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Abstract

We present a procedure for effective estimation of entrapy mutual information from small-
sample data, and apply it to the problem of inferring higinelsional gene association networks.
Specifically, we develop a James-Stein-type shrinkagenatdr, resulting in a procedure that is
highly efficient statistically as well as computationalespite its simplicity, we show that it out-
performs eight other entropy estimation procedures aaatigerse range of sampling scenarios
and data-generating models, even in cases of severe ungirsgz We illustrate the approach
by analyzingE. coli gene expression data and computing an entropy-based gsoeiaion net-
work from gene expression data. A computer program is éaildhat implements the proposed
shrinkage estimator.

Keywords: entropy, shrinkage estimation, James-Stein estimatorall, large p” setting, mu-
tual information, gene association network

1. Introduction

Entropy is a fundamental quantity in statistics and machine learning. It hageaamber of ap-
plications, for example in astronomy, cryptography, signal processiagjstics, physics, image
analysis neuroscience, network theory, and bioinformatics—seexdonm@e, Stinson (2006), Yeo
and Burge (2004), MacKay (2003) and Strong et al. (1998). Heréogus onestimatingentropy
from small-sample data, with applications in genomics and gene network inéenmemind (Mar-
golin et al., 2006; Meyer et al., 2007).

To define the Shannon entropy, consider a categorical random leanidh alphabet sizg@ and
associated cell probabilitiés, . . ., 8, with 8, > 0 andy , 6x = 1. Throughout the article, we assume

(©2009 Jean Hausser and Korbinian Strimmer.



HAUSSER AND STRIMMER

thatp is fixed and known. In this setting, the Shannon entropy in natural unitses diy*

p
H=— 6klog(6x). 1)
k=1

In practice, the underlying probability mass function are unknown, héhead 6 need to be
estimatedrom observed cell countg > 0.

A particularly simple and widely used estimator of entropy is the maximum likelihodd) (M
estimator

N P . A
AN = — 5 8" log B}
K=1
constructed by plugging the ML frequency estimates

A Yk
- = - )

into Equationl, withn= zlf:lyk being the total number of counts.

In situations withn > p, that is, when the dimension is low and when there are many observa-
tion, it is easy to infer entropy reliably, and it is well-known that in this caseMheestimator is
optimal. However, in high-dimensional problems witk« p it becomes extremely challenging to
estimate the entropy. Specifically, in the “snmallarge p” regime the ML estimator performs very
poorly and severely underestimates the true entropy.

While entropy estimation has a long history tracing back to more than 50 year# &gonly
recently that the specific issues arising in high-dimensional, undersamgiidets have attracted
attention. This has lead to two recent innovations, namely the NSB algorithmefean et al.,
2002) and the Chao-Shen estimator (Chao and Shen, 2003), both ¢f avbicow widely consid-
ered as benchmarks for the small-sample entropy estimation problem (Vu2&Gal),

Here, we introduce a novel and highly efficient small-sample entropy estilmaded on James-
Stein shrinkage (Gruber, 1998). Our method is fully analytic and henopue@tionally inexpen-
sive. Moreover, our procedure simultaneously provides estimates ahtinepyand of the cell
frequencies suitable for plugging into the Shannon entropy formula {Eaqul). Thus, in compar-
ison the estimator we propose is simpler, very efficient, and at the same time ereatile than
currently available entropy estimators.

2. Conventional Methodsfor Estimating Entropy

Entropy estimators can be divided into two groups: i) methods, that relytonates of cell fre-
guencies, and ii) estimators, that directly infer entropy without estimating a atilnlgo set ofoy.
Most methods discussed below fall into the first group, except for the iMiiedow and NSB
approaches.

1. In this paper we use the following conventions: log denotes the natgaiitom fot base 2 or base 10), and we
define 0logC=0.
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2.1 Maximum Likelihood Estimate

The connection between observed coyptand frequencie8y is given by the multinomial distri-
bution

Prolys,...,Yp;61,...,6p) = 7 yk||_| ok, @)
k=1

Note thatBy > 0 because otherwise the distribution is singular. In contrast, there maynbte (a
often are) zero countg. The ML estimator 0B, maximizes the right hand side of Equati8fior
fixed yk, leading to the observed frequenc@‘éL = % with variances Va(léﬁ"L) = %ek(l— 6x) and
Bias(8)'") = 0 asE(Q'") = 6.

2.2 Miller-Madow Estimator

While 8" is unbiased, the corresponding plugin entropy estiméitdr is not. First order bias
correction leads to
[V _pgme Mo —1
2n
wherem. o is the number of cells witk > 0. This is known as the Miller-Madow estimator (Miller,
1955).

2.3 Bayesian Estimators

Bayesian regularization of cell countsgylead to vast improvements over the ML estimator (Agresti
and Hitchcock, 2005). Using the Dirichlet distribution with parametgrsy, ..., a, as prior, the
resulting posterior distribution is also Dirichlet with mean

gBayes_ Yk + &
k n+A’
whereA = zlf:lak. The flattening constangg play the role of pseudo-counts (compare with Equa-
tion 2), so thath may be interpreted as tlaepriori sample size.

Some common choices fa are listed in Tablé, along with references to the corresponding
plugin entropy estimators,

yBayes__ P éBayesI éBaye
H =— > 67 Tog(8, ).
k=1

a Cell frequency prior Entropy estimator
0 no prior maximum likelihood
1/2  Jeffreys prior (Jeffreys, 1946) Krichevsky and Trofimov (1981
1  Bayes-Laplace uniform prior Holste et al. (1998)
1/p Perks prior (Perks, 1947) Schirmann and Grassberger (1996)

v/n/p  minimax prior (Trybula, 1958)

Table 1: Common choices for the parameters of the Dirichlet prior in the Bayestimators of
cell frequencies, and corresponding entropy estimators.
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While the multinomial model with Dirichlet prior is standard Bayesian folklore (Gelreaal.,
2004), there is no general agreement regarding which assignmegtisobest as noninformative
prior—see for instance the discussion in Tuyl et al. (2008) and Ggj£884). But, as shown later
in this article, choosing inappropriaég can easily cause the resulting estimator to perfamonse
than the ML estimator, thereby defeating the originally intended purpose.

2.4 NSB Estimator

The NSB approach (Nemenman et al., 2002) avoids overrelying on aipartthoice ofa in the
Bayes estimator by using a more refined prior. Specifically, a Dirichlet mixttiog with infinite
number of components is employed, constructed such that the resultingpypeiothe entropy is
uniform. While the NSB estimator is one of the best entropy estimators availaplestnt in
terms of statistical properties, using the Dirichlet mixture prior is computationafigresive and
somewhat slow for practical applications.

2.5 Chao-Shen Estimator

Another recently proposed estimator is due to Chao and Shen (2003)afjrisach applies the
Horvitz-Thompson estimator (Horvitz and Thompson, 1952) in combination wéi&Gibod-Turing
correction (Good, 1953; Orlitsky et al., 2003) of the empirical cell pbiliiges to the problem of
entropy estimation. The Good-Turing-corrected frequency estimates are

~ M.~
6T = (18",
n
wheremy is the number of singletons, that is, cells with= 1. Used jointly with the Horvitz-
Thompson estimator this results in
Kcs P 8TIoghg”

B k;a— (1-68T)")’

an estimator with remarkably good statistical properties (Vu et al., 2007).

3. A James-Stein Shrinkage Estimator

The contribution of this paper is to introduce an entropy estimator that empoyssiStein-type
shrinkage at the level of cell frequencies. As we will show below, thidd¢a an entropy estimator
that is highly effective, both in terms of statistical accuracy and computdionaplexity.

James-Stein-type shrinkage is a simple analytic device to perform regdlaigtedimensional
inference. It is ideally suited for small-sample settings - the original estimaaorgd and Stein,
1961) considered sample sige- 1. A general recipe for constructing shrinkage estimators is given
in Appendix Aln this section, we describe how this approach can be applied to the sppecliiem
of estimating cell frequencies.

James-Stein shrinkage is based on averaging two very different modblgh-@imensional
model with low bias and high variance, and a lower dimensional model withrlarge but smaller
variance. The intensity of the regularization is determined by the relativehtimigof the two
models. Here we consider the convex combination

0" = A+ (1 )8, 4)
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whereA € [0,1] is the shrinkage intensity that takes on a value between 0 (no shrinkagid) an

(full shrinkage), andj is the shrinkage target. A convenient choiceyas the uniform distribution

t = % This is also the maximum entropy target. Considering that(été{s) = 0 and using the

- e AMLY B (16 - : i ' '
unbiased estimatdvar(6;'- ) = “*——*— we obtain (cf.Appendix A for the shrinkage intensity
s S Var@t)  1-3R @)

- = R . 5)

Zle(tk - elll/”')z (n—1) ZIE:l(tk - el’:AL )2
Note that this also assumes a non-stochastic taggdhe resulting plugin shrinkage entropy esti-
mate is

R P ochn U
HShrlnk: _ Z efh””"log(efh””k). (6)
k=1

Remark 1 There is a one to one correspondence between the shrinkage andythe &imator. If
we write [ = % and\ = ;25 thenfPMnk= §®°% This implies that the shrinkage estimator is an
empirical Bayes estimator with a data-driven choice of the flattening cotsstesee also Efron and
Morris (1973). For every choice of A there exists an equivalent shgakntensityA. Conversely,

for everyA there exist an equivalent A nlf—x.

Remark 2 Developing A= nﬁ =n(A+A%2+...) we obtain the approximate estimate= nf\,
which in turn recovers the “pseudo-Bayes” estimator described in Féegpland Holland (1973).

Remark 3 The shrinkage estimator assumes a fixed and known p. In many ptagijad&cations
this will indeed be the case, for example, if the observed counts are disctetitation (see also
the data example). In addition, the shrinkage estimator appears to betralgainst assuming a
larger p than necessary (see scenario 3 in the simulations).

Remark 4 The shrinkage approach can easily be modified to allow multiple targets widretit
shrinkage intensities. For instance, using the Good-Turing estimatordG®63; Orlitsky et al.,
2003), one could setup a different uniform target for the non-zero amdeto counts, respectively.

4. Compar ative Evaluation of Statistical Properties

In order to elucidate the relative strengths and weaknesses of theyeestopators reviewed in the
previous section, we set to benchmark them in a simulation study coveripgediffdata generation
processes and sampling regimes.

4.1 Simulation Setup

We compared the statistical performance of all nine described estimatorém(umaxikelihood,
Miller-Madow, four Bayesian estimators, the proposed shrinkage estirtiedoiations 4—6), NSB
und Chao-Shen) under various sampling and data generating scenarios

e The dimension was fixed gt= 1000.

e Samples size varied from 10, 30, 100, 300, 1000, 3000, to 10000. That is, we iigade
cases of dramatic undersampling (“snrellargep”) as well as situations with a larger number
of observed counts.
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The true cell probabilitie®s, . ..,01000 Were assigned in four different fashions, corresponding to
rows 1-4 in Figurel:

1. Sparse and heterogeneous, following a Dirichlet distribution with pdeauae- 0.0007,
2. Random and homogeneous, following a Dirichlet distribution with pararaetet,

3. Asin scenario 2, but with half of the cells containing structural zemd, a

4. Following a Zipf-type power law.

For each sampling scenario and sample size, we conducted 1000 simulasornmeach run, we
generated a new set of true cell frequencies and subsequently sashplrsied countg from the
corresponding multinomial distribution. The resulting countsvere then supplied to the various
entropy and cell frequencies estimators and the squaredglrj@q(ek — ék)z was computed. From
the 1000 repetitions we estimated the mean squared error (MSE) of theeqekfrcies by averaging
over the individual squared errors (except for the NSB, Miller-Madmnd Chao-Shen estimators).
Similarly, we computed estimates of MSE and bias of the inferred entropies.

4.2 Summary of Resultsfrom Simulations

Figurel displays the results of the simulation study, which can be summarized as follows:

e Unsurprisingly, all estimators perform well when the sample size is large.

e The maximum likelihood and Miller-Madow estimators perform worst, excapidenario 1.
Note that these estimators are inappropriate even for moderately large siwepleFurther-
more, the bias correction of the Miller-Madow estimator is not particularlycétfe.

e The minimax and 1p Bayesian estimators tend to perform slightly better than maximum
likelihood, but not by much.

e The Bayesian estimators with pseudocount and 1 perform very well even for small sam-
ple sizes in the scenarios 2 and 3. However, they are less efficientriargcd, and com-
pletely fail in scenario 1.

e Hence, the Bayesian estimators can perform better or worse than thetiiates, depending
on the choice of the prior and on the sampling scenario.

e The NSB, the Chao-Shen and the shrinkage estimator all are statisticallgffiergnt with
small MSEs in all four scenarios, regardless of sample size.

e The NSB and Chao-Shen estimators are nearly unbiased in scenario 3.

The three top-performing estimators are the NSB, the Chao-Shen andotter shrinkage esti-
mator. When it comes to estimating the entropy, these estimators can be cahgideteal for
practical purposes. However, the shrinkage estimator is the only ongiitinltaneously estimates
cell frequencies suitable for use with the Shannon entropy formula (lBqud), and it does so
with high accuracy even for small samples. In comparison, the NSB estiméuypifas the slowest
method: in our simulations, the shrinkage estimator was faster by a facto®0f 10
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Figure 1: Comparing the performance of nine different entropy estimétmagimum likelihood,
Miller-Madow, four Bayesian estimators, the proposed shrinkage estinfd&8 und
Chao-Shen) in four different sampling scenarios (rows 1 to 4). Ttimat®rs are com-
pared in terms of MSE of the underlying cell frequencies (except for Miladow, NSB,
Chao-Shen) and according to MSE and Bias of the estimated entropieslirfidiesion
is fixed atp = 1000 while the sample sizevaries from 10 to 10000.
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5. Application to Statistical L earning of Nonlinear Gene Association Networks

In this section we illustrate how the shrinkage entropy estimator can be appthegljgooblem of in-
ferring regulatory interactions between genes through estimating the ramdisgociation network.

5.1 From Linear to Nonlinear Gene Association Networks

One of the aims of systems biology is to understand the interactions amongageriegir products
underlying the molecular mechanisms of cellular function as well as how diilsguiivese interac-
tions may lead to different pathologies. To this end, an extensive literatuteeqproblem of gene
regulatory network “reverse engineering” has developed in the pastde (Friedman, 2004). Start-
ing from gene expression or proteomics data, different statistical leapriocedures have been
proposed to infer associations and dependencies among genes. Amongthrexs, methods have
been proposed to enable the inference of large-scale correlationrket{@utte et al., 2000) and
of high-dimensional partial correlation graphs (Dobra et al., 2004aféctand Strimmer, 2005a;
Meinshausen and Buhlmann, 2006), for learning vector-autoregee®pgen-Rhein and Strim-
mer, 2007a) and state space models (Rangel et al., 2004; Lahdesm&timalevich, 2008), and
to reconstruct directed “causal” interaction graphs (Kalisch and Buhlin2007; Opgen-Rhein and
Strimmer, 2007b).

The restriction to linear models in most of the literature is owed at least in pareé taltbady
substantial challenges involved in estimating linear high-dimensional dependeuctures. How-
ever, cell biology offers numerous examples of threshold and satureffiects, suggesting that
linear models may not be sufficient to model gene regulation and genergeraections. In order
to relax the linearity assumption and to capture nonlinear associations amues) gatropy-based
network modeling was recently proposed in the form of the ARACNE (Marg al., 2006) and
MRNET (Meyer et al., 2007) algorithms.

The starting point of these two methods is to compute the mutual informati¢oxX, M} for all
pairs of geneX andY, whereX andY represent the expression levels of the two genes for instance.
The mutual information is the Kullback-Leibler distance from the joint probabdéwpsity to the
product of the marginal probability densities:

MI(X,Y) = Ef(xy) {Iog%}. )

The mutual information (MI) is always non-negative, symmetric, and eqeats only if X andY
are independent. For normally distributed variables the mutual informationsslglcelated to the
usual Pearson correlation,

MI(X,Y) = —%Iog(l—pz).

Therefore, mutual information is a natural measure of the association dretyenes, regardless
whether linear or nonlinear in nature.

5.2 Estimation of Mutual Information

To construct an entropy network, we first nee@gstimatenutual information for all pairs of genes.
The entropy representation

MI(X,Y) =H(X)+H(Y)-H(X,Y), 8)
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shows that Ml can be computed from the joint and marginal entropies of ingdwesX andY.
Note that this definition is equivalent to the one given in Equaliamich is based on the Kullback-
Leibler divergence. From Equatidit is also evident that MIX,Y) is the information shared
between the two variables.

For gene expression data the estimation of Ml and the underlying entromikalisnging due
to the small sample size, which requires the use of a regularized entropy testsunah as the
shrinkage approach we propose here. Specifically, we proceetdass:

e As a prerequisite the data must be discrete, with each measurement assoenofddev-
els. If the data are not already discretized, we propose employing the satgplethm of
Freedman and Diaconis (1981), considering the measurements of algisndtaneously.

o Next, we estimate thp = K2 cell frequencies of thi x K contingency table for each pair
andY using the shrinkage approach (Egs. 4 and 5). Note that typically the sameleis
much smaller thaik?, thus simple approaches such as ML are not valid.

e Finally, from the estimated cell frequencies we calculdtX), H(Y), H(X,Y) and the de-
sired MI(X,Y).

5.3 Mutual Information Network for E. Coli Stress Response Data

MI shrinkage estimates ARACNE-processed Mls

Frequency
400 600 800
1 1 ]
Frequency

200
|
1000 2000 3000 4000 5000
|

0

[ T T T T T 1 [ T T 1
0.6 0.8 1.0 1.2 14 1.6 18 0.0 0.5 1.0 15

0
L

0
L

mutual information mutual information

Figure 2: Left: Distribution of estimated mutual information values for all 51&aeypairs of the
E. coli data set. Right: Mutual information values after applying the ARACNE gene
pair selection procedure. Note that the most MiIs have been set to z¢ne BYRACNE
algorithm.

For illustration, we now analyze data from Schmidt-Heck et al. (2004) vamalected an ex-
periment to observe the stress responde.i@oli during expression of a recombinant protein. This

1477



HAUSSER AND STRIMMER

data set was also used in previous linear network analyzes, for exam@ehafer and Strimmer
(2005b). The raw data consist of 4289 protein coding genes, on wiméasurements were taken
at 0, 8, 15, 22, 45, 68, 90, 150, and 180 minutes. We focus on atsafbSe= 102 differentially
expressed genes as given in Schmidt-Heck et al. (2004).

Discretization of the data according to Freedman and Diaconis (1981) ¢iklde 16 distinct
gene expression levels. From fBe- 102 genes, we estimated Mls for 5151 pairs of genes. For each
pair, the mutual information was based on an estimated 16 contingency table, henge= 256.

As the number of time points is= 9, this is a strongly undersampled situation which requires the
use of a regularized estimate of entropy and mutual information.

The distribution of the shrinkage estimates of mutual information for all 51%i geirs is
shown in the left side of Figur2 The right hand side depicts the distribution of mutual information
values after applying the ARACNE procedure, which yields 112 gene péih nonzero MIs.

The model selection provided by ARACNE is based on applying the informatiocessing
inequality to all gene triplets. For each triplet, the gene pair correspondthg smallest Ml is dis-
carded, which has the effect to remove gene-gene links that congspindirect rather than direct
interactions. This is similar to a procedure used in graphical Gaussian nvadete correlations
are transformed into partial correlations. Thus, both the ARACNE and fREET algorithms can
be considered as devices to approximate the conditional mutual informateye(Mt al., 2007).
As a result, the 112 nonzero Mis recovered by the ARACNE algorithmespond to statistically
detectable direct associations.

The corresponding gene association network is depicted in FRjuree most striking feature
of the graph are the “hubs” belonging to genes hupB, sucA and nugB is a well known DNA-
binding transcriptional regulator, whereas both nuoL and sucA aredeponents of th&. coli
metabolism. Note that a Lasso-type procedure (that implicitly limits the number eBatigt can
connect to each node) such as that of Meinshausen and Buhimar&) ¢20@ ot recover these hubs.

6. Discussion

We proposed a James-Stein-type shrinkage estimator for inferring granolomutual information
from small samples. While this is a challenging problem, we showed that ovoagpis highly
efficient both statistically and computationally despite its simplicity.

In terms of versatility, our estimator has two distinct advantages over the N&Blhao-Shen
estimators. First, in addition to estimating the entropy, it also provides the umdenultinomial
frequencies for use with the Shannon formula (Equation 1). This is isetiie context of using
mutual information to quantify non-linear pairwise dependencies for insté®econd, unlike NSB,
it is a fully analytic estimator.

Hence, our estimator suggests itself for applications in large scale estimatiblems. To
demonstrate its application in the context of genomics and systems biologyveestimated an
entropy-based gene dependency network from expression datadfi. This type of approach may
prove helpful to overcome the limitations of linear models currently used in metavalysis.

In short, we believe the proposed small-sample entropy estimator will be dlakantribution
to the growing toolbox of machine learning and statistics procedures fordiigénsional data
analysis.
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Figure 3: Mutual information network for tHe. colidata inferred by the ARACNE algorithm based
on shrinkage estimates of entropy and mutual information.
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Appendix A. Recipe For Constructing James-Stein-type Shrinkage Estimators

The original James-Stein estimator (James and Stein, 1961) was prope&stithiate the mean of
a multivariate normal distribution from a single £ 1!) vector observation. Specifically, Xfis a
sample fromN,(p, 1) then James-Stein estimator is given by

p—2
ZE:lxﬁ)Xk

Intriguingly, this estimator outperforms the maximum likelihood estimaﬁﬂ}r = Xk in terms of
mean squared error if the dimensiongds> 3. Hence, the James-Stein estimator dominates the
maximum likelihood estimator.

The above estimator can be slightly generalized by shrinking towards theooemipaverage
X= 3P _, X rather than to zero, resulting in

-

thrink _ 5\*)?4_ (1_ R*)Xk
with estimated shrinkage intensity

5\* . p_3
ZIE:l(Xk—)Z)Z'

The James-Stein shrinkage principle is very general and can be put & tim unany other
high-dimensional settings. In the following we summarize a simple recipe fateating James-
Stein-type shrinkage estimators along the lines of Schéafer and Strimmeb{28@b Opgen-Rhein
and Strimmer (2007a).

In short, there are two key ideas at work in James-Stein shrinkage:

i) regularization of a high-dimensional estimatérby linear combination with a lower-

. . . ~Target
dimensional target estimage % and

ii) adaptive estimation of the shrinkage parameétérom the data by quadratic risk minimiza-
tion.

A general form of a James-Stein-type shrinkage estimator is given by

éShrink _ )\éTarget+ (1 _ )\)é (9)

Note that® andd' " are two very different estimators (for the same underlying modél!as a
high-dimensional estimate with many independent components has low bias buidll samples

a potentially large variance. In contrast, the target estiBate is low-dimensional and therefore

is generally less variable th&nbut at the same time is also more biased. The James-Stein estimate
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is a weighted average of these two estimators, where the weight is chosédati-driven fashion
such tha®™"is improved in terms of mean squared error relativbdth® andd"™%""

A key advantage of James-Stein-type shrinkage is that the optimal sheinkagsityA* can be
calculated analytically and without knowing the true vali®ia

N =

5 Var(By) — Cou(By. 87"°") + Bias(Bu) E (B~ 67°) (10)
[ .

zk L ( Tames

A simple estimate oh* is obtained by replacing all variances and covariances in Equaiiavith
their empirical counterparts, followed by truncatiomofat 1 (so thah* < 1 always holds).

Equationl0is discussed in detail in Schéfer and Strimmer (2005b) and Opgen-R lee8tihm-
mer (2007a). More specialized versions of it are treated, for exampledoit and Wolf (2003) for
unbiased and in Thompson (1968) (unbiased, univariate case with deterministid)tafgeery
early version (univariate with zero target) even predates the estimatamesland Stein, see Good-
man (1953). For the multinormal setting of James and Stein (1961), Eq@éiod EquatiorlO
reduce to the shrinkage estimator described in Stigler (1990).

James-Stein shrinkage has an empirical Bayes interpretation (Efron am$M973). Note,
however, that only the first two moments of the distributiond 8°*'and® need to be specified in
Equation10. Hence, James-Stein estimation may be viewed @saai-empirical Bayeapproach
(in the same sense as in quasi-likelihood, which also requires only the farshdments).

Appendix B. Computer I mplementation

The proposed shrinkage estimators of entropy and mutual informationelaasmall other inves-
tigated entropy estimators, have been implemented in R (R Development Cone A@@83). A
corresponding R package “entropy” was deposited in the R archiveNCahd is accessible at the
URL http://cran.r-project.org/ web/ packages/ entropy/ under the GNU General Public
License.
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