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Abstract

A Boolean functionf is correlation immunéf each input variable is independent of the output,
under the uniform distribution on inputs. For example, thetyg function is correlation immune.
We consider the problem of identifying relevant variabléa correlation immune function, in the
presence of irrelevant variables. We address this probtemwo different contexts. First, we ana-
lyze Skewinga heuristic method that was developed to improve the glfigreedy decision tree
algorithms to identify relevant variables of correlatiomnune Boolean functions, given examples
drawn from the uniform distribution (Page and Ray, 2003).pMssent theoretical results revealing
both the capabilities and limitations of skewing. Second,explore the problem of identifying
relevant variables in theroduct Distribution ChoicéPDC) learning model, a model in which the
learner can choose product distributions and obtain ex@sfpdbm them. We prove a lemma estab-
lishing a property of Boolean functions that may be of indefsnt interest. Using this lemma, we
give two new algorithms for finding relevant variables ofretaition immune functions in the PDC
model.

Keywords: correlationimmune functions, skewing, relevant variabBoolean functions, product
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1. Introduction

A Boolean functionf : {0,1}" — {0,1} is correlation immunéf for every input variablex;, the
values ofx; and f(xy,...,%,) are independent, with respect to the uniform distribution{ @s1}"
(cf. Roy, 2002). Examples of correlation immune functions include parity ®f2 variables, the
constant functions = 1 andf = 0, and the functiorf (x) = 1 iff all bits of x are equal.

If a function f is not correlation immune, then given access to exampldsdrawn from the
uniform distribution, one can easily identify (at least one) relevant bbriaf f by finding an input
variable that is correlated with the outputfofThis approach clearly fails iff is correlation immune.

We consider the problem of identifying relevant variables of a correlatnonune function, in
the presence of irrelevant variables. This problem has been addregsnachine learning practi-
tioners through the development of heuristics, and by computational |gatréorists, who have
analyzed the problem in standard learning models. We were motivated kyfnoor both commu-
nities, and present results related to both types of work. First, we grasbaoretical analysis of
skewing a heuristic method that was developed to improve the ability of greedy detis@learn-
ing algorithms to identify relevant variables of correlation immune functiongrgéxamples drawn
from the uniform distribution (Page and Ray, 2003; Ray and Page,)28@4ond, we present algo-
rithms for identifying relevant variables in ti&roduct Distribution ChoicPDC) model of learn-
ing. The PDC model, which we introduce below, is a variant of the stand&tdléarning model
(Valiant, 1984) in which the learner can specify product distributionssamaple from them.

Greedy decision tree learning algorithms perform poorly on correlation irerfumctions be-
cause they rely on measures such as Information Gain (Quinlan, 198@piangain (Breiman
et al., 1984) to choose which variables to place in the nodes of the decisenTthe correlation
immune functions are precisely those in which every attribute has zero gaén ath standard gain
measures, when the gain is computed on the complete data set (i.e., the trutfotahkejunction.
Thus when examples of a correlation immune function are drawn uniformigratom from the
complete data set, the learning algorithms have no basis for distinguishingelpetalevant and
irrelevant attributes.

Experiments have shown skewing to be successful in learning manyatmmammune func-
tions (Page and Ray, 2003). One of the original motivations behind sgemas the observation
that obtaining examples from non-uniform product distributions can lpfltién learning particular
correlation immune functions such as parity. Skewing works by reweightengitien training set
to simulate receiving examples from a subclass of product distributionsl sievedistributions.
In a skewed distribution, each input variakjes independently set to 1 with probabilipy; further,
there is a fixed probability, such that each; is either equal tg or to 1— p.

However, simulating alternative distributions is not the same as sampling diremtlythem.
TheProduct Distribution ChoicéPDC) model allows such direct sampling. This model can be seen
as a variant of the PAC model, and has similarities with other learning modelsdidieiously
(see Section 5). In the PDC model, the learner has access to an oracle/ffiioh it can request
examples. Before requesting an example, the learner specifies a fpdigttibution. The oracle
then supplies an example drawn from that distribution. In our study of the Pbdel, we focus

1. Our PDC model algorithms could be presented independently of atyssisn of the skewing heuristic. However,
the algorithms rely on technical results that we originally proved to anakegisg, and we present those technical
results as part of our discussion of skewing. Readers who are ontgsted in understanding the PDC algorithms
will need to read some of the material on skewing, but can skip Sectidrané.11.
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on a fundamental learning task: the problem of identifying relevant Vasah the presence of
irrelevant ones.

Note that by setting the parameters of the product distribution to be equal nd @,aone
can simulate membership queries in the PDC model. However, we are partigoterigsted in
exploring learning in the PDC model when the parameters of the choseagbdidtributions are
bounded away from 0 and 1.

Our interest in the PDC model is motivated not just by our study of skewiagby a more
general question: In learning, how much does it help to have accestattrala different distribu-
tions? In practice, it may be possible to obtain data from different distribaibgrrollecting it from
different sources or populations. Alternatively, one may be able to ait@ommental conditions to
change the distribution from which data is obtained. In such settings, itecarpg®ensive to sample
from too many distributions, and it may be difficult or impossible to sample froxtréee” distri-
butions. Thus in the PDC model, we are concerned not just with time and saompfdexity, but
also in the number and type of product distributions specified.

2. Summary of Results

We begin by showing that, given a complete data set, skewing will succeadlisT given the com-
plete truth table of a target Boolean function as the training set, skewing wilafielevant variable
of that function. (More particularly, under any random choice of shgwarameters, a single round
of the skewing procedure will find a relevant variable with probability 1.jsTasult establishes
that the approach taken by skewing is fundamentally sound. Howevaysitrething about the ef-
fectiveness of skewing when, as is typically the case, the training sttinsmonly a small fraction
of the examples in the truth table. In particular, this result does not adithegsiestion of whether
skewing would be effective given only a polynomial-size sample and polyrdimie.

We also analyze a variant of skewing calstjuential skewin(Ray and Page, 2004), in the case
that the full truth table is given as input. Experiments indicate that sequekdiairsg scales better
to higher dimensional problems than standard skewing. We show hereyépwhat even when the
entire truth table is available as the training set, sequential skewing is inedféatia subset of the
correlation immune functions known as tRBecorrelation immundunctions. A Boolean function
f:{0,1}" — {0,1} is 2-correlation immune if, for every pair of distinct input variablesand
Xj, the variablesq, x;, and f (xy,...,X,) are mutually independent. Thus, any practical advantage
sequential skewing has over standard skewing comes at the costwbriohg on this subset of
functions.

We present two new algorithms in the PDC model for identifying a relevarabarof ann-
variable Boolean function withrelevant variables. The first algorithm uses andlistinct p-biased
distributions (i.e., distributions in which each input variable is independentlyosk with some
fixed probabilityp). It runs in time polynomial im and its sample size, which@((r +1)%In %).
(The algorithm is randomized, but we also give a deterministic version anbislightly different
bounds.) The second algorithm ug@® In %) p-biased distributions, and runs in time polynomial
in n and the sample siz€(e” (r +In§) In(%)). Both algorithms choose the distributions they use
non-adaptively. For = O(logn), only the second algorithm runs in time polynomiakninbut the
first usesO(logn) distributions, whereas the second uses a number of distributions thatd$epe
polynomially onn.
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The second of our two algorithms is based on a nhew sample complexity reduligt@ove
using martingales.

Previous algorithms for identifying relevant variables in the PDC model, anidng bounds
similar to ours, use distributions that are mBbiased, and choose the distributions they use adap-
tively. Independently, Arpe and Mossel (to appear) have recentlgldged an algorithm that is
similar to our first algorithm. We discuss these related algorithms further in 8s&iand 10.

Sincep-biased distributions are skewed distributions, our algorithms can be viesvekkewing
algorithms for a setting in which it is possible to sample directly from skewed disiifts, rather
than to just simulate those distributions.

We also examine skewing in the context for which it was originally designedinileg from a
random sample drawn from the uniform distribution. We prove a negagstrin this context, a
sample complexity lower bound for the problem of learning parity functioashmically, we prove
the bound for a variant of skewing, called skewing with independent lesntpat is more amenable
to analysis than standard skewing. For intuitive reasons, and baseghernneental evidence, we
think it likely that the bound also holds for standard skewing. The bound isfiie skewing with
independent samples requires a sample of size atd@4%t" to find (with constant probability of
failure) a relevant variable of amvariable Boolean function computing the parity of fogf its
variables.

Correlation immunity is defined in terms of the uniform distribution. We discuss aalatu
extension of correlation immunity to non-uniform product distributions. We gisimple example
of a function that is correlation immune with respect to a non-uniform priodigtribution. Thus
while functions like parity are difficult for greedy learners when examptesae from the uniform
distribution, other functions can be difficult when examples come from anptioduct distribution.

Our analysis of skewing given a complete data set, and our two new algorithtne PDC
model, are both based on a lemma that we prove which shows that Booleioifisrhave a certain
useful property. Specifically, we show that every non-constantddocfunctionf on {0,1}" has a
variablex; such that induced functionf,. o and f._; on {0,1}"~* (produced by hardwiring; to
0 and 1) do not have the same number of positive examples of Hamming Wweightomek. This
lemma may be of independent interest.

3. Organization of the Paper

We first give some background on skewing in Section 4. In Section 5,iseaigbk related work.
Section 6 contains basic definitions and lemmas, including characterizatioog@ftion immune
functions, and simple lemmas on quantities such as Gini gain and the magnituésfio$tdorder
Fourier coefficients. It also contains a simple example of a function thatrislabon immune with
respect to a non-uniform product distribution. Section 7 discussesesammpplexity bounds used
later in the paper, and proves an upper bound on the estimation of Ginbgard on martingales.

In Section 8, we prove the lemma showing the useful property of Boolewautifuns.

We begin our analysis of skewing in Section 9 with results for the setting in whigtentire
truth table is given as the training set.

Section 10 contains our two new algorithms for the PDC model. It also contdissassion of
two PDC algorithms that are implicit in the literature.

Finally, Section 11 contains our sample complexity lower bounds on learniity fianctions
using skewing with independent samples.
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4. Background on Skewing

As a motivating example, suppose we have a Boolean funétien. . ., x,) whose value is the par-
ity of r of its variables. Functiori is correlation immune. With respect to the uniform distribution
on the domain off, all n variables off have zero gain. Equivalently, the first-order Fourier coef-
ficients of f are all zero (cf. Section 6.3). But, with respect to other product disioibs on the
examples, the relevant variables of have non-zero gain, while the—r irrelevant variables still
have zero gain (see Page and Ray, 2003; Arpe and Reischuk, 2b0¥ $uggests that learning cor-
relation immune functions might be easier if examples could be obtained fromaniform product
distributions.

In many machine learning applications, however, we have little or no conteoltbe distribu-
tion from which we obtain training data. The approach taken by skewing eateight the training
data, to simulate receiving examples from another distribution. More panrtigutae skewing algo-
rithm works by choosing a “preferred setting” (either 0 or 1) for ewasiablex; in the examples,
and a weighting factop Where% < p < 1. These choices define a product distribution over ex-
amplesx € {0,1}" in which each variable; has its preferred setting with probability and the
negation of that setting with probability-1p.

To simulate receiving examples from this product distribution, the skewingritigh begins
by initializing the weight of every example in the training set to 1. Then, fohegcand each
example, it multiplies the weight of the example pyf the value ofx; in the example matches its
preferred setting, and by-1 p otherwise. This process is called “skewing” the distribution. The
algorithm computes the gain of each variable with respect to the reweightiegalgorithm repeats
this procedure a number of times, with different preferred settings oheaeh time. Finally, it
uses all the calculated gains to determine which variable to output. The exthcichused varies in
different skewing implementations. In the paper that introduced skewingatible chosen was
the one whose calculated gains exceeded a certain threshold the maximuser dititnes (Page
and Ray, 2003).

In the context of decision tree learning, skewing is applied at every obttee decision tree,
in place of standard gain calculations. After running skewing on the trasehgt that node, the
variable chosen by the skewing procedure is used as the split varidbbg abde.

In investigating skewing, we are particularly interested in cases in whichuhber of rele-
vant variables is much less than the total number of variables. Optimally, wig Wie sample
complexity and running time to depend polynomiallymand 2 (and on Io%), so that we have a
polynomial-time algorithm when= O(logn).

5. Related Work

Throughout this paper, we focus on the problem of finding a relevanidble of a target Boolean
function, given a labeled sample drawn from the uniform distribution. é&erocedure that finds
a single relevant variabbg of a Boolean functiorf (for any f with at mostr relevant variables),
it is usually easy to extend the procedure to find all relevant variablesdhtlyet by recursively
applying it to the induced functions obtained by hardwingtp 1 and O respectively.

It is a major open problem whether there is a polynomial-time algorithm for findifeyant
variables of a Boolean function of lagelevant variables (out aof total variables) using examples
from the uniform distribution (cf. Blum, 2003). Mossel et al. (2003)gan algorithm for learning
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arbitrary functions om relevant variables, using examples drawn from the uniform distribution, in
time polynomial inn® and In(1/3), for somec < 1. This improves on the iiee algorithm which
requires time polynomial im" for smallr. The heart of the algorithm is a procedure to find a
relevant variable. The algorithm of Mossel et al. uses both Gaussian atiorirand estimates of
Fourier coefficients, and is based on structural properties of Bodleations.

Mossel et al. also briefly considered the question of finding a releaighle, given examples
drawn from a single product distributidipy, ..., pn].> They stated a result that is similar to our
Theorem 9.1, namely that if a product distribution is chosen at random vitibrprobability 1,
the Fourier coefficient (for that distribution) associated with any relevariable will be non-zero.
The important difference between that result and Theorem 9.1 is thtéhearem applies not to all
random product distributions, but just to random skewed distributiomzeS$kewed distributions
have measure zero within the space of all product distributions, the ofdudtissel et al. does not
imply anything about skewed distributions.

In interesting recent work that was done independently of this pappg &and Mossel (to ap-
pear) addressed the problem of finding relevant variables of a Bodle&tion, using examples
from biased distributions. If an input to a Boolean functibis drawn from gp-biased distribution,
the output off on that input is a random variable. Arpe and Mossel observed thakpeegtion
of this random variable is a polynomial in the bias, and expressed the Miactaries for this
polynomial in terms of the Fourier coefficients bf They used this expression to develop a family
of algorithms for identifying relevant variables. For a function withelevant variables, theth
algorithm estimates Fourier coefficients of Hamming weight ug tesing about /s distributions.
They also extended their algorithms to allow estimation of biases by samplindylamrave do not
address here.

Applying the results of Arpe and Mossel fee= 1 to the case of uniformly spaced biases yields
an algorithm that is almost the same as our first algorithm, with a very diffecergctness proof.
Although Arpe and Mossel did not give the sample size of their algorithricithy some compu-
tations show that it is larger than the sample size we give (in Theorem 1§.&)fdrtor roughly
equal to 16. Like us, they used a large deviation bound to derive a sample size, utitheot
estimate parameters for this bound in the best way known. If that is ddfmyifty the approach
of Furst et al. (1991), the discrepancy vanishes.

The problem of learning parity functions has been extensively studiearious learning mod-
els. It is a well-known open question whether it is possible to PAC-learityganctions in poly-
nomial time, using examples drawn from the uniform distribution, in the presehandom clas-
sification noise. This problem is at least as difficult as other open prolitemesrning; in fact,

a polynomial time algorithm for this problem would imply a polynomial-time algorithm fa th
problem mentioned above, learning functions ofiaglevant variables using examples from the
uniform distribution (Feldman et al., 2006).

Our lower bound result for parity in Section 11 relies on Fourier-basglthtques previously
used to prove lower bounds for learning parity in statistical query (SQhileg learning models
(Blum et al., 1994; Jackson, 2003). Roughly speaking, statisticayydeaming algorithms learn
a target function by adaptively specifying predicates that are definediabeled examples of the

2. They also claimed that this result implies an algorithm for learning funetiath r relevant variables in time poly-
nomial in Z, n, and In(1/3), given examples drawn from almost any product distribution. Howelre justification
for their claim was faulty, since it does not take into account the magnitiithe mon-zero Fourier coefficient.
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function. For each such predicate, the algorithm obtains an estimate (witbimaénctolerance) of
the probability that a random labeled example of the function satisfies the gjiedicate.

Jackson (2003) proved that that any “SQ-based” algorithm for ilegine class of all parity
functions takes tim&(2"/2). Jackson also showed that a more complex argument could be used
to prove a stronger bound 6¢i(2"). For the problem of learning just the parity functions having

r relevant variables, rather than all parity functions, these boundsrizeag(T) Y2) and Q((})
respectively. Although skewing with independent samples is not an S€dkagorithm, we prove
a bound that is similar to the weaker of these two bounds, using a similar teehr(i@ur bound
is for identifying a single relevant variable of the target parity functiotheathan for learning the
function.) The proof of Jackson’s stronger bound relies on propenti&Q-based algorithms that
are not shared by skewing with independent samples, and it is an opsticquwhether a similar
bound is achievable for skewing with independent samples.

Subsequent to Jackson’s work, Yang gave lower bounds for legpairity using “honest” statis-
tical queries (Yang, 2001, 2005). While the gain estimates performedwirgikeeem to correspond
to honest statistical queries, the correspondence is not direct. Oneta@termine the gain of a
variable with respect to a skewed distribution by using only a single hotestieal query. Be-
cause lower bounds in statistical query models rely on the fact that only limiteciation can be
obtained from the examples in the sample used to answer a single queryblmuwels for learning
with honest statistical queries do not directly imply lower bounds for skewiitly independent
samples. Further, we were unable to verify relevant lower bounds tiy&rang?®

At the other extreme from correlation-immune functions are functions factwéll first order
Fourier coefficients are non-zero (i.e., all relevant variables hamezem gain). This is true of
monotone functions (see Mossel et al., 2003). Arpe and Reischukdix¢eprevious results, gave
a Fourier-based characterization of the class of functions that caatpetbusing a standard greedy
covering algorithm (Arpe and Reischuk, 2007; Akutsu et al., 2003agakwa and Akutsu, 2005).
This class is a superset of the set of functions for which all relevaizthlas have non-zero degree-1
Fourier coefficients.

The PDC model investigated in this paper has some similarity to the extended staiistica
model of Bshouty and Feldman (2002). In that model, the learner caifyspgroduct distribution
in which each variable is set to 1 with probabilftyl/2 or 1— p, for some constant/2 > p > 0.
The learner can then asks#atistical querywhich will be answered with respect to the specified
distribution. In the PDC model the user can specify an arbitrary prodsethuition, and can ask
for random examples with respect to that distribution. One could simulate teed®d statistical
guery model in the PDC model by using random examples (drawn with regpéte specified
distribution) to answer the statistical queries.

A PDC algorithm for finding relevant variables is implicit in the work of Bshoaityl Feldman
(2002). We discuss this algorithm in some detail in Section 10. Its running timelysgmial
in n and its sample size, which B(n2!% log?§ + nr21%log}). It usesn distributions. Like our
second new algorithm, whem= O(logn) it runs in time polynomial im and Iog%. Unlike our
new algorithms, it chooses its distributions adaptively, and uses distributiahare noip-biased.

3. Yang (2001) gives an explicit lower bound for learning parity withéwirstatistical queries, and credits Jackson for
proving this implicitly (Jackson, 2003). However, Jackson’s proobisaf different statistical query learning model,
and his proof does not work for honest statistical queries. Yang5)28ates a general lower bound that can be
applied to parity. Its proof, in particular the discussion of “bad querigsgims to us to be incomplete.
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Nevertheless, the distributions used by this algorithm are simple. In eaetlpayameter of the
distribution is equal to 1/2, while the others are all equal to 1/4.

As noted in the introduction, it is possible to simulate membership queries in the PA& mo
by setting the parameters of the chosen product distribution to 0 and 1.rdblem of efficiently
learning Boolean functions with few relevant variables, using membersigipes alone, has been
addressed in a number of papers (Blum et al., 1995; Bshouty and Heilers998; Damaschke,
2000). The goal in these papers is to hatteibute-efficientlgorithms that use a number of queries
that is polynomial irr, the number of relevant variables, but only logarithmia,the total number
of variables. Guijarro et al. (1999) investigated the problem of identify@hgyvant variables in the
PAC model with membership queries.

In Section 10 we briefly describe a simple adaptive algorithm for identifyéheyant variables
using membership queries and uniform random examples. The algorithm mowel; a similar
approach is used in a number of algorithms for related problems (see, ggard Reischuk, 2007;
Guijarro et al., 1999; Blum et al., 1995; Damaschke, 2000; Bshouty atierstein, 1998). The
algorithm runs in time polynomial in and Iog%, and uses log+ 1 distinct product distributions.
The time and sample complexity are lower for this algorithm than for the other RfCitams
discussed in this paper, and for= Q(logn), the number of product distributions used is lower as
well. However, the other algorithms use only distributions whose parameatetsoanded away
from 0 and 1.

We use Fourier-based techniques in proving some of our results. iBrarextensive literature
on using Fourier methods in learning, including some of the papers mentibogd.a&Some of the
most important results are described in the excellent survey of Mank@e4).

Correlation immune functions ardcorrelation immune functions have applications to secure
communication, and have been widely studied in that field (see Roy, 20082, sfarvey). Recent
citations stem from the work of Siegenthaler (1984), but research mwelation immune functions
predates those citations. Golomb (1999) has pointed out that his work ir08@Eslon the clas-
sification of Boolean functions (Golomb, 1959) was motivated by the prohlseful for missile
guidance, of designing bit sequences that would resist prediction meltlasgsl on correlation.
During that period, as he states, such military applications “were not explioigiytioned in the
open literature.”

Correlation immune functions have also been studied in other fields undenedifiguises. The
truth table of a&k-correlation immune function corresponds to a certain orthogonal aGamion
et al., 1991). Orthogonal arrays are used in experimental designpdditive examples of &-
correlation immune function formlawise independent set. Such sets are used in derandomization
(see, e.g., Alon, 1996).

It is natural to ask how many-variable Boolean functions are correlation immune, since these
actually needskewing. The question has been addressed in a number of diffeqeertspas de-
scribed by Roy (2002). Counts of correlation immune functions upd®, separated by Hamming
weight, were computed by Palmer et al. (1992). For largame can use the analytic approximation

22".p,, where
1/8\"? 2
Ph==(=] 2"™/2(1- .

Since there are Boolean functions in allP, approximates the probability that a random Boolean
function is correlation immune. Its main term was found by Denisov (1992),tlaa rest is the
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beginning of an asymptotic series investigated by Bach (to appear). Bvemalln, the above
approximation is fairly accurate. For example, there are 503483768822Yariable correlation
immune functions, and the above formula give@%« 104,

Skewing was developed as an applied method for learning correlation-imBuaoiean func-
tions. Skewing has also been applied to non-Boolean functions, and &sBays (Lantz et al.,
2007; Ray and Page, 2005).

The main results in Sections 8 and 9 of this paper appeared in preliminaryrfédrosell et al.
(2005).

6. Preliminaries

We begin with basic definitions and fundamental lemmas.

6.1 Notation and Terminology

We consider two-class learning problems, where the features, or kemi@ve Boolean. Aarget
functionis a Boolean functiorf (xs,...,%,). An exampleis an element of0,1}". Examplea
{0,1}" is apositive examplef Boolean functionf (xs,...,xy) if f(a) =1, and anegative example
of f if f(a) =0. Alabeled examplés an elementa,b) € {0,1}" x {0,1}; it is a labeled example
of fif f(a)=bh.

Let f(xq,...,%n) be a Boolean function. The functidnis a mapping fror{0,1}" to {0,1}. An
assignment & (ag, ..., a,) to the variables;, ..., X, is an element of0,1}". The assignment ob-
tained froma by negating théth bit of ais denoted by . Given a Boolean functiofi(Xa, ..., Xn),
variablex; is arelevant variableof f if there existsa € {0,1}" such thatf (a) # f(ax).

A parity functionis a Boolean functiorf (x4, ...,X,) such that for soméC {1,...,n}, f(X) =
(Sier %) mod 2 for allx € {0,1}".

Foroc {0,1}",letd' = (01,...,0i_1,0i,1,...,0n), that is,c' denotess with itsith bit removed.

A truth tablefor a functionf over a set of variables is a list of all assignments over the variables,
together with the mapping df for each assignment. Foe [1...n] andb € {0,1}, fy., denotes
the function om— 1 variables produced by “hardwiring” thith variable off to b. More formally,
fy—b:{0,1}"1 —{0,1} suchthatforalac {0,1}"1, fy_p(a) = f(ay,a2,...,8_1,b,a,...,8n 1).

The integers between 1 andcare denoted byl...n|. For reala andb, (a,b) denotes the open
interval fromato b.

For any probability distributioD, we use R andEp to denote the probability and expectation
with respect to distributio®. WhenD is defined on a finite set andA C X, we define Rs(A) to
be equal tdy oo Po(a). We omit the subscridd when it is clear from context.

Given a probability distributiod on {0,1}", and a Boolean functioff : {0,1}" — {0,1}, a
random example of f drawn with respect tadan exampléx, f (x)) wherex is drawn with respect
toD.

A training setT for learning am-variable Boolean function is a multiset consisting of elements
in {0,1}" x {0,1}. It defines an associated distribution & 1}" x {0,1} sometimes known as
the empirical distribution For each(a,y) € {0,1}" x {0,1}, the probability of(a,y) under this
distribution is defined to be the fraction of examples in the training set thatjaie ® (a,y). In
the absence of noise, a training set for learning a functiog0,1}" — {0,1} is a set of labeled
examplegx, f(x)). The empirical distribution on such a training set can be viewed as a distributio
on{0,1}", rather than 040,1}" x {0,1}.
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A product distributiorD on {0,1}" is a distribution defined by a parameter vegfayr, .. ., py) in
[0,1]" where for allx € {0,1}", Pip[X] = ([Ti:x~1 Pi) (Mix~0(1— pi)). The uniform distribution on
{0,1}"is the product distribution defined §%/2,1/2,...,1/2]. For fixedp € (0,1), we useD[p| to
denote the product distribution defined Jpy. . ., p|. DistributionD[p] is the p-biased distribution

A skewis a pair(o, p) whereo € {0,1}" is an assignment, arle (0,1). We refer too as the
orientationof the skew, ang as theweighting factor

Each skew(o, p) induces a probability distributioD s ) on the 2 assignments if0,1}" as
follows. Lettp: {0,1} x {0,1} — {p,1— p} be such that fob,b’ € {0,1}, 1p(b,b’) = pif b=
b’ andt,(b,b’) = 1 - p otherwise. For each € {0,1}", distributionD q ;) assigns probability
M;Tp(0i,&) to a Thus distributionD s ) is @ product distribution in which every variable is
set to 1 either with probability, or with probability 1 p. We call distributionsD, ;) skewed
distributions Wheno = (1,...,1), the distributiorD ;) is the p-biased distributioD|p].

We note that in other papers on skewimmis required to be ir(1/2,1), rather than in0,1).
Here it is more convenient for us to Iptbe in(0,1). Given any orientatiow, and anyp € (0,1),
skew (0,1 — p), wherea is the bitwise complement af, induces the same distribution &3, p).
Thus allowingp to be in(0,1) does not change the class of skewed distributions, except that we
also include the uniform distribution.

Givena,b € {0,1}", let A(a,b) = [{i € [1,...,n]|a # bi}|, that is,A(a,b) is the Hamming
distance betweea andb. Fora,b € {0,1}", leta+ b denote the componentwise mod 2 sunaof
andb. Givenc € {0,1}", we usew(c) to denote the Hamming weight (number of 1's)mfThus
w(a+b) =A(a,b).

In the product distribution choic€PDC) learning model, the learning algorithm has access to
a special type of random example oracle for a target functios, . ..,x,). This random example
oracle takes as input the parametgys ..., pn] of a product distributiorD over unlabeled exam-
ples(xi,...,Xn). The oracle responds with a random exampie...,xn) drawn according to the
requested distributioD, together with the value of the targkbn that example. The learning algo-
rithm is given as input a confidence parametewhere 0< & < 1. The algorithm is also givemas
input.

6.2 Gain

Greedy tree learners partition a data set recursively, choosing avaphble” at each step. They
differ from one another primarily in their measures of “goodness” fdit gariables. The measure
used in the well-known CART system@ini gain (Breiman et al., 1984). Gini gain was also used
in the decision tree learners employed in experimental work on skewing @®pRay, 2003; Ray
and Page, 2004). In this paper, we use the term “gain” to denote Gini gain

Gini gain is defined in terms of another quantity called@iri index Let Sbe a (multi) set of
labeled examples. L& = {(x,y) € Sy=1} andS = {(x,y) € Sly = 0}. The Gini index ofSis
2%. Let H (S) denote the Gini index db.

Let x; be a potential split variable. L& = {(x,y) € Sx; = 1} andTo = {(X,y) € §x =0}. The
Gini index of S conditional on xis defined to béd (x;) := %I:I(Tl) + %I:I(To). In decision tree
terms, this is the weighted sum of the Gini indices of the child nodes resultingdreplit onx;.
TheGini gain of x; with respect t&5is

G(S%) =H(S) ~H(Sx).
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The Gini gain is always a value in the interyal1/2]. Some definitions of Gini gain and Gini
index differ from the one above by a factor of 2; our definition followd tifBreiman et al. (1984).

Now suppose that each example in our (multi) Sétas an associatasleight a real number
between 0 and 1. We can define the gain on this weighted set by modifyingdkie définitions
in the natural way: each time the definitions involve the size of a set, we insteatieisum of the
weights of the elements in the set.

We can also define Gini index and Gini gain of variaklevith respect tof : {0,1}" — {0,1}
under a distributiorD on {0,1}". The Gini index off with respect to a probability distribution
D on {0,1}"is 2Pp|[f = 1](1—Prp[f = 1]). Let Hp(f) denote the Gini index of with respect
to D. For any potential split variablg, the Gini index off with respect tdD, conditional on x
is Hp(f|x) := Pip[% = OJHp(fx_0) + Pio[% = 1JHp(fx_1). TheGini gain of a variablex; with
respect tof, under distributiorD, is

Go(f,x) = Ho(f) —Ho(fx).

The Gini gain ofx; with respect tof, under the uniform distribution of0,1}", is equal to the
Gini gain ofx with respect to the training s&tconsisting of all entries in the truth table bf

Given a skew(o, p) and a functionf, the Gini gain of a variable; with respect tof under
distribution D5 pp) is equivalent to the gain that is calculated, using the procedure desénibed
Section 4, by applying ske\o, p) to the training sefl consisting of the entire truth table for
f.

The following lemma relates the size of the Gini gain with respect to a distribliiom the
difference in the conditional probabilitiesdif = 1|x = 1] — Prp[f = 1| =0].

Lemma 1 Let f be an n-variable Boolean function, and let D be a distributio{ @1}" such that
Prix = 1] is strictly between 0 and 1. ThernyGf, %), the Gini gain of variable xwith respect to f,
under distribution D, is equal to

2pi(1—p)(Prp[f = 1|x = 1] — Prp[f = 1|x = 0])?
where p=Prp[x = 1].

Proof. Let p= p;, B =Prp[f = 1], B1 = Prp[f = 1|x = 1], andfBp = Prp[f = 1|x = 0]. Thus

B = pB1+ (1— p)Bo.
The Gini gain ofx; with respect tof is

2(B(1—B) — p(B1(1—PB1)) — (1— P)(Bo(1— Ro)))
= 2(B(1-B)— (pB1+ (1— p)Bo)) + PRI+ B5(1— p)
= 2(B(1-PB)—B+pRi+B3(1—p)
2(—B?+ pBi+B3(1— p)).

SubstitutingpBs + (1 — p)Bo for B, we get that the last quantity is

2(—p?BZ —2p(1— p)BoB1— (1— p)?B + PBZ + B5(1— p))
2((1— p)p(BZ — 2BoP1 +B3))
2p(1—p)(Br—PBo)?

2385



HELLERSTEIN, ROSELL, BACH, RAY AND PAGE

Under distributiorD on {0, 1}", x; and (the output off are independent ifp(f,x) = 0.

6.3 Fourier Coefficients

Given a Boolean functiori : {0,1}" — {0,1}, define an associated functién= 1—2f. That is,
F:{0,1}" — {1,—1} is such thafF (x) = 1 — 2f (x) for all x € {0,1}". The functionF can be seen
as an alternative representation of Boolean funcfiomsing—1 and 1 respectively to represent true
and false outputs, rather than 1 and 0.

For everyz € {0,1}", letX,: {0,1}" — {1, —1} be such thak,(x) = (—1)2=1%%, Thusy; is
the alternative representation of the function computing the parity of theblesiaet to 1 by. For
ze {0,1}", n-variable Boolean functiori, and associatel = 1 — 2f, theFourier coefficientf (z)
is

f(2) := E[F ()X2(X)]
where the expectation is with respect to the uniform distributior e 0, 1}".
Thedegreeof Fourier coefficient (z) is w(z), the Hamming weight af. The Fourier coefficient
associated with the variablg s f(z) wherez is the characteristic vector of (i.e., z = 1 and
for j #1, z; =0). In an abuse of notation, we will usf@{xi) to denote this Fourier coefficient.
Thus f(x) = E[F(x)(1—2%)]. The functionF can be expressed by its Fourier series, as we have

F(X) = Y201 f(2DXa(X).

Fourier coefficients can be generalized from the uniform distributionddyat distributions, as
described by Furst et al. (1991). LBtbe a product distribution 0f0,1}" defined by parameters
[P1,---, pn), all of which are strictly between 0 and 1. Foe {0,1}", let¢p,: {0,1}" — {0,1}
be such thatp »(X) = [iz1 “';’“ wherey; = p; is Ep[x] andg; = \/pi(1— pi) is the standard
deviation ofx; underD. The Fourier coefficienfD(z), for product distributiorD, is

fo(2) := Ep[F (X)@p.2(X)].-

WhenD is the uniform distribution, this is the ordinary Fourier coefficient.
Parseval’s identity, applied to the Fourier coefficients of product digtabs, states that

fo’(2) = 1.

ze{0,1}"

A The Fourier coefficient associated with the varia)avith respect to product distribytid‘r), is
fo(z), wherez is the characteristic vector af. Abusing notation as before, we will ugg(x) to
denote this Fourier coefficient. Thus
A iEp|F (X)] — Ep[XiF(x
fo ) — PERIF ()]~ EoXF(]
pi(1—pi)
The next lemma shows that the gain of a variable and its Fourier coefficentasely related.

Lemma 2 Let f be an n-variable Boolean function, and let D be a product distributicer {0, 1}"
defined by ps, ..., pn], such that each;pe (0,1). Then

fo(4) = 2v/pi (1= p) (P f = 1x = 1] — Pro[f = 1| = 0])
and R
Go(f,x) = f5(x)/2.
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Proof. By definition,

_ PiEp[F(¥)] — Ep[xF (x)]
pi(1—pi) '
Let B = Prp[f = 1] (which equals Ry[F = —1]), B1 = Prp[f = 1|x = 1], andfp = Prp[f =
1jx = 0.

SincepiEp[F (x)] = pi(1—2B), Ep[F (X)x] = pi(1—2B1), andP = piP1 + (1 — pi)Bo, it follows
that

f(x)

PiEp[F(X)] —Ep[xF(X)] = 2pi(—B+P1)
= 2pi(—piBr— (1 —pi)Bo+B1)
= 2pi(1—pi)(Br—Bo).

Dividing by /pi(1— pi), we have that
fo(x) = 2¢/pi(1— pi)(Pro[f = 1 = 1] —Prp[f = L|x = 0)).

The lemma follows immediately from Lemma 1. O

The following important facts about first-order Fourier coefficientgpi@duct distributions are
easily shown. Fob a product distribution 0f0, 1}" where eaclp; € (0,1),

1. If x; is an irrelevant variable of a Boolean functibnthen ﬂg(xi) =0.
2. Gp(f,x)=0iff fp(x)=0.

6.4 Correlation Immune Functions

Fork > 1, a Boolean function is defined to kecorrelation immunéf for all 1 < d <k, all degreed
Fourier coefficients of are equal to 0. An equivalent definition is as follows (Xiao and Massey,
1988; Brynielsson, 1989). Let,...,x, be random Boolean variables, each chosen uniformly and
independently. Ley = f(x1,...,Xn). Thenf is k-correlation immune if and only if, for any distinct
variablesx,, ..., X, of f, the variabley,x,, X, ...,X, are mutually independent.

A greedy decision tree learner would have difficulty learrkrgprrelation immune functions us-
ing only k-lookahead; to find relevant variables in the presence of irrelevarst fon such functions,
it would need to us&+ 1-lookahead.

A Boolean function isorrelation immunéf it is 1-correlation immune. Equivalently, a Boolean
functionf is correlation immune if all variables dfhave zero gain fof, with respect to the uniform
distribution on{0,1}". As can be seen from Lemma 1, this is the case iff for every input variable
x; of the function, Pff = 1|x; = 1] = Pr[f = 1|x; = 0], where probabilities are with respect to the
uniform distribution on{0,1}". The following alternative characterization of correlation-immune
functions immediately follows: A Boolean function is correlation-immune iff

{a€ {0,1}"| f(a) =1 anda = 1}| = |{a€ {0,1}" | f(a) =1 anda = 0}|.
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6.5 Correlation Immune Functions for Product Distributions

Correlation immune functions are defined with respect to the uniform distributlere we extend
the definition to apply to arbitrary product distributions with parameters striethwéen 0 and 1. In
particular, for such a product distributi@ we can define a function to lm®rrelation immune for
D if either (1) The degree-1 Fourier coefficients with resped tare all 0, or (2) the gain of every
variable with respect t® is 0, or (3) Pp[f = 1|x; = 1] — Prp[f = 1|x = O] = O for all variablesx
of f. By the results in Section 6, these conditions are equivélent.

A natural question is whether there are (non-constant) correlation imnomg&dns for non-
uniform product distribution®. There are, as illustrated by the following example, which can be
easily generalized to other similar product distributions.

6.5.1 EXAMPLE

Let n be a multiple of 3, and ldD be the product distribution defined k8y/3,2/3,...,2/3].

For anyn that is a multiple of 3, we will show that the following functiohis correlation
immune with respect t®.

Let f be then-variable Boolean function such thé¢x) = 1 if x=110110110110. (i.e.,n/3
repetitions of 110), or wheris equal to one of the two right-shifts of that vector. For all other
f(x) =0.

To prove correlation immunity, it suffices to show that for eagPrp[f = 1|x = 1] = Prp[f =
1].

Each positive example df has the same probability. It is easy to verify that for eacl2/3 of
the positive examples hawe= 1. Thus Pp[f = 1 andx= 1] = 2/3Pp[f =1]. So,

Pp[f=1x=1 = Prp[f=1andx=1]/Pp[x=1]
= (2/3Pw[f =1])/(2/3)
= Prp[f=1]

O
In Section 9 we will give examples of product distributidi$or which there are no correlation-
immune functions.

7. Estimating First-order Fourier Coefficients and Gain

Fourier-based learning algorithms work by computing estimates of selecteikiFooefficients
using a sample. Given a training s@t= {(x(,y®) ... (x(M y(M)1 for a Boolean functionf
andz € {0,1}", the estimated Fourier coefficient for z, calculated on S, with respect to ptodu
distribution D, is

3

(1-2yD)go (x).
1

Sl

fSD(Z) =

J

We will use fsp(x) to denotefsp(z), wherezis the characteristic vector af.

4. We do not extend the definition of correlation-immunity to non-prodisttiutions. With respect to a non-product
distribution, it is possible for both relevant and irrelevant variables te inan-zero gain
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To simplify notation, wher® is clear from context, we will often writés(z) instead offsp (2).
Since@p ; depends oD, calculatingfg(z) from Srequires knowledge db. Since we will apply
this lemma in the context of the PDC model, in whiBhs known, this is not a problem for us.

If Sis a random sample df drawn with respect t®, then fp (z) = Ep[(1— 2f (X))@ 2(x)] and
fsp(2) is the estimate of the expectati&is|(1— 2f (X)) @b »(X)] on sampleS.

In Section 10, there are situations in which we will know that, with respect twoavi product
distributionD, there exists a relevant variable of a functibmvhose first-order Fourier coefficient
has magnitude at leagtfor some valua. As mentioned earlier, the first-order Fourier coefficients
of irrelevant variables are zero. Thus if one can estimate first-orderdfaoefficients off so the
estimates each have additive error less &) then a non-empty subset of the relevant variables
of f can be constructed by taking all variables whose Fourier coefficiimass are at leasf/2.
The following lemma gives an upper bound on the sample size that would ded&eproduce the
desired estimates with high probability (by settmg q/2). The lemma is implicit in the paper of
Furst et al. (1991), and follows from a standard bound of Hoeffding

Lemma 3 Let f be an n-variable Boolean function and let D be a product distributicer §0, 1}"
defined bypy,..., pn]. LetB=max{1/pi,1/(1—pi)},€>0,and0< d< 1. If Sis a set of at least

1 2n
?2(3 —1)In 5

rgndom examples of f, drawn from distribution D, then with probability attldasd, |f3D(xi) —
fo(xi)| < € for all variables x of f.

The above lemma is useful only in situations in which the parametdbsasé known, so that
fo can be computed. A similar bound can be applied wibas an unknown product distribution,
and its parameters are estimated from the sample (see Furst et al., 1991).

Skewing works by estimating gain, rather than by estimating first-order Foroefficients.
More generally, one can use gain estimates rather than Fourier coeffisiBnates to try to identify
relevant variables of a function (assuming some have non-zero gatowBn Lemma 6 we give a
sample-complexity bound for estimating gain. We prove this bound using mdeinda contrast to
the bound given in Lemma 3, this bound can be applied in cases where tlitguistris unknown
and arbitrary (i.e., it does not have to be a product distribution).

Before presenting the martingale-based bound, however, we firgt prbound that easily fol-
lows from the work of Furst et al. (1991) and the relationship betweenagal first-order Fourier
coefficients given in Lemma 2. The bound itself is the same as the boundtifmatsg Fourier
coefficients given in Lemma 3. Algorithmically, the bound applies to the followiragg@dure for
estimatingG(D, x;), whenD is a known product distribution. Given a sam@euse it to com-
pute the estimatéds(x;) of the Fourier coefficient ok. If fs(x) is in the interval—1,1], then let
fs(x) = fs(x), otherwise, leffs(x) = 1 if fs(x) is positive, ands(x) = —1 otherwise. Thugs(x;)
is fs(x), restricted to the interval [-1,1]. Outp(fs(x))2/2 as the estimate fdBp (f,x;).

Lemma 4 Let f be an n-variable Boolean function and let D be a product distributicer §0, 1}"
defined by ps, ..., pn). LetB=max{1/pi,1/(1—pi)},€>0,and0< d < 1. If Sis a set of

2n
In—

1
2B~
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random examples of f, drawn from distribution D, then with probability attiéas3, | fs(x))?/2—
Gp(f,x)| <e.

Proof. By Lemma 2,Gp(f,x) = @ LetY = fp(x) and letY = fs(x). By Lemma 3, with
probability at least 15, |fs(x) — Y| < &. As noted by Furst et al. (1991), sin¥ds a Fourier co-
efficient,Y € [—1,1], and thus restricting the estimateYofo [—1, 1] can only increase its accuracy.
Thus|Y — Y| < € as well. It follows tha{¥?/2— Gp(f,x)| = [Y2/2-Y2/2| = |(Y - Y)(Y +Y)| <

g, sincelY +Y| < 2. O

The bound in the above lemma is similar to the martingale-based bound we give ibelo
Lemma 6. The main difference is that it has a facto(®f- 1), meaning that it depends gn.

In Section 10, Theorem 10.2, we apply Lemma 6 to prove a sample complexity farsan algo-
rithm in the PDC model. In this contexp; is not constant, and applying the bound in Lemma 4
instead would yield a slightly worse sample complexity for the algorithm (by afa€tO(r)). We
now proceed with the presentation of the martingale-based bound. Thd lsdpased on a standard
large deviation estimate, which can be thought of as a “vector” versioneoCternoff bound. It
implies that a martingale is unlikely to wander too far from its initial value.

We recall some definitions. L&t(0),Z(1),... be a discrete-time Markov processiif with
differences bounded by. That is,Z(0),Z(1),... are random variables taking valuesi¥, such
that the distribution oZ(t + 1) given Z(u) for all u <t depends only oiZ(t), and for each pair
Z(t),Z(t+1) thelL, norm||Z(t +1) — Z(t)|| is at mostc. We call the process martingaleif for
allt > 0, E[Z(t)] exists, andE[Z(t + 1)|Z(t)] = Z(t). (More general definitions exist, but this will
suffice for our purpose.)

Lemma 5 Let Z(t) be a martingale in Rwith differences bounded by c. Then for any 0,

D V4
Pr112(t) ~ Z(0)]| > A] < 2exi ). )

Proof See, for example, Pinelis (1992). |

Lemma 6 Let f be an n-variable Boolean function and let D be a product distributicer §0, 1}"
whose parameters are (i), 1). Lete > 0, and0 < d < 1. If S is a set of at least

2561n(2n/3) /€2

random examples of f, drawn from distribution D, then with probability attléasd, |G(S %) —
Gp(f,x)| < ¢ for all variables x of f.

Proof Let x; be a variable, and consider thex2 table
f=0 f=1
Xi=0 a1 ap
X =1 az a4
In this table, thea;’s are probabilities, so that denotes the probability (undé) thatx; = f =0,

and similarly for the others. Therefore<0a; <1, andy a; = 1.

2390



EXPLOITING PRODUCT DISTRIBUTIONS

By drawing a random sampleof f from distributionD, we get countsn, mp, mg, My corre-
sponding to they;'s. For examplem, is the number of examples Bifor whichx; =0 andf = 1.
We can view the sampling procedure as happening over time, whetéhtegample is drawn at
timet.

Attimest =0,1,2,..., we can observe

Z(t) := (my — agt, mp — apt, mg — agt, my — aat).

By the definition ofzZ,

E[Z(t+1)-Z(1)[Z(t)] = a(l—ay, —ap, —as, —a)+ax(—ay,1—ap, —ag, —a)
+ag(—aq, —ap,1—as,—ay) +au(—ay, —a,—ag,1—a)
= (0,0,0,0)

where the last equation follows becagse; = 1. ThusZ(0),Z(1),... is a martingale irR*. Also,
Z(t+1) —Z(t) equals, up to symmetryl — a;, —ap, —ag, —a4). Sincea3 + a3 +a3 < 1,

(1-ay)®+ad+a5+a3<2,

and the martingale has differences bounded by\/2.
The gain ofx; in f with respect to distributiod is

Gp(f,x)=2[B(1—B)— pB1(1—PB1)—(1—p)Bo(1—Bo)]

where

B=Prf =1 =ay+au,

p=Prx =1 = ag+ay,

ap
Bo=Prlf =1x =0]= ",

and as
=Prf=1x =1 = .
Pu=Pif=1x=1= "4

Substituting these into the above gain formula and simplifying, we get

B A
azta; artap|

Gp(f,x) =2 [(a1+a3)(a2+a4) —

Define the functiorG(ay, ..., as) to be equal to the right hand side of the above equation. This is a
continuous function of the;’s, on the simplexa; > 0, y a; = 1.
Observe that

0 ajay 1
0< — | — = <1,
0a; <aj+ak> (aj/ak+1)?
if aj,ax > 0, and

0 a1+a3)(a2+a4)§2ai:1.

<
_aaj(

This implies tha{dG/da;| < 2 in the interior of the simplex.
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Suppose thab = (bs,b,,bs,bs) andc = (c1, ¢, C3,¢4) are two points on the interior of the
simplex with max{|cj — bj|} = u. Leta(t) = b+t(c—b) be the the parametric equation of the line
frombtoc, and letG(t) = G(a(t)).

Letting a(t) be theith coordinate o&(t), and applying the chain rule, we get that

oG  _0Gda
?i’—-z:aa“af~ (2

SinceG(0) = G(b) andG(1) = G(c), by the mean value theorem, there extsts [0,1] such
that

G .,
(") = G(©) = G(b). 3)
For(a,...,as) in the interior of the simpleﬁﬁé/aa;\ < 2. By the definition o&(t), [da /dt| =
|ci — bi| < W Thus (2) and (3) imply that
1G(c) —G(b)| < 8w (4)

SinceG is continuous, this holds even for probability vectbrandc on the boundary.
We seek a sample simlarge enough that (for all variableg

PI |G(S,%) — Gp(f,x)| >¢€] <

Sion

Let the empirical frequencies lzg = m/m, i = 1,...,4. By (4), it will suffice to makem large
enough that, with probability at least-15/n, we observed; —a;| < /8 forall j. Let’s call a sample
“bad” if for somej, |[mj/m—a;| > &/8. SinceZ(0) = 0, this implies that|Z(m) — Z(0)|| > em/8.
If we takeA = em/8, ¢ = v/2, andt = min the Chernoff bound (1), we see that

€2m
Pr{ bad samplé < 2e™ 2%
This will be less tha®/n as soon as

. 256In2n/8)

8. A Property of Non-constant Boolean Functions

In this section we prove a property of Boolean functions that we will useatedly in subsequent
sections. The property is given in the following lemma.

Fork e [0,...,n], letWk(f) denote the number of positive assignment$ of Hamming weight
k.

Lemma 7 Let f be a non-constant Boolean function @ 1}". Then there exists a variable af
f and a number k [0,...,n— 1] such that W( fy.o) # Wk(fx—1).
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Proof. Assume no such variable exists.

Without loss of generality, assume thig0") = 1. We prove that for ala € {0,1}", f(a) = 1.
The proof is by induction on the Hamming weightayfw(a). The base case clearly holds.

Now let j € [0,...,n—1]. Assume inductively that all assignment®f Hamming weight;
satisfy f (x) = 1. Letl € [1,...,n]. Lett € {0,1}" be an arbitrary assignment of Hamming weight
such that; = 0; t exists becausg < n. By the initial assumptionV;( fyx—o) =W, (fyx.—1). Further,
by the inductive assumption, for every assignmerguch thatw(u) = j, f(u) = 1. There are
precisely(”}l) assignments such thatv(u) = j andu; = 0. All these assignmentssatisfy f (u) =
1, and thudW (o) = (";*). Thereforew;(f,.1) = (";*) also. The quantity";*) is equal to
the total number of assignments §0, 1}"~! of Hamming weightj. It follows that fy,. ;(b) = 1
for all b € {0,1}"~1 of Hamming weightj, and hence (a) = 1 for alla € {0,1}" sucha = 1 and
w(a) = j + 1. Since index is arbitrary, and each assignment of Hamming weightl has at least
one variable set to 1, it follows thd{a) = 1 for alla € {0,1}" of Hamming weightj + 1.

We have thus shown by induction thigia) = 1 for alla € {0,1}". This contradicts the property
that f is a non-constant function. O

Lemma 7 can be restated using the terminologywefght enumeratorsGiven a binary code
(i.e., a subse€ of {0,1}", for somen), the weight enumerator of this code is the polynomial
P(z) = S WkZ, whereW is the number of codewords (elements@f of Hamming weightk.
Lemma 7 states that if is a non-constant Boolean function, then it has a relevant van@blech
that code€o := {x€ {0,1}"|fy _o(X) = 1}, andCy := {x € {0, 1} 1| fx._1(X) = 1} have different
weight enumerators.

Lemma 7 proves the existence of a variaklavith a given property. One might conjecture
that all relevant variables of would share this property, but this is not the case, as shown in the
following simple example.

8.1 Example

Let f(Xq1,X2,X3) = (X1 V =%2 V X3) (X1 V X2 V —x3). Leto = (0,0,0). Sincef(1,1,0) # f(0,1,0),

X1 is a relevant variable of. It is straightforward to verify that, fok € {0,1,2}, Wk(fx,0) =
Wk(fy,—1). The same holds for, by symmetry. Variables is the only one satisfying the property
of Lemma 7.

9. Skewing Given the Entire Truth Table

In this section, we analyze skewing in an idealized setting, where the availaialeonsists of the
full truth table of a Boolean function. We then do an analysis of sequetgsting in the same
setting.

9.1 A Motivating Example

Recall that a correlation immune functidrixy,...,X,) is one such that for every variabkg the
gain of x; with respect tof is 0 under the uniform distribution of0,1}". We are interested in
the following question: When skewing is applied to a correlation immune funactidinif cause a
relevant variable to have non-zero gain under the skewed distributteq@valently, will it cause
one of the first-order Fourier coefficients to become non-zero?) We shat, in the idealized
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setting, the answer to this question is “yes” for nearly all skews. Thearisveomewhat different
for sequential skewing.

When we use a ske\o, p) to reweight a data set that consists of an entire truth table, the
weight assigned to each assignmarin the truth table by the skewing procedureRs (@),
whereD(o, p) is the skewed distribution defined log, p). Moreover, the gain of a variable as
measured on the weighted truth table is precisely the gain with respB{tte). By Lemma 1,
it follows that a variableg will have gain on the skewed (weighted) truth table data séyifff =
1 = 1) —Po(f = 1|x, = 0) # 0, whereD = D(a, p). If x is a relevant variable, the difference
Po(f =1Jx =1) — Po(f = 1]x, = 0) can be expressed as a polynonfigb) in p of degree at most
r — 1, wherer is the number of relevant variables bf If x; is an irrelevant variablé?s (f = 1| =
1) — Po(f = 1|, = 0) = 0. The main work in this section will be to show that for some relevant
variablex;, this polynomial is not identically 0. Having proved that, we will know that fommst
r — 1 values of weight factop (the roots ot), h(p) = 0. For all other values ap, h(p) # 0, andx;
has gain inf with respect td(a, p).

We give an example construction of the polynontigp) for a particular function and skew.
Consider a Boolean functiorf over 5 variables whose positive examples &0e0,0,1,0),
(0,0,1,0,0), (1,0,1,1,0). Assume a skewa, p) whereo = (1,...,1) and p is some arbitrary
value in(0,1). LetD =D p). There are two positive examples bfsettingx; = 0, namely
(0,0,0,1,0) and (0,0,1,0,0). It is easy to verify thaPp(f = 1|x; = 0) = 2p(1 — p)3. Simi-
larly, Po(f = 1jx, = 1) = p?(1— p)%. Leth(p) = Po(f = 1|x; = 1) — Po(f = 1jx, = 0). Then
h(p) = p?(1— p)? —2p(1— p)3, which is a degree-4 polynomial m This polynomial has at most
4 roots, and it is not identically 0. It follows that for all but at most 4 chsioép, h(p) is not zero.
Thus if we choose uniformly at random fron{0, 1), with probability 1,x; has gain for(f, o, p).

9.2 Analysis of Skewing Given the Complete Truth Table

For f : {0,1}" — {0,1} a Boolean functionk € [1...n], ando € {0,1}", letW(f,o,k) denote the
number of assignmentse {0, 1}" such thatf (b) = 1 andA(b,0) = k.

Using the symmetry of the Boolean hypercube, we can generalize Lemma ¥ato tie fol-
lowing lemma, which we will use in our analysis of skewing.

Lemma 8 Let f be a non-constant Boolean function{@1}", o € {0,1}" be an orientation, and
i € [1...n]. Then there exists a variable af f and ke [0,...,n— 1] such that Wfy.1,0",k) #
W(fy0,0',K).

Proof. Recall that given two assignmergsndb, we usea+ b to denote componentwise addi-
tion mod 2. Letf’: {0,1}" — {0, 1} be such thaf’(x) = f(x+0).

Applying Lemma 7 to functiorf’, letx; andk be such tha\k(fy ;) # Wk(fy _o)-

For allae {0,1}"%, f;_(a) =1 andw(a) = k iff fy. o(a+0') =1 andA(a+d',0') =
w((a+a')+0a') = k. It follows thatW(fy .5 ) = W(fx—0,0',k). The analogous statement holds
for Wk(fy, . —g,)- ThusW(fy._1,0',K) #W(fx.0,0',K). ]

We now show the connection between the above lemma and gain.

Lemma9 Let f be a Boolean function of0,1}", o € {0,1}" be an orientation, and & [1...n].
Let r be the number of relevant variables of f. If(W.1,0',j) = W(fx.0,0',]) for all j €
[1...n—1], then for all weighting factors g (0,1), x does not have gain fdrf, o, p). Conversely,
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ifW (fx._1,0",]) #W(fyx0,0',]) for some je [1...n— 1], then for all but at most 1 weighting
factors pe (0,1), x has gain for(f,o, p).

Proof. Let fo denotefy .o and f; denotefy._1. Leto € {0,1}" be an orientation.

For real valued variableg andz and fora € {0,1}", let T a(y,2) be the multiplicative term
y"97 whered = A(0, a), the Hamming distance betweeranda. So, for example, it = (1,1,1)
anda = (1,0,0), Ts.a(Y,2) = yZ. Note that forp € (0,1), Tsa(p,1— p) is the probability assigned
to a by distributionD 5 ). Foro € {0,1}" and f a Boolean function o{0,1}", let g¢ s be the
polynomial iny andz such that

gt o(¥,2) = Z Tsa(y;2). (5)
ac{0,1}":f(a)=1

Thus, for example, iff is the two-variable disjunctiori(xi,x2) = X1V X2, ando = (1,1), then
Oro =Yy 2 +y'Zt +y? P =y +2yz

Define g'(y,2) = 91,4 (¥,2) — 95,0 (¥,2), whereg is as given in Equation 5. The quantity
W(f,0,k) is the value of the coefficient of the tey ¥ in gy o. Thusg'(y,2) = 3 -5 cjy"+ 12,
where for allj € [0...n—1], ¢j = W(fy,0',j) —W(fo,0', j).

Let p € (0,1). Under distributionD ), Pr(f = 1|x; = 0) and P¢f = 1|x = 1) are equal to
dt,.0 (P,1—p) andgy, 5i(p,1— p) respectively. Thus by Lemma ¥; has gain for(f,o, p) iff
g(p,1-p)=0.

Leth(p) be the polynomial i such thati(p) =d'(p,1— p).

If x; is irrelevant, then for all fixegh € (0, 1), x; has no gain fof f, g, p). FurtherW(f1,0', j) =
W(fo,a', ) forall j € [0...n—1]. Thus the lemma holds ¥ is irrelevant. In what follows, assume
X IS relevant.

If W(f1,0',j) =W(fo,d',j) forall j€[0...n—1], thenh(p) is identically 0 and for all fixed
p € (0,1), x; has no gain fo( f,o, p).

Suppose conversely thak(f1,a', ) #W(fo,0', j) for somej. Thend (y, z) is not identically 0.
We will show thath(p) = d'(p,1— p) is a polynomial of degree at most- 1 that is not identically
0.

We begin by showing thdt(p) has degree at most- 1. Letx # X; be an irrelevant variable of
f. Assume without loss of generality that= 1. Then sincef (ay—1) = 1 iff f(ay.o) =1,

gro(P,1-p) = > PToa (P, 1—p)+ > (1-P)Toa(p,1-p)
ac{0,1}"f(a)=1,a=1 ac{0,1}":f(a)=1,3=0
= > Toia (P, 1)
ac{0,1}":f(a)=1,3=0
= Z TG',b(pa 1- p)

be{0,1} Ly o(b)=1
= O o0 (P 1=P).

That is,g¢ ¢(p,1— p) is equal to the corresponding polynomial for the funcu"rpxrn%d (p,1—p)
produced by hardwiring irrelevant variableto 0. By repeating this argument, we get that, =

Of 5 wheref is the function obtained fronfi by hardwiring all of its irrelevant variables to 0, and
& is o restricted to the relevant variables ff Thusg has degree at mostandh(p) = ¢'(p,1— p)
has degree at most- 1.
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Let j’ be the smallest such thaW(f1,d', j) #W(fo,d', j). Thency is non-zero, and all (non-
zero) terms off (y, z) have the fornt;y ~*~ 1zl wherej > j’. We can thus factor o’ fromg/(y, 2)
to getg'(y,2) = 2'g’(y, 2), whereg’(y,2) = 3 _j cjy 71271 One term ofy” is ¢y ~*~1', while
all other terms have a non-zero powerzofThus forp =1, g’(p,1— p) = ¢j which is non-zero,
proving thatg”(p,1— p) is not identically 0. Hencé(p) = Z'g”(p,1— p) is the product of two
polynomials that are not identically 0, andls@) is not identically O.

Finally, sinceh(p) is a polynomial of degree at mast- 1 that is not identically O, it has at most
r — 1 roots. It follows that there are at mast 1 values ofpin (0,1) such thak; does not have gain
for (f,o,p). O

We now present the main theorem of this section.

Theorem 9.1 Let f be a non-constant Boolean functionf@1}". Leto € {0,1}" be an orienta-
tion, and let p be chosen uniformly at random fré@1). Then with probability 1 there exists at
least one variablepsuch that xhas gain for(f,o, p).

Proof. Let o € {0,1}" be a fixed orientation. Lat be the number of relevant variables fof
Let x; be the variable off whose existence is guaranteed by Lemma 8. Th$,. 1,0, |) #
W(fy._0,0', j) for somej. By Lemma 9, for all but at most— 1 weighting factorg € (0, 1), x; has
gain for(f,o, p). With probability 1, a randonp chosen uniformly fron{0, 1) will not be equal to
one of those& — 1 weighting factors. O

Using the techniques above, one can also show that for cerfaigsed distribution®|p]|, there
do not exist any non-constant correlation immune functions with respéitfo Let f be a non-
constant Boolean function defined ¢0,1}". By Lemma 8 and the proof of Lemma 9, there
some variableg such that associated polynomfglp) (defined with respect to = (1,...,1)) is
not identically O. It follows that for any that is not a root of, x; has gain for(f,(1,...,1),p),
and thusf is not correlation immune with respect to distributibfip]. The polynomiah(p) has
degree at most— 1 and integer coefficients with magnitude at mdsthich restricts its possible
roots. For example, every root bfmust be algebraic. Thus for any non-algebnajithere are no
Boolean functions that are correlation immune with respe&t[fg. Similarly, sinceh has integral
coefficients with magnitude bounded b¥, Zan elementary theorem on polynomials (sometimes
called the “Rational Zeroes Theorem”) immediately implies that any rationalafdnanust have
magnitude at least/2". Thus for anyp such that 0< p < 1/2", there are nam-variable Boolean
functions that are correlation immune with respedD{p).

With Theorem 9.1 we have shown that for any non-constant functioraagdrientationo,
there exists at least one variabdesuch that ifp is chosen randomly, then, with probability %,
has gain with respect tb under the distributio ). However, the theorem says nothing about
the magnitude of the gain. If the chospiis close to a root of the polynomial p), defined in the
proof of Lemma 9, then the gain will be very small. Moreover, the gain candepending on the
function and on the skew. (We will prove a result later in the paper, in Lemimatich shows that
with a certain probability, a randomly chospmwill causex; to have reasonably large gain.)

The identity of the variable(s) having gain can also depend on the skexxe Ty be relevant
variables other thar that don’t have gain for anp. In the example given following the proof of
Lemma 7, variableg; andx, will have no gain for(f, (0,...,0), p) no matter the choice gf.

Theorem 9.1 suggests that skewing is an effective method for findingureleariables of a non-
constant Boolearfi, because for nearly all skews, there will be at least one variable wittzam

S
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gain. Equivalently, for nearly all skewed distributions, functibis not correlation immune with
respect to that distribution. However, in practice—even in a noiseless sitwetiere examples are
all labeled correctly according to a functidaA—we do not usually have access to the entire truth
table, and thus are not able to compute the exact gain of a variable unliutisn D ,) defined

by the skew. We can only estimate that gain. Moreover, in practice we taample from the
distributionD g 5. Instead, we simulat® 4 ;) by reweighting our sample.

9.3 Analysis of Sequential Skewing

Sequential skewing a variant of skewing. In sequential skewimgiterations of reweighting are
performed, whera is the number of input variables of the target function. On jidteration,
examples are reweighted according to the preferred setting ¢ftkariable alone; if the setting of
the i variable matches the preferred setting, the example is multipligx) btherwise the example
is multiplied by 1— p. The reweighting in thgth iteration is designed to simulate the product
distribution in which each variable other thanis 1 with probability 1/2, and variable; has its
preferred setting with probabilitp. In addition to then iterations of reweighting, the gain of every
variable is also calculated with respect to the original, unweighted, dataset.standard skewing,
the algorithm uses the calculated gains to determine which variable to output.

In the reweighting done by sequential skewing, there is a chosen vaxjablpreferred setting
c € {0,1} of that variable, and a weight factgre (0,1). We thus define a (sequential) skew to
be a triple(i,c, p), wherei € [1...n], c€ {0,1}, andp € (0,1). Define the probability distribution
Diicpy ON{0,1}" such that fora € {0,1}", D ¢ ) assigns probability - (%)”‘1 toaif a =c, and
(1—p)- (%)”*1 otherwise. ThuD; ¢ p is the distribution that would be generated by applying
sequential skewing, with parameteysc andp, to the entire truth table.

Let f be a Boolean function of0,1}". We say that variablg; has gain for(f,i,c, p) if under
distributionD ; ¢ ), G(f|x;) > 0. By Lemma 1x; has gain for(i, c, p) iff under distributionD ; ¢ ),
Prif =1|x; = 1] # Pr{f =1|x; =0].

We will use the following lemma.

Lemma 10 A Boolean function f is 2-correlation immune iff it is 1-correlation immunel fom all
pairs i < j, the inputs xand x are independent given(Xy, ..., X,).

Proof. We first prove the forward direction. If is 2-correlation immune, then it is certainly
1-correlation immune, and all triplég, x;, x;) are mutually independent.

The reverse direction is a calculation. leet,y € {0,1}. Using pairwise independence, and
then 1-correlation immunity, we get

Prif =a,x =B,X; =Y = Prf=a]Prix =B,x;=y|f=aq]
= Pif=a]Prx =B|f=a]Prix;=y| f =d]
= Pr{f =a]Prx = B]Prix; =Y.

This holds even if Bif = a] = 0, for then both sides vanish. 0

The constant function§ = 0 and f = 1 are 2-correlation immune, as is any parity function
on 3 or more variables. We have enumerated the 2-correlation immune fuigapaion = 5 and
found that whem < 4, the only such functions are as above, butrfes 5, others begin to appear.
Specifically, there are 1058 2-correlation immune functions of 5 variablgspnly 128 parity
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functions and complements of these (with no constraint on the relevariles)a(Our enumeration
method works as follows. Vanishing of the relevant Fourier coefficieantidoe expressed as a linear
system with 0-1 solutions, which we can count by a “splitting” process reo@nisof the time-
space tradeoff for solving subset sum problems, Odlyzko 1980.) Be(i992) gave an asymptotic
formula for the number of 2-correlation immune functions, and from this vitoidlows that for
largen, only a small fraction of the 2-correlation immune functions will be parity fumgio

The following theorem shows that, in our idealized setting, sequential sgevain identify a
relevant variable of a function, unless that function is 2-correlation immizif@lows that sequen-
tial skewing will be ineffective in finding relevant variables of a paritydtian, even with unlimited
sample sizes. In contrast, standard skewing can identify relevant hesriafia parity function if the
sample size is large enough.

Theorem 9.2 Let f be a correlation-immune Boolean function fh1}", leti < [1...n], and let
ce {0,1}. Let p be chosen uniformly at random fraiy 1). If the function f is 2-correlation
immune, then for all £ [1...n], x; has no gain for(f,i,c, p). Conversely, if f is not 2-correlation
immune, then for someq [1...n], x; has gain for(f,i,c, p) with probability 1.

Proof. Let f be a correlation immune function. Liet [1...n] andc € {0,1}.

Assumec = 1. The proof forc = 0 is symmetric and we omit it. Consider skéic, p), where
pe (0,1). Let f~1(1) = {x€ {0,1}*|f(x) = 1}.

Letje[l...n]. LetAy =|{ac f~1(1) | 4 =canda; = 1}|, andB; = [{ac f1(1) | & #
candaj = 1}|. Similarly, letAg = [{ac f~*(1) | a = canda; = 0}|, Bo = [{ac f (1) | & #
canda; = 0}|.

Under distributiorD ¢ ), if j #1i, Pif = 1|x; = 1] = (Atp+B1(1—p)) (%)nle If j =i, then
because =1, Pif =1|xj =1 =A¢ (%)”_1. Similarly, if j #1i, Pr{f = 1|xj = 0] = (Agp+ Bo(1—
p) ()" 2 =i, Pif =1)x; =0 =Bo(3)" .

The difference Af = 1|x; = 1] — Pr{f = 1|x; = 0] is a linear function imp. If i # j, this function
is identically zero iffA; = Ag andB; = By. If it is not identically 0, then there is at most one value
of p € (0,1) for which it is 0. Ifi = j, this function is identically zero ifA\; = By. Also note that
fori = j, Ao = 0 andB; = 0 by definition.

In addition, sincef is correlation immuneA; +Ag = B1 +Bo. If i = j, then Pff = 1|x; =
1] — Pi{f = 1|x; = O] is therefore identically zero ar has no gain fo(f,i,c,p). If j #1i, then
Xj has no gain fo(f,i,c, p) iff Ay = Ag= By = Bo. This latter condition is precisely the condition
that Pix; = a Ax; = B|f =Y] = Prix, = a|f = y|Pr{x; = B|f =] under the uniform distribution
on {0,1}". If this condition holds for all pair$ # j, no variablex; has gain for(f,i,c, p), and by
Lemma 10,f is 2-correlation immune. Otherwise for soing j, x; has gain for(f,i,c, p) for all
but at most 1 value op. The theorem follows. O

10. Exploiting Product Distributions

Until now we havesimulatedalternative product distributions through skewing. But simulating al-
ternative distributions is not the same as sampling directly from them. In partisilawing can
magnify idiosyncracies in the sample in a way that does not occur when sgnfigin true alter-
native distributions. We now consider the PDC model, in which the learningitlgocan specify
product distributions and request random examples from those distributiopractice it might be
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possible to obtain examples from such alternative distributions by workinganitifferent popu-
lation or varying an experimental set-up. Intuitively, one might expect h tagree of overhead
in making such changes, in which case it would be desirable to keep the nofmakernative
distributions small.

10.1 FindRell: Finding a Relevant Variable Using Distributions

Let Boolean, denote the Boolean functions awvariables that have at mastelevant variables. We
first present a simple algorithm that we call FindRell, based on Theatert filentifies a relevant
variable of any target function in Boolea with probability 1— &, by estimating the first-order
Fourier coefficient ok; for r distinct product distributions. The algorithm assumes thatknown.
If not, standard techniques can be used to compensate. For examptarorepeat the algorithm
with increasing values af (perhaps using doubling), until a variable is identified as being relevant.
The algorithm works as follows. Fgre {1,...,r}, let D; denote the product distribution that
sets each of theinput variables to 1 with probability/(r +1). For eaclDj, the algorithm requests
a samples; of sizemg (we will specifymg in the proof below). Then, for each of thenput variables
X, it estimates the associated first-order Fourier coefficients from seﬁppjﬁcomputlnngD (Xi)-
At the end, the algorithm outputs the set of all variabtesvhose gain on som&; exceeded a
thresholdd (also specified below).

Theorem 10.1 For all non-constant fe Boolean,, with probability at leastl — 6 FindRell will
output a non-empty subset of the relevant variables of f. FindReklaus#al of Q(r +1)% In %)
examples, drawn from r distinct p-biased distributions. The running tinkénoRell is polynomial
in 2" n, andin }.

Proof. Sincef is non-constant, it has at least one relevant variable. Recall thaistoibdtion
D on{0,1}", Gp(f,x;) denotes the gain of with respect tof under distributiorD. Recall also that
D[p|] denotes the product distribution that sets each varatitel with probabilityp.

By the arguments in Section 9, for each relevant variaQl®rpy[f = 1| = 1] — Prpy[f =
1)x; = 0] can be written as a polynomial of degree 1 in p. Call this polynomial(p). For all
irrelevant variables; of f, hi(p) is identically O.

Now letx; be a relevant variable such tHatp) is not identically 0. By Theorem 9.1, has at
least one such relevant variable. The polynorhjgp) has degree at most- 1 and hence has at
mostr — 1 roots. Therefore, for at least ofie {1,...,r}, hi(j/(r+1))#0

Let j* € {1,...,r} be such thah;(j*/(r+ 1)) # 0. Sinceh; has integer coefficients and is of
degree at most— 1, it follows thath(j*/(r +1)) = b/(r +1)"~1, for some integeb. Thus the
absolute value of;(j*/(r + 1)) is at least ¥(r +1)'~%, and by Lemma 2, the first-order Fourier

i*

]*
r+1) ( r+1)

coefficient (for distributiorDj:) associated witl; has magnitude at leas DD , which is
1 1— 1
lower bounded byg:= ZM Setfy in the description of FindRell to g2 =/r/(r+1)".

(r+1)r=1)

For any singleDj, it follows from Lemma 3 that ifnp = 2(r +1)%r~1In 2" Z”r , if we use a sample
of sizemp drawn fromD; and estimate ah first-order Fourier coefficients for distributiddy; using
that sample, then with probability at IeasH?, each of the estimates will have additive error less
thang/2. Thus with probability at least-2 9, this will hold for allr of theD;. The total number of
examples drawn by FindRelligg = 2(r +1)* In %.
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Since for some relevant variable, the associated Fourier coefficierieasig for someDj, and
for all irrelevant variables, the associated Fourier coefficient is @lfd;, the theorem follows.O

Skewing uses gain estimates, rather than estimates of the first-order Fogficients. Find-
Rell can be modified to use gain estimates. By a similar argument as above, vitsféitom
Lemma 1 that for distribution Djs, some relevant variable has gain at least
q =24 (1— ) (+5)% 2 with respect to that distribution. We could thus modify FindRell
to output the variables whose gain excegd®. Then Lemma 6 implies that a sample of size
mp = O(r*—2In ) would suffice for the modified FindRell to output a non-empty subset of rele
vant variables. This sample complexity bound is higher than the bound farigieal FindRell

based on Fourier coefficients.

10.2 FindRel2: Lowering the Sample Complexity

We now present our second algorithm, FindRel2. As discussed in theutrod, it has an advan-
tage over FindRell in terms of running time and sample complexity, but requiaesptes from a
larger number of distinct distributions. FindRel2 is based on the following lemma.

Lemma 11 Let f have r> 1 relevant variables. Suppose p is chosen uniformly at random from
(0,1). Then there exists a relevant variableok f, and a valua > 2e—3 such that with probability
at leastt/2 (with respect to the choice of p) o (f,x) > 1/2.

Proof By Theorem 9.1 and its proof, there exists a variablef f such that Ry [f = 1|x =
1] - Py [f = 1|x = 0] can be expressed as a polynonti@p), which has integer coefficients and
is not identically 0. Leg(p) = Gpp (f,x). By Lemma 1,

a(p) = 2p(1— p)hi(p)*.

Then there are integeys, . .., Yor such thag(p) = 2212rzoyj pl. Sinceg(p) is non-negative but not

identically 0, we have
2r

1 .
. Yij
T:= dp=2§ —— >0.
/Og(p) p J;JJrl

This is at least 2L, whereL is the least common multiple dfL,...,2r + 1}. Observe that for each
prime, the number of times it appears in the prime factorizatidnexjuals the number of its powers
that are< 2r + 1. By an explicit form of the prime number theorem,

logL = z logp < 3r.

pk§2r+1
k>1

(This can be checked directly for= 1, and forr > 2 we can use Theorem 12 of Rosser and
Schoenfeld 1962.) Thus,> 2e~¥". Now leta be the fraction ofp € (0,1) for which g(p) > t/2.
Then,

1= g<a+(1/2)(1-a).

o+ |
g>1/2 g<1/2
This impliesa > t/(2—1) > 1/2, and the lemma follows. ]

Note that the proof of the above lemma relies crucially on the non-negativite@fain function,
and thus the same proof technique could not be applied to first-ordéeFoaefficients, which can
be negative.
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It is possible that the bounds in the above result could be improved byitxglbow g comes
from the Boolean functiori. Without such information, however, the bounds are essentially the best
possible. Indeed, by properly choosiggone can use this idea to estimate the density of primes
from below, and get within a constant factor of the prime number theoreenM8atgomery (1994)
for a discussion of this point.

FindRel2, our second algorithm for finding a relevant variable, folloasilg from the above
lemma. We describe the algorithm in terms of two size parametgendm,, and a classification
thresholdd;.

The algorithm begins by choosimg, values forp, uniformly at random fron{0,1). Let P be
the set of chosen values. For each vatue P, the algorithm requests, random examples drawn
with respect to distributio®[p], forming a samplé&,. Then, for each of tha input variablesg, it
computes5(S;,X;), the gain ofx; on the samplé&,. At the end, the algorithm outputs all variables
X such thalG(S,, %) > 6, for at least one of the generated sam3gs

Using Lemma 11, we can give values to parametarsm,, and6; in FindRel2 and prove the
following theorem.

Theorem 10.2 For all non-constant fe Boolean,, with probability at leastl — o, FindRel2 will
output a non-empty subset of the relevant variables of f. FindRet2@®& (r +In(n/3))In(1/3))
examples, drawn from @ Iog%) product distributions. The running time is polynomialdn n,
andlogz.

Proof. As in the proof of Theorem 10.1, has at least one relevant varialgjdor which h;(p)
is not identically 0. Lek;- denote this variable. Lél, = 6, = 8/2.

If the statement of Lemma 11 holds for any valuetadt all, it holds for the lower bound.
We therefore let = 2%, By Lemma 11, for at least &/2 fraction of the values op € (0,1),
Gpp(f,%+) > T/2. Letus call these “good” values pf If a singlep is chosen uniformly at random
from (0, 1), then the probability is good is at least/2.

Letm; =€ Ing- = 2In . If the algorithm choosesy independent random valuespfo form
the sefP, the probability thaP does not contain any gogak is at most(1—1/2)™ < e ™2 = §,,

SupposeP contains at least one goqu Let p* be such ap. Lety= Gpy(f,%+). Then,
y>1/2=e"3. Setb; in the algorithm tee=3' /2, the resulting lower bound fay/2.

Setny, in the algorithm to be equal to 256@nmy /&) /6.

Consider anyp € P. Then by Lemma 6, with probability at least-18,/my, [G(Sp, %) —
Gpyp(Xi)| < y/2 for all variablesx. Since|P| = my, it follows that|G(S, %) — Gpy (%i)] < y/2
holds for all variables; and for allp € P, with probability at least - &s.

AssumingP has at least one gogal, Gpj,-(Xi+) > Y, while for all p € P and all irrelevani;,
andGpjp (X)) = 0. Thus if[G(Sp, X)) — Gpyp (%) < Y/2 holds for every; andp € P, andP contains
at least one goog, then FindRel2 outputs a non-empty subset of relevant variablés of

It follows that the the probability that the algorithm does not output a nonbesybset of the
relevant variables is at modf + & = 9, as claimed.

It remains to estimate the number of examples used, whiohiris. The only problem is with
mp. Since 0< &; < 1/2, we have 0< In(2In(1/d1)) < In(1/81). Using this, together with the
definitions ofm; andt, we find that

In(2nmy/d2) = In(2n)+In(2In(1/81)) —In(T) —In(d2)

2401



HELLERSTEIN, ROSELL, BACH, RAY AND PAGE

< In(n)+In(1/81) +3r +1In(1/3,)

= In(n) +3r +2In(2/8).

Combining this with the definitions af, and 6, gives usm, = O(e¥ (r 4 In(n/3))), and since
my, = €¥In(2/8), we getmymp = O(e” (r +In(n/3))In(1/3)). O

We do not know the best exponents for which a result like Theorem 1@&@es We do note,
however, that more careful use of the prime number theorem would alloexgi@nents 9 and 3 to
be lowered to 6-0(1) and 2+ 0o(1), respectively.

Using not too many more examples, the random choices can be eliminated iftdReR2, as
follows. Since theg appearing in the proof of Lemma 11 is a polynomial, the sep ef[0, 1] for
which g(p) > 1/2 is a finite union of closed intervals. Their lengths sum to at leA@t= e,
In the open interval between any two adjacent closed intervals, there masiolsal minimum of
g, which is a zero ofy, a polynomial of degreec 2r — 1. It follows that there are at most f
these closed intervals, making one have length at leaste™" /(2r). Our algorithm can therefore
try p=h,2h,3h,... and be guaranteed that one of these is good. (We don’t have =, 1
becausg vanishes there.) With this modification, the number of distributions bec@fred") and
the number of examples becon@ge® (r +In(n/3))).

10.3 Two Algorithms From The Literature

Another approach to finding a relevant variable is implicit in work of Bshaeuny Feldman (2002).
We present it briefly here.

Bshouty and Feldman’s approach is based on the following facts. Varasleelevant tof iff
there is some Fourier coefficieftz) with z = 1 andf(z) # 0. Further, iff hasr relevant variables,
the absolute value of every non-zero Fourier coefficiertt isfat least 12".

For b € {0,1}"%, let 1b denote the concatenation of 1 with Let w(b) denote the Ham-
ming weight ofb. DefineRy(f) = Ypeqo 1302 fz(lb)(ﬁl(b)). ThusR; is a weighted sum of the
Fourier coefficientsf(z) such thatz; = 1. For anyz € {0,1}", the quantityf2(z) is non-zero
only if {i|z = 1} C {i| variablex; is a relevant variable of }. Therefore, iff2(1b) # 0, then
w(b) <r. It follows that if x; is relevant,Ry > 1/2%. If x; is irrelevant,Ry = 0 . LetD’ be the
product distribution specified by the parameter ve¢ige, 1/4,1/4,...,1/4] and letw € {0,1}"
be such thatv = [1,0,...,0]. As shown by Bshouty and Feldman (2002, proof of Lemma 11),
R1 = Exwu [Ey~o [f (Y)Xw (XD Y)]]2. Herex ~ U denotes that the first expectation is with respect to
anx drawn from the uniform distribution of0, 1}", andy ~ D’ denotes that the second expectation
is with respect to & drawn from distributiorD’. For any fixedx, Ey.p/[f(Y)Xw(X@Y)]] can be
estimated by drawing random samplgsf (y)) from D’. The quantityR; can thus be estimated
by uniformly generating values fog; estimatingey.po [ f (y)Xw(X@®Y)]] for eachx, and then taking
the average over all generated values.ofJsing arguments of Bshouty and Feldman, which are
based on a standard Hoeffding bound, it can be shown that for somséaotc;, a sample of size
O(2«f Iogz(é)) from D’ suffices to estimatB; to within an additive error ofﬂ%, with probability
1-&. If the estimate obtained is within this error, then whetkes relevant can be determined
by just checking whether the estimate is greater tggé;@. We can apply this procedure to all
variablesx;, each time taking a sample g& from a new distribution. Setting’ = &/n, it follows
that a sample of siz&(n2%' Iogzg) suffices to determine, with probability-15, which of then
variables are relevant. Thus this algorithm finds all the relevant variables
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The above algorithm uses examples chosen fngroduct distributions. Each product distribu-
tion has exactly one parameter set to 1/2, and all other parameters seted eefiiep # 1/2 (here
p = 1/4, although this choice was arbitrary).

If the parameters of the product distribution can be set to 0 and 1, merbgrsries can be
simulated. We now briefly describe an algorithm that uses membership gaediesiform random
examples to find a relevant variable of a target function with at mosevant variables. A similar
approach is used in a number of algorithms for related problems (see, gg.2Ad Reischuk,
2007; Guijarro et al., 1999; Blum et al., 1995; Damaschke, 2000; Bglaoua Hellerstein, 1998).

The algorithm first finds the value df(a) for some arbitrary, either by asking a membership
qguery or choosing a random example. Then, the algorithm draws amasampleS (with respect
to the uniform distribution) of size"2n % Assuming the function contains at least one relevant
variable, a random example has probability at leg&f df being negative, and probability at least
1/2" of being positive. Thus if the function has at least 1 relevant variabiid, pvobability at
least 1 3, S contains an examplé such thatf (&) # f(a). (If it contains no such example, the
algorithm outputs the constant functié(x) = f(a).) The algorithm then takesanda’, and using
membership queries, executes a standard binary-search procediineling a relevant variable of
a Boolean function, given a positive and a negative example of thatidnncf. Blum et al., 1995,
Lemma 4). This procedure mak&glogn) membership queries.

If we carry out the membership queries in the PDC model by asking for dearfrom product
distributions with parameters 0 and 1, the result is an algorithm that finds amébeariable with
probability at least + & using O(logn) product distributions an@®(2' Iog%) random examples.
The random examples can also be replaced by membership quefies puniversal sets (see, e.g.,
Bshouty and Hellerstein, 1998).

11. On the Limitations of Skewing

One of the motivating problems for skewing was that of learning the parity affn variables.

The results of Section 9 imply that skewing is effective for learning paribctions if the entire
truth table is available as the training set. (Of course, if the entire truth tablailalae, there are
much more straightforward ways of identifying relevant variables.) Edently, we can identify
relevant variables if we are able to determine the exact gain of each leanidb respect to skewed
distributions. In practice, though, we need to estimate gain values basegodan sample. The
random sample must be large enough so that we can still identify a relevaaibie, even though
the gain estimates for the variables will have some error. We now considéllinging sample

complexity question: how large a random sample is needed so that skewibg csed to identify
a relevant variable of the parity function, with “high” probability? We woulcelito know how

quickly this sample complexity grows agndn grow.

Skewing is not a statistical query learning algorithm, but it is based on the ¢istinad statis-
tics. In what follows, we use techniques that were previously employetbie power bounds for
statistical query learning of parity functions.

It is difficult to analyze the behavior of skewing because the same samgedsnd re-used for
many gain calculations. This introduces dependencies between the regaltingstimates. Here
we consider a modification of the standard skewing procedure, in whighioke new, independent
random sample each time we estimate the gain of a variable with respect to éskgwWe call
this modification “skewing with independent samples.” Intuitively, since thevatdn behind
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skewing is based on estimating statistical quantities, choosing a new sample teachlkestimate
should not hurt accuracy. In experiments, skewing with independemples was more effective in
finding relevant variables than standard skewing (Ray et al., 2009).

For simplicity, assume that the variable output by the skewing algorithm is ohexbeeds a
fixed threshold the maximum number of times. However, as we discuss belowgveer bounds
would also apply to implementations using other output criteria.

We prove a sample complexity lower bound for skewing with independentlsamphen ap-
plied to a target function that is the parity 0bf n variables. The proof is based on the fact that the
skewing algorithm does not use all the information in the examples. Giveava(gk p), and an
example(x, f(x)), the skewing algorithm weights this example accordind toe A(x, o), the Ham-
ming distance betweenando. The calculation of the gain for a variableon the weighted data set
then depends only of(x), whetherx; = o;, and ond. These three pieces of information together
constitute a “summary” of the examplg, f(x)), for orientationo. The skewing algorithm uses
only these summaries; it does not use any other information about the esamMfgevill argue that
the summaries do not contain enough information to identify relevant variabéegarity function,
unless the sample size is “large”.

We begin by proving a technical lemma, using techniques of Jackson)(26@38Ilum et al.
(1994).

Let Parity, be the set of parity functions amvariables which have relevant variables. So
for eachf € Parity, ,, f(X1,...,%) = X, + X, + ...+ X, where the sum is taken mod 2, and the
X, are distinct. LeNEQ(b,c) denote the inequality predicate, thatiEQ(b,c) = 1 if b # c and
NEQ(b,c)=0ifb=c.

Let d € {0,...,n} and b,c € {0,1}. For f € Parity,,, and o € {0,1}", the quantity
PINEQ(0i,%) = b, f(x) = ¢, andA(x,0) = d] has the same value for all relevant variablesf
f (where the probability is with respect to the uniform distribution overxadl {0,1}"). The
same holds for all irrelevant variablgsof f. We defineSI’G(b, c,d) =PINEQ(oi,x) =b, f(x) =
¢, andA(x,0) = d] wheny; is a relevant variable of, andS}“(b, c,d) =PiINEQ(oj, %) =b, f(x)
¢, andA(x,0) = d] whenx; is an irrelevant variable of.

As an example, suppose’ € {0,1}" is such thatf(c’) = 0. Then S/ (0,1,d)
Lsier (YY) where T = {t € Z|t is odd and 0<t < d}. Similarly, Si°(1,0,d)
L 5ier () (3-°1) whereT’ = {t € Z|tis even and 6< t < d —1}.

For variablex; and orientatioro, we call (NEQ(oi, %), f(X),A(x,0)) the summary tuplecor-
responding tqx, f(x)). Thus for target functiorf € Parity, , and orientatioro, SI’G(b, c,d) is the
probability of obtaining a summary tup{b, c, d) for variablex; whenx; is relevant, an(.‘B;’o(b, c,d)
is the same probability in the case thais irrelevant.

We prove the following upper bound ¢8!°(b,c,d) — S,°(b,c,d)|.

Lemma 12 For all o € {0,1}", f € Parity,,, b,c€ {0,1} and d€ {0,...,n},

s (GANEN
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Proof. Suppose first thaf (o) = 0. For anyo’ € {0,1}" such thatf(d’) = 0, S{‘O/(b, c,d) =
S{"“(b, c,d), and the analogous equality holds ®t Without loss of generality, we may therefore
assume that = 0".

Let S, = S9(b,c,d) and S = SI9(b,c,d). Lety=|S —S|. Define a functionyi(x,y) :
{0,1}" x {0,1} — {1,—1} such thati(x,y) = -1 if NEQ(gi,X) = b, y = ¢, andA(x,0) = d, and
Yi(x,y) = 1 otherwise.

Forx; a relevant variable of, E[;(x, f(x))] = 1—2S; (where the expectation is with respect to
the uniform distribution ox € {0, 1}"). Similarly, forx; an irrelevant variable of, E[;(x, f (X))] =
1-2S,.

Letx; be a relevant variable df, and letx be an irrelevant variable df.

Since|S — S| =Y,

[E[W; (%, £00)] = E[Wk(x F )| = 2[S1 — S = 2.

As noted by Jackson (2003), it follows from an analysis in Blum et aB4) $hat for any parity
functionh onn variables, and any functiog: {0,1}"1 — {1, -1},

E[g(x h(x))] = §(0™) +§(21)

wherez € {0,1}" is the characteristic vector of the relevant variablds @quivalentlyx, = 1— 2h),
andzl denotes the assignmem, . .., z,,1).
Thus we have

E[W;(x f(x))] = B;(0") + B;(22)
E[Wi(x, f(x))] = $(0™) + P (22)

wherezis the characteristic vector of the relevant variable$.df follows from the definition of};
that{; (0"1) = @ (0"*1). Therefore,

Dj(z1) — ()| = 2y.

Now consider any other parity functiofi € Parity, ,. Sinceo = 0", f’(0) = f(0) = 0. There-

fore, S{G =S and %fc =$. If relevant variable; of f is also a relevant variable df, then
E[W;(x, f'(x))] = ¢j(0"1) + §;(Z1), whereZ is the characteristic vector of the relevant variables
of f’. Thus(j(Z1) = §;(z1).

There are('r‘:i) functionsf’ € Parity, , such thak; is a relevant variable of’. It follows that
there are at Ieas{fj) Fourier coefficients ofp; that are equal tg);(z1). By Parseval’s identity,

1 (z1)| < (?:i) 71/2.

Similarly, E[Wk(x, f(x))] = E[(x, f'(x))] for all f" € Parity, , such thak is an irrelevant vari-
able of f’. Since there ar€”, %) suchf’, an analogous argument shows that

Be(at)] < (”‘1>1/2.

r
Thus
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|Bj (1) — Pu(21)|
2
|Bj ()] + |Pw(22)]
- 2
1{(/n—1\"Y2 /n-1\ 2
< = .
-2 ( r > + <r - 1)

Thus the lemma holds in the case tffigt) = 0.

Now suppose that(o) = 1. Givena € {0,1}", f(a) = 1 iff adiffers fromao in an even number
of its relevant variables (and in an arbitrary number of its irrelevant be$. Furtherf(a) =1
iff a differs from @' in an odd number of iEs relevant variables (and in an anlrbitrary number of its
irrelevant variables). Thus|°(b,c,d) = S/ (b,1—c,d) andS}°(b,c,d) = S (b,1—c, d).

Since the bound proved above for the c&&e) = 0 holds for arbitrary, it holds for\S{’on(b, 1-
c,d)— S;’O (b,1—c,d)|, and the lemma follows. O

The above lemma gives an upper boundyos ]S{’G(b,c,d) — S}“(b,c,d)\. Another way
to prove such an upper bound is to use the fact that a statistical quemjttalgaould deter-
mine whether variablg was relevant by asking a query requesting the value INIP@Q(o;, %) =
b, f (X) = ¢, andA(x,0) = d] within tolerancey/2 (assuming/ > 0). Queries of this type could be
used to find all the relevant variables fafwhich uniquely determines parity functidn If y were
too large, this would contradict known lower bounds on statistical learrfipgrity. This approach
yields a bound that is close to the one given in the lemma above, but the ptes$ idirect. (See,
for example, Blum et al. 1994 for the definition of the statistical query model.)

We now prove a sample complexity lower bound for learning parity functiosislg skewing
with independent samples.

y:

Theorem 11.1 Suppose we use skewing with independent samples to identify a reletiabteva
of f, where fe Parity, ,. Assuming that the samples are drawn from the uniform distribution, to

successfully output a relevant variable with probability at least 1 requhiasthe total number of
1/2

_r H n-1\1/2 /n-1
examples used in making the gain estimates be at m'n{g“l) ) }.

m+n’

Proof. Consider running skewing with independent samples with a target funtctoRarity; ,.
To estimate the gain of a variable with respect to a skewo, p), the skewing algorithm uses
a sample drawn from the uniform distribution. In calculating this estimate, theithigodoes
not use the full information in the examples. For each labeled exaplé¢x)), it uses only the
information in the corresponding summary tupkec,d) = (NEQ(ai,X), f(X),A(x,0)). We may
therefore assume that the skewing algorithm is, in fact, given only the symopdes, rather than
the raw examples.

The number of distinct possible summary tuples is at m@st-4L), since there are two possible
values each fob andc, andn+ 1 possible values fod. The uniform distribution on examples
induces a distributio® on the summary tuples generated for skewp) and variables. For fixed
o, distributionD is the same for all relevant variablgsof f. It is also the same for all irrelevant
variablesx; of f. LetD{ be the distribution for the relevant variables, @fibe the distribution for
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the irrelevant variables. Letbe the distance betwe®f andD§ as measured in tHe, norm. That
is, if K denotes the set of possible summary tuples, therb ,ci | Piog 2] — Prpg[Z]].
Since there are at most{ra+ 1) possible summary tuples. it follows from Lemma 12 that

q<2n+ () () ).

Let m be the total number of examples used to estimate the gain of all varighlesier all
skews(o, p) used by the skewing algorithm. Since thedistance betweebf andDJ is at most
q for every skew(o, p) and every variableg, it follows that during execution of the algorithm,
with probability at leasf1— q)™, the summary tuples generated for the relevant variablésané
distributed in the same way as the summary tuples generated for the irrelaviables off.

By the symmetry of the parity function, if the target functidnis randomly chosen from
Parity, ,, then with probability at leagtl — g)™, the final variable output by the skewing algorithm
when run on thig is equally likely to be any of tha input variables off. Thus the probability that
the skewing algorithm outputs an irrelevant variable is at Iglastg) (=" ), and the probability that
it outputs a relevant variable is at most 11— )™("%=F) < 1—- (1—gm)(1-{) < s +qm(1-1) <
L+agm The first inequality in this sequence holds becadseq)™ > (1—qm), since 0< q < 1.

Since the above holds for a random target function in Ratity holds for the worst-casé €
Parity, ,. It follows that if skewing with independent samples outputs a relevaiaharof f (for
anyf e Parity, ,) with probability at leasf, then the total number of examples used must be at least
min{ (73" ("))

4(n+1) :

To make the theorem concrete, consider the case whetegn. Note that if we simply choose
one of then variables at random, the probability of choosing a relevant variable in disis is"’%”.

It follows from the theorem that for skewing to output a relevant varialitle success “noticeably”
greater than random guessing, that is, with probability at l'é,%!s% ﬁ for some polynomiap, it
would need to use more than a superpolynomial number of examples.

The above proof relies crucially on the fact that skewing uses only tbenration in the sum-
mary tuples. The details of how the summary tuples are used is not importantgootife Thus
the lower bound applies not only to the implementation of skewing that we asqimetich the
chosen variable is the one whose gain exceeds the fixed threshold the mmawumber of times).
Assuming independent samples, the lower bound would also apply to otheingkimplementa-
tions, including, for example, an implementation in which the variable with higrestayer all
skews was chosen as the output variable.

On the other hand, one can also imagine variants of skewing to which thé woodd not
apply. For example, suppose that we replaced the single paramesed in skewing by a vector
of parametersgps, ..., pn), SO that in reweighting an example, varialjjecauses the weight to be
multiplied by eitherp; or 1— p;, depending on whether there is a match with preferred setting.
Our proof technique would not apply here, since we would be usingrirdtion not present in the
summary tuples. To put it another way, the proof exploits the fact that thebdisons used by
skewing are simple ones, defined by a fairp). Interestingly, it was our focus on such simple
distributions that led us to the two new algorithms in Section 10.

The negative result above depends on the fact that foparity function withr relevant vari-
ables, the distribution of the summary tuples for a relevant variqlgevery close to the distribution
of the summary tuples for an irrelevant variakleFor other correlation immune functions, the dis-
tributions are further apart, making those functions easier for skewingndl@&. For example,
consider Consensys the set of alin-variable Boolean functions withrelevant variables, whose

O

L5 Sinceq < 2n+1)(("1) Y2+ (%)), it follows that /g >

2407



HELLERSTEIN, ROSELL, BACH, RAY AND PAGE

value is 1 iff ther relevant variables are all equal. The functions in this set are correliation
mune. Assum@+r is even. Led = (n+r)/2 ando = (1,1,...,1). LetS = Pr{x; = 0,A(x,0) =
d, andf(x) = 1] whenx; is a relevant variable of. Let S, = Prix; = 0,A(x,0) = d, and f(x) = 1]
wheny; is an irrelevant variable of. ThenS; = % (%) andS = 5 ((%/"7) + (%, 77)). Then

S-S = Q(z—ln ('A%{)) since the first term of; is equal toS; /2, and the second term &f is much
smaller than the first. Sinc(qn“/"z) = 9(\%), S-S= Q(ﬁ). Even forr as large a®/2, this

is Q(ﬁ). Note the difference between this quantity and the analogous bound rity. pahe
1/2

dependence here is gprather than on roughly}) ™ ~.

12. Conclusions and Open Questions

In this paper, we studied methods of finding relevant variables that aesllma exploiting product
distributions.

We provided a theoretical study of skewing, an approach to learnimglation immune func-
tions (through finding relevant variables) that has been shown empiriodily quite successful. On
the positive side, we showed that when the skewing algorithm has acabsscmmplete truth table
of a target Boolean function—a case in which standard greedy gagdbesrners fail—skewing
will succeed in finding a relevant variable of that function. More partidylainder any random
choice of skewing parameters, a single round of the skewing procedlfimd a relevant variable
with probability 1.

In some sense the correlation immune functions are the hardest Booleginrisrio learn, and
parity functions are among the hardest of these to learn, since a parityoiuiof k + 1 variables
is k-correlation immune. In contrast to the positive result above, we shougag methods from
statistical query learning) that skewing needs a sample size that is slypenp@l in n to learn
parity of logn relevant variables, given examples from the uniform distribution.

We leave as an open question the characterization of the functionsrofdmigbles that skewing
can learn using a sample of size polynomiahjmgiven examples from the uniform distribution.

Skewing operates on a sample from a single distribution, and carsionlyatealternative prod-
uct distributions. We used the PDC model to study how efficiently one camdladant variables,
given the ability to sample directly from alternative product distributions. Vésgnted two new
algorithms in the PDC model for identifying a relevant variable oharariable Boolean function
with r relevant variables.

We leave as an open problem the development of PDC algorithms with improved$, and
a fuller investigation of the tradeoffs between time and sample complexity, anauthber and
types of distributions used. As a first step, it would be interesting to shoalgarithm whose
time complexity is polynomial im whenr = logn, using a number op-biased distributions that is
polynomial in logn. Our lower bound for parity relied on the assumption of independent sample
We suspect that the lower bound also holds if the assumption is removegtobirg it seems to
require a different approach. As we mentioned earlier, it is a major ofmdatgm whether there is a
polynomial-time algorithm for finding relevant variables of a function offla@riables, using only
examples from the uniform distribution.
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