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Abstract

Recommender systerme now popular both commercially and in the research contyurhere
many algorithms have been suggested for providing recordat&ms. These algorithms typically
perform differently in various domains and tasks. Thermefat is important from the research
perspective, as well as from a practical view, to be able tdéeon an algorithm that matches
the domain and the task of interest. The standard way to makedecisions is by comparing a
number of algorithms offline using some evaluation metmcleled, many evaluation metrics have
been suggested for comparing recommendation algorithims d&cision on the proper evaluation
metric is often critical, as each metric may favor a différalgorithm. In this paper we review
the proper construction of offline experiments for decidimgthe most appropriate algorithm. We
discuss three important tasks of recommender systems|asxifg a set of appropriate well known
evaluation metrics for each task. We demonstrate how usimgjaroper evaluation metric can lead
to the selection of an improper algorithm for the task ofiegt. We also discuss other important
considerations when designing offline experiments.

Keywords: recommender systems, collaborative filtering, statiséinalysis, comparative studies

1. Introduction

Recommender systems can now be found in many modern applications thae@kpauser to a
huge collections of items. Such systems typically provide the user with a listcofmmended
items they might prefer, or supply guesses of how much the user might pesth item. These
systems help users to decide on appropriate items, and ease the task of firedarred items in
the collection.

For example, the DVD rental provider Netflidisplays predicted ratings for every displayed
movie in order to help the user decide which movie to rent. The online book refaitazor?
provides average user ratings for displayed books, and a list of bthaks that are bought by
users who buy a specific book. Microsoft provides many free dowdsldar users, such as bug
fixes, products and so forth. When a user downloads some softwarsystem presents a list

1. This can be found aiww. net f| i x. com
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of additional items that are downloaded together. All these systems areliygiategorized as
recommender systems, even though they provide diverse services.

In the past decade, there has been a vast amount of research indlué fecommender sys-
tems, mostly focusing on designing new algorithms for recommendations. Aicatgn designer
who wishes to add a recommendation system to her application has a lardg obalkgorithms at
her disposal, and must make a decision about the most appropriate algfmither application.
Typically, such decisions are based on offline experiments, comparipgtfemance of a number
of candidate algorithms over real data. The designer can then seleestheebforming algorithm,
given structural constraints. Furthermore, most researchers vggestunew recommendation al-
gorithms also compare the performance of their new algorithm to a set of gpagtproaches. Such
evaluations are typically performed by applying some evaluation metric thaitpsoa ranking of
the candidate algorithms (usually using numeric scores).

Many evaluation metrics have been used to rank recommendation algorithmes eseasuring
similar features, but some measuring drastically different quantities. Fonge, methods such
as the Root of the Mean Square Error (RMSE) measure the distancecbgivezlicted preferences
and true preferences over items, while the Recall method computes the pdfwored items that
were suggested. Clearly, it is unlikely that a single algorithm would outparédr others over all
possible methods.

Therefore, we should expect different metrics to provide differankings of algorithms. As
such, selecting the proper evaluation metric to use has a crucial influante election of the
recommender system algorithm that will be selected for deployment. Thigysteviews existing
evaluation metrics, suggesting an approach for deciding which evaluatioic imenost appropriate
for a given application.

We categorize previously suggested recommender systems into three naaips,geach cor-
responding to a differertask The first obvious task is to recommend a set of good (interesting,
useful) items to the user. In this task it is assumed that all good items are imgectide. A
second, less discussed, although highly important task is utility optimizationexaonple, many
e-commerce websites use a recommender system, hoping to increase #miesevin this case,
the task is to present a set of recommendations that will optimize the retail@ueev&inally, a
very common task is the prediction of user opinion (e.g., rating) over a gehe$. While this may
not be an explicit act of recommendation, much research in recommerslemsyfocuses on this
task, and so we address it here.

For each such task we review a family of common evaluation metrics that mehsyserfor-
mance of algorithms on that task. We discuss the properties of each suat avedrwhy it is most
appropriate for a given task.

In some cases, applying incorrect evaluation metrics may result in selectimp@propriate
algorithm. We demonstrate this by experimenting with a wide collection of data setpating a
number of algorithms using various evaluation metrics, showing that the meinic$re algorithms
differently.

We also discuss the proper design of an offline experiment, explaining rewata should
be split, which measurements should be taken, how to determine if differenpegormance are
statistically significant, and so forth. We also describe a few common pitfallanthgtproduce
results that are not statistically sound.

The paper is structured as follows: we begin with some necessary backbon recommender
approaches (Section 2). We categorize recommender systems into drsetdhsks in Section 3.

2936



A SURVEY OF EVALUATION METRICS OFRECOMMENDATION TASKS

We then discuss evaluation protocols, including online experimentation eoféisiing, and statis-
tical significance testing of results in Section 4. We proceed to review & sgtsing evaluation
metrics, mapping them to the appropriate task (Section 5). We then providéo(5é) some ex-
amples of applying different metrics to a set of algorithms, resulting in quedtierrankings of
these algorithms when inappropriate measures are used. Following thisseussisome addi-
tional relevant topics that arise (Section 7) and some related work (Séjtiamd then conclude
(Section 9).

2. Algorithmic Approaches

There are two dominant approaches for computing recommendations factttie userthe user
that is currently interacting with the application and the recommender systen tfésollabora-
tive filteringapproach (Breese et al., 1998) assumes that users who agreedarnggritems in the
past will tend to agree in the future too. Many such methods rely on a matrsesfitem ratings to
predict unknown matrix entries, and thus to decide which items to recommend.

A simple approach in this family (Konstan et al., 2006), commonly referred tesas based
collaborative filtering identifies a neighborhood of users that are similar toattéve user This
set of neighbors is based on the similarity of observed preferencesdmtihese users and the
active user. Then, items that were preferred by users in the neigiimbere recommended to the
active user. Another approach (Linden et al., 2003), knowitems based collaborative filtering
recommends items also prefered by users that prefer a partectiae itemto other users that
also prefer that active item. In collaborative filtering approaches, thtesyonly has access to the
item and user identifiers, and no additional information over items or usese@ Uor example,
websites that present recommendations titled “users who preferred thialgerprefer” typically
use some type of collaborative filtering algorithm.

A second popular approach is thentent-basedecommendation. In this approach, the system
has access to a set of item features. The system then learns the fsemoes over features, and
uses these computed preferences to recommend new items with similar feSuchsecommen-
dations are typically titled “similar items”. User’s features, if available, suathemsographics (e.qg.,
gender, age, geographic location) can also provide valuable information

Each approach has advantages and disadvantages, and a multituderittiraly from each
family, as well as a number of hybrid approaches have been sugg€htegaper, though, makes no
distinction between the underlying recommendation algorithms when evaluatingghfermance.
Just as users should not need to take into account the details of théyumglalgorithm when using
the resulting recommendations, it is inappropriate to select different eicaduaetrics for different
recommendation approaches. In fact, doing so would make it difficult tolel@cich approach to
employ in a particular application.

3. Recommender Systems Tasks

Providing a single definition for recommender systems is difficult, mainly becsystems with

different objectives and behaviors are grouped together unden#ime¢. Below, we categorize
recommender systems into three classes, based on the recommendatiort thgly thie designed
for McNee et al. (2006). In fact, there have been several prevattesnpts to classify existing
recommenders (see, e.g., Montaner et al. 2003 and Schafer et gl. i9however, are interested
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in the proper evaluation of such algorithms, and our classification is defrigen that goal. While
there may be recommender systems that do not fit well into the classes thaggess we believe
that the vast majority of the recommender systems attempt to achieve one ofasleseand can
thus be classified as we suggest.

3.1 Recommending Good Items

Perhaps the most common task of recommendation engines is to recommend gwotb itesers
(Herlocker et al., 2004; McNee et al., 2006). Such systems typicallepteslist of items that the
user is predicted to prefer. The user can then select (add to the shdygsket, view, ...) one or
more of the suggested items. There are many examples of such systemsAimnabhen website,
for instance, when the user is looking at an item, the system presents bidbowafather items that
the user may be interested in. Another example can be found in Netflix—whser @adds a movie
to her queue, the system displays a list of other recommended movies thaethmeay want to add
to the queue too. There are several considerations when creatimgmecmlation lists. We identify
below two sub-tasks that comply with different requirements.

3.1.1 RECOMMENDING SOME GOOD ITEMS

In this sub-task, we make the assumption that there is a large number of gosdhitst may appeal
to the user, and the user does not have enough resources (time, rweelgct all items. In this
case we can only present a part of the preferred item set. Thus, itlistlilee many preferred items
will be missing from the list. In this sub-task, it is more important not to preseytéesliked item
than to find all the good items.

This is typically the case in recommender systems that suggest media itemsssuchias,
books, or news items. In all these cases the number of alternatives isdndyéhe user cannot
possibly watch all the recommended movies, or read all the relevant books.

3.1.2 RECOMMENDING ALL GOOD ITEMS

A less popular case is when the system should recommend all important itearaples of such
systems are recommenders that predict which scientific papers shoutédyeoc legal databases
(Herlocker et al., 2004; McNee et al., 2006), where it is important notéslook any possible case.
In this sub-task, the system can present longer lists of items, trying to avathmesrelevant item.

3.2 Optimizing Utility

With the rise of e-commerce websites, another recommendation task becaryeirhgbrtant—
maximizing the profits of the website. Online retailers are willing to invest in recordaresys-
tems hoping to increase their revenue. There are many ways by whicbramemder system can
increase revenue. The simplest way is through cross-selling; by stirggya@dditional items to the
users, we increase the probability that the user will buy more than he dijginiznded. In an
online news provider, where most revenue comes from display adveeigs, the system can in-
crease profit by keeping the users in the website for longer time perisdbgegperformance of
an advertising campaign is often measured in termsxghihute reach,” which is the number of
consumers in a particular market that are exposed to the adrfonutes. In such cases, it is in
the best interest of the system to suggest items in order to lengthen thenséas@osubscription
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service, where revenue comes from users paying a regular sulsgrijppe goal may be to allow
users to easily reach items of interest. In this case, the system shouldsitggps such that the
user reaches items of interest with minimal effort.

The utility function to be optimized can be more complicated, and in particular, mayfure-
tion of the entire set of recommendations and their presentation to the usexdfople, in pay-
per-click search advertising, the system must recommend advertisemeatdigplayed on search
results pages. Each advertiser bids a fixed amount that is paid only wéeiseh clicks on their
ad. If we wish to optimize the expected system profit, both the bids and thakilibpthat the user
will click on each ad must be taken into account. This probability dependsealévance of each
ad to the user and the placement of the different ads on the page. Sirdiffetent ads displayed
compete for the user’s attention, the utility function depends on the entiré¢ ad$ displayed, and
is not additive over the set (Gunawardana and Meek, 2008).

In all of these cases, it may be suboptimal to suggest items based solelyiopréuicted
rating. While it is certainly beneficial to recommend relevant items, other ceraidns are also
important. For example, in the e-commerce scenario, given two items that tieensgerceives
as equally relevant, suggesting the item with the higher profit can furtherase revenue. In the
online news agency case, recommending longer stories may be bene@calisk reading them
will keep the user in the website longer. In the subscription service, recadingeitems that are
harder for the user to reach without the recommender system may becimnefi

Another common practice of recommendation systems is to suggest recommes tizdiqro-
vide the most “value” to the user. For example, recommending popular itenmsecadundant, as
the user is probably already familiar with them. A recommendation of a prefeyet unknown
item can provide a much higher value for the user.

Such approaches can be viewed as instances of providing recommaadiasibmaximize some
utility function that assigns a value to each recommendation. Defining thectotigy function
for a given application can be difficult (Braziunas and Boutilier, 2086y typically system design-
ers make simplifying assumptions about the user utility function. In the e-corernase the utility
function is typically the profit resulting from recommending an item, and in thesremgnario the
utility can be the expected time for reading a news item, but these choices igeaéect of the
resulting recommendations on long-term profits. When we are interested/éh recommenda-
tions, the utility can be the log of the inverse popularity of an item, modeling the anodunew
information in a recommended item (Shani et al., 2005), but this ignoresagtpects of user-utility
such as the diversity of recommendations.

In fact, it is possible to view many recommendation tasks, such as providigd ooserendipi-
tious recommendations as maximizing some utility function. Also, the “recommenditgmos!’ of
the previous section can be considered as optimizing for a utility functionrasgig value of 1 to
each successful recommendation. In this paper, due to the popularigy fofrther task, we choose
to keep the two tasks distinct.

3.3 Predicting Ratings

In some cases, a system is required to predict the user ratings ovenagivof items. For example,
in the Netflix website, when the user is browsing the list of new releasesy#tens assigns a
predicted rating for each movie. In CNEB website offering electronic product reviews, users can

3. This can be found aiw. cnet . com
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search for, say, laptops that cost between $400 and $700. Thensydtks to some laptops in the
list an automatically computed rating, based on the laptop features.

It is arguable whether this task is indeed a recommendation task. Howevsrresgarchers in
the recommendations system community attempting to find good algorithms for thigtaskples
include the Netflix competition, which was warmly embraced by the research coityrand the
numerous papers on predicting ratings on the Netflix or Moviet dat sets.

While such systems do not provide lists of recommended items, predicting theaheill rate
an item highly can be considered an act of recommendation. Furthermerean view a predicted
high rating as a recommendation to use the item, and a predicted low rating asrarmecdation
to avoid the item. Indeed, it is common practice to use predicted ratings to teadist of recom-
mendations. Below, we will present several arguments of cases wligo®thmon practice may be
undesirable.

4. Evaluation Protocols

We now discuss an experimental protocol for evaluating and choosingraendation algorithms.
We review several requirements to ensure that the results of the exptrianerstatistically sound.
We also describe several common pitfalls in such experimental settings. ehisrsreviews the
evaluation protocols in related areas such as machine learning and informeitieval, highlight-
ing practices relevant to evaluating recommendation systems. The reagfertied to publications
in these fields for more detailed discussions (Salzberg, 19975Bem@006; Voorhees, 2002a).

We begin by discussing online experiments, which can measure the réainpemce of the
system. We then argue that offline experiments are also crucial, becalirse éxperiments are
costly in many cases. Therefore, the bulk of the section discusses ihe eKperimental setting in
detail.

4.1 Online Evaluation

In the recommendation and utility optimization tasks, the designer of the systemswisimfluence
the behavior of users. We are therefore interested in measuring thgeclmanser behavior when
interacting with different recommendation systems. For example, if userseafystem follow the
recommendations more often (in the case of the “recommend good items” taskjhe utility
gathered from users of one system exceeds utility gathered from afses other system (in the
utility optimization task), then we can conclude that one system is superior tahbe all else
being equal. In the case of ratings prediction tasks, the goal is to provimteniation to support
user browsing and search. Once again, the value of such prediciardepend on a variety of
factors such as the user’s intent (e.g., how specific their informatiorsrezed how much novelty
vs. how much risk they are seeking), the user’s context (e.g., what itaysth already familiar
with, how much they trust the system), and the interface through which tepoas are presented.
For this reason, many real world systems employ an online testing systerayiattal., 2009),
where multiple algorithms can be compared. Typically, such systems redisacalhpercentage
of the traffic to each different recommendation engine, and record #rs urgeractions with the
different systems. There are a few considerations that must be maderwmging such tests.
For example, it is important to sample (redirect) users randomly, so that thgacisons between

4. This can be found atw. novi el ens. or g.
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alternatives are fair. It is also important to single out the different aspdche recommenders.
For example, if we care about algorithmic accuracy, it is important to keepsieinterface fixed.
On the other hand, if we wish to focus on a better user interface, it is b&se@the underlying
algorithm fixed.

However, in a multitude of cases, such experiments are very costly, sgeting online testing
systems may require much effort. Furthermore, we would like to evaluatelganithms before
presenting their results to the users, in order to avoid a negative ussienge for the test users.
For example, a test system that provides irrelevant recommendationsjsoayrdge the test users
from using the real system ever again. Finally, designers that wish ta sstdbmmendation system
to their application before its deployment do not have an opportunity to reimtests.

For these reasons, it is important to be able to evaluate the performantgoifhans in an
offline setting, assuming that the results of these offline tests correlate itteth& online behavior
of users.

4.2 Offline Experimental Setup

As described above, the goal of the offline evaluation is to filter algorithrmbkatoonly the most

promising need undergo expensive online tests. Thus, the data usled &fline evaluation should
match as closely as possible the data the designer expects the recommetetartey\face when
deployed online. Care must be exercised to ensure that there is no biadisttibutions of users,
items and ratings selected. For example, in cases where data from an exystiegn (perhaps a
system without a recommender) is available, the experimenter may be tempteefiltepthe data

by excluding items or users with low counts, in order to reduce the costspefiexentation. In

doing so, the experimenter should be mindful that this involves a tradelutg ¢his introduces a
systematic bias in the data. If necessary, randomly sampling users and itenire ragyreferable
method for reducing data, although this can also introduce other biaseseénéxphriment (e.g.,
this could tend to favor algorithms that work better with more sparse data).

In order to evaluate algorithms offline, it is necessary to simulate the onlinegsavhere the
system makes predictions or recommendations, and the user correctedictigms or uses the
recommendations. This is usually done by recording historical user daedathan hiding some
of these interactions in order to simulate the knowledge of how a user will natera, or which
recommendations a user will act upon.

There are a number of ways to choose the ratings/selected items to be h@lasnagain, it
is preferable that this choice be done in a manner that simulates the targeatampas closely as
possible. We discuss these concerns explicitly for the case of selecéddtems for hiding in the
evaluation of recommendation tasks, and note that the same considerapbnsvaen selecting
ratings to hide for evaluation of ratings prediction tasks.

Our goal is to simulate sets of past user selections that are represeotathvat the system will
face when deployed. Ideally, if we have access to time-stamps for usetiges, we can randomly
sample test users, randomly sample a time just prior to a user action, hide aticsedof all
users) after that instant, and then attempt to recommend items to that userrokboprequires
changing the set of given information prior to each recommendation, whithe& computationally
quite expensive. A cheaper alternative is to sample a set of test usgrsatmple a single test time,
and hide all items after the sampled test time for each test user. This simulatestiarsithere
the recommender system is “trained” as of the test time, and then makes recdatioesnwithout
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taking into account any new data that arrives after the test time. Anotharatlte is to sample a
test time for each test user, and hide the test user’s items after that time, twithimtaining time
consistency across users. This effectively assumes that it is thewsedoevhich items are selected,
and not the absolute times when they are selected that is important. A final tAeisdo ignore
time; We sample a set of test users, then sample the numgloéitems to hide for each usar then
samplen, items to hide. This assumes that the temporal aspects of user selectionsrgrertant.
All three of the latter alternatives partition the data into a single training setinghkb $est set. It is
important to select an alternative that is most appropriate for the domainsndftmterest, rather
than the most convenient one.

A common protocol used in many research papers is to use a fixed nunidrevaf items or a
fixed number of hidden items per test user (so called “giveor “all but n” protocols). This pro-
tocol is useful for diagnosing algorithms and identifying in which cases Wk best. However,
when we wish to make decisions on the algorithm that we will use in our applicat®mmust ask
ourselves whether we are truly interested in presenting recommendatiarsefs who have rated
exactlyn items, or are expected to rate exaatljtems more. If that is not the case, then results
computed using these protocol have biases that make them difficult to usslioting the outcome
of using the algorithms online.

The evaluation protocol we suggest above generates a test setdBdiditart, 1973) which is
used to obtain held-out estimates for algorithm performance, using penfime measures which
we discuss below. Another popular alternative is to use cross-valid&iond, 1974), where the
data is divided into a number of partitions, and each partition in turn is usedest aet. The
advantages of the cross-validation approach are to allow the use of atar@danking algorithms,
and to take into account the effect of training set variation. In the casecommender systems,
the held-out approach usually yields enough data to make reliable decigiorikermore, in real
systems, the problem of variation in training data is avoided by evaluating systmed on the
historical data specific to the task at hand. In addition, there is a risk tre 8ie results on the
different data partitions are not independent of each other, poolingethets across partitions for
ranking algorithms can lead to statistically unjustified decisions (Bengio anmti@atket, 2004).

4.3 Making Reliable Choices

When choosing between algorithms, it is important that we can be confiddarihéhalgorithm that
we choose will also be a good choice for the yet unseen data the systebevalted with in the
future. As we explain above, we should exercise caution in choosingatiaesd that it would be
most similar to the online application. Still, there is a possibility that the algorithm thédarpeed
best on this test set did so because the test set was fortuitously suitathiat falgorithm. To reduce
the possibility of such statistical mishaps, we must perform significance testitige results.

Typically we compute a significance level pivalue—the probability that the obtained results
were due to luck. Generally, we will reject the null hypothesis that algori#hisino better than
algorithmB if the p-value is above @5 (or below 95% confidence). That is, if the probability that
the observed ranking is achieved by chance excedds B/ore stringent significance levels (e.g.,
0.01 or even lower) can be used in cases where the cost of making thg whoite is higher.

In order to perform a significance test that algoritinis indeed better than algorithB, we
require the results of several independent experiments compa@mgB. The protocol we have
chosen in generating our test data ensures that we will have this setutisreAssuming that test
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users are drawn independently from some population, the performarasiras of the algorithms
for each test user give us the independent comparisons we neeévétpwhen recommendations
or predictions of multiple items are made to the same user, it is unlikely that the rgsudtisitem
performance metrics are independent. Therefore, it is better to conmgaréhans on a per-user
case. Approaches for use when users have not been sampledriddethe also exist, and attempt
to directly model these dependencies (see, e.g., Larocque et al. 2088 .should be exercised
when using such methods, as it can be difficult to verify that the modelingrgstns that they
depend on hold in practice.

Given such paired per-user performance measures for algorithensi B the simplest test of
significance is the sign test (D&ar, 2006). In this test, we count the number of users for whom al-
gorithmA outperforms algorithrB (na) and the number of users for whom algoritBoutperforms
algorithmA (ng). The probability tha# is not truly better tham is estimated as the probability of
at leastna out of na + ng 0.5-probability Binomial trials succeeding (that i, out of na + ng fair
coin-flips coming up “heads”).

Na+NB (nA+ nB)!
r(successes nalA = B) = 0.5 " S S AT A
Pr( S MafA=B) 2 K s Kl

The sign test is an attractive choice due to its simplicity, and lack of assumptienste
distribution of cases. Still this test may lead to mislabeling of significant resuitssamificant
when the number of test points is small. In these cases, the more sophistiditexiow signed
rank test can be used (D&ar, 2006). As mentioned in Section 4.2, cross-validation can be used to
increase the amount of data, and thus the significance of results, buttaskishe results obtained
on the cross-validated test sets are no longer independent, and catgeransrcised to ensure that
our decisions account for this (Bengio and Grandvalet, 2004). Alsdefrzased approaches (e.g.,
Goutte and Gaussier, 2005) may be useful when the amount of data is suhalhde again, care
must be exercised to ensure that the model assumptions are reasongideafaplication at hand.

Another important consideration is the effect of evaluating multiple versibakyorithms. For
example, an experimenter might try out several variants of a novel recodanalgorithm and
compare them to a baseline algorithm until they find one that passes a sigtthegi = 0.05 level
and therefore infer that their algorithm improves upon the baseline with @Bftdence. However,
this is not a valid inference. Suppose the experimenter evaluated teredifferiants all of which
are statistically the same as the baseline. If the probability that any one ofttleds@asses the
sign test mistakenly ip = 0.05, the probability that at least one of the ten trials passes the sign test
mistakenly is 1- (1—0.05)?° = 0.40. This risk is colloquially known as “tuning to the test set” and
can be avoided by separating the test set users into two groups—ayeealo(or tuning) set, and
an evaluation set. The choice of algorithm is done based on the develofasgr@nd the validity
of the choice is measured by running a significance test on the evaluation se

A similar concern exists when ranking a number of algorithms, but is moreuifti circum-
vent. Suppose the best bf+ 1 algorithms is chosen on the development test set. We can have
a confidence 1 p that the chosen algorithm is indeed the best, if it outperforms\tleeher al-
gorithms on the evaluation set with significance (1 — p)l/'\'. This is known as the Bonferroni
correction, and should be used when pair-wise significant tests adenugéple times. Alterna-
tively, the Friedman test for ranking can be used (5am2006).
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5. Evaluating Tasks

An application designer that wishes to employ a recommendation system typicalkskhe pur-
pose of the system, and can map it into one of the tasks defined abovennneodation, utility
optimization, and ratings prediction. Given such a mapping, the designemmwstecide which
evaluation metric to use in order to rank a set of candidate recommendatioithetgo It is impor-
tant that the metric match the task, to avoid an inappropriate ranking of thelasesl

Below we provide an overview of a large number of evaluation metrics tivatleen suggested
in the recommendation systems literature. For each such metric we identify its imtgmdgperties
and explain why is it most appropriate for the given task. For each tasisee=xplain a possible
evaluation scenario that can be used to evaluate the various algorithms.

5.1 Predicting Ratings

In this task, the system must provide a set of predicted ratings, and is®alon the accuracy of
these predictions. This is the most common scenario in the evaluation ofsiegrasd classifica-
tion algorithms in the machine learning and statistics literature (Duda and Hag, $the, 1974;
Bengio and Grandvalet, 2004). Many evaluation metrics that originatedtifitdrature have been
applied here.

Most notably, the Root of the Mean Square Error (RMSE) is a popularodefibr scoring
an algorithm. Ifp; ; is the predicted rating for userover itemj, andyv; j is the true rating, and
K ={(i,])} is the set of hidden user-item ratings then the RMSE is defined as:

\/Z(i,j)eK(pi,j —Vij)?
. .

Other variants of this family are the Mean Square Error (which is equivedeRMSE) and Mean
Average Error (MAE), and Normalized Mean Average Error (NMAHEge(locker et al., 2004).
RMSE tends to penalize larger errors more severely than the other metritssNMAE normalizes
MAE by the range of the ratings for ease of comparing errors acrossids.

RMSE is suitable for the prediction task, because it measures inaccuvaciigatings, either
negative or positive. However, it is most suitable for situations where avaeod differentiate be-
tween errors. For example, in the Netflix rating prediction, it may not be asriamcdo properly
predict the difference between 1 and 2 stars as between 2 and 3fttaessyistem predicts 2 instead
of the true 1 rating, it is unlikely that the user will perceive this as a recomat&nd However, a
predicted rating of 3 may seem like an encouragement to rent the movie, wirdeliation of 2 is
typically considered negative. It is arguable that the space of ratings teuty uniform, and that it
can be mapped to a uniform space to avoid such phenomena.

5.2 Recommending Good Items

For the task of recommending items, typically we are only interested in binargsatihat is,

either the item was selected (1) or not (0). Compared to ratings data setg ugers typically rate
only a very small number of items, making the data set extremely sparse, belacyion data sets
are dense, as each item was either selected or not by the user. An exdiraptd data sets are
news story click streams, where we set a value of 1 for each item thatigieslyand a value of O
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Recommended | Not recommended
Preferred True-Positive (tp)| False-Negative (fn)
Not preferred| False-Positive (fp) True-Negative (tn)

Table 1: Classification of the possible result of a recommendation of an itemsiera

elsewhere. The task is to provide, given an existing list of items that wesedie list of additional
items that the user may want to visit.

As we have explained above, these scenarios are typically not symmetriaraWot equally
interested in good and bad items; the task of the system is to suggest goochiv¢tosliscourage
the use of bad items. We can classify the results of such recommendatiogJaisia 1.

We can now count the number of examples that fall into each cell in the tathlecempute the
following quantities:

. #p
PreC|S|On == m,
Recall (True Positive Rate)= _#p
#tp+#fn’
False Positive Rate (1 - Specificity)}= 7#fp .
#fp+#tn

Typically we can expect a trade off between these quantities—while allownggtaecommenda-
tion lists typically improves recall, it is also likely to reduce the precision. In sopmdications,
where the number of recommendations that are presented to the useriisordigned, it is there-
fore preferable to evaluate algorithms over a range of recommendatiomtistée rather than using
a fixed length. Thus, we can compute curves comparing precision to recalle positive rate to
false positive rate. Curves of the former type are known simply as praeisizall curves, while
those of the latter type are known as a Receiver Operating CharactesisROC curves.

While both curves measure the proportion of preferred items that ardlgeEommended,
precision-recall curves emphasize the proportion of recommended itetar¢hpreferred while
ROC curves emphasize the proportion of items that are not preferreéntatip being recom-
mended.

We should select whether to use precision-recall or ROC based ondperpes of the domain
and the goal of the application; suppose, for example, that an online reéal service recom-
mends DVDs to users. The precision measure describes what propafrtieir recommendations
were actually suitable for the user. Whether the unsuitable recommendamesent a small or
large fraction of the unsuitable DVDs that could have been recommendeddtthe false positive
rate) may not be as relevant.

On the other hand, consider a recommender system for an online datingsiisidh describes
what proportion of the suggested pairings for a user result in matchhs. false positive rate
describes what proportion of unsuitable candidates are paired withtitxe aser. Since presenting
unsuitable candidates can be especially undesirable in this setting, thedaisecprate could be
the most important factor.

5. Areference to their origins in signal detection theory.
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Given two algorithms, we can compute a pair of such curves, one foragolithm. If one
curve completely dominates the other curve, the decision about the winnonijlahgis easy. How-
ever, when the curves intersect, the decision is less obvious, and wélhdem the application in
guestion. Knowledge of the application will dictate which region of the cureedétision will be
based on. For example, in the “recommend some good items” task it is likely thatlivpeefer a
system with a high precision, while in the “recommend all good items” task, ahighall rate is
more important than precision.

Measures that summarize the precision recall of ROC curve such as dtHmdRijsbergen,
1979) and the area under the ROC curve (Bamber, 1975) are usefarhparing algorithms inde-
pendently of application, but when selecting an algorithm for use in a plati@sk, it is preferable
to make the choice based on a measure that reflects the specific neeat$ at ha

5.2.1 REcCISION-RECALL AND ROCFORMULTIPLE USERS

When evaluating precision-recall or ROC curves for multiple test usengirder of strategies that
can be employed in aggregating the results. The simplest is to aggregatedbn hatings from
the test set into a set of user-item pairs, generate a ranked list otersepairs by combining the
recommendation lists for the test users, and then compute the precisidreré&@cC curve on this
aggregated data.

This aggregation process assumes that we have a means of compasimgnewations made
to different users in order to combine the recommendation lists into a singled#isk Computing
ROC curves in this manner treats the recommendations of different items tosacas being in-
dependent detection or classification tasks, and the resulting curve isltarghebal ROC (GROC)
curve (Schein et al., 2002).

A second approach is to compute the precision and recall (or true positavand false positive
rate) at each recommendation list lengttior each user, and then compute the average precision
and recall (or true positive rate and false positive rate) at BiSlarwar et al., 2000). The resulting
curves are particularly valuable because they prescribe a valNdafeach achievable precision
and recall (or true positive rate and false positive rate), and coglyeisan be used to estimate
performance at a giveN. Thus, this approach is useful in the “recommend some good items”
scenario, where one important decision is the length of the recommendatioboylisdmparing
performances along different candidate points along the curves. A &@®ve obtained in this
manner is termed a Customer ROC (CROC) curve (Schein et al., 2002).

A third approach is to compute a precision-recall curve (or ROC cuoregdch user and then
average the resulting curves over users. This is the usual manner in prieicision-recall curves
are computed in the information retrieval community, and in particular in the irtfalePREC
competitions (Voorhees, 2002b). This method is more relevant in the “recochallegood items”
sub-task, if the system provides the user with all available recommendatidriseauser then scans
the list linearly, marking each scanned item as relevant or not. The systetthen compute the
precision of the items scanned so far, and use the precision recalltougixe the user an estimate
of what proportion of the good items have yet to be found.

5.3 Optimize Utility

Estimating the utility of a list of recommendations requires a model of the way umseract with
the recommendations. For example, if a movie recommender system preseDtdXtwver im-
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ages of the top five recommendations prominently arranged horizontallysattmtop of the screen,
the user will probably observe them all and select the items of interest. \owkall the recom-
mendations are presented in a textual list several pages long, the ugaroldbly scan down the
list and abandon their scan at some point. In the first case, utility delisrdae top five recom-
mendations actually selected would be a good estimate of expected utility, whilesedbed case,
we would have to model the way users scan lists.

The half-life utility score of Breese et al. (1998) suggested such a mddabstulates that the
probability that the user will select a relevant item drops exponentially dbevlist.

This approach evaluates an unbounded recommendation list, that potertiztthins all the
items in the catalog. Given such a list we assume that the user looks at itemggtartirthe top.
We then assume that an item at positionas a probability ofm of being viewed, where
is a half life parameter, specifying the location of the item in the list withfrobability of being
viewed.

In the binary case of the recommendation task the half-life utility score is cochpyte

1
Ra = Zz(idxmfl)/(afl)’

3aRa
5o T

where the summation in the first equation is over the preferred itemsidnly,) is the index of
item j in the recommendation list, af'®is the score of the best possible list of recommendations
for usera.

More generally, we can plug any utility functiarta, j) that assigns a value to a user item pair
into the half-life utility score, obtaining the following formula:

R

_ u, j)
Ra= ; 20idx()~1)/(@-1)"

Now, RI'®is the score for the list of the recommendation where all the observed iterosdered
by decreasing utility. In applications where the probability that a user wiltseheidxth item if it
is relevant is known, a further generalization would be to use these kpotabilities instead of
the exponential decay.

5.4 Fixed Recommendations Lists

When users add movies to their queues in Netflix, the system presents allisiraivies that they
may like. However, when users choose to see recommendations (by cliokavies that you will
love”) the system presents all the possible recommendations. If therecameatny recommended
movies to fit a single page, the system allows the user to move to the next pagemimendations.

These two different usage scenarios illustrate a fundamental difetegteveen recommenda-
tion applications—in the first, the system is allowed to show a small, fixed numbvecofnmen-
dations. In the second, the system provides as many recommendationsaas iEwen though
the two cases match a single task—the “recommend good items” task—thereenad saportant
distinctions that arise. It is important to evaluate the two cases properly.

When the system is required to present a list with a small, fixed size, that venkagriori,
methods that present curves (precision-recall), or methods that evadheaentire list (half-life
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utility score), become less appropriate. For example, a system may getieetglaigh half-life
utility score, only due to items that fall outside the fixed list, while another systatstiects all
the items in the list correctly, and uninteresting items elsewhere, might get adoarer. Precision-
recall curves are typically used to help us select the proper list lengdrewhe precision and recall
reach desirable values.

Another important difference, is that for a small list, the order of items in théslisss impor-
tant, as we can assume that the user looks at all the items in the list. Moreoyesf thase lists
are presented in a horizontal direction, which also reduces the impoépeeperly ordering the
items.

In these cases, therefore, a more appropriate way to evaluate the recdatiore system should
focus on the firsN movies only. In the “recommend good items” task this can be done, for example,
by measuring the precision Bt—the number of items that are interesting out of the recommended
N items. In the “optimize utility” task, we can do so by measuring the aggregated uilgy, 6um
of utility) of the items that are indeed interesting within tieecommendations.

A final case is when we have unlimited recommendation lists in the “recommenditgoosl
scenario, and we wish to evaluate the entire list. In this case, one can usafthie utility score
with a binary utility of 1 when the (hidden) item was indeed selected by the aisé1Q otherwise.

In that case, the half-life utility score prefers a recommender system ldspinteresting items
closer to the head of the list, but provides an evaluation for the entire listingke Score.

6. Empirical Evaluation

In some cases, two metrics may provide a different ranking of two algorithktigen one metric
is more appropriate for the task at hand, using the other metric may resuleatiisg the wrong
algorithm. Therefore, itis important to choose the appropriate evaluatioicrfwtthe task at hand.

In this section we provide some empirical examples of the phenomenon webdesbove,
that is, where different metrics rank algorithms differently. Below, wes@né examples where
algorithms are ranked differently by two metrics, one of which is more apategfor the task of
interest.

6.1 Data Sets

We selected publicly available data sets which were naturally suited to theediffecommendation
tasks we have described above. We begin by describing the propdmtiasiodata set we used.

6.1.1 FREDICTION TASK

For the prediction task we selected two data sets that contained ratings overitbe Netflix data
set and the BookCrossing data set. In both cases, the prediction tasteinajural. Users of both
systems may want to browse the collection of movies or books, and we wouldtevaffer these
users an estimated rating for the presented items.

Netflix: In 2004, the online movie rental company Nefflannounced a competition for im-
proving its recommendation system. For the purpose of the competition, Nedlreleased a data
set containing 48M00 users ratings over 1700 movies. Ratings are between 1 and 5 stars for each
movie. The data set is very sparse—users mostly rated a small fractionafatible movies. In

6. This can be found aww. netfli x. com
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our experiments, as we are working with simple algorithms, we have redueethth set to users
who rated more than 100 movies, leaving us with1ZB users, LA15 movies, and 117 ratings per
user on average. Thus, our results are not comparable to resultshpdliligthe online competition

scoreboard.

BookCrossing: The BookCrossing websitallows a community of book readers to share their
interests in books, and to review and discuss books. Within that systemasseprovide ratings
on the scale of 1 to 10 stars. The specific data set that we used was cbbigce4 week crawl
during August and September 2004 (Ziegler et al., 2005). The datamsktins 105283 users and
340,556 books (we used just the subset containing explicit ratings). Arawtings for a user is
10. This data set is even more sparse than the Netflix data set that wasisieere are more items
and less ratings per user.

Both data sets share some common properties. First, people watch many madvieagmany
books, compared with other domains. For example, most people expeneghamly a handful of
laptop computers, and so cannot form an opinion on most laptops. Ratengsa skewed towards
positive ratings in both cases, as people are likely to watch movies that thkyhbinwill like, and
even more so in the case of books, which require a heavier investment of time

There are also some distinctions between the data sets. Some people feelledtapshare
their opinion about books and movies, without asking for a compensatiowever, in the Netflix
domain, providing ratings makes it easier to navigate the system and rentsmadvierefore, all
users of Netflix have an incentive for providing ratings, while only peoyhe like to share their
views of books use the BookCrossing system. We can therefore ettacthe ratings of the
BookCrossing are less representative of the general populationotf leaders, than the ratings
of Netflix user from the general population of DVD renters.

6.1.2 RECOMMENDATION TASK

One instance of the “recommend good items” task is the case where, gie¢miitems that the
user has used (bought, viewed), we wish to recommend a set of itemsedhitedy to be used.
Typically, data sets of usage are binary—an item was either used ortwiaed’by the user, and the
data set is not sparse, because every item is either used or not useelrpyiser. We used here a
data set of purchases from supermarket retailer, and a stream tdsatiiat were viewed in a news
website.

Belgian retailer. This data set was collected from an anonymous Belgian retail supermarket
store, collected over approximately 5 months, in three non-consecutiepaluring 1999 and
2000. The data set is divided into baskets, and we cannot detect testeir  There are 8862
baskets, 16170 distinct items, and 10 items in an average basket. We do not have fmcéss
prices or profits, so we cannot optimize the retailer revenue. Thertferask is to recommend
more items that the user may want to add to the basket.

News click stream: This is a log of click-stream data of an Hungarian online news portal
(Bodon, 2003). The data contains 9002 sessions, 4270 news stories, and an average of 8
stories for session. The task is, given the news items that a user hasorsadrecommend more
news items that the user will likely read.

7. This can be found aiwv. bookcr ossi ng. com
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6.1.3 OPTIMIZING UTILITY TASK

Ta-Feng supermarket: A natural example for an application where optimizing utility is important
is maximizing the revenues of a retail company. Such companies may proe@amendation for
items, hoping that customers following these recommendations will producerhrglenue. In this
case, a natural utility function is the revenue (or profit) from the purlogn item. The Ta-Feng
data set (Hsu et al., 2004) contains transaction information collected avenths from November,
2000 to February, 2001. There are 3@6 users and 2812 items, where the average number of
items bought by a user is 23. In this task, the utility function is the accumulatéiti fppon selling

an item—taking into account both the quantity and the profit per item.

6.2 Recommendation Algorithms

As the focus of this survey is on the correct evaluation of recommendtaag, and not on sophis-
ticated algorithms for computing recommendation lists, we limit ourselves to a setysimple
collaborative filtering algorithms. We do this because collaborative filtering fatthe most pop-
ular recommendation approach, and because we do not believe that jirigodipte to select the
evaluation metric based on the recommendation approach (e.g., collabditeiimeg vs. content
based).

Moreover, we carefully selected algorithms that are better suited foraliffé¢asks, so that
we could demonstrate that inappropriate choice of evaluation metric can leadad choice of
algorithm. As the algorithms that we choose are computationally intensive dueae the size of
the data set in some cases, in order to reduce the computation time. This shiobéldone if it
was important to realistically simulate the online case. Below, we present teeediffalgorithms
and our prior assumptions about their properties.

6.2.1 FEARSONCORRELATION

Typically, the input for a prediction task is a data set consisting of the rgtiraysded byn users for
mitems, wherey, j is the rating of userrfor item j. Given such a data set, the simplest collaborative
filtering method computes the similarity of the active uadio all other users in the data set,
resulting in a scorev(a,i). Then, the predicted rating, ; for a over itemj can be computed by:

Paj =\7a+K_ZlW(a7i)(Vi,j —Vi). 1)

Perhaps the most popular method for computing the weigtdsi) is by using the Pearson
correlation coefficient (Resnick and Varian, 1997):

¥ j(Vaj—Va)(Vij — W)
V3 i(Vaj — V)2 (v — )2

where the summations are only over the items that bathdi have rated. To reduce the computa-
tional overhead, we use in Equation 1 a neighborhood off$ize

This method is specifically designed for the prediction task, as it computes prégiated score
for each item of interest. However, in many cases people used this metitbe fecommendation
task. This is typically done by predicting the scores for all possible itemsttardordering the
items by decreasing predicted scores.

w(a,i) =
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This popular usage may not be appropriate. For example, in the movie doewepmmay
associate ratings with quality, as opposed to enjoyment, which is dependexternal factors
such as mood, time of day, and so forth. As such, 5 stars movies may be categhliczquiring a
substantial effort from the viewer. Thus, a user may rent many lighttédss romantic comedies,
which may only get a score of 3 stars, and only a few 5 star movies. Whileifficutt to measure
this effect without owning a rental store, we computed the average nuphibatings for movies
with different average rating (Figure 6.2.1). This figure may suggestrbsaies with higher ratings
are not always watched more often than movies with lower ratings. If aumastion is true, a
system that recommends items to add to the rental queue by order of degnaslicted rating,
may not do as well as a system that predicts the probability of adding a movie qgoidue directly.

250
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) .
1 - . . . :
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#Ratings [popularity]

a

Rating

Figure 1: Computing the average number of ratings (popularity) of movieedigiven their aver-
age ratings.

6.2.2 QOSINE SIMILARITY
A second popular collaborative filtering method is the vector similarity metric ($alt®71) that
measures the cosine angle formed by the two ratings vectors:

V .
w(a,i) = &) ,
jezai \/zke laVZ \/zke V2,

When computing the cosine similarity, only positive ratings have a role, anatimegatings are
discarded. Thud; is the set of items that usehas rated positively and; is the set of items that
both users rated positively. Also, the predicted score for a user is dechpy:

n
Paj =K W@&iV.
aj i; oy

In the case of binary data sets, such as the usage data sets that wel $efebezrecommenda-
tion task, the vector similarity method becomes:

w(a,i) [ail

VBV
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wherel, is the set of items thatused, and,; is the set of items that bo#handi used. The resulting
aggregated score can be considered as a non-calibrated measwtthemonditional probability
pr(j|a)—the probability that usea will choose itemj.

In binary usage data sets, the Pearson correlation method would computeitsimgang all
the items, as each item always has a rating. Therefore, the system weuddl the negative “did
not use” scores, which typically greatly outnumber the “used” scorescaii therefore expect that
Pearson correlation in these cases will result in lower accuracy.

6.2.3 MEM TO ITEM

The above two methods focused on computing a similarity between userspdiberpossible
collaborative filtering alternative is to focus on the similarity between items. ihglaest method
for doing so is to use the maximum likelihood estimate for the conditional probabibitieems.
Specifically, for the binary usage case, this translates to:

_ Divl
9|

prjiliz)

whereJ; is the number of users who used itgprandJ;j, j, is the number of users that used bgth
and j». While this seems like a very simple estimation, similar estimations are successfulinuse
deployed commercial applications (Linden et al., 2003).

Typically, an algorithm is given as an input a set of items, and needs togeadlist of recom-
mendations. In that case, we can compute for the conditional probabiligcbftarget item given
each observed item, and then aggregate the results over the set dfgivenin many cases, choos-
ing the maximal estimate has given the best results (Kadie et al., 2002), gmregate estimations
using a max operator in our experiments.

6.2.4 EXPECTEDUTILITY

As optimizing utilities is by far the least explored recommendation task, we cliredo propose

a new algorithm that is designed specifically for this task. Intuitively, if thie taguires lists that
optimize a utility functioru(a, j), an obvious method is to order the recommendation by decreasing
expected utility:

E[jla] = pr(jla)-G(a, j)

wherepf is a conditional probability estimate ands™a utility estimate.

One way to compute the two estimates is by using two different algorithms—a recuatien
algorithm for estimatingor’and a prediction algorithm for estimating &nd then combining their
output.

6.3 Experimental Results

Below, we present several examples where different evaluation metrikswo algorithms differ-
ently. We argue that in these cases, using an improper evaluation metric @ilbléfze selection of
an inferior algorithm.
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| Netflix | BookCrossing
1.07 3.58
1.90 4.5

Pearson
Cosine

Table 2: RMSE scores for Pearson correlation and Cosine similarity ondtilxNlomain (ratings
from 1 to 5) and the BookCrossing domain (ratings from 1 to 10).

6.3.1 FREDICTION VS. RECOMMENDATION

We begin by comparing Pearson correlation and Cosine similarity collabefdtaring algorithms
over two tasks—the prediction task and the “recommend good items” task. Boititlams used
neighborhoods consisting of the closest 25 users.

First we evaluated the algorithms in predicting ratings on the Netflix and Basis@rg data
sets, where we sampled 2000 test users and a randomly chosen nurtdstriteins per test user
on each data set. Given Table 2, the algorithm of choice is clear—on biztlsels, the predictions
given by the Pearson correlation algorithm have lower RMSE scordshardifferences pass a sign
test withp < 0.0001.

We then evaluated the two algorithms on the recommendation task on the Belgikem eatd
news click stream data sets, where we again sampled 2000 test useraaddraly chosen number
of test items per test user on each data set. Let us now evaluate the twithalgarn recommen-
dation tasks. To do that, we computed precision-recall curves for thelgodgtams on the Belgian
retailer data set and the news click stream data set. This was done by cayetiision and
recall at 1, 3, 5, 10, 25, and 50 recommendations, and averagingetisipns and recalls at each
number of recommendations. As Figure 2 shows, in both cases the recoatinenidts generated
by the Cosine similarity dominate the recommendation lists generated by the Peansiation
algorithm in terms of precision. In the Belgian retailer data, Cosine similarity @sdatter recall
than Pearson correlation across the board. On the news click streanCdatae similarity has
better recall than Pearson correlation for 1, 3, and 5, recommendadibtisese comparisons were
significant according to a sign test with< 0.0001. Therefore, in these cases, one would select the
Cosine algorithm as the most appropriate choice.

This experiment shows that an algorithm that is uniformly better at predicinggs on ratings
data sets is not necessarily better at making recommendations on usageslafais suggests that
it is possible that an algorithm that is better at predicting ratings could beevabygredicting usage
in the same domain as well. An interesting experiment would be, given both satimd usage
data over the same users and items, to see whether algorithms that gerenameadation lists
by decreasing order of predicted ratings do as well in the recommendagloavter the usage data.
Unfortunately, we are unaware of any public data set that contains haeth 6f information. Never-
theless, companies such as Amazon or Netflix collect data both of uséiggescand of user ratings
over items. These companies can therefore make the appropriate decidioa fecommendation
task at hand.

It is also possible that websites that support multiple recommendation taskd sise different
algorithms for the different tasks. For example, the Netflix website contginsdiction task (e.g.,
for new releases), and two recommendation tasks—a fixed list of reconat@msiwhen adding
items to the rental queue, and an unlimited list of recommendations in the “movie ijldiket
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(a) Belgian retailer recommendations
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(b) News click stream recommendations

Figure 2: Comparing recommendations generated by Pearson correladi@oaine similarity. In
both cases, the recommendation list is ordered by decreasing predioted sc

section. It may well be that different algorithms that were trained oveerdifft data sets (ratings
vs. rentals) may rank differently in different tasks. Deciding on the Egimmendation engine
based solely on RMSE in the prediction task may lead to worse recommendatidn tis¢stwo
other cases.
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6.3.2 RECOMMENDATION VS. UTILITY MAXIMIZATION

In many retail applications, where the retailer is interested in maximizing proéitgle may still
train their algorithm on usage data solely, and evaluate them using recontinarai#&nted met-
rics, such as precision-recall. For example, even though a retaileitev@lishes to maximize its
profit, it may use a binary data set of items that were bought by users ¢oajemecommendations
of the type “people who bought this item also bought ...”.

To evaluate the performance of such an approach, we used an item-gtmmendation system
to generate recommendations for the Ta-Feng data set. Alternativelyaoraraer the items by
expected utility. To compute an estimate of expected utility, we interpreted the limgthpredicted
score of each recommended item as the probability that the user would atwalizat item. In
the case where the recommender predicts numerical ratings, we normatize tighest possible
rating and treat the result as a probability distribution. For example, if theebighting is 5 and
the algorithm predicts a score ofAfor a specific user we assume the the probability that the user
will use the item is ®. We then use the average profit earned from each item to predictdfie pr
that would be obtained from each item if the active user bought it. Multiplyiegotiobability that
the user would buy an item buy the profit that would result if the user bahghitem yielded the
required estimate of expected utility.

We then evaluated the two algorithms by comparing their precision-recakksuwhich are
shown in Figure 3. The curves were generated by evaluating precisibreeall at 1, 3, 5, 10, 25,
and 50 recommendations, and averaging the precisions and recallt aealger of recommenda-
tions. The averages were computed over 2000 users, and the item-itemmmeader outperformed
the expected profit recommender in terms of both precision and recallatiads withp < 0.0001.

20%
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14% -
12% -

10% -
—+Item-Item

<-Exp. Profit
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2% %&Q\Q\Q
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Figure 3: Comparing recommendations generated by the item-item recommaddbe &xpected
profit recommender on the Ta-Feng data set.

We then measured an half-life utility score where the utility of a correct recordat®n was
the profit from selling the correctly recommended item to the user. The resalshown in Table 3.
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| Score
ltem-ltem | 0.01
Exp. Profit| 0.05

Table 3: Comparing item-item vs. expected utility recommendations on the Tadagmget with
the half-life utility score. The utility of a correct recommendation was the pfaifin
selling that item to that user, while the half-life was 5. The trends were simitastfeer
choices of the half-life parameter.

Choosing a recommender based on classification performance wouldesaved in an half-life
utility score (expected profit) that was 20% of what could have been\ahi@ith the correct
choice. This difference is statistically significant wijth< 0.001.

These results are, of course, not surprising—using a recommendexfhieitly attempts to
optimize expected profit gives a better expected profit measure. Howeeeasionally people that
are interested in maximizing profit, providing maximum value to the users, or minimiseg
effort, use precision-recall to choose a recommendation algorithm.

7. Discussion

Above, we discussed the major considerations that one should make wtieing on the proper
evaluation metric for a given task. We now add some discussion, illustratieg athclusions that
can be derived, and illuminating some other relevant topics.

7.1 Evaluating Complete Recommender Systems

This survey focuses on the evaluation of recommendation algorithms. tegwibe success of a
recommendation system does not depend solely on the quality of the recoatiaralgorithm.
Such systems typically attempt to modify user behavior which is influenced by ataer param-
eters, most notably, by the user interface. The success of the deglgstedn in influencing users
can be measured through the change in user behavior, such as the ofirReemmendations that
are followed, or the change in revenue.

Decisions about the interface by which users view recommendationsitical ¢o the success
of the system. For example, recommendations can be located in differees phetbe page, can be
displayed horizontally or vertically, can be presented through images hratek so forth. These
decisions can make a significant impact, no smaller than the quality of the undeaalgorithm, on
the success of a system.

When the application is centered around the recommendation system, it is inhporsahect
the user interface together with the recommendation algorithm. In other tasescommendation
system is only a supporting system for the application. For example, ammerre website is
centered around the item purchases, and a news website is centerad #re delivery of news
stories. In both cases, a recommender system may be employed to helprdheavigate, or to
increase sales. It is likely that the recommendations are not the major methbobfzsing the
collection of items.
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When the recommender system is only a supporting system, the designeapptioation will
probably make the decision about the user interface without focusingsitigning recommenda-
tions where they have the most influence. In such cases, which we bielibeevery common, the
developer of the recommender system is constrained by the pre-desigedadce, and in many
cases can therefore only decide on the best recommendation algorithin,simde cases perhaps
the length of the recommendation list. This paper is targeted at researndete\eelopers who are
making decisions about algorithms, not about the user interface. Des@giood user interface is
an interesting and challenging problem, but it is outside the scope of thisys(s®e, e.g., Pu and
Chen 2006).

7.2 Eliciting Utility Functions

A simple way to avoid the need to classify recommendation algorithms, is to assunveetiase
always optimizing some utility function. This utility function can be the user utility famig(see,
e.g., Kumar et al. 1998, Price and Messinger 2005 and Hu and Pu 20@3)an be the application
utility. We can then ask users about their true utility function, or design a utiligtfan that
captures the goal of the application, and always choose the algorithmaxahizes this utility.

However, such a view is misleading; eliciting user utilities can be a very diffiask (see, e.g.,
Braziunas and Boutilier 2005, citealtChajewska and Huang 2008). leon@e, the value that the
user is willing to invest in a laptop depends on a multitude of elements, such ascbere, her
technical knowledge, the intended use of the laptop and so forth. Indkeiting such functions
is the focus of active research, for example by presenting users witada@hoices. Therefore,
expecting that we will have access to a good estimate of the user utility functioweslistic—
estimating this function may be no easier than coming up with good recommendations.

Furthermore, even when the application designer understands the appligility function,
gathering utilities from users may be very difficult. For example, in the Netfliraia, the business
model may be to keep the users subscribed. Therefore, the utility of an fioowvéeuser (from
the website perspective) is not whether the user enjoys the movie, beit véttiether the user will
maintain her subscription if the movie is suggested to her. Clearly, most usensotvivant to
answer such questions, and many may not know the answer themselves.

For this reason, when the utility function is unclear, the best we can do is tonzaxthe
number of useful items that we suggest to the user. As such, the recomtoenezisk cannot be
viewed as a sub-task for utility optimization.

7.3 Implicit vs. Explicit ratings

Our classification of recommendation tasks sheds some light over anadhemanly discussed
subject in recommender systems, namely, implicit ratings (Claypool et al., 228l and Kim,
1998). In many applications, people refer to data that was automatically teolJestich as logs of
web browsing, or records of product purchases, as an implicit indic&tiopositive opinions over
the items that were visited or purchased.

However, this perspective is appropriate only if the task is the predictinuwdeere we would
like to know whether the user will have a positive or negative opinion ogetam items. If the
task is to recommend more items that the user may buy, given the items that thesiséreldy
bought, purchase data becomes an explicit indication. In this case, asimggsrthat users provide
over items is an implicit indication to whether the user will buy the item.
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For example, a user may have a positive opinion over many laptop companersnay rate
many laptops highly. However, most people buy only one laptop. In that cesommending more
laptops, based on the co-occurring high ratings, will be inappropriatevekier, if we predict the
probability of buying a laptop given that another laptop has already baaghb, we can expect this
probability to be low, and the other laptop will not be recommended.

8. Related Work

In the past, different researchers discussed various topics retevie evaluation of recommender
systems.

Breese et al. (1998) were probably the first to provide a sound diaiuaf a number of rec-
ommendation approaches over a collection of different data sets, settiggribeal framework of
evaluating algorithms on more than a single real world data set, and a conpafrseveral algo-
rithms in identical experiments. The practices that were illustrated in that papersed in many
modern publications.

Herlocker et al. (2004) provide an extensive survey of possible rsdtiicevaluation. They
then compare a set of metrics, concluding that for some pairs of metricg, lisih together will
give very little additional information compared to using just one.

Another interesting contribution of that paper is a classification of recomatiemdengines
from the user task perspective, namely, what are the reasons andtiootivthat a user has when
interacting with a recommender system. As they are interested in user tadkse ame interested
in the system tasks, our classification is different, yet we share some sinska®;, such as the
“recommend some good items” and “recommend all good items” tasks.

Finally, their survey attempted to cover as many evaluation metrics and usesatssions as
possible, we focus here on the appropriate metrics for the most popctenneendation tasks only.

Mcnee et al. (2003) explain why accuracy metrics alone are insuffimeselecting the correct
recommendation algorithm. For example, users may be interested in the siyeofdthe rec-
ommended items. One way to model serendipity is through a utility function thanadsigher
values to “unexpected” suggestions. They also discuss the “useflilsfeecommendations. Many
utility functions, such as the inverse log of popularity (Shani et al., 2005nattéo capture this
“usefulness”.

Ziegler et al. (2005) focus on another aspect of evaluation—cormsigtre entire list together.
This would allow us to consider aspects of a set of recommendations, sdteesification between
items in the same list. Our suggested metrics consider only single items, and thdisiabbhe
used to evaluate entire lists. It would be interesting to see more evaluation ntlettiqgerovide
observations over complete lists.

Celma and Herrera (2008) suggest looking at topological properti¢iseofecommendation
graph—the graph that connects recommended items. They explain howHKaydad the recom-
mendation graph one may understand properties such as the noveltpmwineadations. It is still
unclear how these properties correlate with the true goal of the recommsraiem, may it be to
optimize revenue or to recommend useful items.

McLaughlin and Herlocker (2004) argue, as we do, that MAE is not@pyate for evaluating
recommendation tasks, and that ratings are not necessarily indicativeettiev a user is likely to
watch a movie. The last claim can be explained by the way we view implicit arieiéxatings.
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Some researchers have suggested taking a more holistic approaclnaiting the recom-
mendation algorithm within the complete recommendation system. For example, dela@tmo
Gaudioso (2008), suggest that systems be evaluated only after deplpyhreugh counting the
number of successful recommendations. As we argue above, eversendasges, one is likely to
evaluate algorithms offline, to avoid presenting recommendations that havejyality for users,
thus losing their trust.

9. Conclusion

In this paper we discussed how recommendation algorithms should be eddtuateler to select
the best algorithm for a specific task from a set of candidates. This is aortmmp step in the
research attempt to find better algorithms, as well as in application desige whklesigner chooses
an existing algorithm for their application. As such, many evaluation metrios bagn used for
algorithm selection in the past.

We review three core tasks of recommendation systems—the prediction @skctimmenda-
tion task, and the utility maximization task. Most evaluation metrics are naturallyppate for
one task, but not for the others. We discuss for each task a set of sritticare most appropriate
for selecting the best of the candidate algorithms.

We empirically demonstrate that in some cases two algorithms can be rankeerdiffédy two
metrics over the same data set, emphasizing the importance of choosing ther@metric for
the task, so as not to choose an inferior algorithm.

We also describe the concerns that need to be addressed when dgsijime and online
experiments. We outline a few important measurements that one must take inratiitie score
that the metric provides, as well as other considerations that should beitakeaccount when
designing experiments for recommendation algorithms.
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