non-empty subset of the
relevant variables is at mostδ1 +δ2 = δ, as claimed.

It remains to estimate the number of examples used, which ism1m2. The only problem is with
m2. Since 0< δ1 < 1/2, we have 0< ln(2ln(1/δ1)) < ln(1/δ1). Using this, together with the
definitions ofm1 andτ, we find that

ln(2nm1/δ2) = ln(2n)+ ln(2ln(1/δ1))− ln(τ)− ln(δ2)
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≤ ln(n)+ ln(1/δ1)+3r + ln(1/δ2)

= ln(n)+3r +2ln(2/δ).

Combining this with the definitions ofm2 and θ1 gives usm2 = O(e6r(r + ln(n/δ))), and since
m1 = e3r ln(2/δ), we getm1m2 = O(e9r(r + ln(n/δ)) ln(1/δ)). �

We do not know the best exponents for which a result like Theorem 10.2 istrue. We do note,
however, that more careful use of the prime number theorem would allow theexponents 9 and 3 to
be lowered to 6+o(1) and 2+o(1), respectively.

Using not too many more examples, the random choices can be eliminated from FindRel2, as
follows. Since theg appearing in the proof of Lemma 11 is a polynomial, the set ofp∈ [0,1] for
which g(p) ≥ τ/2 is a finite union of closed intervals. Their lengths sum to at leastτ/2 = e−3r .
In the open interval between any two adjacent closed intervals, there must be a local minimum of
g, which is a zero ofg′, a polynomial of degree≤ 2r −1. It follows that there are at most 2r of
these closed intervals, making one have length at leasth := e−3r/(2r). Our algorithm can therefore
try p = h,2h,3h, . . . and be guaranteed that one of these is good. (We don’t have to tryp = 0,1
becauseg vanishes there.) With this modification, the number of distributions becomesO(re3r) and
the number of examples becomesO(re9r(r + ln(n/δ))).

10.3 Two Algorithms From The Literature

Another approach to finding a relevant variable is implicit in work of Bshoutyand Feldman (2002).
We present it briefly here.

Bshouty and Feldman’s approach is based on the following facts. Variablexi is relevant tof iff
there is some Fourier coefficientf̂ (z) with zi = 1 and f̂ (z) 6= 0. Further, if f hasr relevant variables,
the absolute value of every non-zero Fourier coefficient off is at least 1/2r .

For b ∈ {0,1}n−1, let 1b denote the concatenation of 1 withb. Let w(b) denote the Ham-
ming weight ofb. DefineR1( f ) = ∑b∈{0,1}n−1 f̂ 2(1b)( 1

22w(b) ). ThusR1 is a weighted sum of the

Fourier coefficientsf̂ (z) such thatz1 = 1. For anyz∈ {0,1}n, the quantity f̂ 2(z) is non-zero
only if {i|zi = 1} ⊆ {i| variablexi is a relevant variable off}. Therefore, if f̂ 2(1b) 6= 0, then
w(b) ≤ r. It follows that if x1 is relevant,R1 > 1/24r . If x1 is irrelevant,R1 = 0 . Let D′ be the
product distribution specified by the parameter vector[1/2,1/4,1/4, . . . ,1/4] and letw ∈ {0,1}n
be such thatw = [1,0, . . . ,0]. As shown by Bshouty and Feldman (2002, proof of Lemma 11),
R1 = Ex∼U [Ey∼D′ [ f (y)χw(x⊕y)]]2. Herex∼U denotes that the first expectation is with respect to
anx drawn from the uniform distribution on{0,1}n, andy∼D′ denotes that the second expectation
is with respect to ay drawn from distributionD′. For any fixedx, Ey∼D′ [ f (y)χw(x⊕ y)]] can be
estimated by drawing random samples(y, f (y)) from D′. The quantityR1 can thus be estimated
by uniformly generating values forx, estimatingEy∼D′ [ f (y)χw(x⊕ y)]] for eachx, and then taking
the average over all generated values ofx. Using arguments of Bshouty and Feldman, which are
based on a standard Hoeffding bound, it can be shown that for some constantc1, a sample of size
O(2c1r log2( 1

δ′ )) from D′ suffices to estimateR1 to within an additive error of 1
24r+1 , with probability

1− δ′. If the estimate obtained is within this error, then whetherxi is relevant can be determined
by just checking whether the estimate is greater than1

24r+1 . We can apply this procedure to alln
variablesxi , each time taking a sample ofy’s from a new distribution. Settingδ′ = δ/n, it follows
that a sample of sizeO(n2c1r log2 n

δ) suffices to determine, with probability 1− δ, which of then
variables are relevant. Thus this algorithm finds all the relevant variables.
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The above algorithm uses examples chosen fromn product distributions. Each product distribu-
tion has exactly one parameter set to 1/2, and all other parameters set to a fixed valueρ 6= 1/2 (here
ρ = 1/4, although this choice was arbitrary).

If the parameters of the product distribution can be set to 0 and 1, membership queries can be
simulated. We now briefly describe an algorithm that uses membership queriesand uniform random
examples to find a relevant variable of a target function with at mostr relevant variables. A similar
approach is used in a number of algorithms for related problems (see, e.g., Arpe and Reischuk,
2007; Guijarro et al., 1999; Blum et al., 1995; Damaschke, 2000; Bshouty and Hellerstein, 1998).

The algorithm first finds the value off (a) for some arbitrarya, either by asking a membership
query or choosing a random example. Then, the algorithm draws a random sampleS (with respect
to the uniform distribution) of size 2r ln 1

δ . Assuming the function contains at least one relevant
variable, a random example has probability at least 1/2r of being negative, and probability at least
1/2r of being positive. Thus if the function has at least 1 relevant variable, with probability at
least 1− δ, S contains an examplea′ such thatf (a′) 6= f (a). (If it contains no such example, the
algorithm outputs the constant functionf (x) = f (a).) The algorithm then takesa anda′, and using
membership queries, executes a standard binary-search procedure for finding a relevant variable of
a Boolean function, given a positive and a negative example of that function (cf. Blum et al., 1995,
Lemma 4). This procedure makesO(logn) membership queries.

If we carry out the membership queries in the PDC model by asking for examples from product
distributions with parameters 0 and 1, the result is an algorithm that finds a relevant variable with
probability at least 1− δ using O(logn) product distributions andO(2r log 1

δ) random examples.
The random examples can also be replaced by membership queries on(n, r) universal sets (see, e.g.,
Bshouty and Hellerstein, 1998).

11. On the Limitations of Skewing

One of the motivating problems for skewing was that of learning the parity ofr of n variables.
The results of Section 9 imply that skewing is effective for learning parity functions if the entire
truth table is available as the training set. (Of course, if the entire truth table is available, there are
much more straightforward ways of identifying relevant variables.) Equivalently, we can identify
relevant variables if we are able to determine the exact gain of each variable with respect to skewed
distributions. In practice, though, we need to estimate gain values based on arandom sample. The
random sample must be large enough so that we can still identify a relevant variable, even though
the gain estimates for the variables will have some error. We now consider thefollowing sample
complexity question: how large a random sample is needed so that skewing can be used to identify
a relevant variable of the parity function, with “high” probability? We would like to know how
quickly this sample complexity grows asr andn grow.

Skewing is not a statistical query learning algorithm, but it is based on the estimation of statis-
tics. In what follows, we use techniques that were previously employed to prove lower bounds for
statistical query learning of parity functions.

It is difficult to analyze the behavior of skewing because the same sample is used and re-used for
many gain calculations. This introduces dependencies between the resultinggain estimates. Here
we consider a modification of the standard skewing procedure, in which wepick a new, independent
random sample each time we estimate the gain of a variable with respect to a skew(σ, p). We call
this modification “skewing with independent samples.” Intuitively, since the motivation behind
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skewing is based on estimating statistical quantities, choosing a new sample to makeeach estimate
should not hurt accuracy. In experiments, skewing with independent samples was more effective in
finding relevant variables than standard skewing (Ray et al., 2009).

For simplicity, assume that the variable output by the skewing algorithm is one that exceeds a
fixed threshold the maximum number of times. However, as we discuss below, our lower bounds
would also apply to implementations using other output criteria.

We prove a sample complexity lower bound for skewing with independent samples, when ap-
plied to a target function that is the parity ofr of n variables. The proof is based on the fact that the
skewing algorithm does not use all the information in the examples. Given a skew (σ, p), and an
example(x, f (x)), the skewing algorithm weights this example according tod = ∆(x,σ), the Ham-
ming distance betweenx andσ. The calculation of the gain for a variablexi on the weighted data set
then depends only onf (x), whetherxi = σi , and ond. These three pieces of information together
constitute a “summary” of the example(x, f (x)), for orientationσ. The skewing algorithm uses
only these summaries; it does not use any other information about the examples. We will argue that
the summaries do not contain enough information to identify relevant variablesof a parity function,
unless the sample size is “large”.

We begin by proving a technical lemma, using techniques of Jackson (2003) and Blum et al.
(1994).

Let Parityr,n be the set of parity functions onn variables which haver relevant variables. So
for each f ∈ Parityr,n, f (x1, . . . ,xn) = xi1 + xi2 + . . . + xir where the sum is taken mod 2, and the
xi j are distinct. LetNEQ(b,c) denote the inequality predicate, that is,NEQ(b,c) = 1 if b 6= c and
NEQ(b,c) = 0 if b = c.

Let d ∈ {0, . . . ,n} and b,c ∈ {0,1}. For f ∈ Parityr,n and σ ∈ {0,1}n, the quantity
Pr[NEQ(σi ,xi) = b, f (x) = c, and∆(x,σ) = d] has the same value for all relevant variablesxi of
f (where the probability is with respect to the uniform distribution over allx ∈ {0,1}n). The
same holds for all irrelevant variablesxi of f . We defineSf ,σ

1 (b,c,d) = Pr[NEQ(σi ,xi) = b, f (x) =

c, and∆(x,σ) = d] whenxi is a relevant variable off , andSf ,σ
2 (b,c,d) = Pr[NEQ(σi ,xi) = b, f (x) =

c, and∆(x,σ) = d] whenxi is an irrelevant variable off .

As an example, supposeσ′ ∈ {0,1}n is such that f (σ′) = 0. Then Sf ,σ′
1 (0,1,d) =

1
2n ∑t∈T

(r−1
t

)(n−r
d−t

)

where T = {t ∈ Z|t is odd and 0≤ t ≤ d}. Similarly, Sf ,σ′
2 (1,0,d) =

1
2n ∑t∈T ′

(r
t

)(n−r−1
d−1−t

)

whereT ′ = {t ∈ Z|t is even and 0≤ t ≤ d−1}.
For variablexi and orientationσ, we call (NEQ(σi ,xi), f (x),∆(x,σ)) the summary tuplecor-

responding to(x, f (x)). Thus for target functionf ∈ Parityr,n and orientationσ, Sf ,σ
1 (b,c,d) is the

probability of obtaining a summary tuple(b,c,d) for variablexi whenxi is relevant, andSf ,σ
2 (b,c,d)

is the same probability in the case thatxi is irrelevant.
We prove the following upper bound on|Sf ,σ

1 (b,c,d)−Sf ,σ
2 (b,c,d)|.

Lemma 12 For all σ ∈ {0,1}n, f ∈ Parityr,n, b,c∈ {0,1} and d∈ {0, . . . ,n},

|Sf ,σ
1 (b,c,d)−Sf ,σ

2 (b,c,d)| ≤ 1
2

(

(

n−1
r

)−1/2

+

(

n−1
r−1

)−1/2
)

.
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Proof. Suppose first thatf (σ) = 0. For anyσ′ ∈ {0,1}n such thatf (σ′) = 0, Sf ,σ′
1 (b,c,d) =

Sf ,σ
1 (b,c,d), and the analogous equality holds forS2. Without loss of generality, we may therefore

assume thatσ = 0n.
Let S1 = Sf ,σ

1 (b,c,d) and S2 = Sf ,σ
2 (b,c,d). Let γ = |S1−S2|. Define a functionψi(x,y) :

{0,1}n×{0,1} → {1,−1} such thatψi(x,y) =−1 if NEQ(σi ,xi) = b, y = c, and∆(x,σ) = d, and
ψi(x,y) = 1 otherwise.

Forxi a relevant variable off , E[ψi(x, f (x))] = 1−2S1 (where the expectation is with respect to
the uniform distribution onx∈ {0,1}n). Similarly, forxi an irrelevant variable off , E[ψi(x, f (x))] =
1−2S2.

Let x j be a relevant variable off , and letxk be an irrelevant variable off .
Since|S1−S2|= γ,

|E[ψ j(x, f (x))]−E[ψk(x, f (x))]|= 2|S1−S2|= 2γ.

As noted by Jackson (2003), it follows from an analysis in Blum et al. (1994) that for any parity
functionh onn variables, and any functiong : {0,1}n+1→{1,−1},

E[g(x,h(x))] = ĝ(0n+1)+ ĝ(z1)

wherez∈ {0,1}n is the characteristic vector of the relevant variables ofh (equivalently,χz = 1−2h),
andz1 denotes the assignment(z1, . . . ,zn,1).

Thus we have
E[ψ j(x, f (x))] = ψ̂ j(0

n+1)+ ψ̂ j(z1)

E[ψk(x, f (x))] = ψ̂k(0
n+1)+ ψ̂k(z1)

wherez is the characteristic vector of the relevant variables off . It follows from the definition ofψi

thatψ̂ j(0n+1) = ψ̂k(0n+1). Therefore,

|ψ̂ j(z1)− ψ̂k(z1)|= 2γ.

Now consider any other parity functionf ′ ∈ Parityr,n. Sinceσ = 0n, f ′(σ) = f (σ) = 0. There-

fore, Sf ′,σ
1 = S1 andSf ′,σ

2 = S2. If relevant variablex j of f is also a relevant variable off ′, then
E[ψ j(x, f ′(x))] = ψ̂ j(0n+1)+ ψ̂ j(z′1), wherez′ is the characteristic vector of the relevant variables
of f ′. Thusψ̂ j(z′1) = ψ̂ j(z1).

There are
(n−1

r−1

)

functions f ′ ∈ Parityr,n such thatx j is a relevant variable off ′. It follows that

there are at least
(n−1

r−1

)

Fourier coefficients ofψ j that are equal tôψ j(z1). By Parseval’s identity,

|ψ̂ j(z1)| ≤
(

n−1
r−1

)−1/2

.

Similarly, E[ψk(x, f (x))] = E[ψk(x, f ′(x))] for all f ′ ∈ Parityr,n such thatxk is an irrelevant vari-

able of f ′. Since there are
(n−1

r

)

such f ′, an analogous argument shows that

|ψ̂k(z1)| ≤
(

n−1
r

)−1/2

.

Thus
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γ =
|ψ̂ j(z1)− ψ̂k(z1)|

2

≤ |ψ̂ j(z1)|+ |ψ̂k(z1)|
2

≤ 1
2

(

(

n−1
r

)−1/2

+

(

n−1
r−1

)−1/2
)

.

Thus the lemma holds in the case thatf (σ) = 0.
Now suppose thatf (σ) = 1. Givena∈ {0,1}n, f (a) = 1 iff a differs fromσ in an even number

of its relevant variables (and in an arbitrary number of its irrelevant variables). Further,f (a) = 1
iff a differs from 0n in an odd number of its relevant variables (and in an arbitrary number of its
irrelevant variables). ThusSf ,σ

1 (b,c,d) = Sf ,0n

1 (b,1−c,d) andSf ,σ
2 (b,c,d) = Sf ,0n

2 (b,1−c,d).

Since the bound proved above for the casef (σ) = 0 holds for arbitraryc, it holds for|Sf ,0n

1 (b,1−
c,d)−Sf ,0n

2 (b,1−c,d)|, and the lemma follows. �

The above lemma gives an upper bound onγ = |Sf ,σ
1 (b,c,d)−Sf ,σ

2 (b,c,d)|. Another way
to prove such an upper bound is to use the fact that a statistical query algorithm could deter-
mine whether variablexi was relevant by asking a query requesting the value of Pr[NEQ(σi ,xi) =
b, f (x) = c, and∆(x,σ) = d] within toleranceγ/2 (assumingγ > 0). Queries of this type could be
used to find all the relevant variables off , which uniquely determines parity functionf . If γ were
too large, this would contradict known lower bounds on statistical learning of parity. This approach
yields a bound that is close to the one given in the lemma above, but the proof isless direct. (See,
for example, Blum et al. 1994 for the definition of the statistical query model.)

We now prove a sample complexity lower bound for learning parity functions,using skewing
with independent samples.

Theorem 11.1 Suppose we use skewing with independent samples to identify a relevant variable
of f , where f∈ Parityr,n. Assuming that the samples are drawn from the uniform distribution, to
successfully output a relevant variable with probability at least µ requiresthat the total number of

examples used in making the gain estimates be at least
(µ− r

n)min{(n−1
r−1)

1/2
,(n−1

r )
1/2}

4(n+1) .

Proof. Consider running skewing with independent samples with a target functionf ∈ Parityr,n.
To estimate the gain of a variablexi with respect to a skew(σ, p), the skewing algorithm uses
a sample drawn from the uniform distribution. In calculating this estimate, the algorithm does
not use the full information in the examples. For each labeled example(x, f (x)), it uses only the
information in the corresponding summary tuple(b,c,d) = (NEQ(σi ,xi), f (x),∆(x,σ)). We may
therefore assume that the skewing algorithm is, in fact, given only the summary tuples, rather than
the raw examples.

The number of distinct possible summary tuples is at most 4(n+1), since there are two possible
values each forb andc, andn+ 1 possible values ford. The uniform distribution on examplesx
induces a distributionD on the summary tuples generated for skew(σ, p) and variablexi . For fixed
σ, distributionD is the same for all relevant variablesxi of f . It is also the same for all irrelevant
variablesxi of f . Let Dσ

1 be the distribution for the relevant variables, andDσ
2 be the distribution for
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the irrelevant variables. Letq be the distance betweenDσ
1 andDσ

2 as measured in theL1 norm. That
is, if K denotes the set of possible summary tuples, thenq = ∑z∈K |PrDσ

1
[z]−PrDσ

2
[z]|.

Since there are at most 4(n+ 1) possible summary tuples. it follows from Lemma 12 that

q≤ 2(n+1)(
(n−1

r−1

)−1/2
+
(n−1

r

)−1/2
).

Let m be the total number of examples used to estimate the gain of all variablesxi under all
skews(σ, p) used by the skewing algorithm. Since theL1 distance betweenDσ

1 andDσ
2 is at most

q for every skew(σ, p) and every variablexi , it follows that during execution of the algorithm,
with probability at least(1−q)m, the summary tuples generated for the relevant variables off are
distributed in the same way as the summary tuples generated for the irrelevant variables off .

By the symmetry of the parity function, if the target functionf is randomly chosen from
Parityr,n, then with probability at least(1−q)m, the final variable output by the skewing algorithm
when run on thisf is equally likely to be any of then input variables off . Thus the probability that
the skewing algorithm outputs an irrelevant variable is at least(1−q)m(n−r

n ), and the probability that
it outputs a relevant variable is at most 1− (1−q)m(n−r

n ) < 1− (1−qm)(1− r
n) < r

n +qm(1− r
n) <

r
n +qm. The first inequality in this sequence holds because(1−q)m≥ (1−qm), since 0< q < 1.

Since the above holds for a random target function in Parityr,n, it holds for the worst-casef ∈
Parityr,n. It follows that if skewing with independent samples outputs a relevant variable of f (for
any f ∈Parityr,n) with probability at leastµ, then the total number of examples used must be at least

µ− r
n

q . Sinceq≤ 2(n+1)(
(n−1

r−1

)−1/2
+
(n−1

r

)−1/2
), it follows that 1/q≥ min{(n−1

r−1)
1/2

,(n−1
r )

1/2}
4(n+1) . �

To make the theorem concrete, consider the case wherer = logn. Note that if we simply choose
one of then variables at random, the probability of choosing a relevant variable in this case islogn

n .
It follows from the theorem that for skewing to output a relevant variablewith success “noticeably”
greater than random guessing, that is, with probability at leastlogn

n + 1
p(n) , for some polynomialp, it

would need to use more than a superpolynomial number of examples.
The above proof relies crucially on the fact that skewing uses only the information in the sum-

mary tuples. The details of how the summary tuples are used is not important to theproof. Thus
the lower bound applies not only to the implementation of skewing that we assumed(in which the
chosen variable is the one whose gain exceeds the fixed threshold the maximum number of times).
Assuming independent samples, the lower bound would also apply to other skewing implementa-
tions, including, for example, an implementation in which the variable with highest gain over all
skews was chosen as the output variable.

On the other hand, one can also imagine variants of skewing to which the proof would not
apply. For example, suppose that we replaced the single parameterp used in skewing by a vector
of parameters[p1, . . . , pn], so that in reweighting an example, variablexi causes the weight to be
multiplied by eitherpi or 1− pi , depending on whether there is a match withxi ’s preferred setting.
Our proof technique would not apply here, since we would be using information not present in the
summary tuples. To put it another way, the proof exploits the fact that the distributions used by
skewing are simple ones, defined by a pair(σ, p). Interestingly, it was our focus on such simple
distributions that led us to the two new algorithms in Section 10.

The negative result above depends on the fact that forf a parity function withr relevant vari-
ables, the distribution of the summary tuples for a relevant variablexi is very close to the distribution
of the summary tuples for an irrelevant variablexi . For other correlation immune functions, the dis-
tributions are further apart, making those functions easier for skewing to handle. For example,
consider Consensusr,n, the set of alln-variable Boolean functions withr relevant variables, whose
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value is 1 iff ther relevant variables are all equal. The functions in this set are correlationim-
mune. Assumen+ r is even. Letd = (n+ r)/2 andσ = (1,1, . . . ,1). Let S1 = Pr[xi = 0,∆(x,σ) =
d, and f (x) = 1] whenxi is a relevant variable off . Let S2 = Pr[xi = 0,∆(x,σ) = d, and f (x) = 1]
whenxi is an irrelevant variable off . ThenS1 = 1

2n

(n−r
n−r

2

)

andS2 = 1
2n (
(n−r−1

n−r
2 −1

)

+
(n−r−1

n+r
2 −1

)

). Then

S1−S2 = Ω( 1
2n

(n−r
n−r

2

)

), since the first term ofS2 is equal toS1/2, and the second term ofS2 is much

smaller than the first. Since
( m

m/2

)

= θ( 2m√
m), S1−S2 = Ω( 1√

n−r2r ). Even forr as large asn/2, this

is Ω( 1√
n2r ). Note the difference between this quantity and the analogous bound for parity. The

dependence here is on12r rather than on roughly
(n

r

)1/2
.

12. Conclusions and Open Questions

In this paper, we studied methods of finding relevant variables that are based on exploiting product
distributions.

We provided a theoretical study of skewing, an approach to learning correlation immune func-
tions (through finding relevant variables) that has been shown empiricallyto be quite successful. On
the positive side, we showed that when the skewing algorithm has access tothe complete truth table
of a target Boolean function—a case in which standard greedy gain-based learners fail—skewing
will succeed in finding a relevant variable of that function. More particularly, under any random
choice of skewing parameters, a single round of the skewing procedurewill find a relevant variable
with probability 1.

In some sense the correlation immune functions are the hardest Boolean functions to learn, and
parity functions are among the hardest of these to learn, since a parity function of k+ 1 variables
is k-correlation immune. In contrast to the positive result above, we showed (using methods from
statistical query learning) that skewing needs a sample size that is superpolynomial in n to learn
parity of logn relevant variables, given examples from the uniform distribution.

We leave as an open question the characterization of the functions of logn variables that skewing
can learn using a sample of size polynomial inn, given examples from the uniform distribution.

Skewing operates on a sample from a single distribution, and can onlysimulatealternative prod-
uct distributions. We used the PDC model to study how efficiently one can findrelevant variables,
given the ability to sample directly from alternative product distributions. We presented two new
algorithms in the PDC model for identifying a relevant variable of ann-variable Boolean function
with r relevant variables.

We leave as an open problem the development of PDC algorithms with improved bounds, and
a fuller investigation of the tradeoffs between time and sample complexity, and thenumber and
types of distributions used. As a first step, it would be interesting to show analgorithm whose
time complexity is polynomial inn whenr = logn, using a number ofp-biased distributions that is
polynomial in logn. Our lower bound for parity relied on the assumption of independent samples.
We suspect that the lower bound also holds if the assumption is removed, butproving it seems to
require a different approach. As we mentioned earlier, it is a major open problem whether there is a
polynomial-time algorithm for finding relevant variables of a function of logn variables, using only
examples from the uniform distribution.
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