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Abstract

We consider the problem of classification using high dimemeii features’ space. In a paper by
Bickel and Levina (2004), it is recommended to use naiveeBaglassifiers, that is, to treat the
features as if they are statistically independent.

Consider now a sparse setup, where only a few of the feattedsfarmative for classification.
Fan and Fan (2008), suggested a variable selection andfickssn method, called FAIR. The
FAIR method improves the design of naive-Bayes classifiesparse setups. The improvement is
due to reducing the noise in estimating the features’ mea@his reduction is since that only the
means of a few selected variables should be estimated.

We also consider the design of naive Bayes classifiers. We it a good alternative to
variable selection is estimation of the means through aitenon parametric empirical Bayes pro-
cedure. In sparse setups the empirical Bayes implicitljopers an efficient variable selection.
It also adapts very well to non sparse setups, and has thetadeaof making use of the infor-
mation from many “weakly informative” variables, which iavle selection type of classification
procedures give up on using.

We compare our method with FAIR and other classification wdghin simulation for sparse
and non sparse setups, and in real data examples invohdssifitation of normal versus malignant
tissues based on microarray data.

Keywords: non parametric empirical Bayes, high dimension, classifina

1. Introduction

We consider the problem of finding a classifier for a response vaiablé—1,1} based on a vector
(X1,...,Xp) € RP of explanatory variables.

Suppose we have a ‘training set’ (or a sampleppéxampleqY;, Xi1,...,Xip), i = 1,...,ny, for
whichY; = —1, and additionah, examplegY;, X1, ..., Xip), i =n1+1,...,n 4+ ny, for whichY; = 1.
We assume that thg + n, observations are independent. In what follows we assume for simplicity
thatny =n,=n.

Our study is aimed to understand and suggest a good classification pre@dada high di-
mensional setup. Here, by high dimensionality we meas n. There are many examples in
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contemporary statistical applications whegre> n. We mention that of microarray data where the
dimensionality is typically of thousands, while the sample size is of the orderzeiomor hundreds.

In particular we focus on linear predictors 6y which are of the form:

. p
Y =sign ajXj+ao |,
(o)

whereap, ay, ..., ap are constants.

Suppose the distribution of the explanatory variables, conditiondl en—1 and onY =1, is
G1 andG; correspondingly, wher&; are multivariate normalis= 1,2. Assume that the covariance
matrices ofG;, i = 1,2 are the same. Then the optimal classifier is Fisher’s rule. However when th
common covariance matrix as well as the vectors of means gdandG, are unknown, we can
not apply Fisher's rule. Whem>> p, the naive approach, of estimating the unknown quantities and
plug-in to Fisher’s rule, would work well. It is impractical whens- n. A practical solution, called
‘naive Bayes' is to neglect estimation of the off diagonal elements in therieméa matrix (or to
estimate them trivially) by setting those values to be 0. Then apply Fisher'syuhigging in the
estimated diagonal covariance matrix and the estimated vectors of meang.aBitkevina (2004)
showed that in many cases, by this trivial estimation of the covariance matexdoes not lose
too much in terms of classification error, relative to incorporating the truar@mce matrix, and
suggested this practice. Note, the bottom line of this practice is to treat thenatqriavariables as
if they are independent, or act “assuming” independence of the exptsinariables. We will also
refer in the sequel to Fisher’s rule as the Independence Rule, or IR.

It was pointed out independently by Fan and Fan (2008) and by Gregmet al. (2009), that
even in the independent case, whges- n, estimating the vector of means un@rand undeG; by
the corresponding sample averages, could lead to a very weak estirsiitting in a corresponding
classifier with virtually no classification power (see Theorem 1 in Fan an@6@8, and Propaosition
1 of Greenshtein et al. 2009). This is also in cases where there existzdaigear classifier.
In other words, often, attempting to estimate thecordinates of the two mean vectors, by the
corresponding averages iwbbservations on each, is already “too much”, and leads to overfit. The
FAIR approach suggested by Fan and Fan (2008), and the conditidiiahpproach suggested by
Greenshtein et al. (2009), are based on variable selection technadloggef] by estimation of the
mean of the selected explanatory variables, while ignoring the others (itenggke corresponding
coefficients of the linear classifier to be equal to zero). The FAIR methimiaes the means of
the selected variables by the corresponding sample means (the MLE), wehiterillitional MLE
method estimates by the conditional MLE, conditional on the event that thélesiaere selected.
The above approaches are helpful especially in a high dimensionakspetup, while the non
parametric Empirical Bayes approach that we will present is helpful alsonrsparse setups. Let
p andt be the vectors of means und8t andG; correspondingly; here ‘sparse’ setup means that
the vector

is sparse. A ‘sparse’ setup is such, that relatively few of the explanaswiables are informative
for the classification.
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1.1 On Types of Sparsity

The term sparse vector is only loosely defined in the literature, and we il Reme of the am-
biguity. However, by a sparse vectorwe mean that most of its coordinates @&eactly zero.
Throughout our study we consider only vectorsuch that theit, norm||v||, is much smaller than
their dimension, say|v|| = o(p). The last conditiomloes notmply sparsity under our terminology.

We concentrate on configurations such thdt = o(p), since that ap — o, when letting|v|| =
O(p), any reasonable procedure would achieve asymptotically (virtuallyyae@assification rate.
We are interested in the cases when there is not enough signal to malkegpeeict classification,
that is,p > ||v||. In our simulation, we achievp > ||v||, by considering the following three types
of configurations for vectorgv||:

(a) Very few non-zero coordinates of a large/moderate magnitude (iagsespectors)

(b) Very few coordinates of a large magnitude, mixed with many very smalidouates (i.e.,
non-sparse vectors).

(c) Many coordinates of a very small magnitude (i.e., non-sparse vigctors

In sparse configurations, our EB procedure is comparable to the athmadures. Specifically, it is
better in moderately sparse setups, while in extremely sparse cases, itig.imfeleed, when there
are only a few relevant variables, naturally methods which are baseariafle selection would do
well. In non-sparse configurations our EB procedure is clearly @dgaous in simulations. This is
in line with the theoretical results in Brown and Greenshtein (2009), andng diad Zhang (2007),
on optimality of non-parametric empirical Bayes in estimation of high dimensiortadxieemely
sparse normal mean vectors, coupled with the relation between estimatioaasification as
explained in Section 2.

The above mentioned results, join a huge body of literature on EmpiricalsBsigeting with
Robbins (1951), see the surveys by Copas (1969) and by Zhar@)(2Bee also a recent paper
by Greenshtein and Rotov (2009) on efficiency of compound and emidgas procedures with
respect to the class of permutation invariant procedures. A recentrebensive study and per-
formance comparison, of various methods for estimating a vector of nornaisnender squared
error loss, was conducted by Brown (2008), the very good perfocmaf non parametric empiri-
cal Bayes methods is demonstrated also there. Our approach is relatad tod@pendent of) the
approach in Efron (2009), where EB estimation method is used to obtainoipssifiers.

We will introduce and explain the virtues of our empirical Bayes classificatiethod and
provide simulation evidence as well as real data evidence to its excelldotmance. We will
compare the performance of our Empirical Bayes classifiers to that &® FP&n and Fan, 2008),
conditional MLE (Greenshtein et al. , 2009), NSC (Tibshirani et al. Z0and plug in Fisher’s
rule.

The outline is the following. In the next section we introduce our formal satdbexplain the
relation between estimating a vector of means under a squared loss aificatéss. In Section 3
we introduce a class of non-parametric empirical Bayes estimators of a eéctrmal means and
define our classifier. In Section 4 we demonstrate the performance ofassifier on simulated as
well as real data.
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2. Preliminaries

Assume a multivariate normal distribution of the vect, ..., Xp) conditional on the value of
Y. Specifically, we assumeXj|Y = —1) ~ N(yj,s%) and (Xj|Y = 1) ~ N(t,s?) independently,
j=1,...,p. We will assume that the variane®is known. Denotet = (lg, ..., Hp), T= (T1,...,Tp).

In considering linear classifiers, when bgilandn are large it is robust to assume normality of
(X4, ...,Xp) by the central limit theorem. Due to Lindberg’s CLT, largemplies thaty a;X; will
be close to normal, whea; are comparable in size, even if the individuglare not normal. In
addition, largen implies that averages of independefit, i = 1,...,n (as inZ;, which is defined
in the sequel) are close to normal. The CLT arguments are problematic whXpsthave heavy
tails. In Table 5 of Section 4 some simulations are carried to demonstrate tbeddffecavy tailed
distributions.

When searching for values= (ay, ...,ap) that determine a ‘good’ linear classifier, we assume
w.l.o.g. that|al® = zf’zlajz = 1. In this case the optimal choice (dy, ...,ap) is the vector that
maximizes| y ajl; — Y a;Tj|. Note that the optimal choice @, ...,a, is the same regardless of
the misclassification loss (the valuea@f does depend on the loss). In order to see it, observe that
5 ajXj ~ N(3 ajyj,s%) = N(61,5%) conditional onY = —1 andy a;Xj ~ N(3 a;1,5?) = N(8,,5?)
conditional onY = 1; here6;, = 1,2 are implicitly defined. Hence, an optimal choicesgf...a is
such that

V:V(al,...,an)z|Zajuj—zajrj\:]91—92] (1)
] ]
is maximized. This implies that the coordina&%’gt of the optimal choice satisfy:

Pt Vi i=1..p; (2)

J 2’
V2 Vi
recallv; = —1j.

Under a 0-1 loss, given any choice (@, ..., ap), the corresponding minmax choiceafis

8, +6;
2
This is also the Bayes solution assuming a price 0.5 for each class. The optimal choiceaf
for none-equal losses and priors is straightforward.

A formal argument showing that the optimal, ...,a, is the same regardless of the misclas-
sification loss may be obtained using the theory of comparison of experinimplyjng that the
experiment that consists of the distributidd;,s?) andN(6,,s?), dominates the experiment that
consists of the distributiord(6/,s*) andN(6),s?) if and only if |8, — 8,| > |6} — 6,|. See Lehmann
(1986, p. 86), for some basic theory on comparison of experimentsoamel additional references.

By the above discussion there is a natural order relatidretween two classifiers determined
by aanda’. We say thati < & if for the correspondin@; and6;,

V =16y — 8] > |6, — B =V’ 3)

Note, here/ =V (ay,...,ap), is a function of(ay, ..., ap).
By (2),V(&",...,ap™) = ||v||, consequently for the optimal choie§™, the Bayes risk is:

o) @

where® is the cumulative distribution of a standard normal distribution.
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2.1 Summary

The goal of finding the optimal classifier whep, j = 1,..., p are unknown, is not practical. How-
ever we want to find a classifier with a corresponding ‘large’ value of V.

Note, in statistical inference the choiceayf j = 1,..., p depends on the data. The dependence
on the data is through the vector

Z=(Zy,...,2p); here, fom=n; =ny

n - 2n -
ZJ — ZI:li _ ZI:I’I+1X” ’ J —_ l,...,

. - P, (5)

are independent normal random variables i&ff) = vj and variance, denotezf,

282
o?=""

n

(6)

Thus, depending on the particular procedure the selected vahjedepends oy, ...,Zp, and
it is a random variable denotex, j = 1,..., p.
Equation (3), motivates us to search for procedures with high value of

p
EO/)IZE‘}EéﬁV”.
=1

Thus we extend the definition of the order relation, to apply to two statisticeépwega; }, j =
1..,p, and{é’j}, i=1..p

Definition 1: We say thal{é’j}, j=1,...,p, dominatesg;}, j =1,..., p, if for the correspond-
ingV’'andVv, E(V') > E(V).

Remark 1: Evaluating a proceduia j = 1, ..., p, by its corresponding valug(V ), is simplistic,
for example, it ignores the effect of the standard deviation of V on thai@ilzegion error. However,
in high dimensional setup one might hope that the standard deviativhi®fsmall compare to
E(V). Otherwise, one might perceive it as a convenient approximate evaludtiot® however,
that for two procedures with very accurate classification rate, ignorimgahiability ofV might be
significantly misleading even E(V) is large compare to the standard deviatioWothis is due to
the thin tail of the normal distribution.

2.2 On the Relation Between Estimating the Mean Under a Squared Lossd Classification

Since the optimal choice @f;, j =1,...,p, isa’™ = —4

J VE;?’

v by a ‘good’ estimatow; for vj, and then plug-in, that is, let; =

a natural way to proceed is to estimate

Vi

0
‘good’ in the above, depends on the loss function. In the sequel we iltate why the squared
error loss function is especially appropriate.

First we state the obvious. In general, the fact tha a good estimator for under a squared
error loss, does not indicate tHBfV) is a good estimator fof (v) under (say) a squared loss. For
example in the cas€(v) = S vj, plugging in the MLE forv will often be better than plugging in
the James-Stein estimator because of the bias of the J-S estimator which is latedmihis is
although the J-S estimator dominates the MLE in estimatingder a squared error loss. Hence

good properties of the Empirical Bayes as an estimator forder squared loss in high dimensions,

A formal definition of
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do not automatically indicate that it should be plugged-in in order to obtain gstiators foa‘j)pt,
and thus provide good classifiers.
Consider the collection of all vecto(sy, ...,a,) with I norm 1. Define the function

L((ag, . 3p)) = 3 (vj — &)

Then, one may check that on the surface ofgittémensional unit ball,
L(a)=—-2xV(a)+C,

whereC = 1+ ¥ v2, andV is defined in ().

The last equation motivates the particular choice of a squared error s @valuating an
estimato;. This is because of the direct relation between minimi#t(h) to that of maximizing
E(V). MaximizingV is crucial in obtaining a good classifier, as explained in the first part of this
section.

An estimator with particularly appealing properties, in estimation of a vector ohswaader a
squared loss in high dimensions, is the non-parametric empirical Bayes estisggtd@rown and
Greenshtein (2009). We describe it in the following section and then dafingrocedure.

For a giverv the success in obtaining a good classifier has to do with two aspects. Téeitarg
thel, norm ofv the smaller is the misclassification rate of the Bayes procedure, as may hia seen
(4), and typically also the misclassification rate of our EB procedure. The difficult is the task
of estimatingv by our non parametric empirical Bayes method in terms of MSE, the less sfidces
is our classification method. As pointed by a referee, the difficulty/MSE in eStigha by EB is
invariant under translation, while (obviously) thenorm is not. When the vectar is identically
zero (i.e., no signal) the corresponding misclassification rate is 0.5. Thesponding rates for
various translations of the zero-vector may be found in Table 4.

3. Empirical Bayes Classification

In this section, we define our linear classifier for the cases of known soadastic variances and
unknown heteroscedastic variances.

3.1 Known Homoscedastic Variance

In the sequel we rescal, so thatz; defined in (5) will have variance? = 1, j = 1,...,p. This

is possible sincs, the common standard deviationXy, is known see (6). When the variances are
unknown (and not assumed equal) we simply standardize the variablgstligsisample variance.
The extension of this subsection for the latter case and for non equalesampndn; is explicitly
given in the next subsection.

Under the non-parametric empirical Bayes approach for estimating a \watwans, we con-
sider the means; = E(Z), i = 1,...,p, as realizations of i.i.d random variablb, ...,M, dis-
tributedG, whereG is completely unknown. Still, we attempt to approximate the Bayes estimator
of the mean, denotedf (z), by 5(z). Then we estimate; by Vi; = 8(Z).

More formally it is described in the following. L&~ N(M, 1) whereM ~ G, G € G. We want
to emulate the Bayes procedu® based on a samplé,, wZp, Zi ~N(M;, 1), i =1,...,p, where
M; ~ G and theZ; are independent conditional &fy,...,M,,i=1,...,p.
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Let g* be the mixture density
§'(2) = [ @z v)de).

Then from Brown (1971) equation (1.2.2), we have that the Bayesfte, denoted®, sat-
isfies

.9,
5%(2) = z+ 72

hereg* (z) is the derivative ofy*(z). The estimator that we suggest fift, is of the form

I 4 ¢
5h(Z) =Z+ QF:(Z)

wheregd} (2) andd},(z) are appropriate kernel estimators for the dengitfz) and its derivative
g* (2). The subscriph denotes the bandwidth of the kernel estimator. We will use a normal kernel.
Leth > 0 be a bandwidth constant. Then define the kernel estimator

6= -

Its derivative is:

6@ =35 e,
In Brown and Greenshtein (2009), itis suggested to let the bandwidttemmslowly to zero as
p — o, they suggested that should approach zero ‘just faster’ thapldg(p). In the simulations
and real data analysis in this paper, we applied 0.3 ~ 1/,/log(p), which is in agreement with
that suggestion for the range of features’ dimensjptigat we study. The choide=1//log(p) is
also suggested in Brown and Greenshtein (2009) as a ‘default’ choioere careful choice could
involve, for example, cross validation. However, the results are notesitd/e to the choice.

3.2 The Empirical Bayes Classifier

We now define our Empirical Bayes classifier.

Let
0,—8h(zi), I:]_, , P
Let .
a = Vi i=1..p
3 Vf

In order to fully define our classifier, we should still define the paran®fegivend, ..., ap.
We do it for the case of 0-1 loss and equal prior probabilities for eads ckan obvious way is the
following. Let8; = %z{‘zlzle 4;%j, where the summation is over thexampleY;, Xi1, ..., Xip)
for whichY; = —1. Similarly defined..

Let,

7é2+él
>

a =

where we assume w.l.0.g. thit < 6.
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3.3 Unknown Heteroscedastic Variances

Consider now the case where the standard deviation, desgtefiX; are unknownj = 1,..., p.
We now introduce a superscript= 1, 2 to denote quantities associated with the data corresponding
toY = -1 andY = 1. Denote bys'f the usual estimates of the standard deviation(‘bf The
estimates are based on the corresponmhgk =12,i=1..n,j=1..0p. Denote)?j1 and)?j2
the corresponding means.

Let

Let _

§
note, we expect that the variancefis approximately 1j = 1,..., p.
\‘).
| | =

As before let; be the empirical Bayes estimators®fz; ), and letaj = =, i=1..p
vy

In the following we proceed in terms of the variables

X.
U==2 j=1,..,
j 3 J p
We will represent our linear classifiers as linear functionspfj =1,...,p.
Let
b= L3 T &UK k=12
Ok=— qut k=1,
k A ;1 1]
Let "
~ 02+ 61
D=7

Finally, our classifier is:

p
sign(y &Uj+4o).
=1

4. Simulations and Data Analysis

In this section, we present numerical studies including simulations and ajplita three sets of
real data.

4.1 Simulations

The simulation study in this subsection is based on the procedure descriBedtion 3.1. We
present simulations fgqu = 10° and forp = 10%, under various configurations in which=0, j =
1,..., p. We study sparse configurations wherelfeariables the corresponding mean is fixgd-= A,
while the remainingp — | variables havey; = 0, p > |. We also study a non-sparse version of
the above where the remaining- | variables have meang which are randomly selected from
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N(0,0.1%). The small variance of the normal distribution is in order to control the magmitfid
||v||; recall from the introduction, we warmt>> ||v||. Thus a configuration is determined @, 1),
the corresponding, and whether th@ — | coordinates, whose means are not equd,tare set to
be equal to zero or, alternatively get their values randomly based\g0,8.1?) distribution.

We consider the case whene= 25, and a rescale under which the varianc&pfs 02 = 1,
j =1,...,p. Thus, the variance o is L= 25/2, and the same for the variance &, X;, when
zajz = 1. The distributionX; is normal throughout this section, except for the simulations reported
in Table 5. In Table 5 the effect of a heavy tailed distribution varialfleis studied.

Table 1 shows the misclassification rates of the empirical Bayes, conditidra) FAIR, and
the plug in Fisher's rule which is also termed IR (Independence Rule) pltigein Fisher’s refers
to plugging inZ;j for vj, j = 1,...,p, in Fisher’s rule. We see that the empirical Bayes approach
produces the best results for non-sparse and for moderately sjpafégurations. The CMLE is
better for strongly sparse configurations. The version of FAIR weisirg) is described in Theorem
4 of Fan and Fan (2008). It performs similar to IR, since it selects too magbles. Fan and Fan
(2008) describe another version of FAIR in their equation (4.3), thig etirsion screens variables
more aggressively and involves computation of eigenvalues of the emginicaiiance matrix. That
more aggressive version might perform better in our simulation, yet it is atetifor cases where it
is not known that the covariance matrix is of the fosst (which is used in most of our simulations).
In addition, computing eigenvalues for empirical covariance matrix pith10° is computationally
intensive. In the real data analysis, with unknown covariance matrix,tties gersion of FAIR is
used.

Each entry is based on simulatéd ..., Z,, and on calculating the exact theoretical misclassifi-
cation rate. Note, given the estimatassj = 0,1, ..., p, for a given simulated realization, the the-
oretical misclassification error, under equal prior probability for edabs; is%CD((— ZJP:léj Hj —
&0)/9)+3(1-P((— 3§, 4T) —&0))/9).

In order to demonstrate the effect of dependence and to compare thedsfthcorrelated vari-
ables, we also consider correlated normal variables where the comedatp andX;, namelypij,
has the form opli~il known as AR(1) model. Here, the corresponding misclassification pilebab
ties arezd((— 3P, &jj — o) /VEA'SA) + 3 (1 D((— 31, &Tj — &)/ VASA), for the appropriate
covariance matrixs,

Table 2 presents misclassification rates under different valups @he empirical Bayes still
achieves the lowest error rates for all those non-sparse configigatibhe reported entries are
averages of the 100 error rates corresponding to 100 realizationsoamre$ponding estimatoeg ~
for the particular configuratiod,l) or (Ag,l1,42,12) where (Aq,11,A2,12) means that; and
coordinates irv are all valued\; andA; correspondingly, while the remaining entries are all zero.

In Table 3 we present simulation results under the following correlationtateierhich is much
heavier than that of AR(1). We consider correlati@osr (X, X;) = pij = a;a; for i # j which is

easily implemented by lettind; = ti(or 1) + /1 — oW + a;U whereW’'s 1 < i < p andU are
generated independently fron(0,s%). In our simulations, alb/s are generated frord (—a, a)

wherea= 0.3,0.5, 0.7 and 09 are considered. Asincreases, variables are more correlated. Table
3 shows misclassification probabilities for configurationgof ) or (A1,11,42,12) as in Table 2.

In general the effect of correlation (especially heavy positive tatiom) on the EB classifi-
cation method is stronger than on the other methods. This is partially becausB tes more
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p=10

p—IlAsare0 p—I A’s ~N(0,0.1%)

a0 EB CMLE FAIR IR EB CMLE FAIR IR
(1.0, 2000)| *0.0003 0.0091 0.0052 0.0052*0.0000 0.0082 0.0049 0.0049
(1.0, 1000)| *0.0396  0.1309 0.0906 0.0905*0.0162 0.1182 0.0854 0.0852
(1.0,500) | *0.2006  0.3243 0.2475 0.2474*0.1055 0.3139 0.2341 0.2339
(1.5,300) | *0.1172 0.1891 0.1805 0.1806*0.0657 0.1771 0.1679 0.1680
(2.0, 200) | *0.0521 0.0868 0.1413 0.1416*0.0340 0.0813 0.1315 0.1318
(2.5,100) | *0.0529 0.0631 0.1985 0.1990*0.0396 0.0632 0.1863 0.1867
(3.0, 50) 0.0641 *0.0604 0.2677 0.2682*0.0518 0.0583 0.2532 0.2536
(3.5, 50) 0.0113 *0.0099 0.2019 0.2025*0.0093 0.0095 0.1893 0.1898
(4.0, 40) 0.0042 *0.0033 0.1933 0.1939 0.0039 *0.0034 0.1807 0.1812

p=10

p—I|Asare0 p—I A's ~ N(0,0.1%)

a0 EB CMLE FAIR IR EB CMLE FAIR IR
(1.0, 2000)| *0.1444  0.2717 0.1896 0.1894*0.0077 0.2364 0.1542 0.1539
(1.0, 1000)| *0.3100 0.3952 0.3294 0.3298*0.0367 0.3721 0.2792 0.2789
(1.0,500) | *0.4067 0.4552 0.4122 0.4121*0.0702 0.4408 0.3567 0.3565
(1.5,300) | *0.3643 0.3868 0.3817 0.3818*0.0628 0.3744 0.3278 0.3278
(2.0,200) | *0.3071 0.2865 0.3609 0.3611*0.0522 0.2727 0.3080 0.3081
(2.5, 100) 0.3009 *0.2275 0.3901 0.3903*0.0560 0.2261 0.3358 0.3359
(3.0, 50) 0.3006 *0.1887 0.4202 0.4204*0.0597 0.1886 0.3649 0.3649
(3.5, 50) 0.1521 *0.0474 0.3927 0.3929*0.0263 0.0507 0.3387 0.3388
(4.0, 40) 0.0792 *0.0162 0.3876 0.3879*0.0121 0.0157 0.3339 0.3340

Table 1: Misclassification error rates by Empirical Bayes, conditional MGEeenshtein et al.
2009), FAIR (Fan and Fan 2008) and Fisher’s rule (i.e., without virisddection)) . Error
rate with * represents minimum error rate in the row for the correspondinfigroation.

variables, so more correlations are in effect, relative to variable selaogtimods that screen vari-
ables and consequently their correlations do not effect.

In Table 4, we compare the above mentioned procedures in non sparge shere there are
many small signals. In all the configurations there is 'enough overall Kignenake virtually no
classification error ift andt were known. In those configurations the optimal (unknown) linear
classifiers uses most (or all) of the variables. However, attempting to estineaterttesponding
means by FAIR or Fisher’s plug-in and the Conditional MLE methods yield plassifiers, while
the non parametric empirical Bayes method yields classifiers with excellgotmpance in some
cases.

In Table 5, we present simulation studies ¥s with a heavy tailed distribution. As before
N1 = np = 25. UnderG; the distribution ofX; is ¢ x t(3) (i.e.,t with 3 degrees of freedomj,=
1,...,pwherec is chosen so that the varianceXyfis s = 25/2. UnderG; the distribution ofX; is
Vj -+ x Xj, whereX; is distributed (3), j = 1, ..., p. Thus, the correspondirgj has variance 1 and
it is only approximately normal. We study the configurati¢hd ) = (1,2000), (2.5,100), (3.5,50)
and(4,40), which were also studied in Table 1. The misclassification rates are obteased bn
test sets of size 1000, 500 from ed&hi = 1,2. As seen in Table 5, the EB method and CMLE still
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(A1) = (1,2000, p—1 A~ N(0,0.12)
p=10* p=10°
p EB CMLE FAIR IR EB CMLE FAIR IR
0.3 | *0.0014 0.0158 0.0131 0.0119*0.0216 0.2532 0.1801 0.1777
0.5| *0.0082 0.0355 0.0315 0.0303*0.0487 0.2723 0.2177 0.2175
0.7 | *0.0391 0.0850 0.0798 0.0797*0.1094 0.3149 0.2765 0.2781
0.9 | *0.1679 0.2256 0.2166 0.2176*0.2508 0.3888 0.3703 0.3721
(D1,11,00,1) = (2.5,100,1,1000 andp—I1 — |2, A's~ N(0,0.12)
p=10* p=10
p EB CMLE FAIR IR EB CMLE FAIR IR
0.3 | *0.0051 0.0261 0.0295 0.0301*0.0320 0.1904 0.2164 0.2175
0.5| *0.0182 0.0478 0.0553 0.0575*0.0637 0.2071 0.2517 0.2546
0.7 | *0.0609 0.1011 0.1161 0.1206*0.1282 0.2511 0.3050 0.3092
0.9 ] *0.2022 0.2401 0.2544 0.2594*0.2628 0.3434 0.3819 0.3902
(Al, |2,A2, |2) = (3.5, 50,1, 1000) and P— l1—1> Ns~ N(O7 0.12)
p=10* p=10°
p EB CMLE FAIR IR EB CMLE FAIR IR
0.3 | *0.0030 0.0162 0.0297 0.0305*0.0173 0.0647 0.2169 0.2183
0.5] *0.0125 0.0357 0.0564 0.0590*0.0408 0.0879 0.2520 0.2552
0.7 | *0.0501 0.0856 0.1165 0.1215*0.0966 0.1410 0.3051 0.3095
0.9 ] *0.1825 0.2143 0.2554 0.2612*0.2397 0.2748 0.3880 0.3913

Table 2: Dependent case ICorr(X;,X;) = pij = pi Il for p = 0.3,0.5 and 07. (Ay,l1,42,15)
representg; andl, coordinates irv are/A; andA; respectively.

produce smaller error rates compared to FAIR and IR. However, caudparthe results in Table

1, the EB method and CMLE have a worst performance which is causenhiny sensitivity to the
heavy tailed distribution of thi;s.

Summary: The most important advantage of the EB classifier, demonstrated in the asinovia-
tions, is its ability to use the information provided by many small signals in order tcowephe
classification. This is unlike variable-selection type of classifiers, thatigivon using the informa-
tion from variables with smaltj, in order to reduce the variability in estimation. This advantage is
not on the expanse of being a good classifier also under moderatede smafigurations.

4.2 Real Data Analysis

The following analysis of real date sets is based on the procedurelabior Section 3.2. We con-
sider three real data sets and compare the empirical Bayes approacleavigistrcentroid shrunken
(henceforth NSC), and FAIR. The NSC was proposed by Tibshittaali e(2002). The three data
sets were studied by Fan and Fan (2008), and all the misclassificationathigsthan that of the
empirical Bayes method, are cited from that paper.

The first example is of a leukemia data set, which was previously analyzedlih @t al.
(1999). The data set can be obtainehtinp: / / www. br oad. mi t. edu/ cgi - bi n/ cancer/ dat aset s.
cgi . There arep = 7129 genes and 72 samples generated from two classes, ALL (acutedlymph
cytic leukemia) and AML (acute mylogenous leukemia). Among the 72 samplesathang data
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(A1) = (1,2000, p—I A~ N(0,0.1%)

p=10* p=10°
a EB CMLE FAIR IR EB CMLE FAIR IR
0.3] *0.0326 0.1114 0.1138 0.1150*0.2756 0.4160 0.4058 0.4075
0.5| *0.1415 0.2405 0.2468 0.2487*0.3059 0.4426 0.4438 0.4453
0.7 | *0.1947 0.3145 0.3243 0.3284*0.4038 0.4582 0.4783 0.4795
0.9| *0.2370 0.3586 0.3889 0.3961 0.4868 *0.4583 0.4817 0.4837
(A1,11,00,15) = (2.5,100,1,1000 andp— I3 — I, A’s~ N(0,0.1%)

p=10* p=10°
a EB CMLE FAIR IR EB CMLE FAIR IR
0.3 *0.0585 0.1051 0.1577 0.1639*0.2712 0.2757 0.4102 0.4127
0.5| *0.1940 0.2225 0.3099 0.3156 0.3532 *0.3123 0.4669 0.4682
0.7 | *0.2468 0.2588 0.3684 0.3760 0.4181 *0.3402 0.4781 0.4795
0.9| *0.2803 0.2543 0.3997 0.4093 0.4765 *0.3418 0.4815 0.4828
(A1,11,00,12) = (3.5,50,1,1000 andp— I — I A's~ N(0,0.1%)

p=10* p=10°
a EB CMLE FAIR IR EB CMLE FAIR IR
0.3 0.0479 *0.0469 0.1672 0.1740 0.2656 *0.1481 0.4189 0.4215
0.5| 0.1711 *0.1272 0.3064 0.3125 0.2883 *0.1617 0.4513 0.4646
0.7| 0.1730 *0.1300 0.3540 0.3629 0.3890 *0.1801 0.4820 0.4835
0.9| 0.2486 *0.1424 0.3756 0.3882 0.4794 *0.2167 0.4867 0.4882

Table 3: Dependent case ICorr(X,X;) = pij = a;a; fori # j whereq; anda are generated from
Unif(—a,a) fora=0.3,0.5, 0.7 and 09. (A1,11,A2,12) represent; andl; coordinates in
v are/\; andA; respectively.

set has 38 (i1 = 27 in ALL andn, = 11 in AML) and the test data set has 34 (20 in ALL and 14
in AML). Table 6 shows the results of the nearest shrunken centroitR ,Fé#nhd empirical Bayes
methods.

The empirical Bayes approach misclassified 3 out of 34 test samples wiinehsame result as
NSC, but slightly worse than FAIR. Figure 1 shows histogranig &;U; corresponding to the two
groups, under the training and under the test sets.

The second example is of lung cancer data which were previously adabsgz&ordon et
al. (2002) and analyzed using FAIR in Fan and Fan (2008). The datziklae athtt p:
[/ www. chest surg. org. There arep = 12533 genes and 181 samples coming from two classes,
MPM(malignant pleural mesothelioma) and ADCA(adenocarcinoma). Thertggsample set con-
sists of 32 samples{ = 16 from MPM andn, = 16 from ADCA) and the test has 149 samples (15
from MPM and 134 from ADCA). As displayed in Table 7, the empirical Bageethod classified
all the training samples correctly and 148 out of 149 test samples cornetilsh is a significant
improvement compared to NSC and FAIR. In Figure 2, we show histograrisigd; under the
two groups, for the training and for the test sets.

The last example is of prostate cancer data studied by Singh et al. (2@ti2}, is available
athttp://ww:. broad. m t. edu/ cgi - bi n/ cancer/ dat aset s. cgi . The training data set has 102
samplesp; = 52 of which are prostate tumor samples ape- 50 of which are normal samples. An
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p=10" p—IAsare0
) EB CMLE FAR IR
(0.2, 104) *0.0066 0.4103 0.2900 0.2896
(0.1, 104) *0.1678 0.4831 0.4448 0.4447
(0.2, 5x 103) *0.1546 0.4594 0.3905 0.3902
(0.1, 5x 103) *0.3725 0.4931 0.4720 0.4719
p=1®, p—IAsare0
A, EB CMLE FAR IR
(0.2, 10°) *0.0000 0.0947 0.0415 0.0411
(0.1, 10°) *0.0004 0.4437 0.3301 0.3297
(0.2, 5x 104) *0.0002 0.3314 0.1907 0.1902
(0.1, 5x 104) *0.1181 0.4779 0.4128 0.4126

Table 4: Non-sparse case

p=10
p—IAsare0 p—I A's ~N(0,0.1%)
a0 EB CMLE FAIR IR EB CMLE FAIR IR
(1.0, 2000 | 0.0350 0.1855 0.0152 *0.0149 0.0267 0.2126 0.0084 *0.0081
(25,1000 | 0.1888 *0.1639 0.2121 0.2123*0.1576 0.1600 0.1959 0.1969
(3.5, 50) 0.0994 *0.0791 0.2111 0.2112 0.2045 *0.1967 0.2643 0.2650
(4.0,40) 0.0744 *0.0640 0.2050 0.2056 0.0714 *0.0681 0.1933 0.1939
p=10°
p—IAsare0 p—I A's ~N(0,0.1%)
A EB CMLE FAIR IR EB CMLE FAIR IR
(1.0, 2000 | 0.4331 0.4385 0.2179 *0.217p 0.2667 0.4325 *0.1886 0.1897
(25,1000 | 0.4335 0.4155 *0.4018 0.4018*0.3115 0.3926 0.3518 0.3517
(3.5, 50) 0.3661 *0.3365 0.4027 0.4023*0.2966 0.3560 0.3562 0.3562
(4.0,40) 0.3528 *0.3282 0.4017 0.4028*0.2815 0.3202 0.3544 0.3542
Table 5: Heavy tail case.
Method Training error  Test error
Nearest shrunken centroids 1/38 3/34
FAIR 1/38 1/34
E.B. 0/38 3/34

Table 6: Classification errors of Leukemia data set

Method Training error  Test error

Nearest shrunken centroids 0/32 11/149
FAIR 0/32 71149
E.B. 0/32 1/149

Table 7: Classification errors of Lung Cancer data set
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Figure 1: Histograms df ; ;U;j of ALL and AML for training and test sets of Leukemia data. Two
panels in the first columns are histograms for ALL and AML from training aatstwo
in the second columns are for ALL and AML from test sets. Red verticatlineall
histograms represent cut off value which-i§ = (éALL + GAML)/Z = -15.10

training, ADCA test,ADCA
10 50
8 40
6 30
4 20
2 H 10
0 I 0
-200 0 200 -200 0 200
training, MPM test, MPM
10 50
8 40
6 30
4 20
2 I I I I 10
0 ol— dmall
-200 0 200 -200 0 200

Figure 2: Histograms of ; 4;U; of ADCA and MPM for training and test sets of lung cancer data.
Two panels in the first columns are histograms for ADCA and MPM from trgisiets
and two in the second columns are for ADCA and MPM from test sets. Riidaldines
in all histograms represent cut off value which-igg = (Bapca+ 8upm) /2 = 27.54.
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Method Training error  Test error

Nearest shrunken centroids 8/102 9/34
FAIR 10/102 9/34
E.B. 38/102 4/34

Table 8: Classification errors of Prostate Cancer data set

training, normal test, normal
20 20
15 15
10 10
5 5
0 0 _._._IJ_L._
-500 0 500 1000 1500 -1500 -1000 -500 0 500 1000
training, tumor test, tumor
20 20
15 15
10 10
5 5 I I
0 0
-500 0 500 1000 1500 -1500 -1000 -500 0 500 1000

Figure 3: Histograms of ; 4;U; of normal and tumor for training and test sets of prostate cancer
data. Two panels in the first columns are histograms for normal and turmortfaining
sets and two in the second columns are for normal and tumor from test sats/eRi-
cal lines in all histograms represent cut off value which-& = (énorma|+ étumor)/z =
21368.

independent test data set, from a different experiment, has 25 tum@ raowinal samples. There
arep = 12600 genes.

As displayed in Table 8, for the prostate cancer data, the empirical Bapesaeh has a very
large training error compared to NSC and FAIR, but the test error is snibiarboth NSC and
FAIR. Thepessimisnof the misclassification error, reflected by our training set, may be attributed
to two facts. One is the difference in the proportion of tumor and normal sampkie training
versus the test set. The other reason is that the test set seems to basgsét s@ems that the
empirical Bayes method succeed in estimatin@gnd hence deriving good coefficiesffom the
large training data although it is noisy; yet, the classification of the individatd points of the
noisy training set is still difficult, while the classification is easier for the tesila points. Figure
3 might be helpful in assessing it. In the histogram$ ¢&;U; corresponding to the normal and
tumor groups from the training data, we may see that the two training sets I&mo
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Figure 4. Histograms ddj; j = 1,..., p, for the leukemia, lung cancer, and prostate cancer data sets.
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Figure 5: Histograms of the first 50 larged| for the leukemia, lung cancer, and prostate cancer
data sets.

003

4.3 Number of Selected Variables

Figure 4 shows the histograms &f, ] = 1, ..., p for each data set. In Figure 5 we see three his-
tograms corresponding to the fifty larggsi|, j = 1,...,p, in each of the three data sets. Our
empirical Bayes method uses many variables for the classification. Indactally it uses all the
variables, since none of theg is exactly 0. In comparison the FAIR uses 11, 31, and 2 variables
corresponding to the above three cases in the order they presentiedheiNSC uses 21, 26, 6.
Obviously a method which is based on a few variables is easy to implement arteriardt.
Our suggested classifiers are meant only to produce good classificadidinus use many variables
if necessary. Using many variables and somewhat complicated classifiarthis spirit of data
mining approach. However, selecting a subset of variables followingngirieal Bayes estimation
of the means, makes much sense, for producing simpler classifiers. Itenghteduce noise and
will produce over all better classifiers.
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