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Abstract
Recommender systemsare now popular both commercially and in the research community, where
many algorithms have been suggested for providing recommendations. These algorithms typically
perform differently in various domains and tasks. Therefore, it is important from the research
perspective, as well as from a practical view, to be able to decide on an algorithm that matches
the domain and the task of interest. The standard way to make such decisions is by comparing a
number of algorithms offline using some evaluation metric. Indeed, many evaluation metrics have
been suggested for comparing recommendation algorithms. The decision on the proper evaluation
metric is often critical, as each metric may favor a different algorithm. In this paper we review
the proper construction of offline experiments for decidingon the most appropriate algorithm. We
discuss three important tasks of recommender systems, and classify a set of appropriate well known
evaluation metrics for each task. We demonstrate how using an improper evaluation metric can lead
to the selection of an improper algorithm for the task of interest. We also discuss other important
considerations when designing offline experiments.

Keywords: recommender systems, collaborative filtering, statistical analysis, comparative studies

1. Introduction

Recommender systems can now be found in many modern applications that expose the user to a
huge collections of items. Such systems typically provide the user with a list of recommended
items they might prefer, or supply guesses of how much the user might prefer each item. These
systems help users to decide on appropriate items, and ease the task of finding preferred items in
the collection.

For example, the DVD rental provider Netflix1 displays predicted ratings for every displayed
movie in order to help the user decide which movie to rent. The online book retailer Amazon2

provides average user ratings for displayed books, and a list of otherbooks that are bought by
users who buy a specific book. Microsoft provides many free downloads for users, such as bug
fixes, products and so forth. When a user downloads some software, the system presents a list

1. This can be found atwww.netflix.com.
2. This can be found atwww.amazon.com.
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of additional items that are downloaded together. All these systems are typically categorized as
recommender systems, even though they provide diverse services.

In the past decade, there has been a vast amount of research in the field of recommender sys-
tems, mostly focusing on designing new algorithms for recommendations. An application designer
who wishes to add a recommendation system to her application has a large variety of algorithms at
her disposal, and must make a decision about the most appropriate algorithmfor her application.
Typically, such decisions are based on offline experiments, comparing theperformance of a number
of candidate algorithms over real data. The designer can then select the best performing algorithm,
given structural constraints. Furthermore, most researchers who suggest new recommendation al-
gorithms also compare the performance of their new algorithm to a set of existing approaches. Such
evaluations are typically performed by applying some evaluation metric that provides a ranking of
the candidate algorithms (usually using numeric scores).

Many evaluation metrics have been used to rank recommendation algorithms, some measuring
similar features, but some measuring drastically different quantities. For example, methods such
as the Root of the Mean Square Error (RMSE) measure the distance between predicted preferences
and true preferences over items, while the Recall method computes the portionof favored items that
were suggested. Clearly, it is unlikely that a single algorithm would outperform all others over all
possible methods.

Therefore, we should expect different metrics to provide different rankings of algorithms. As
such, selecting the proper evaluation metric to use has a crucial influence on the selection of the
recommender system algorithm that will be selected for deployment. This survey reviews existing
evaluation metrics, suggesting an approach for deciding which evaluation metric is most appropriate
for a given application.

We categorize previously suggested recommender systems into three major groups, each cor-
responding to a differenttask. The first obvious task is to recommend a set of good (interesting,
useful) items to the user. In this task it is assumed that all good items are interchangeable. A
second, less discussed, although highly important task is utility optimization. Forexample, many
e-commerce websites use a recommender system, hoping to increase their revenues. In this case,
the task is to present a set of recommendations that will optimize the retailer revenue. Finally, a
very common task is the prediction of user opinion (e.g., rating) over a set ofitems. While this may
not be an explicit act of recommendation, much research in recommender systems focuses on this
task, and so we address it here.

For each such task we review a family of common evaluation metrics that measurethe perfor-
mance of algorithms on that task. We discuss the properties of each such metric, and why it is most
appropriate for a given task.

In some cases, applying incorrect evaluation metrics may result in selecting an inappropriate
algorithm. We demonstrate this by experimenting with a wide collection of data sets, comparing a
number of algorithms using various evaluation metrics, showing that the metrics rank the algorithms
differently.

We also discuss the proper design of an offline experiment, explaining how the data should
be split, which measurements should be taken, how to determine if differencesin performance are
statistically significant, and so forth. We also describe a few common pitfalls thatmay produce
results that are not statistically sound.

The paper is structured as follows: we begin with some necessary background on recommender
approaches (Section 2). We categorize recommender systems into a set ofthree tasks in Section 3.
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We then discuss evaluation protocols, including online experimentation, offline testing, and statis-
tical significance testing of results in Section 4. We proceed to review a set of existing evaluation
metrics, mapping them to the appropriate task (Section 5). We then provide (Section 6) some ex-
amples of applying different metrics to a set of algorithms, resulting in questionable rankings of
these algorithms when inappropriate measures are used. Following this, we discuss some addi-
tional relevant topics that arise (Section 7) and some related work (Section8), and then conclude
(Section 9).

2. Algorithmic Approaches

There are two dominant approaches for computing recommendations for theactive user—the user
that is currently interacting with the application and the recommender system. First, thecollabora-
tive filteringapproach (Breese et al., 1998) assumes that users who agreed on preferred items in the
past will tend to agree in the future too. Many such methods rely on a matrix of user-item ratings to
predict unknown matrix entries, and thus to decide which items to recommend.

A simple approach in this family (Konstan et al., 2006), commonly referred to asuser based
collaborative filtering, identifies a neighborhood of users that are similar to theactive user. This
set of neighbors is based on the similarity of observed preferences between these users and the
active user. Then, items that were preferred by users in the neighborhood are recommended to the
active user. Another approach (Linden et al., 2003), known asitem based collaborative filtering
recommends items also prefered by users that prefer a particularactive itemto other users that
also prefer that active item. In collaborative filtering approaches, the system only has access to the
item and user identifiers, and no additional information over items or users is used. For example,
websites that present recommendations titled “users who preferred this itemalso prefer” typically
use some type of collaborative filtering algorithm.

A second popular approach is thecontent-basedrecommendation. In this approach, the system
has access to a set of item features. The system then learns the user preferences over features, and
uses these computed preferences to recommend new items with similar features.Such recommen-
dations are typically titled “similar items”. User’s features, if available, such asdemographics (e.g.,
gender, age, geographic location) can also provide valuable information.

Each approach has advantages and disadvantages, and a multitude of algorithms from each
family, as well as a number of hybrid approaches have been suggested.This paper, though, makes no
distinction between the underlying recommendation algorithms when evaluating their performance.
Just as users should not need to take into account the details of the underlying algorithm when using
the resulting recommendations, it is inappropriate to select different evaluation metrics for different
recommendation approaches. In fact, doing so would make it difficult to decide which approach to
employ in a particular application.

3. Recommender Systems Tasks

Providing a single definition for recommender systems is difficult, mainly becausesystems with
different objectives and behaviors are grouped together under thatname. Below, we categorize
recommender systems into three classes, based on the recommendation task that they are designed
for McNee et al. (2006). In fact, there have been several previousattempts to classify existing
recommenders (see, e.g., Montaner et al. 2003 and Schafer et al. 1999). We, however, are interested
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in the proper evaluation of such algorithms, and our classification is derived from that goal. While
there may be recommender systems that do not fit well into the classes that we suggest, we believe
that the vast majority of the recommender systems attempt to achieve one of thesetasks, and can
thus be classified as we suggest.

3.1 Recommending Good Items

Perhaps the most common task of recommendation engines is to recommend good items to users
(Herlocker et al., 2004; McNee et al., 2006). Such systems typically present a list of items that the
user is predicted to prefer. The user can then select (add to the shopping basket, view, ...) one or
more of the suggested items. There are many examples of such systems. In theAmazon website,
for instance, when the user is looking at an item, the system presents below alist of other items that
the user may be interested in. Another example can be found in Netflix—when auser adds a movie
to her queue, the system displays a list of other recommended movies that the user may want to add
to the queue too. There are several considerations when creating recommendation lists. We identify
below two sub-tasks that comply with different requirements.

3.1.1 RECOMMENDING SOME GOOD ITEMS

In this sub-task, we make the assumption that there is a large number of good items that may appeal
to the user, and the user does not have enough resources (time, money)to select all items. In this
case we can only present a part of the preferred item set. Thus, it is likely that many preferred items
will be missing from the list. In this sub-task, it is more important not to present any disliked item
than to find all the good items.

This is typically the case in recommender systems that suggest media items, such as movies,
books, or news items. In all these cases the number of alternatives is huge, and the user cannot
possibly watch all the recommended movies, or read all the relevant books.

3.1.2 RECOMMENDING ALL GOOD ITEMS

A less popular case is when the system should recommend all important items. Examples of such
systems are recommenders that predict which scientific papers should be cited, or legal databases
(Herlocker et al., 2004; McNee et al., 2006), where it is important not to overlook any possible case.
In this sub-task, the system can present longer lists of items, trying to avoid missing a relevant item.

3.2 Optimizing Utility

With the rise of e-commerce websites, another recommendation task became highly important—
maximizing the profits of the website. Online retailers are willing to invest in recommender sys-
tems hoping to increase their revenue. There are many ways by which a recommender system can
increase revenue. The simplest way is through cross-selling; by suggesting additional items to the
users, we increase the probability that the user will buy more than he originally intended. In an
online news provider, where most revenue comes from display advertisements, the system can in-
crease profit by keeping the users in the website for longer time periods, as the performance of
an advertising campaign is often measured in terms of “x-minute reach,” which is the number of
consumers in a particular market that are exposed to the ad forx minutes. In such cases, it is in
the best interest of the system to suggest items in order to lengthen the session. In a subscription

2938



A SURVEY OF EVALUATION METRICS OFRECOMMENDATION TASKS

service, where revenue comes from users paying a regular subscription, the goal may be to allow
users to easily reach items of interest. In this case, the system should suggest items such that the
user reaches items of interest with minimal effort.

The utility function to be optimized can be more complicated, and in particular, may bea func-
tion of the entire set of recommendations and their presentation to the user. For example, in pay-
per-click search advertising, the system must recommend advertisements to be displayed on search
results pages. Each advertiser bids a fixed amount that is paid only when the user clicks on their
ad. If we wish to optimize the expected system profit, both the bids and the probability that the user
will click on each ad must be taken into account. This probability depends on the relevance of each
ad to the user and the placement of the different ads on the page. Since thedifferent ads displayed
compete for the user’s attention, the utility function depends on the entire set of ads displayed, and
is not additive over the set (Gunawardana and Meek, 2008).

In all of these cases, it may be suboptimal to suggest items based solely on their predicted
rating. While it is certainly beneficial to recommend relevant items, other considerations are also
important. For example, in the e-commerce scenario, given two items that the system perceives
as equally relevant, suggesting the item with the higher profit can further increase revenue. In the
online news agency case, recommending longer stories may be beneficial, because reading them
will keep the user in the website longer. In the subscription service, recommending items that are
harder for the user to reach without the recommender system may be beneficial.

Another common practice of recommendation systems is to suggest recommendations that pro-
vide the most “value” to the user. For example, recommending popular items canbe redundant, as
the user is probably already familiar with them. A recommendation of a preferred, yet unknown
item can provide a much higher value for the user.

Such approaches can be viewed as instances of providing recommendations that maximize some
utility function that assigns a value to each recommendation. Defining the correct utility function
for a given application can be difficult (Braziunas and Boutilier, 2005),and typically system design-
ers make simplifying assumptions about the user utility function. In the e-commerce case the utility
function is typically the profit resulting from recommending an item, and in the news scenario the
utility can be the expected time for reading a news item, but these choices ignorethe effect of the
resulting recommendations on long-term profits. When we are interested in novel recommenda-
tions, the utility can be the log of the inverse popularity of an item, modeling the amountof new
information in a recommended item (Shani et al., 2005), but this ignores otheraspects of user-utility
such as the diversity of recommendations.

In fact, it is possible to view many recommendation tasks, such as providing novel or serendipi-
tious recommendations as maximizing some utility function. Also, the “recommend gooditems” of
the previous section can be considered as optimizing for a utility function assigning a value of 1 to
each successful recommendation. In this paper, due to the popularity of the former task, we choose
to keep the two tasks distinct.

3.3 Predicting Ratings

In some cases, a system is required to predict the user ratings over a given set of items. For example,
in the Netflix website, when the user is browsing the list of new releases, the system assigns a
predicted rating for each movie. In CNET,3 a website offering electronic product reviews, users can

3. This can be found atwww.cnet.com.
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search for, say, laptops that cost between $400 and $700. The system adds to some laptops in the
list an automatically computed rating, based on the laptop features.

It is arguable whether this task is indeed a recommendation task. However, many researchers in
the recommendations system community attempting to find good algorithms for this task.Examples
include the Netflix competition, which was warmly embraced by the research community, and the
numerous papers on predicting ratings on the Netflix or MovieLens4 data sets.

While such systems do not provide lists of recommended items, predicting that theuser will rate
an item highly can be considered an act of recommendation. Furthermore, one can view a predicted
high rating as a recommendation to use the item, and a predicted low rating as a recommendation
to avoid the item. Indeed, it is common practice to use predicted ratings to generate a list of recom-
mendations. Below, we will present several arguments of cases where this common practice may be
undesirable.

4. Evaluation Protocols

We now discuss an experimental protocol for evaluating and choosing recommendation algorithms.
We review several requirements to ensure that the results of the experiments are statistically sound.
We also describe several common pitfalls in such experimental settings. This section reviews the
evaluation protocols in related areas such as machine learning and information retrieval, highlight-
ing practices relevant to evaluating recommendation systems. The reader is referred to publications
in these fields for more detailed discussions (Salzberg, 1997; Demšar, 2006; Voorhees, 2002a).

We begin by discussing online experiments, which can measure the real performance of the
system. We then argue that offline experiments are also crucial, because online experiments are
costly in many cases. Therefore, the bulk of the section discusses the offline experimental setting in
detail.

4.1 Online Evaluation

In the recommendation and utility optimization tasks, the designer of the system wishes to influence
the behavior of users. We are therefore interested in measuring the change in user behavior when
interacting with different recommendation systems. For example, if users of one system follow the
recommendations more often (in the case of the “recommend good items” task), or if the utility
gathered from users of one system exceeds utility gathered from usersof the other system (in the
utility optimization task), then we can conclude that one system is superior to the other, all else
being equal. In the case of ratings prediction tasks, the goal is to provide information to support
user browsing and search. Once again, the value of such predictions can depend on a variety of
factors such as the user’s intent (e.g., how specific their information needs are, how much novelty
vs. how much risk they are seeking), the user’s context (e.g., what items they are already familiar
with, how much they trust the system), and the interface through which the predictions are presented.

For this reason, many real world systems employ an online testing system (Kohavi et al., 2009),
where multiple algorithms can be compared. Typically, such systems redirect asmall percentage
of the traffic to each different recommendation engine, and record the users interactions with the
different systems. There are a few considerations that must be made when running such tests.
For example, it is important to sample (redirect) users randomly, so that the comparisons between

4. This can be found atwww.movielens.org.
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alternatives are fair. It is also important to single out the different aspects of the recommenders.
For example, if we care about algorithmic accuracy, it is important to keep theuser interface fixed.
On the other hand, if we wish to focus on a better user interface, it is best tokeep the underlying
algorithm fixed.

However, in a multitude of cases, such experiments are very costly, since creating online testing
systems may require much effort. Furthermore, we would like to evaluate our algorithms before
presenting their results to the users, in order to avoid a negative user experience for the test users.
For example, a test system that provides irrelevant recommendations, may discourage the test users
from using the real system ever again. Finally, designers that wish to adda recommendation system
to their application before its deployment do not have an opportunity to run such tests.

For these reasons, it is important to be able to evaluate the performance of algorithms in an
offline setting, assuming that the results of these offline tests correlate well with the online behavior
of users.

4.2 Offline Experimental Setup

As described above, the goal of the offline evaluation is to filter algorithms sothat only the most
promising need undergo expensive online tests. Thus, the data used forthe offline evaluation should
match as closely as possible the data the designer expects the recommender system to face when
deployed online. Care must be exercised to ensure that there is no bias in the distributions of users,
items and ratings selected. For example, in cases where data from an existingsystem (perhaps a
system without a recommender) is available, the experimenter may be tempted to pre-filter the data
by excluding items or users with low counts, in order to reduce the costs of experimentation. In
doing so, the experimenter should be mindful that this involves a trade-off, since this introduces a
systematic bias in the data. If necessary, randomly sampling users and items maybe a preferable
method for reducing data, although this can also introduce other biases into the experiment (e.g.,
this could tend to favor algorithms that work better with more sparse data).

In order to evaluate algorithms offline, it is necessary to simulate the online process where the
system makes predictions or recommendations, and the user corrects the predictions or uses the
recommendations. This is usually done by recording historical user data, and then hiding some
of these interactions in order to simulate the knowledge of how a user will rate an item, or which
recommendations a user will act upon.

There are a number of ways to choose the ratings/selected items to be hidden.Once again, it
is preferable that this choice be done in a manner that simulates the target application as closely as
possible. We discuss these concerns explicitly for the case of selecting used items for hiding in the
evaluation of recommendation tasks, and note that the same considerations apply when selecting
ratings to hide for evaluation of ratings prediction tasks.

Our goal is to simulate sets of past user selections that are representativeof what the system will
face when deployed. Ideally, if we have access to time-stamps for user selections, we can randomly
sample test users, randomly sample a time just prior to a user action, hide all selections (of all
users) after that instant, and then attempt to recommend items to that user. This protocol requires
changing the set of given information prior to each recommendation, which can be computationally
quite expensive. A cheaper alternative is to sample a set of test users, then sample a single test time,
and hide all items after the sampled test time for each test user. This simulates a situation where
the recommender system is “trained” as of the test time, and then makes recommendations without
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taking into account any new data that arrives after the test time. Another alternative is to sample a
test time for each test user, and hide the test user’s items after that time, without maintaining time
consistency across users. This effectively assumes that it is the sequence in which items are selected,
and not the absolute times when they are selected that is important. A final alternative is to ignore
time; We sample a set of test users, then sample the numberna of items to hide for each usera, then
samplena items to hide. This assumes that the temporal aspects of user selections are unimportant.
All three of the latter alternatives partition the data into a single training set and single test set. It is
important to select an alternative that is most appropriate for the domain and task of interest, rather
than the most convenient one.

A common protocol used in many research papers is to use a fixed number ofknown items or a
fixed number of hidden items per test user (so called “givenn” or “all but n” protocols). This pro-
tocol is useful for diagnosing algorithms and identifying in which cases theywork best. However,
when we wish to make decisions on the algorithm that we will use in our application, we must ask
ourselves whether we are truly interested in presenting recommendations for users who have rated
exactlyn items, or are expected to rate exactlyn items more. If that is not the case, then results
computed using these protocol have biases that make them difficult to use in predicting the outcome
of using the algorithms online.

The evaluation protocol we suggest above generates a test set (Dudaand Hart, 1973) which is
used to obtain held-out estimates for algorithm performance, using performance measures which
we discuss below. Another popular alternative is to use cross-validation (Stone, 1974), where the
data is divided into a number of partitions, and each partition in turn is used as atest set. The
advantages of the cross-validation approach are to allow the use of more data in ranking algorithms,
and to take into account the effect of training set variation. In the case ofrecommender systems,
the held-out approach usually yields enough data to make reliable decisions. Furthermore, in real
systems, the problem of variation in training data is avoided by evaluating systemstrained on the
historical data specific to the task at hand. In addition, there is a risk that since the results on the
different data partitions are not independent of each other, pooling theresults across partitions for
ranking algorithms can lead to statistically unjustified decisions (Bengio and Grandvalet, 2004).

4.3 Making Reliable Choices

When choosing between algorithms, it is important that we can be confidant that the algorithm that
we choose will also be a good choice for the yet unseen data the system willbe faced with in the
future. As we explain above, we should exercise caution in choosing the data so that it would be
most similar to the online application. Still, there is a possibility that the algorithm that performed
best on this test set did so because the test set was fortuitously suitable for that algorithm. To reduce
the possibility of such statistical mishaps, we must perform significance testingon the results.

Typically we compute a significance level orp-value—the probability that the obtained results
were due to luck. Generally, we will reject the null hypothesis that algorithmA is no better than
algorithmB if the p-value is above 0.05 (or below 95% confidence). That is, if the probability that
the observed ranking is achieved by chance exceeds 0.05. More stringent significance levels (e.g.,
0.01 or even lower) can be used in cases where the cost of making the wrong choice is higher.

In order to perform a significance test that algorithmA is indeed better than algorithmB, we
require the results of several independent experiments comparingA andB. The protocol we have
chosen in generating our test data ensures that we will have this set of results. Assuming that test
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users are drawn independently from some population, the performance measures of the algorithms
for each test user give us the independent comparisons we need. However, when recommendations
or predictions of multiple items are made to the same user, it is unlikely that the resulting per-item
performance metrics are independent. Therefore, it is better to compare algorithms on a per-user
case. Approaches for use when users have not been sampled independently also exist, and attempt
to directly model these dependencies (see, e.g., Larocque et al. 2007).Care should be exercised
when using such methods, as it can be difficult to verify that the modeling assumptions that they
depend on hold in practice.

Given such paired per-user performance measures for algorithmsA andB the simplest test of
significance is the sign test (Demšar, 2006). In this test, we count the number of users for whom al-
gorithmA outperforms algorithmB (nA) and the number of users for whom algorithmB outperforms
algorithmA (nB). The probability thatA is not truly better thanB is estimated as the probability of
at leastnA out of nA +nB 0.5-probability Binomial trials succeeding (that is,nA out of nA +nB fair
coin-flips coming up “heads”).

pr(successes≥ nA|A = B) = 0.5nA+nB

na+nB

∑
k=nA

(nA +nB)!
k!(ni +nB−k)!

.

The sign test is an attractive choice due to its simplicity, and lack of assumptions over the
distribution of cases. Still this test may lead to mislabeling of significant results asinsignificant
when the number of test points is small. In these cases, the more sophisticated Wilcoxon signed
rank test can be used (Demšar, 2006). As mentioned in Section 4.2, cross-validation can be used to
increase the amount of data, and thus the significance of results, but in thiscase the results obtained
on the cross-validated test sets are no longer independent, and care must be exercised to ensure that
our decisions account for this (Bengio and Grandvalet, 2004). Also, model-based approaches (e.g.,
Goutte and Gaussier, 2005) may be useful when the amount of data is small, but once again, care
must be exercised to ensure that the model assumptions are reasonable for the application at hand.

Another important consideration is the effect of evaluating multiple versions of algorithms. For
example, an experimenter might try out several variants of a novel recommender algorithm and
compare them to a baseline algorithm until they find one that passes a sign testat thep = 0.05 level
and therefore infer that their algorithm improves upon the baseline with 95% confidence. However,
this is not a valid inference. Suppose the experimenter evaluated ten different variants all of which
are statistically the same as the baseline. If the probability that any one of thesetrials passes the
sign test mistakenly isp = 0.05, the probability that at least one of the ten trials passes the sign test
mistakenly is 1− (1−0.05)20 = 0.40. This risk is colloquially known as “tuning to the test set” and
can be avoided by separating the test set users into two groups—a development (or tuning) set, and
an evaluation set. The choice of algorithm is done based on the developmenttest, and the validity
of the choice is measured by running a significance test on the evaluation set.

A similar concern exists when ranking a number of algorithms, but is more difficult to circum-
vent. Suppose the best ofN + 1 algorithms is chosen on the development test set. We can have
a confidence 1− p that the chosen algorithm is indeed the best, if it outperforms theN other al-
gorithms on the evaluation set with significance 1− (1− p)1/N. This is known as the Bonferroni
correction, and should be used when pair-wise significant tests are used multiple times. Alterna-
tively, the Friedman test for ranking can be used (Demšar, 2006).
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5. Evaluating Tasks

An application designer that wishes to employ a recommendation system typically knows the pur-
pose of the system, and can map it into one of the tasks defined above—recommendation, utility
optimization, and ratings prediction. Given such a mapping, the designer mustnow decide which
evaluation metric to use in order to rank a set of candidate recommendation algorithms. It is impor-
tant that the metric match the task, to avoid an inappropriate ranking of the candidates.

Below we provide an overview of a large number of evaluation metrics that have been suggested
in the recommendation systems literature. For each such metric we identify its important properties
and explain why is it most appropriate for the given task. For each task wealso explain a possible
evaluation scenario that can be used to evaluate the various algorithms.

5.1 Predicting Ratings

In this task, the system must provide a set of predicted ratings, and is evaluated on the accuracy of
these predictions. This is the most common scenario in the evaluation of regression and classifica-
tion algorithms in the machine learning and statistics literature (Duda and Hart, 1973; Stone, 1974;
Bengio and Grandvalet, 2004). Many evaluation metrics that originated in that literature have been
applied here.

Most notably, the Root of the Mean Square Error (RMSE) is a popular method for scoring
an algorithm. Ifpi, j is the predicted rating for useri over item j, andvi, j is the true rating, and
K = {(i, j)} is the set of hidden user-item ratings then the RMSE is defined as:

√

∑(i, j)∈K(pi, j −vi, j)2

n
.

Other variants of this family are the Mean Square Error (which is equivalent to RMSE) and Mean
Average Error (MAE), and Normalized Mean Average Error (NMAE) (Herlocker et al., 2004).
RMSE tends to penalize larger errors more severely than the other metrics, while NMAE normalizes
MAE by the range of the ratings for ease of comparing errors across domains.

RMSE is suitable for the prediction task, because it measures inaccuracieson all ratings, either
negative or positive. However, it is most suitable for situations where we do not differentiate be-
tween errors. For example, in the Netflix rating prediction, it may not be as important to properly
predict the difference between 1 and 2 stars as between 2 and 3 stars. If the system predicts 2 instead
of the true 1 rating, it is unlikely that the user will perceive this as a recommendation. However, a
predicted rating of 3 may seem like an encouragement to rent the movie, while aprediction of 2 is
typically considered negative. It is arguable that the space of ratings is not truly uniform, and that it
can be mapped to a uniform space to avoid such phenomena.

5.2 Recommending Good Items

For the task of recommending items, typically we are only interested in binary ratings, that is,
either the item was selected (1) or not (0). Compared to ratings data sets, where users typically rate
only a very small number of items, making the data set extremely sparse, binaryselection data sets
are dense, as each item was either selected or not by the user. An exampleof such data sets are
news story click streams, where we set a value of 1 for each item that was visited, and a value of 0
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Recommended Not recommended
Preferred True-Positive (tp) False-Negative (fn)
Not preferred False-Positive (fp) True-Negative (tn)

Table 1: Classification of the possible result of a recommendation of an item to auser.

elsewhere. The task is to provide, given an existing list of items that were viewed, a list of additional
items that the user may want to visit.

As we have explained above, these scenarios are typically not symmetric. We are not equally
interested in good and bad items; the task of the system is to suggest good items,not to discourage
the use of bad items. We can classify the results of such recommendations using Table 1.

We can now count the number of examples that fall into each cell in the table and compute the
following quantities:

Precision =
#tp

#tp+#fp
,

Recall (True Positive Rate)=
#tp

#tp+#fn
,

False Positive Rate (1 - Specificity)=
#fp

#fp+#tn
.

Typically we can expect a trade off between these quantities—while allowing longer recommenda-
tion lists typically improves recall, it is also likely to reduce the precision. In some applications,
where the number of recommendations that are presented to the user is not preordained, it is there-
fore preferable to evaluate algorithms over a range of recommendation list lengths, rather than using
a fixed length. Thus, we can compute curves comparing precision to recall,or true positive rate to
false positive rate. Curves of the former type are known simply as precision-recall curves, while
those of the latter type are known as a Receiver Operating Characteristic5 or ROC curves.

While both curves measure the proportion of preferred items that are actually recommended,
precision-recall curves emphasize the proportion of recommended items that are preferred while
ROC curves emphasize the proportion of items that are not preferred thatend up being recom-
mended.

We should select whether to use precision-recall or ROC based on the properties of the domain
and the goal of the application; suppose, for example, that an online videorental service recom-
mends DVDs to users. The precision measure describes what proportionof their recommendations
were actually suitable for the user. Whether the unsuitable recommendations represent a small or
large fraction of the unsuitable DVDs that could have been recommended (that is, the false positive
rate) may not be as relevant.

On the other hand, consider a recommender system for an online dating site. Precision describes
what proportion of the suggested pairings for a user result in matches. The false positive rate
describes what proportion of unsuitable candidates are paired with the active user. Since presenting
unsuitable candidates can be especially undesirable in this setting, the false positive rate could be
the most important factor.

5. A reference to their origins in signal detection theory.
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Given two algorithms, we can compute a pair of such curves, one for eachalgorithm. If one
curve completely dominates the other curve, the decision about the winning algorithm is easy. How-
ever, when the curves intersect, the decision is less obvious, and will depend on the application in
question. Knowledge of the application will dictate which region of the curve the decision will be
based on. For example, in the “recommend some good items” task it is likely that wewill prefer a
system with a high precision, while in the “recommend all good items” task, a higher recall rate is
more important than precision.

Measures that summarize the precision recall of ROC curve such as F-measure (Rijsbergen,
1979) and the area under the ROC curve (Bamber, 1975) are useful for comparing algorithms inde-
pendently of application, but when selecting an algorithm for use in a particular task, it is preferable
to make the choice based on a measure that reflects the specific needs at hand.

5.2.1 PRECISION-RECALL AND ROC FOR MULTIPLE USERS

When evaluating precision-recall or ROC curves for multiple test users, anumber of strategies that
can be employed in aggregating the results. The simplest is to aggregate the hidden ratings from
the test set into a set of user-item pairs, generate a ranked list of user-item pairs by combining the
recommendation lists for the test users, and then compute the precision-recall or ROC curve on this
aggregated data.

This aggregation process assumes that we have a means of comparing recommendations made
to different users in order to combine the recommendation lists into a single ranked list. Computing
ROC curves in this manner treats the recommendations of different items to eachuser as being in-
dependent detection or classification tasks, and the resulting curve is termed a global ROC (GROC)
curve (Schein et al., 2002).

A second approach is to compute the precision and recall (or true positiverate and false positive
rate) at each recommendation list lengthN for each user, and then compute the average precision
and recall (or true positive rate and false positive rate) at eachN(Sarwar et al., 2000). The resulting
curves are particularly valuable because they prescribe a value ofN for each achievable precision
and recall (or true positive rate and false positive rate), and conversely, can be used to estimate
performance at a givenN. Thus, this approach is useful in the “recommend some good items”
scenario, where one important decision is the length of the recommendation list,by comparing
performances along different candidate points along the curves. An ROC curve obtained in this
manner is termed a Customer ROC (CROC) curve (Schein et al., 2002).

A third approach is to compute a precision-recall curve (or ROC curve) for each user and then
average the resulting curves over users. This is the usual manner in which precision-recall curves
are computed in the information retrieval community, and in particular in the influential TREC
competitions (Voorhees, 2002b). This method is more relevant in the “recommend all good items”
sub-task, if the system provides the user with all available recommendations and the user then scans
the list linearly, marking each scanned item as relevant or not. The system can then compute the
precision of the items scanned so far, and use the precision recall curveto give the user an estimate
of what proportion of the good items have yet to be found.

5.3 Optimize Utility

Estimating the utility of a list of recommendations requires a model of the way usersinteract with
the recommendations. For example, if a movie recommender system presents theDVD cover im-
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ages of the top five recommendations prominently arranged horizontally across the top of the screen,
the user will probably observe them all and select the items of interest. However, if all the recom-
mendations are presented in a textual list several pages long, the user willprobably scan down the
list and abandon their scan at some point. In the first case, utility deliveredby the top five recom-
mendations actually selected would be a good estimate of expected utility, while in thesecond case,
we would have to model the way users scan lists.

The half-life utility score of Breese et al. (1998) suggested such a model. It postulates that the
probability that the user will select a relevant item drops exponentially downthe list.

This approach evaluates an unbounded recommendation list, that potentially contains all the
items in the catalog. Given such a list we assume that the user looks at items starting from the top.
We then assume that an item at positionk has a probability of 1

2(k−1)/(α−1) of being viewed, whereα
is a half life parameter, specifying the location of the item in the list with 0.5 probability of being
viewed.

In the binary case of the recommendation task the half-life utility score is computed by:

Ra = ∑
j

1

2(idx( j)−1)/(α−1)
,

R =
∑aRa

∑aRmax
a

,

where the summation in the first equation is over the preferred items only,idx( j) is the index of
item j in the recommendation list, andRmax

a is the score of the best possible list of recommendations
for usera.

More generally, we can plug any utility functionu(a, j) that assigns a value to a user item pair
into the half-life utility score, obtaining the following formula:

Ra = ∑
j

u(a, j)

2(idx( j)−1)/(α−1)
.

Now, Rmax
a is the score for the list of the recommendation where all the observed items areordered

by decreasing utility. In applications where the probability that a user will select theidxth item if it
is relevant is known, a further generalization would be to use these knownprobabilities instead of
the exponential decay.

5.4 Fixed Recommendations Lists

When users add movies to their queues in Netflix, the system presents a list of10 movies that they
may like. However, when users choose to see recommendations (by clicking“movies that you will
love”) the system presents all the possible recommendations. If there are too many recommended
movies to fit a single page, the system allows the user to move to the next page ofrecommendations.

These two different usage scenarios illustrate a fundamental difference between recommenda-
tion applications—in the first, the system is allowed to show a small, fixed number ofrecommen-
dations. In the second, the system provides as many recommendations as it can. Even though
the two cases match a single task—the “recommend good items” task—there are several important
distinctions that arise. It is important to evaluate the two cases properly.

When the system is required to present a list with a small, fixed size, that is known a priori,
methods that present curves (precision-recall), or methods that evaluate the entire list (half-life
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utility score), become less appropriate. For example, a system may get a relatively high half-life
utility score, only due to items that fall outside the fixed list, while another system that selects all
the items in the list correctly, and uninteresting items elsewhere, might get a lowerscore. Precision-
recall curves are typically used to help us select the proper list length, where the precision and recall
reach desirable values.

Another important difference, is that for a small list, the order of items in the listis less impor-
tant, as we can assume that the user looks at all the items in the list. Moreover, may of these lists
are presented in a horizontal direction, which also reduces the importanceof properly ordering the
items.

In these cases, therefore, a more appropriate way to evaluate the recommendation system should
focus on the firstN movies only. In the “recommend good items” task this can be done, for example,
by measuring the precision atN—the number of items that are interesting out of the recommended
N items. In the “optimize utility” task, we can do so by measuring the aggregated utility (e.g., sum
of utility) of the items that are indeed interesting within theN recommendations.

A final case is when we have unlimited recommendation lists in the “recommend gooditems”
scenario, and we wish to evaluate the entire list. In this case, one can use thehalf-life utility score
with a binary utility of 1 when the (hidden) item was indeed selected by the user,and 0 otherwise.
In that case, the half-life utility score prefers a recommender system that places interesting items
closer to the head of the list, but provides an evaluation for the entire list in a single score.

6. Empirical Evaluation

In some cases, two metrics may provide a different ranking of two algorithms.When one metric
is more appropriate for the task at hand, using the other metric may result in selecting the wrong
algorithm. Therefore, it is important to choose the appropriate evaluation metric for the task at hand.

In this section we provide some empirical examples of the phenomenon we describe above,
that is, where different metrics rank algorithms differently. Below, we present examples where
algorithms are ranked differently by two metrics, one of which is more appropriate for the task of
interest.

6.1 Data Sets

We selected publicly available data sets which were naturally suited to the different recommendation
tasks we have described above. We begin by describing the properties of each data set we used.

6.1.1 PREDICTION TASK

For the prediction task we selected two data sets that contained ratings over items—the Netflix data
set and the BookCrossing data set. In both cases, the prediction task is quite natural. Users of both
systems may want to browse the collection of movies or books, and we would want to offer these
users an estimated rating for the presented items.

Netflix: In 2004, the online movie rental company Netflix6 announced a competition for im-
proving its recommendation system. For the purpose of the competition, Netflix has released a data
set containing 480,000 users ratings over 17,700 movies. Ratings are between 1 and 5 stars for each
movie. The data set is very sparse—users mostly rated a small fraction of theavailable movies. In

6. This can be found atwww.netflix.com.
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our experiments, as we are working with simple algorithms, we have reduced the data set to users
who rated more than 100 movies, leaving us with 21,179 users, 17,415 movies, and 117 ratings per
user on average. Thus, our results are not comparable to results published in the online competition
scoreboard.

BookCrossing:The BookCrossing website7 allows a community of book readers to share their
interests in books, and to review and discuss books. Within that system users can provide ratings
on the scale of 1 to 10 stars. The specific data set that we used was collected by a 4 week crawl
during August and September 2004 (Ziegler et al., 2005). The data set contains 105,283 users and
340,556 books (we used just the subset containing explicit ratings). Average ratings for a user is
10. This data set is even more sparse than the Netflix data set that we used,as there are more items
and less ratings per user.

Both data sets share some common properties. First, people watch many movies and read many
books, compared with other domains. For example, most people experiencewith only a handful of
laptop computers, and so cannot form an opinion on most laptops. Ratings are also skewed towards
positive ratings in both cases, as people are likely to watch movies that they think they will like, and
even more so in the case of books, which require a heavier investment of time.

There are also some distinctions between the data sets. Some people feel compelled to share
their opinion about books and movies, without asking for a compensation. However, in the Netflix
domain, providing ratings makes it easier to navigate the system and rent movies. Therefore, all
users of Netflix have an incentive for providing ratings, while only peoplewho like to share their
views of books use the BookCrossing system. We can therefore expectthat the ratings of the
BookCrossing are less representative of the general population of book readers, than the ratings
of Netflix user from the general population of DVD renters.

6.1.2 RECOMMENDATION TASK

One instance of the “recommend good items” task is the case where, given a set of items that the
user has used (bought, viewed), we wish to recommend a set of items that are likely to be used.
Typically, data sets of usage are binary—an item was either used or wasn’t used by the user, and the
data set is not sparse, because every item is either used or not used byevery user. We used here a
data set of purchases from supermarket retailer, and a stream of articles that were viewed in a news
website.

Belgian retailer: This data set was collected from an anonymous Belgian retail supermarket
store, collected over approximately 5 months, in three non-consecutive periods during 1999 and
2000. The data set is divided into baskets, and we cannot detect returnusers. There are 88,162
baskets, 16,470 distinct items, and 10 items in an average basket. We do not have accessfor item
prices or profits, so we cannot optimize the retailer revenue. Thereforethe task is to recommend
more items that the user may want to add to the basket.

News click stream: This is a log of click-stream data of an Hungarian online news portal
(Bodon, 2003). The data contains 990,002 sessions, 41,270 news stories, and an average of 8
stories for session. The task is, given the news items that a user has readso far, recommend more
news items that the user will likely read.

7. This can be found atwww.bookcrossing.com.
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6.1.3 OPTIMIZING UTILITY TASK

Ta-Feng supermarket: A natural example for an application where optimizing utility is important
is maximizing the revenues of a retail company. Such companies may provide recommendation for
items, hoping that customers following these recommendations will produce higher revenue. In this
case, a natural utility function is the revenue (or profit) from the purchase of an item. The Ta-Feng
data set (Hsu et al., 2004) contains transaction information collected over 4months from November,
2000 to February, 2001. There are 32,266 users and 23,812 items, where the average number of
items bought by a user is 23. In this task, the utility function is the accumulated profit from selling
an item—taking into account both the quantity and the profit per item.

6.2 Recommendation Algorithms

As the focus of this survey is on the correct evaluation of recommender systems, and not on sophis-
ticated algorithms for computing recommendation lists, we limit ourselves to a set of very simple
collaborative filtering algorithms. We do this because collaborative filtering is by far the most pop-
ular recommendation approach, and because we do not believe that it is appropriate to select the
evaluation metric based on the recommendation approach (e.g., collaborativefiltering vs. content
based).

Moreover, we carefully selected algorithms that are better suited for different tasks, so that
we could demonstrate that inappropriate choice of evaluation metric can lead toa bad choice of
algorithm. As the algorithms that we choose are computationally intensive, we reduced the size of
the data set in some cases, in order to reduce the computation time. This should not be done if it
was important to realistically simulate the online case. Below, we present the different algorithms
and our prior assumptions about their properties.

6.2.1 PEARSONCORRELATION

Typically, the input for a prediction task is a data set consisting of the ratingsprovided byn users for
m items, wherevi, j is the rating of useri for item j. Given such a data set, the simplest collaborative
filtering method computes the similarity of the active usera to all other usersi in the data set,
resulting in a scorew(a, i). Then, the predicted ratingpa, j for a over item j can be computed by:

pa, j = v̄a +κ
n

∑
i=1

w(a, i)(vi, j − v̄i). (1)

Perhaps the most popular method for computing the weightsw(a, i) is by using the Pearson
correlation coefficient (Resnick and Varian, 1997):

w(a, i) =
∑ j(va, j − v̄a)(vi, j − v̄i)

√

∑ j(va, j − v̄a)2 ∑ j(vi, j − v̄i)2

where the summations are only over the items that botha andi have rated. To reduce the computa-
tional overhead, we use in Equation 1 a neighborhood of sizeN.

This method is specifically designed for the prediction task, as it computes only apredicted score
for each item of interest. However, in many cases people used this method for the recommendation
task. This is typically done by predicting the scores for all possible items, andthen ordering the
items by decreasing predicted scores.

2950



A SURVEY OF EVALUATION METRICS OFRECOMMENDATION TASKS

This popular usage may not be appropriate. For example, in the movie domain people may
associate ratings with quality, as opposed to enjoyment, which is dependent on external factors
such as mood, time of day, and so forth. As such, 5 stars movies may be complicated, requiring a
substantial effort from the viewer. Thus, a user may rent many light effortless romantic comedies,
which may only get a score of 3 stars, and only a few 5 star movies. While it is difficult to measure
this effect without owning a rental store, we computed the average numberof ratings for movies
with different average rating (Figure 6.2.1). This figure may suggest that movies with higher ratings
are not always watched more often than movies with lower ratings. If our assumption is true, a
system that recommends items to add to the rental queue by order of decreasing predicted rating,
may not do as well as a system that predicts the probability of adding a movie to the queue directly.

Figure 1: Computing the average number of ratings (popularity) of movies binned given their aver-
age ratings.

6.2.2 COSINE SIMILARITY

A second popular collaborative filtering method is the vector similarity metric (Salton, 1971) that
measures the cosine angle formed by the two ratings vectors:

w(a, i) = ∑
j∈Ia,i

va, j
√

∑k∈ Iav2
a,k

vi, j
√

∑k∈ Iiv2
i,k

.

When computing the cosine similarity, only positive ratings have a role, and negative ratings are
discarded. Thus,Ii is the set of items that useri has rated positively andIa,i is the set of items that
both users rated positively. Also, the predicted score for a user is computed by:

pa, j = κ
n

∑
i=1

w(a, i)vi, j .

In the case of binary data sets, such as the usage data sets that we selected for the recommenda-
tion task, the vector similarity method becomes:

w(a, i) =
|Ia,i |

√

|Ia| ·
√

|Ii |
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whereIa is the set of items thata used, andIa,i is the set of items that botha andi used. The resulting
aggregated score can be considered as a non-calibrated measurementof the conditional probability
pr( j|a)—the probability that usera will choose itemj.

In binary usage data sets, the Pearson correlation method would compute similarity using all
the items, as each item always has a rating. Therefore, the system would use all the negative “did
not use” scores, which typically greatly outnumber the “used” scores. We can therefore expect that
Pearson correlation in these cases will result in lower accuracy.

6.2.3 ITEM TO ITEM

The above two methods focused on computing a similarity between users, but another possible
collaborative filtering alternative is to focus on the similarity between items. The simplest method
for doing so is to use the maximum likelihood estimate for the conditional probabilitiesof items.
Specifically, for the binary usage case, this translates to:

pr( j1| j2) =
|Jj1, j2|

|Jj2|

whereJj is the number of users who used itemj, andJj1, j2 is the number of users that used bothj1
and j2. While this seems like a very simple estimation, similar estimations are successfully used in
deployed commercial applications (Linden et al., 2003).

Typically, an algorithm is given as an input a set of items, and needs to produce a list of recom-
mendations. In that case, we can compute for the conditional probability of each target item given
each observed item, and then aggregate the results over the set of givenitems. In many cases, choos-
ing the maximal estimate has given the best results (Kadie et al., 2002), so we aggregate estimations
using a max operator in our experiments.

6.2.4 EXPECTEDUTILITY

As optimizing utilities is by far the least explored recommendation task, we choosehere to propose
a new algorithm that is designed specifically for this task. Intuitively, if the task requires lists that
optimize a utility functionu(a, j), an obvious method is to order the recommendation by decreasing
expected utility:

E[ j|a] = p̃r( j|a) · ũ(a, j)

where ˜pr is a conditional probability estimate and ˜u is a utility estimate.

One way to compute the two estimates is by using two different algorithms—a recommendation
algorithm for estimating ˜pr and a prediction algorithm for estimating ˜u, and then combining their
output.

6.3 Experimental Results

Below, we present several examples where different evaluation metricsrank two algorithms differ-
ently. We argue that in these cases, using an improper evaluation metric will lead to the selection of
an inferior algorithm.
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Netflix BookCrossing
Pearson 1.07 3.58
Cosine 1.90 4.5

Table 2: RMSE scores for Pearson correlation and Cosine similarity on the Netflix domain (ratings
from 1 to 5) and the BookCrossing domain (ratings from 1 to 10).

6.3.1 PREDICTION VS. RECOMMENDATION

We begin by comparing Pearson correlation and Cosine similarity collaborative filtering algorithms
over two tasks—the prediction task and the “recommend good items” task. Both algorithms used
neighborhoods consisting of the closest 25 users.

First we evaluated the algorithms in predicting ratings on the Netflix and BookCrossing data
sets, where we sampled 2000 test users and a randomly chosen number oftest items per test user
on each data set. Given Table 2, the algorithm of choice is clear—on both data sets, the predictions
given by the Pearson correlation algorithm have lower RMSE scores, and the differences pass a sign
test withp < 0.0001.

We then evaluated the two algorithms on the recommendation task on the Belgian retailer and
news click stream data sets, where we again sampled 2000 test users and arandomly chosen number
of test items per test user on each data set. Let us now evaluate the two algorithms on recommen-
dation tasks. To do that, we computed precision-recall curves for the two algorithms on the Belgian
retailer data set and the news click stream data set. This was done by computing precision and
recall at 1, 3, 5, 10, 25, and 50 recommendations, and averaging the precisions and recalls at each
number of recommendations. As Figure 2 shows, in both cases the recommendation lists generated
by the Cosine similarity dominate the recommendation lists generated by the Pearsoncorrelation
algorithm in terms of precision. In the Belgian retailer data, Cosine similarity also has better recall
than Pearson correlation across the board. On the news click stream data, Cosine similarity has
better recall than Pearson correlation for 1, 3, and 5, recommendations.All these comparisons were
significant according to a sign test withp < 0.0001. Therefore, in these cases, one would select the
Cosine algorithm as the most appropriate choice.

This experiment shows that an algorithm that is uniformly better at predicting ratings on ratings
data sets is not necessarily better at making recommendations on usage data sets. This suggests that
it is possible that an algorithm that is better at predicting ratings could be worse at predicting usage
in the same domain as well. An interesting experiment would be, given both ratings and usage
data over the same users and items, to see whether algorithms that generate recommendation lists
by decreasing order of predicted ratings do as well in the recommendation task over the usage data.
Unfortunately, we are unaware of any public data set that contains both types of information. Never-
theless, companies such as Amazon or Netflix collect data both of user purchases and of user ratings
over items. These companies can therefore make the appropriate decision for the recommendation
task at hand.

It is also possible that websites that support multiple recommendation tasks should use different
algorithms for the different tasks. For example, the Netflix website contains aprediction task (e.g.,
for new releases), and two recommendation tasks—a fixed list of recommendations when adding
items to the rental queue, and an unlimited list of recommendations in the “movie you will like”
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(a) Belgian retailer recommendations

(b) News click stream recommendations

Figure 2: Comparing recommendations generated by Pearson correlation and Cosine similarity. In
both cases, the recommendation list is ordered by decreasing predicted score.

section. It may well be that different algorithms that were trained over different data sets (ratings
vs. rentals) may rank differently in different tasks. Deciding on the bestrecommendation engine
based solely on RMSE in the prediction task may lead to worse recommendation listsin the two
other cases.
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6.3.2 RECOMMENDATION VS. UTILITY MAXIMIZATION

In many retail applications, where the retailer is interested in maximizing profits, people may still
train their algorithm on usage data solely, and evaluate them using recommendation oriented met-
rics, such as precision-recall. For example, even though a retailer website wishes to maximize its
profit, it may use a binary data set of items that were bought by users to generate recommendations
of the type “people who bought this item also bought ...”.

To evaluate the performance of such an approach, we used an item-item recommendation system
to generate recommendations for the Ta-Feng data set. Alternatively, one can order the items by
expected utility. To compute an estimate of expected utility, we interpreted the normalized predicted
score of each recommended item as the probability that the user would actuallybuy that item. In
the case where the recommender predicts numerical ratings, we normalize bythe highest possible
rating and treat the result as a probability distribution. For example, if the highest rating is 5 and
the algorithm predicts a score of 4.5 for a specific user we assume the the probability that the user
will use the item is 0.9. We then use the average profit earned from each item to predict the profit
that would be obtained from each item if the active user bought it. Multiplying the probability that
the user would buy an item buy the profit that would result if the user bought the item yielded the
required estimate of expected utility.

We then evaluated the two algorithms by comparing their precision-recall curves, which are
shown in Figure 3. The curves were generated by evaluating precision and recall at 1, 3, 5, 10, 25,
and 50 recommendations, and averaging the precisions and recalls at each number of recommenda-
tions. The averages were computed over 2000 users, and the item-item recommender outperformed
the expected profit recommender in terms of both precision and recall at allpoints withp< 0.0001.

Figure 3: Comparing recommendations generated by the item-item recommender and the expected
profit recommender on the Ta-Feng data set.

We then measured an half-life utility score where the utility of a correct recommendation was
the profit from selling the correctly recommended item to the user. The resultsare shown in Table 3.
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Score
Item-Item 0.01
Exp. Profit 0.05

Table 3: Comparing item-item vs. expected utility recommendations on the Ta-Fengdata set with
the half-life utility score. The utility of a correct recommendation was the profitfrom
selling that item to that user, while the half-life was 5. The trends were similar for other
choices of the half-life parameter.

Choosing a recommender based on classification performance would haveresulted in an half-life
utility score (expected profit) that was 20% of what could have been achieved with the correct
choice. This difference is statistically significant withp < 0.001.

These results are, of course, not surprising—using a recommender that explicitly attempts to
optimize expected profit gives a better expected profit measure. However, occasionally people that
are interested in maximizing profit, providing maximum value to the users, or minimizinguser
effort, use precision-recall to choose a recommendation algorithm.

7. Discussion

Above, we discussed the major considerations that one should make when deciding on the proper
evaluation metric for a given task. We now add some discussion, illustrating other conclusions that
can be derived, and illuminating some other relevant topics.

7.1 Evaluating Complete Recommender Systems

This survey focuses on the evaluation of recommendation algorithms. However, the success of a
recommendation system does not depend solely on the quality of the recommendation algorithm.
Such systems typically attempt to modify user behavior which is influenced by many other param-
eters, most notably, by the user interface. The success of the deployedsystem in influencing users
can be measured through the change in user behavior, such as the number of recommendations that
are followed, or the change in revenue.

Decisions about the interface by which users view recommendations are critical to the success
of the system. For example, recommendations can be located in different places in the page, can be
displayed horizontally or vertically, can be presented through images or text, and so forth. These
decisions can make a significant impact, no smaller than the quality of the underlying algorithm, on
the success of a system.

When the application is centered around the recommendation system, it is important to select
the user interface together with the recommendation algorithm. In other cases,the recommendation
system is only a supporting system for the application. For example, an e-commerce website is
centered around the item purchases, and a news website is centered around the delivery of news
stories. In both cases, a recommender system may be employed to help the users navigate, or to
increase sales. It is likely that the recommendations are not the major method for browsing the
collection of items.
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When the recommender system is only a supporting system, the designer of theapplication will
probably make the decision about the user interface without focusing on positioning recommenda-
tions where they have the most influence. In such cases, which we believeto be very common, the
developer of the recommender system is constrained by the pre-designedinterface, and in many
cases can therefore only decide on the best recommendation algorithm, andin some cases perhaps
the length of the recommendation list. This paper is targeted at researchers and developers who are
making decisions about algorithms, not about the user interface. Designinga good user interface is
an interesting and challenging problem, but it is outside the scope of this survey (see, e.g., Pu and
Chen 2006).

7.2 Eliciting Utility Functions

A simple way to avoid the need to classify recommendation algorithms, is to assume that we are
always optimizing some utility function. This utility function can be the user utility for items (see,
e.g., Kumar et al. 1998, Price and Messinger 2005 and Hu and Pu 2009),or it can be the application
utility. We can then ask users about their true utility function, or design a utility function that
captures the goal of the application, and always choose the algorithm thatmaximizes this utility.

However, such a view is misleading; eliciting user utilities can be a very difficulttask (see, e.g.,
Braziunas and Boutilier 2005, citealtChajewska and Huang 2008). For example, the value that the
user is willing to invest in a laptop depends on a multitude of elements, such as herincome, her
technical knowledge, the intended use of the laptop and so forth. Indeed, eliciting such functions
is the focus of active research, for example by presenting users with forced choices. Therefore,
expecting that we will have access to a good estimate of the user utility function isunrealistic—
estimating this function may be no easier than coming up with good recommendations.

Furthermore, even when the application designer understands the application utility function,
gathering utilities from users may be very difficult. For example, in the Netflix domain, the business
model may be to keep the users subscribed. Therefore, the utility of an moviefor a user (from
the website perspective) is not whether the user enjoys the movie, but rather whether the user will
maintain her subscription if the movie is suggested to her. Clearly, most users willnot want to
answer such questions, and many may not know the answer themselves.

For this reason, when the utility function is unclear, the best we can do is to maximize the
number of useful items that we suggest to the user. As such, the recommendation task cannot be
viewed as a sub-task for utility optimization.

7.3 Implicit vs. Explicit ratings

Our classification of recommendation tasks sheds some light over another, commonly discussed
subject in recommender systems, namely, implicit ratings (Claypool et al., 2001; Oard and Kim,
1998). In many applications, people refer to data that was automatically collected, such as logs of
web browsing, or records of product purchases, as an implicit indication for positive opinions over
the items that were visited or purchased.

However, this perspective is appropriate only if the task is the prediction task, where we would
like to know whether the user will have a positive or negative opinion over certain items. If the
task is to recommend more items that the user may buy, given the items that the user has already
bought, purchase data becomes an explicit indication. In this case, using ratings that users provide
over items is an implicit indication to whether the user will buy the item.
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For example, a user may have a positive opinion over many laptop computers,and may rate
many laptops highly. However, most people buy only one laptop. In that case, recommending more
laptops, based on the co-occurring high ratings, will be inappropriate. However, if we predict the
probability of buying a laptop given that another laptop has already been bought, we can expect this
probability to be low, and the other laptop will not be recommended.

8. Related Work

In the past, different researchers discussed various topics relevant to the evaluation of recommender
systems.

Breese et al. (1998) were probably the first to provide a sound evaluation of a number of rec-
ommendation approaches over a collection of different data sets, setting thegeneral framework of
evaluating algorithms on more than a single real world data set, and a comparison of several algo-
rithms in identical experiments. The practices that were illustrated in that paperare used in many
modern publications.

Herlocker et al. (2004) provide an extensive survey of possible metrics for evaluation. They
then compare a set of metrics, concluding that for some pairs of metrics, using both together will
give very little additional information compared to using just one.

Another interesting contribution of that paper is a classification of recommendation engines
from the user task perspective, namely, what are the reasons and motivations that a user has when
interacting with a recommender system. As they are interested in user tasks, and we are interested
in the system tasks, our classification is different, yet we share some similar tasks, such as the
“recommend some good items” and “recommend all good items” tasks.

Finally, their survey attempted to cover as many evaluation metrics and user taskvariations as
possible, we focus here on the appropriate metrics for the most popular recommendation tasks only.

Mcnee et al. (2003) explain why accuracy metrics alone are insufficientfor selecting the correct
recommendation algorithm. For example, users may be interested in the serendipity of the rec-
ommended items. One way to model serendipity is through a utility function that assigns higher
values to “unexpected” suggestions. They also discuss the “usefulness” of recommendations. Many
utility functions, such as the inverse log of popularity (Shani et al., 2005) attempt to capture this
“usefulness”.

Ziegler et al. (2005) focus on another aspect of evaluation—considering the entire list together.
This would allow us to consider aspects of a set of recommendations, such as diversification between
items in the same list. Our suggested metrics consider only single items, and thus could not be
used to evaluate entire lists. It would be interesting to see more evaluation metricsthat provide
observations over complete lists.

Celma and Herrera (2008) suggest looking at topological properties ofthe recommendation
graph—the graph that connects recommended items. They explain how by looking at the recom-
mendation graph one may understand properties such as the novelty of recommendations. It is still
unclear how these properties correlate with the true goal of the recommender system, may it be to
optimize revenue or to recommend useful items.

McLaughlin and Herlocker (2004) argue, as we do, that MAE is not appropriate for evaluating
recommendation tasks, and that ratings are not necessarily indicative of whether a user is likely to
watch a movie. The last claim can be explained by the way we view implicit and explicit ratings.
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Some researchers have suggested taking a more holistic approach, and considering the recom-
mendation algorithm within the complete recommendation system. For example, del Olmoand
Gaudioso (2008), suggest that systems be evaluated only after deployment, through counting the
number of successful recommendations. As we argue above, even in these cases, one is likely to
evaluate algorithms offline, to avoid presenting recommendations that have poor quality for users,
thus losing their trust.

9. Conclusion

In this paper we discussed how recommendation algorithms should be evaluated in order to select
the best algorithm for a specific task from a set of candidates. This is an important step in the
research attempt to find better algorithms, as well as in application design where a designer chooses
an existing algorithm for their application. As such, many evaluation metrics have been used for
algorithm selection in the past.

We review three core tasks of recommendation systems—the prediction task, the recommenda-
tion task, and the utility maximization task. Most evaluation metrics are naturally appropriate for
one task, but not for the others. We discuss for each task a set of metrics that are most appropriate
for selecting the best of the candidate algorithms.

We empirically demonstrate that in some cases two algorithms can be ranked differently by two
metrics over the same data set, emphasizing the importance of choosing the appropriate metric for
the task, so as not to choose an inferior algorithm.

We also describe the concerns that need to be addressed when designing offline and online
experiments. We outline a few important measurements that one must take in addition to the score
that the metric provides, as well as other considerations that should be taken into account when
designing experiments for recommendation algorithms.
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