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Abstract
We consider the problem of classification using high dimensional features’ space. In a paper by
Bickel and Levina (2004), it is recommended to use naive-Bayes classifiers, that is, to treat the
features as if they are statistically independent.

Consider now a sparse setup, where only a few of the features are informative for classification.
Fan and Fan (2008), suggested a variable selection and classification method, called FAIR. The
FAIR method improves the design of naive-Bayes classifiers in sparse setups. The improvement is
due to reducing the noise in estimating the features’ means.This reduction is since that only the
means of a few selected variables should be estimated.

We also consider the design of naive Bayes classifiers. We show that a good alternative to
variable selection is estimation of the means through a certain non parametric empirical Bayes pro-
cedure. In sparse setups the empirical Bayes implicitly performs an efficient variable selection.
It also adapts very well to non sparse setups, and has the advantage of making use of the infor-
mation from many “weakly informative” variables, which variable selection type of classification
procedures give up on using.

We compare our method with FAIR and other classification methods in simulation for sparse
and non sparse setups, and in real data examples involving classification of normal versus malignant
tissues based on microarray data.

Keywords: non parametric empirical Bayes, high dimension, classification

1. Introduction

We consider the problem of finding a classifier for a response variableY ∈ {−1,1} based on a vector
(X1, ...,Xp) ∈ R

p of explanatory variables.
Suppose we have a ‘training set’ (or a sample) ofn1 examples(Yi ,Xi1, ...,Xip), i = 1, ...,n1, for

whichYi = −1, and additionaln2 examples(Yi ,Xi1, ...,Xip), i = n1 +1, ...,n1+n2, for whichYi = 1.
We assume that then1+n2 observations are independent. In what follows we assume for simplicity
thatn1 = n2 ≡ n.

Our study is aimed to understand and suggest a good classification procedure in a high di-
mensional setup. Here, by high dimensionality we meanp ≫ n. There are many examples in
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contemporary statistical applications wherep≫ n. We mention that of microarray data where the
dimensionality is typically of thousands, while the sample size is of the order of dozens or hundreds.

In particular we focus on linear predictors forY, which are of the form:

Ŷ = sign

(

p

∑
j=1

a jXj +a0

)

,

wherea0,a1, ...,ap are constants.

Suppose the distribution of the explanatory variables, conditional onY = −1 and onY = 1, is
G1 andG2 correspondingly, whereGi are multivariate normalsi = 1,2. Assume that the covariance
matrices ofGi , i = 1,2 are the same. Then the optimal classifier is Fisher’s rule. However when the
common covariance matrix as well as the vectors of means underG1 andG2 are unknown, we can
not apply Fisher’s rule. Whenn≫ p, the naive approach, of estimating the unknown quantities and
plug-in to Fisher’s rule, would work well. It is impractical whenp≫ n . A practical solution, called
‘naive Bayes’ is to neglect estimation of the off diagonal elements in the covariance matrix (or to
estimate them trivially) by setting those values to be 0. Then apply Fisher’s ruleby plugging in the
estimated diagonal covariance matrix and the estimated vectors of means. Bickel and Levina (2004)
showed that in many cases, by this trivial estimation of the covariance matrix, one does not lose
too much in terms of classification error, relative to incorporating the true covariance matrix, and
suggested this practice. Note, the bottom line of this practice is to treat the explanatory variables as
if they are independent, or act “assuming” independence of the explanatory variables. We will also
refer in the sequel to Fisher’s rule as the Independence Rule, or IR.

It was pointed out independently by Fan and Fan (2008) and by Greenshtein et al. (2009), that
even in the independent case, whenp≫ n, estimating the vector of means underG1 and underG2 by
the corresponding sample averages, could lead to a very weak estimator, resulting in a corresponding
classifier with virtually no classification power (see Theorem 1 in Fan and Fan 2008, and Proposition
1 of Greenshtein et al. 2009). This is also in cases where there exists a good linear classifier.
In other words, often, attempting to estimate the 2p coordinates of the two mean vectors, by the
corresponding averages ofn observations on each, is already “too much”, and leads to overfit. The
FAIR approach suggested by Fan and Fan (2008), and the conditionalMLE approach suggested by
Greenshtein et al. (2009), are based on variable selection techniques followed by estimation of the
mean of the selected explanatory variables, while ignoring the others (i.e., setting the corresponding
coefficients of the linear classifier to be equal to zero). The FAIR method estimates the means of
the selected variables by the corresponding sample means (the MLE), while the conditional MLE
method estimates by the conditional MLE, conditional on the event that the variables were selected.

The above approaches are helpful especially in a high dimensional sparse setup, while the non
parametric Empirical Bayes approach that we will present is helpful also innon-sparse setups. Let
µ andτ be the vectors of means underG1 andG2 correspondingly; here ‘sparse’ setup means that
the vector

ν ≡ µ− τ

is sparse. A ‘sparse’ setup is such, that relatively few of the explanatory variables are informative
for the classification.
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1.1 On Types of Sparsity

The term sparse vector is only loosely defined in the literature, and we will keep some of the am-
biguity. However, by a sparse vectorν we mean that most of its coordinates areexactlyzero.
Throughout our study we consider only vectorsν such that theirl2 norm||ν||, is much smaller than
their dimension, say,||ν||= o(p). The last conditiondoes notimply sparsity under our terminology.

We concentrate on configurations such that||ν||= o(p), since that asp→∞, when letting||ν||=
O(p), any reasonable procedure would achieve asymptotically (virtually) zeromisclassification rate.
We are interested in the cases when there is not enough signal to make nearly perfect classification,
that is,p≫ ||ν||. In our simulation, we achievep≫ ||ν||, by considering the following three types
of configurations for vectors||ν||:

(a) Very few non-zero coordinates of a large/moderate magnitude (i.e., sparse vectors)

(b) Very few coordinates of a large magnitude, mixed with many very small coordinates (i.e.,
non-sparse vectors).

(c) Many coordinates of a very small magnitude (i.e., non-sparse vectors).

In sparse configurations, our EB procedure is comparable to the other procedures. Specifically, it is
better in moderately sparse setups, while in extremely sparse cases, it is inferior. Indeed, when there
are only a few relevant variables, naturally methods which are based on variable selection would do
well. In non-sparse configurations our EB procedure is clearly advantageous in simulations. This is
in line with the theoretical results in Brown and Greenshtein (2009), and in Jiang and Zhang (2007),
on optimality of non-parametric empirical Bayes in estimation of high dimensional not extremely
sparse normal mean vectors, coupled with the relation between estimation and classification as
explained in Section 2.

The above mentioned results, join a huge body of literature on Empirical Bayes starting with
Robbins (1951), see the surveys by Copas (1969) and by Zhang (2003). See also a recent paper
by Greenshtein and Rotov (2009) on efficiency of compound and empirical Bayes procedures with
respect to the class of permutation invariant procedures. A recent comprehensive study and per-
formance comparison, of various methods for estimating a vector of normal means under squared
error loss, was conducted by Brown (2008), the very good performance of non parametric empiri-
cal Bayes methods is demonstrated also there. Our approach is related to (and independent of) the
approach in Efron (2009), where EB estimation method is used to obtain goodclassifiers.

We will introduce and explain the virtues of our empirical Bayes classificationmethod and
provide simulation evidence as well as real data evidence to its excellent performance. We will
compare the performance of our Empirical Bayes classifiers to that of FAIR (Fan and Fan, 2008),
conditional MLE (Greenshtein et al. , 2009), NSC (Tibshirani et al. , 2002), and plug in Fisher’s
rule.

The outline is the following. In the next section we introduce our formal setupand explain the
relation between estimating a vector of means under a squared loss and classification. In Section 3
we introduce a class of non-parametric empirical Bayes estimators of a vector of normal means and
define our classifier. In Section 4 we demonstrate the performance of ourclassifier on simulated as
well as real data.
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2. Preliminaries

Assume a multivariate normal distribution of the vector(X1, ...,Xp) conditional on the value of
Y. Specifically, we assume(Xj |Y = −1) ∼ N(µj ,s2) and (Xj |Y = 1) ∼ N(τ j ,s2) independently,
j = 1, ..., p. We will assume that the variances2 is known. Denoteµ= (µ1, ...,µp), τ = (τ1, ...,τp).

In considering linear classifiers, when bothp andn are large it is robust to assume normality of
(X1, ...,Xp) by the central limit theorem. Due to Lindberg’s CLT, largep implies that∑a jXj will
be close to normal, whena j are comparable in size, even if the individualXj are not normal. In
addition, largen implies that averages of independentXi j , i = 1, ...,n (as inZ j , which is defined
in the sequel) are close to normal. The CLT arguments are problematic when theXjs have heavy
tails. In Table 5 of Section 4 some simulations are carried to demonstrate the effect of heavy tailed
distributions.

When searching for valuesa≡ (a1, ...,ap) that determine a ‘good’ linear classifier, we assume
w.l.o.g. that‖a‖2 = ∑p

j=1a2
j = 1. In this case the optimal choice of(a1, ...,ap) is the vector that

maximizes|∑a jµj −∑a jτ j |. Note that the optimal choice ofa1, ...,ap is the same regardless of
the misclassification loss (the value ofa0 does depend on the loss). In order to see it, observe that
∑a jXj ∼ N(∑a jµj ,s2) ≡ N(θ1,s2) conditional onY = −1 and∑a jXj ∼ N(∑a jτ j ,s2) ≡ N(θ2,s2)
conditional onY = 1; hereθi , = 1,2 are implicitly defined. Hence, an optimal choice ofa1, ...ap is
such that

V = V(a1, ...,an) ≡ |∑
j

a jµj −∑
j

a jτ j | = |θ1−θ2| (1)

is maximized. This implies that the coordinatesaopt
j of the optimal choice satisfy:

aopt
j =

ν j
√

∑ν2
j

, j = 1, ...p; (2)

recallν j = µj − τ j .
Under a 0-1 loss, given any choice of(a1, ...,ap), the corresponding minmax choice ofa0 is

a0 = −θ2 +θ1

2
.

This is also the Bayes solution assuming a priorπi = 0.5 for each class. The optimal choice ofa0

for none-equal losses and priors is straightforward.
A formal argument showing that the optimala1, ...,ap is the same regardless of the misclas-

sification loss may be obtained using the theory of comparison of experiments,implying that the
experiment that consists of the distributionsN(θ1,s2) andN(θ2,s2), dominates the experiment that
consists of the distributionsN(θ′

1,s
2) andN(θ′

2,s
2) if and only if |θ1−θ2| ≥ |θ′

1−θ′
2|. See Lehmann

(1986, p. 86), for some basic theory on comparison of experiments and some additional references.
By the above discussion there is a natural order relation� between two classifiers determined

by a anda′. We say thata� a′ if for the correspondingθi andθ′
i ,

V = |θ′
1−θ′

2| ≥ |θ1−θ2| = V ′ (3)

Note, hereV ≡V(a1, ...,ap), is a function of(a1, ...,ap).
By (2),V(aopt

1 , ...,aopt
p ) = ||ν||, consequently for the optimal choiceaopt

0 , the Bayes risk is:

Φ(−||ν||
2s

) (4)

whereΦ is the cumulative distribution of a standard normal distribution.
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2.1 Summary

The goal of finding the optimal classifier whenν j , j = 1, ..., p are unknown, is not practical. How-
ever we want to find a classifier with a corresponding ‘large’ value of V.

Note, in statistical inference the choice ofa j , j = 1, ..., p depends on the data. The dependence
on the data is through the vector

Z = (Z1, ...,Zp); here, forn = n1 = n2

Z j =
∑n

i=1Xi j

n
− ∑2n

i=n+1Xi j

n
, j = 1, ..., p, (5)

are independent normal random variables withEZj = ν j and variance, denotedσ2,

σ2 =
2s2

n
. (6)

Thus, depending on the particular procedure the selected value ofa j depends onZ1, ...,Zp, and
it is a random variable denoted ˆa j , j = 1, ..., p.

Equation (3), motivates us to search for procedures with high value of

E(V) = E|
p

∑
j=1

â jν j |.

Thus we extend the definition of the order relation, to apply to two statistical procedures{â j}, j =
1, ..., p, and{â′j}, j = 1, ..., p.

Definition 1: We say that{â′j}, j = 1, ..., p, dominates{â j}, j = 1, ..., p, if for the correspond-
ing V ′ andV, E(V ′) ≥ E(V).

Remark 1: Evaluating a procedure ˆa j j = 1, ..., p, by its corresponding valueE(V), is simplistic,
for example, it ignores the effect of the standard deviation of V on the classification error. However,
in high dimensional setup one might hope that the standard deviation ofV is small compare to
E(V). Otherwise, one might perceive it as a convenient approximate evaluation. Note however,
that for two procedures with very accurate classification rate, ignoring the variability ofV might be
significantly misleading even ifE(V) is large compare to the standard deviation ofV, this is due to
the thin tail of the normal distribution.

2.2 On the Relation Between Estimating the Mean Under a Squared Lossand Classification

Since the optimal choice ofa j , j = 1, ..., p, is aopt
j =

ν j
√

∑ν2
j

, a natural way to proceed is to estimate

ν j by a ‘good’ estimatorν̂ j for ν j , and then plug-in, that is, let ˆa j =
ν̂ j

√

∑ν̂2
j

. A formal definition of

‘good’ in the above, depends on the loss function. In the sequel we will indicate why the squared
error loss function is especially appropriate.

First we state the obvious. In general, the fact thatν̂ is a good estimator forν under a squared
error loss, does not indicate thatT(ν̂) is a good estimator forT(ν) under (say) a squared loss. For
example in the caseT(ν) = ∑ν j , plugging in the MLE forν will often be better than plugging in
the James-Stein estimator because of the bias of the J-S estimator which is accumulated. This is
although the J-S estimator dominates the MLE in estimatingν under a squared error loss. Hence
good properties of the Empirical Bayes as an estimator forν under squared loss in high dimensions,
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do not automatically indicate that it should be plugged-in in order to obtain goodestimators foraopt
j ,

and thus provide good classifiers.
Consider the collection of all vectors(a1, ...,ap) with l2 norm 1. Define the function

L((a1, ...,ap)) = ∑(ν j −a j)
2

Then, one may check that on the surface of thep dimensional unit ball,

L(a) = −2×V(a)+C,

whereC = 1+∑ν2
j , andV is defined in (1).

The last equation motivates the particular choice of a squared error loss when evaluating an
estimatorν̂ j . This is because of the direct relation between minimizingE(L) to that of maximizing
E(V). MaximizingV is crucial in obtaining a good classifier, as explained in the first part of this
section.

An estimator with particularly appealing properties, in estimation of a vector of means under a
squared loss in high dimensions, is the non-parametric empirical Bayes estimator, see Brown and
Greenshtein (2009). We describe it in the following section and then defineour procedure.

For a givenν the success in obtaining a good classifier has to do with two aspects. The larger is
the l2 norm ofν the smaller is the misclassification rate of the Bayes procedure, as may be seenin
(4), and typically also the misclassification rate of our EB procedure. The more difficult is the task
of estimatingν by our non parametric empirical Bayes method in terms of MSE, the less successful
is our classification method. As pointed by a referee, the difficulty/MSE in estimating ν by EB is
invariant under translation, while (obviously) thel2 norm is not. When the vectorν is identically
zero (i.e., no signal) the corresponding misclassification rate is 0.5. The corresponding rates for
various translations of the zero-vector may be found in Table 4.

3. Empirical Bayes Classification

In this section, we define our linear classifier for the cases of known homoscedastic variances and
unknown heteroscedastic variances.

3.1 Known Homoscedastic Variance

In the sequel we rescaleXj , so thatZ j defined in (5) will have varianceσ2 = 1, j = 1, ..., p. This
is possible sinces, the common standard deviation ofXj , is known see (6). When the variances are
unknown (and not assumed equal) we simply standardize the variables using the sample variance.
The extension of this subsection for the latter case and for non equal samplesn1 andn2 is explicitly
given in the next subsection.

Under the non-parametric empirical Bayes approach for estimating a vectorof means, we con-
sider the meansνi = E(Zi), i = 1, ..., p, as realizations of i.i.d random variablesM1, ...,Mp dis-
tributedG, whereG is completely unknown. Still, we attempt to approximate the Bayes estimator
of the mean, denotedδG(z), by δ̂(z). Then we estimateνi by ν̂i = δ̂(Zi).

More formally it is described in the following. LetZ ∼ N(M,1) whereM ∼ G, G∈G . We want
to emulate the Bayes procedureδG based on a sampleZ1, ...,Zp, Zi ∼ N(Mi ,1), i = 1, ..., p, where
Mi ∼ G and theZi are independent conditional onM1, ...,Mp, i = 1, ..., p.
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Let g∗ be the mixture density

g∗(z) =
Z

φ(z−ν)dG(ν).

Then from Brown (1971) equation (1.2.2), we have that the Bayes procedure, denotedδG, sat-
isfies

δG(z) = z+
g∗

′
(z)

g∗(z)
;

hereg∗
′
(z) is the derivative ofg∗(z). The estimator that we suggest forδG, is of the form

δ̂h(z) = z+
ĝ∗

′
h (z)

ĝ∗h(z)

where ĝ∗
′

h (z) and ĝ∗h(z) are appropriate kernel estimators for the densityg∗(z) and its derivative
g∗

′
(z). The subscripth denotes the bandwidth of the kernel estimator. We will use a normal kernel.
Let h > 0 be a bandwidth constant. Then define the kernel estimator

ĝ∗h(z) =
1
nh∑φ(

z−Zi

h
).

Its derivative is:

ĝ∗
′

h (z) =
1
nh∑ Zi −z

h
×φ(

z−Zi

h
).

In Brown and Greenshtein (2009), it is suggested to let the bandwidth converge slowly to zero as
p→ ∞, they suggested thath2 should approach zero ‘just faster’ than 1/ log(p). In the simulations
and real data analysis in this paper, we appliedh = 0.3≈ 1/

√

log(p), which is in agreement with
that suggestion for the range of features’ dimensionsp that we study. The choiceh= 1/

√

log(p) is
also suggested in Brown and Greenshtein (2009) as a ‘default’ choice.A more careful choice could
involve, for example, cross validation. However, the results are not too sensitive to the choice.

3.2 The Empirical Bayes Classifier

We now define our Empirical Bayes classifier.
Let

ν̂i = δ̂h(Zi), i = 1, ..., p.

Let

âi =
ν̂i

√

∑ j ν̂2
j

i = 1, ..., p.

In order to fully define our classifier, we should still define the parameter ˆa0, given â1, ..., âp.
We do it for the case of 0-1 loss and equal prior probabilities for each class. An obvious way is the
following. Let θ̂1 = 1

n ∑n
i=1 ∑p

j=1 â jXi j , where the summation is over then examples(Yi ,Xi1, ...,Xip)

for whichYi = −1. Similarly defineθ̂2.
Let,

â0 = − θ̂2 + θ̂1

2
.

where we assume w.l.o.g. thatθ̂1 < θ̂2.
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3.3 Unknown Heteroscedastic Variances

Consider now the case where the standard deviation, denotedsj , of Xj are unknownj = 1, ..., p.
We now introduce a superscriptk = 1,2 to denote quantities associated with the data corresponding
to Y = −1 andY = 1. Denote by ˆsk

j the usual estimates of the standard deviation ofXk
j . The

estimates are based on the correspondingXk
i j , k = 1,2, i = 1, ...,nk, j = 1, ..., p. DenoteX̄1

j andX̄2
j

the corresponding means.
Let

Ŝj =

√

(ŝ1
j )

2

n1
+

(ŝ2
j )

2

n2
,

thusŜj is our estimator for the standard deviation ofX̄1
j − X̄2

j .
Let

Z j =
X̄1

j − X̄2
j

Ŝj
;

note, we expect that the variance ofZ j is approximately 1,j = 1, ..., p.
As before let̂νi be the empirical Bayes estimators ofE(Zi), and letâi = ν̂i

√

∑ j ν̂2
j

, i = 1, ..., p.

In the following we proceed in terms of the variables

U j =
Xj

Ŝj
j = 1, ..., p.

We will represent our linear classifiers as linear functions ofU j , j = 1, ..., p.

Let

θ̂k =
1
nk

nk

∑
i=1

p

∑
j=1

â jU
k
i j , k = 1,2.

Let

â0 = − θ̂2 + θ̂1

2
.

Finally, our classifier is:

sign(
p

∑
j=1

â jU j + â0).

4. Simulations and Data Analysis

In this section, we present numerical studies including simulations and application to three sets of
real data.

4.1 Simulations

The simulation study in this subsection is based on the procedure described inSection 3.1. We
present simulations forp = 105 and forp = 104, under various configurations in whichτ j = 0, j =
1, ..., p. We study sparse configurations where forl variables the corresponding mean is fixedν j = ∆,
while the remainingp− l variables haveν j = 0, p ≫ l . We also study a non-sparse version of
the above where the remainingp− l variables have meansν j which are randomly selected from
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N(0,0.12). The small variance of the normal distribution is in order to control the magnitude of
||ν||; recall from the introduction, we wantp≫ ||ν||. Thus a configuration is determined by(∆, l),
the correspondingp, and whether thep− l coordinates, whose means are not equal to∆, are set to
be equal to zero or, alternatively get their values randomly based on aN(0,0.12) distribution.

We consider the case wheren = 25, and a rescale under which the variance ofZ j is σ2 = 1,
j = 1, ..., p. Thus, the variance ofXj is s2 = 25/2, and the same for the variance of∑a jXj , when
∑a2

j = 1. The distributionXj is normal throughout this section, except for the simulations reported
in Table 5. In Table 5 the effect of a heavy tailed distribution variablesXj is studied.

Table 1 shows the misclassification rates of the empirical Bayes, conditional MLE, FAIR, and
the plug in Fisher’s rule which is also termed IR (Independence Rule). Theplug in Fisher’s refers
to plugging inZ j for ν j , j = 1, ..., p, in Fisher’s rule. We see that the empirical Bayes approach
produces the best results for non-sparse and for moderately sparseconfigurations. The CMLE is
better for strongly sparse configurations. The version of FAIR we areusing is described in Theorem
4 of Fan and Fan (2008). It performs similar to IR, since it selects too many variables. Fan and Fan
(2008) describe another version of FAIR in their equation (4.3), this other version screens variables
more aggressively and involves computation of eigenvalues of the empiricalcovariance matrix. That
more aggressive version might perform better in our simulation, yet it is motivated for cases where it
is not known that the covariance matrix is of the formσ2I (which is used in most of our simulations).
In addition, computing eigenvalues for empirical covariance matrix withp= 105 is computationally
intensive. In the real data analysis, with unknown covariance matrix, the other version of FAIR is
used.

Each entry is based on simulatedZ1, ...,Zp, and on calculating the exact theoretical misclassifi-
cation rate. Note, given the estimators ˆa j j = 0,1, ..., p, for a given simulated realization, the the-
oretical misclassification error, under equal prior probability for each class, is1

2Φ((−∑p
j=1 â jµj −

â0)/s)+ 1
2(1−Φ((−∑p

j=1 â jτ j − â0))/s).

In order to demonstrate the effect of dependence and to compare the methods for correlated vari-
ables, we also consider correlated normal variables where the correlation of Xi andXj , namelyρi j ,
has the form ofρ|i− j| known as AR(1) model. Here, the corresponding misclassification probabili-
ties are1

2Φ((−∑p
j=1 â jµj − â0)/

√
â′Sâ)+ 1

2(1−Φ((−∑p
j=1 â jτ j − â0))/

√
â′Sâ), for the appropriate

covariance matrixS.

Table 2 presents misclassification rates under different values ofρ. The empirical Bayes still
achieves the lowest error rates for all those non-sparse configurations. The reported entries are
averages of the 100 error rates corresponding to 100 realizations andcorresponding estimators ˆa j

for the particular configuration(∆, l) or (∆1, l1,∆2, l2) where(∆1, l1,∆2, l2) means thatl1 and l2
coordinates inν are all valued∆1 and∆2 correspondingly, while the remaining entries are all zero.

In Table 3 we present simulation results under the following correlation structure which is much
heavier than that of AR(1). We consider correlationscorr(Xi ,Xj) = ρi j = αiα j for i 6= j which is

easily implemented by lettingXi = τi(or µi)+
√

1−α2
i Wi + αiU whereWi ’s 1 ≤ i ≤ p andU are

generated independently fromN(0,s2). In our simulations, allα′
is are generated fromU(−a,a)

wherea = 0.3,0.5, 0.7 and 0.9 are considered. Asa increases, variables are more correlated. Table
3 shows misclassification probabilities for configurations of(∆, l) or (∆1, l1,∆2, l2) as in Table 2.

In general the effect of correlation (especially heavy positive correlation) on the EB classifi-
cation method is stronger than on the other methods. This is partially because theEB uses more
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p = 104

p− l ∆’s are 0 p− l ∆’s ∼ N(0,0.12)
(∆, l) EB CMLE FAIR IR EB CMLE FAIR IR
(1.0, 2000) *0.0003 0.0091 0.0052 0.0052 *0.0000 0.0082 0.0049 0.0049
(1.0, 1000) *0.0396 0.1309 0.0906 0.0905 *0.0162 0.1182 0.0854 0.0852
(1.0, 500) *0.2006 0.3243 0.2475 0.2474 *0.1055 0.3139 0.2341 0.2339
(1.5, 300) *0.1172 0.1891 0.1805 0.1806 *0.0657 0.1771 0.1679 0.1680
(2.0, 200) *0.0521 0.0868 0.1413 0.1416 *0.0340 0.0813 0.1315 0.1318
(2.5, 100) *0.0529 0.0631 0.1985 0.1990 *0.0396 0.0632 0.1863 0.1867
(3.0, 50) 0.0641 *0.0604 0.2677 0.2682 *0.0518 0.0583 0.2532 0.2536
(3.5, 50) 0.0113 *0.0099 0.2019 0.2025 *0.0093 0.0095 0.1893 0.1898
(4.0, 40) 0.0042 *0.0033 0.1933 0.1939 0.0039 *0.0034 0.1807 0.1812

p = 105

p− l ∆’s are 0 p− l ∆’s ∼ N(0,0.12)
(∆, l) EB CMLE FAIR IR EB CMLE FAIR IR
(1.0, 2000) *0.1444 0.2717 0.1896 0.1894 *0.0077 0.2364 0.1542 0.1539
(1.0, 1000) *0.3100 0.3952 0.3294 0.3293 *0.0367 0.3721 0.2792 0.2789
(1.0, 500) *0.4067 0.4552 0.4122 0.4121 *0.0702 0.4408 0.3567 0.3565
(1.5, 300) *0.3643 0.3868 0.3817 0.3818 *0.0628 0.3744 0.3278 0.3278
(2.0, 200) *0.3071 0.2865 0.3609 0.3611 *0.0522 0.2727 0.3080 0.3081
(2.5, 100) 0.3009 *0.2275 0.3901 0.3903 *0.0560 0.2261 0.3358 0.3359
(3.0, 50) 0.3006 *0.1887 0.4202 0.4204 *0.0597 0.1886 0.3649 0.3649
(3.5, 50) 0.1521 *0.0474 0.3927 0.3929 *0.0263 0.0507 0.3387 0.3388
(4.0, 40) 0.0792 *0.0162 0.3876 0.3879 *0.0121 0.0157 0.3339 0.3340

Table 1: Misclassification error rates by Empirical Bayes, conditional MLE(Greenshtein et al.
2009), FAIR (Fan and Fan 2008) and Fisher’s rule (i.e., without variable selection)) . Error
rate with * represents minimum error rate in the row for the corresponding configuration.

variables, so more correlations are in effect, relative to variable selectionmethods that screen vari-
ables and consequently their correlations do not effect.

In Table 4, we compare the above mentioned procedures in non sparse setups where there are
many small signals. In all the configurations there is ’enough overall signal’ to make virtually no
classification error ifµ andτ were known. In those configurations the optimal (unknown) linear
classifiers uses most (or all) of the variables. However, attempting to estimate the corresponding
means by FAIR or Fisher’s plug-in and the Conditional MLE methods yield poor classifiers, while
the non parametric empirical Bayes method yields classifiers with excellent performance in some
cases.

In Table 5, we present simulation studies forXjs with a heavy tailed distribution. As before
n1 = n2 = 25. UnderG1 the distribution ofXj is c× t(3) (i.e., t with 3 degrees of freedom),j =
1, ..., p wherec is chosen so that the variance ofXj is s2 = 25/2. UnderG2 the distribution ofXj is
ν j +c×Xj , whereXj is distributedt(3), j = 1, ..., p. Thus, the correspondingZ j has variance 1 and
it is only approximately normal. We study the configurations(∆, l) = (1,2000),(2.5,100),(3.5,50)
and(4,40), which were also studied in Table 1. The misclassification rates are obtained based on
test sets of size 1000, 500 from eachGi , i = 1,2. As seen in Table 5, the EB method and CMLE still
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(∆, l) = (1,2000), p− l ∆ ∼ N(0,0.12)
p = 104 p = 105

ρ EB CMLE FAIR IR EB CMLE FAIR IR
0.3 *0.0014 0.0158 0.0131 0.0119*0.0216 0.2532 0.1801 0.1777
0.5 *0.0082 0.0355 0.0315 0.0303*0.0487 0.2723 0.2177 0.2175
0.7 *0.0391 0.0850 0.0798 0.0797*0.1094 0.3149 0.2765 0.2781
0.9 *0.1679 0.2256 0.2166 0.2176*0.2508 0.3888 0.3703 0.3721

(∆1, l1,∆2, l2) = (2.5,100,1,1000) andp− l1− l2, ∆′s∼ N(0,0.12)
p = 104 p = 105

ρ EB CMLE FAIR IR EB CMLE FAIR IR
0.3 *0.0051 0.0261 0.0295 0.0301*0.0320 0.1904 0.2164 0.2175
0.5 *0.0182 0.0478 0.0553 0.0575*0.0637 0.2071 0.2517 0.2546
0.7 *0.0609 0.1011 0.1161 0.1206*0.1282 0.2511 0.3050 0.3092
0.9 *0.2022 0.2401 0.2544 0.2594*0.2628 0.3434 0.3819 0.3902

(∆1, l2,∆2, l2) = (3.5,50,1,1000) andp− l1− l2 ∆′s∼ N(0,0.12)
p = 104 p = 105

ρ EB CMLE FAIR IR EB CMLE FAIR IR
0.3 *0.0030 0.0162 0.0297 0.0305*0.0173 0.0647 0.2169 0.2183
0.5 *0.0125 0.0357 0.0564 0.0590*0.0408 0.0879 0.2520 0.2552
0.7 *0.0501 0.0856 0.1165 0.1215*0.0966 0.1410 0.3051 0.3095
0.9 *0.1825 0.2143 0.2554 0.2612*0.2397 0.2748 0.3880 0.3913

Table 2: Dependent case I :Corr(Xi ,Xj) = ρi j = ρ|i− j| for ρ = 0.3,0.5 and 0.7. (∆1, l1,∆2, l2)
representsl1 andl2 coordinates inν are∆1 and∆2 respectively.

produce smaller error rates compared to FAIR and IR. However, compared to the results in Table
1, the EB method and CMLE have a worst performance which is caused by some sensitivity to the
heavy tailed distribution of theXjs.
Summary: The most important advantage of the EB classifier, demonstrated in the above simula-
tions, is its ability to use the information provided by many small signals in order to improve the
classification. This is unlike variable-selection type of classifiers, that give up on using the informa-
tion from variables with smallν j , in order to reduce the variability in estimation. This advantage is
not on the expanse of being a good classifier also under moderately sparse configurations.

4.2 Real Data Analysis

The following analysis of real date sets is based on the procedure described in Section 3.2. We con-
sider three real data sets and compare the empirical Bayes approach with nearest centroid shrunken
(henceforth NSC), and FAIR. The NSC was proposed by Tibshirani et al. (2002). The three data
sets were studied by Fan and Fan (2008), and all the misclassification rates, other than that of the
empirical Bayes method, are cited from that paper.

The first example is of a leukemia data set, which was previously analyzed in Golub et al.
(1999). The data set can be obtained inhttp://www.broad.mit.edu/cgi-bin/cancer/datasets.
cgi. There arep = 7129 genes and 72 samples generated from two classes, ALL (acute lympho-
cytic leukemia) and AML (acute mylogenous leukemia). Among the 72 samples, thetraining data
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(∆, l) = (1,2000), p− l ∆ ∼ N(0,0.12)
p = 104 p = 105

a EB CMLE FAIR IR EB CMLE FAIR IR
0.3 *0.0326 0.1114 0.1138 0.1150*0.2756 0.4160 0.4058 0.4075
0.5 *0.1415 0.2405 0.2468 0.2487*0.3059 0.4426 0.4438 0.4453
0.7 *0.1947 0.3145 0.3243 0.3284*0.4038 0.4582 0.4783 0.4795
0.9 *0.2370 0.3586 0.3889 0.3961 0.4868 *0.4583 0.4817 0.4837

(∆1, l1,∆2, l2) = (2.5,100,1,1000) andp− l1− l2, ∆′s∼ N(0,0.12)
p = 104 p = 105

a EB CMLE FAIR IR EB CMLE FAIR IR
0.3 *0.0585 0.1051 0.1577 0.1639*0.2712 0.2757 0.4102 0.4127
0.5 *0.1940 0.2225 0.3099 0.3156 0.3532 *0.3123 0.4669 0.4682
0.7 *0.2468 0.2588 0.3684 0.3760 0.4181 *0.3402 0.4781 0.4795
0.9 *0.2803 0.2543 0.3997 0.4093 0.4765 *0.3418 0.4815 0.4828

(∆1, l1,∆2, l2) = (3.5,50,1,1000) andp− l1− l2 ∆′s∼ N(0,0.12)
p = 104 p = 105

a EB CMLE FAIR IR EB CMLE FAIR IR
0.3 0.0479 *0.0469 0.1672 0.1740 0.2656 *0.1481 0.4189 0.4215
0.5 0.1711 *0.1272 0.3064 0.3125 0.2883 *0.1617 0.4513 0.4646
0.7 0.1730 *0.1300 0.3540 0.3629 0.3890 *0.1801 0.4820 0.4835
0.9 0.2486 *0.1424 0.3756 0.3882 0.4794 *0.2167 0.4867 0.4882

Table 3: Dependent case II :Corr(Xi ,Xj) = ρi j = αiα j for i 6= j whereαi andα j are generated from
Uni f (−a,a) for a= 0.3,0.5, 0.7 and 0.9. (∆1, l1,∆2, l2) representsl1 andl2 coordinates in
ν are∆1 and∆2 respectively.

set has 38 (n1 = 27 in ALL andn2 = 11 in AML) and the test data set has 34 (20 in ALL and 14
in AML). Table 6 shows the results of the nearest shrunken centroid, FAIR, and empirical Bayes
methods.

The empirical Bayes approach misclassified 3 out of 34 test samples which isthe same result as
NSC, but slightly worse than FAIR. Figure 1 shows histograms of∑ j â jU j corresponding to the two
groups, under the training and under the test sets.

The second example is of lung cancer data which were previously analyzed by Gordon et
al. (2002) and analyzed using FAIR in Fan and Fan (2008). The data is available athttp:
//www.chestsurg.org. There arep = 12533 genes and 181 samples coming from two classes,
MPM(malignant pleural mesothelioma) and ADCA(adenocarcinoma). The training sample set con-
sists of 32 samples(n1 = 16 from MPM andn2 = 16 from ADCA) and the test has 149 samples (15
from MPM and 134 from ADCA). As displayed in Table 7, the empirical Bayes method classified
all the training samples correctly and 148 out of 149 test samples correctly,which is a significant
improvement compared to NSC and FAIR. In Figure 2, we show histograms of∑ â jU j under the
two groups, for the training and for the test sets.

The last example is of prostate cancer data studied by Singh et al. (2002),which is available
athttp://www.broad.mit.edu/cgi-bin/cancer/datasets.cgi. The training data set has 102
samples,n1 = 52 of which are prostate tumor samples andn2 = 50 of which are normal samples. An

1698



NON PARAMETRIC EMPRICAL BAYES IN HIGH DIMENSIONAL CLASSIFICATION

p = 104, p− l ∆’s are 0
(∆, l) EB CMLE FAIR IR
(0.2, 104) *0.0066 0.4103 0.2900 0.2896
(0.1, 104) *0.1678 0.4831 0.4448 0.4447
(0.2, 5×103) *0.1546 0.4594 0.3905 0.3902
(0.1, 5×103) *0.3725 0.4931 0.4720 0.4719

p = 105, p− l ∆’s are 0
(∆, l) EB CMLE FAIR IR
(0.2, 105) *0.0000 0.0947 0.0415 0.0411
(0.1, 105) *0.0004 0.4437 0.3301 0.3297
(0.2, 5×104) *0.0002 0.3314 0.1907 0.1902
(0.1, 5×104) *0.1181 0.4779 0.4128 0.4126

Table 4: Non-sparse case

p = 104

p− l ∆’s are 0 p− l ∆’s ∼ N(0,0.12)
(∆, l) EB CMLE FAIR IR EB CMLE FAIR IR
(1.0, 2000) 0.0350 0.1855 0.0152 *0.0149 0.0267 0.2126 0.0084 *0.0081
(2.5, 100) 0.1888 *0.1639 0.2121 0.2123 *0.1576 0.1600 0.1959 0.1969
(3.5, 50) 0.0994 *0.0791 0.2111 0.2112 0.2045 *0.1967 0.2643 0.2650
(4.0 ,40) 0.0744 *0.0640 0.2050 0.2055 0.0714 *0.0681 0.1933 0.1939

p = 105

p− l ∆’s are 0 p− l ∆’s ∼ N(0,0.12)
(∆, l) EB CMLE FAIR IR EB CMLE FAIR IR
(1.0, 2000) 0.4331 0.4385 0.2179 *0.2170 0.2667 0.4325 *0.1886 0.1897
(2.5, 100) 0.4335 0.4155 *0.4018 0.4018 *0.3115 0.3926 0.3518 0.3517
(3.5, 50) 0.3661 *0.3365 0.4027 0.4023 *0.2966 0.3560 0.3562 0.3562
(4.0 ,40) 0.3528 *0.3282 0.4017 0.4023 *0.2815 0.3202 0.3544 0.3542

Table 5: Heavy tail case.

Method Training error Test error
Nearest shrunken centroids 1/38 3/34

FAIR 1/38 1/34
E.B. 0/38 3/34

Table 6: Classification errors of Leukemia data set

Method Training error Test error
Nearest shrunken centroids 0/32 11/149

FAIR 0/32 7/149
E.B. 0/32 1/149

Table 7: Classification errors of Lung Cancer data set
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Figure 1: Histograms of∑ j â jU j of ALL and AML for training and test sets of Leukemia data. Two
panels in the first columns are histograms for ALL and AML from training setsand two
in the second columns are for ALL and AML from test sets. Red vertical lines in all
histograms represent cut off value which is−â0 = (θ̂ALL + θ̂AML)/2 = −15.10
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Figure 2: Histograms of∑ j â jU j of ADCA and MPM for training and test sets of lung cancer data.
Two panels in the first columns are histograms for ADCA and MPM from training sets
and two in the second columns are for ADCA and MPM from test sets. Red vertical lines
in all histograms represent cut off value which is−a0 = (θ̂ADCA+ θ̂MPM)/2 = 27.54.
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Method Training error Test error
Nearest shrunken centroids 8/102 9/34

FAIR 10/102 9/34
E.B. 38/102 4/34

Table 8: Classification errors of Prostate Cancer data set

−500 0 500 1000 1500
0

5

10

15

20
training, normal

−1500 −1000 −500 0 500 1000
0

5

10

15

20
test, normal

−500 0 500 1000 1500
0

5

10

15

20
training, tumor

−1500 −1000 −500 0 500 1000
0

5

10

15

20
test, tumor

Figure 3: Histograms of∑ j â jU j of normal and tumor for training and test sets of prostate cancer
data. Two panels in the first columns are histograms for normal and tumor from training
sets and two in the second columns are for normal and tumor from test sets. Red verti-
cal lines in all histograms represent cut off value which is−a0 = (θ̂normal+ θ̂tumor)/2 =
213.68.

independent test data set, from a different experiment, has 25 tumor and9 normal samples. There
arep = 12600 genes.

As displayed in Table 8, for the prostate cancer data, the empirical Bayes approach has a very
large training error compared to NSC and FAIR, but the test error is smallerthan both NSC and
FAIR. Thepessimismof the misclassification error, reflected by our training set, may be attributed
to two facts. One is the difference in the proportion of tumor and normal samples in the training
versus the test set. The other reason is that the test set seems to be less noisy. It seems that the
empirical Bayes method succeed in estimatingν j and hence deriving good coefficients ˆa j from the
large training data although it is noisy; yet, the classification of the individualdata points of the
noisy training set is still difficult, while the classification is easier for the test set data points. Figure
3 might be helpful in assessing it. In the histograms of∑ j â jU j corresponding to the normal and
tumor groups from the training data, we may see that the two training sets look noisier.
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Figure 4: Histograms of ˆa j , j = 1, ..., p, for the leukemia, lung cancer, and prostate cancer data sets.
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Figure 5: Histograms of the first 50 largest|â j | for the leukemia, lung cancer, and prostate cancer
data sets.

4.3 Number of Selected Variables

Figure 4 shows the histograms of ˆa j , j = 1, ..., p for each data set. In Figure 5 we see three his-
tograms corresponding to the fifty largest|â j |, j = 1, ..., p, in each of the three data sets. Our
empirical Bayes method uses many variables for the classification. In fact, formally it uses all the
variables, since none of the ˆa j is exactly 0. In comparison the FAIR uses 11, 31, and 2 variables
corresponding to the above three cases in the order they presented, while the NSC uses 21, 26, 6.

Obviously a method which is based on a few variables is easy to implement and to interpret.
Our suggested classifiers are meant only to produce good classification and thus use many variables
if necessary. Using many variables and somewhat complicated classifiers isin the spirit of data
mining approach. However, selecting a subset of variables following an empirical Bayes estimation
of the means, makes much sense, for producing simpler classifiers. It mighteven reduce noise and
will produce over all better classifiers.
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