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Abstract

Due to the scale and computational complexity of currenlydusimulation codes, global surrogate
(metamodels) models have become indispensable toolsptrréng and understanding the design
space. Due to their compact formulation they are cheap to&eand thus readily facilitate visual-
ization, design space exploration, rapid prototyping, sewkitivity analysis. They can also be used
as accurate building blocks in design packages or largaslation environments. Consequently,
there is great interest in techniques that facilitate thestroction of such approximation models
while minimizing the computational cost and maximizing rabdccuracy. Many surrogate model
types exist (Support Vector Machines, Kriging, Neural Natks, etc.) but no type is optimal in all
circumstances. Nor is there any hard theory available gmahelp make this choice. In this paper
we present an automatic approach to the model type selgmtadotem. We describe an adaptive
global surrogate modeling environment with adaptive samgptriven by speciated evolution. Dif-
ferent model types are evolved cooperatively using a Geadgiorithm (heterogeneous evolution)
and compete to approximate the iteratively selected datthis way the optimal model type and
complexity for a given data set or simulation code can be aycally determined. Its utility and
performance is demonstrated on a number of problems wheuggerforms traditional sequential
execution of each model type.

Keywords: model type selection, genetic algorithms, global surregatdeling, function approx-
imation, active learning, adaptive sampling

1. Introduction

For many problems from science and engineering it is impractical to ped&pariments on the
physical world directly (e.g., airfoil design, earthquake propagatiémytead, complex, physics-
based simulation codes are used to run experiments on computer harbwales allowing scien-
tists more flexibility to study phenomena under controlled conditions, compygeriexents require
a substantial investment of computation time. One simulation may take many minutes, deots
or even weeks. A simpler approximation of the simulator is needed to make @gnsitialysis,
visualization, design space exploration, etc. feasible (Forrester ed@8; 3impson et al., 2008).

As a result researchers have turned to various approximation methodsithia the behavior
of the simulation model as closely as possible while being computationally cnpapévaluate.
Different types of approximation methods exist, each with their relative gtinen This work con-
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centrates on the use of data-driven, global approximations using cosyracgate models (also
known as emulators, metamodels or response surface models) in the aintertputer exper-
iments. The objective is to construct a high fidelity approximation model that isagae as
possible over theompletedesign space of interest using as little simulation points as possible.
Once constructed, the global surrogate model (also referred to ada@ement metamodglis
reused in other stages of the computational science and engineeringgifsaioptimization is not

the main goal, but rather a useful post processing step.

The primary users of global surrogate modeling methods are domain exXpertsf which will
be experts in the intricacies of efficient sampling and modeling strategies.primeary concern is
obtaining an accurate replacement metamodel for their problem as fassalklp and with minimal
overhead. Model (type) selection, model parameter optimization, samplatggty etc. are of
lesser or no interest to them. Thus, this paper explores an automated vedy smbwer the always
recurring question from domain expet¥#hich approximation method is best for my data?n
evolutionary algorithm is presented that combines automatic mygeselection, automatic model
parameter optimization, and sequential design exploration.

In the next Section we describe the problem of global surrogate modeliogvéal by an in
depth discussion of the motivation for this work in Section 3. The core agprpresented in this
paper is discussed in Section 5 followed by a critical analysis in Section @ioSécdescribes
a number of surrogate modeling problems we shall use to demonstrate tresguiogpproach,
followed by their discussion in Section 10 (the experimental setup is deddrilfgection 9). We
conclude in Section 12 with pointers to future work.

2. Global Surrogate M odeling

The mathematical formulation of the problem is as follows: approximate an wrknuultivariate
function f : Q — C", defined on some domai® c RY whose function valuesf (X) =
{f(x1),.... T (x)} C C"are known at a fixed set of pairwise distinct sample pofus {x, ..., X} C
Q. Constructing an approximation requires finding a suitable funditrom an approximation
spaceSsuch thas: Q — C" € Sandsclosely resemble$ as measured by some criterigywhere
& constitutes three parts:

&= (N\gT).

A is the generalization estimatarthe error (or loss) function, amdis the target value required
by the user. This means that the global surrogate model generationrmr(tde finding the best
approximatiors* € S) for a given set of data poinf8 = (X, f (X)) can be formally defined as

s’ =argminarg i\ (€, .6, D) 1)

such that
/\(87 S:Ga D) ST

wheres g is the parametrizatiof (from a parameter spa&®) of sands g is of model type (from
a set of model types).

1. The terms surrogate model and metamodel are used interchngeab
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The first minimization ovet € T is the task of selecting a suitable approximation model type,
that is, a rational function, a neural network, a spline, etc. This is the niygukekelection problem.
In practice, one typically considers only a singke T, though others may be included for compari-
son. Then given a particular approximation tgpthe task is to find the hyperparameter assignment
0 that minimizes the generalization estimato(e.g., determine the optimal order of a polynomial
model). This is the hyperparameter optimization problem, though generally botimization’s
are simply referred to as the model selection problem. Many implementatiohdia¥e been de-
scribed: the hold-out, bootstrap, cross validation, jack-knife, Akaikdbrmation Criterion (AIC),
etc. Different criteria may also be combined in a multi-objective fashion. Incdse is really a
matrix

AN & Tg
N & T2

Am €m Tm
with m the number of objectives. A simple example is minimizing the average relative cabs
idation error together with the maximum absolute deviation in the training points.d4ii@nal
assumption is that is expensive to compute. Thus the number of function evaluatiqiXg| needs

to be minimized and data points must be selected iteratively, at points wheredhmatibn gain
will be the greatest (Turner et al., 2007). Mathematically this means definiagnpling function

(p(Xj_l) =Xj,j=1,.,N

that constructs a data hierarchy

XoCXgCXoC...CXNC X

of nested subsets of, whereN is the number of levelsX, is referred to as thmitial experimental
designand is constructed using one of the many algorithms available from the theDgsign and
Analysis of Computer Experiments (Kleijnen et al., 2005). Once the initial de§jds available

it can be used to seed the sampling functiprAn important requirement af is to minimize the
number of sample point;| — |X;_1| selected each iteration, yet maximize the information gain
of each successive data level. Depending on the prolgparan take into account different criteria
(non-linearity of the response, smoothness/uncertainty of the model, loadttbe optima, etc.).
This process is referred to as adaptive sampling, active learning, mpdating, or sequential
design.

An important consequence of the adaptive sampling procedure is thaskhef fanding the best
approximations* (cfr. Equation 1) becomes a dynamic problem instead of a static one. Sice th
optimal model parameters will change as the amount and distribution of data pbanges. This
of course makes the problem more difficult.

3. Motivation

While the mathematical formulation of global surrogate modeling is clear cut, itgigahim-
plementation raises an obvious question: How should the minimizationtavdr and8 € © in
Equation 1 be performed? We discuss both cases in the following subsection

2041



GORISSEN DHAENE AND DE TURCK

3.1 Problem 1: Model Type Selection

The first minimization ovet € T is the model type selection problem. Many model types exist:
rational functions, Artificial Neural Networks (ANN), Support Vectdachines (SVM), Gaussian
Process (GP) models, Multivariate Adaptive Regression Splines (MAR&Jial Basis Function
(RBF) models, projection pursuit regression, rational functions, etc.

3.1.1 BACKGROUND

From a theoretic standpoint, selecting the most suitable approximation mettredif@n response
is a difficult problem that depends on the data characteristics (dimensionalityper of points, dis-
tribution, noise level, periodicity, etc) and the application constraints (acgsmoothness, ability
to capture poles or discontinuities, execution speed, interpretability, eldtegm requirements,
etc). Different application domains prefer different model types. kample rational functions are
widely used by the electrical engineering community (Deschrijver and h&805) while ANN
are preferred for hydrological modeling (Solomatine and Ostfeld, 2@i#erences in model type
usage are often due to practical reasons. This is particularly true intirdsgttings. For example:
the designer adheres to common practice within his field, the final applicatitiicte the designer
to one particular type (e.g., rational models for EM systems), or the expestis® available to
properly try other methods.

Of course, this need not always be the case. The choice of the metatypealan also be
motivated by knowledge of the underlying phygi¢Eriverio et al., 2007) or by the special features
the model provides: for example the uncertainty prediction based onmepdizess assumption in
Kriging methods (Xiong et al., 2007). So remark there is no such thing as an inherentlyl*goo
‘bad’ model. A model is only as good as the data it is based on and the erpafrtise user that
built it.

3.1.2 Q.ASSIC APPROACH

If multiple model types are considered, the classic approach is to simply to tdifterent types
and select the best one according to one or more accuracy criteria iSlaenple literature available
that benchmarks model types in this way (Simpson et al., 2001; Jin et al;,Q06Ipo et al., 2005;
Yang et al., 2005; Chen et al., 2006; Wang and Shan, 2007; Chunglansio, 2000; Gano et al.,
2006; Gu, 2001; Santner et al., 2003; Lim et al., 2007; Fang et al.,, Zi¥issen et al., 2009¢). But
claims that a particular model type is superior to others should always beithestomne skepticism.

In order for the different benchmarking studies to be truly useful imrmain expert, the results
of such studies must be collected and compiled into a general set of ret#se,ror flowchart.
To ease the discussion, let us denote such a compilation into a learning afgbyith L is then
essentially a classifier that can predict which model typ@ to use based on daltaand application
requirements :

2. Knowledge of the physics of the underlying system can make a partivoldel type to be preferred. For example,
rational functions are popular for all kinds of Linear Time-Invarigrgtems since theory is available that can be used
to prove that rational pole-residue models conserve certain physiaatities (Triverio et al., 2007).

3. Kriging models are closely related to GP models and and often KriginG&thodels are used as labels for the same
techniques. Great similarities between GP models, SVM models, RBF maaelfRBF Neural Networks exist as
well, as has been discussed in Rasmussen and Williams (2006).
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L(D,I) =t.

When executed should then be able to give a specific recommendation as to which model type
to use for a given problem. This recommendation should be more specifiththayeneral rules
of thumb that are available now. Experience shows this to be exactly wiadmication engineer
wants. However, constructing such a learbdor any but the most restricted class of problems is
a daunting undertaking for obvious practical reasons. Firstly, decidiigh problem/application
features to train the classifier on is far from trivial. Also even if this is ddmenumber of features
can be expected to be high thus gathering the necessary data (by maaolvétly Equation 1) to
train L accurately will be very computationally expensive.

Secondly, as mentioned above, the success of a model type largelyddemethe expertise
of the user, the quality of the data, and even the quality of the software impletioenof the
technique. Neural networks are a good example in this respect. In théegtls they are able to
perform very well on many problems. However, if poor choices are mdtleregard to training
function, topology selection, generalization control, training parameteftsyage library, etc. they
may seem to perform poorly. How to take into account this informatidr®in

Thirdly, a more fundamental problem with this approach is that data mustdilalale in order
for the reasoner to work. However, if only a simulation code is availablés(afien the case) data
must be collected, and the optimal data collection strategy that minimizes the nufrib@nts
depends on the model type. Also, the optimal model type will change depeowlimow much data
is available. One could argue to instead traianly on the data characteristics which are known in
advance (e.g., dimensionality, noise level, etc.). The question is then adaah @haracteristics
are most important? Furthermore, in many cases not much is known abouwtdh®travior of the
response thus there will typically not be enough information to traascurately.

This brings us to the final point. A main reason for turning towards globabgate modeling
methods is that little is known about the behavior of the response (Simpsbn28G8). The goal
is to get insight into that behavior in a computationally cheap way by applyimggate methods.
Another reason why information about the data may be scarce is that thee sofuthe data is
confidential or proprietary and very little information is disclosed. In thesstsons using or
trainingL becomes very difficult.

Finally, we must stress that we dot say that this problem is too difficult and not worth trying
to solve. Indeed many such problems exist and are currently being tapkigidularly in medicine.
Instead we argue that users of global surrogate modeling methodsrueiit bem a more dynamic
approach that is flexible, can be easily applied to a wide range of differeblems, can easily
incorporate new fitting techniques and process knowledge, and natatatlyates with an adaptive
data collection procedure. We shall revisit this point in sections 3.3 and 6.

3.2 Problem 2: Model Parameter Selection

Assuming the model type selection problem has been solved, there remamsdkeéparameter
selection problem (the minimization overe © in Equation 1). For example, finding the optimal
C,e ando parameters in the case of RBF SVMs. This is the classic hyperparameter apitmiz
problem that also depends on the data characteristics (for example thelauiineation function
and correlations parameters of a Kriging model will depend on the data distnit{Gorissen et al.,
2008b; Toal et al., 2008). Some models are more sensitive to changes peitaeneters than others

2043



GORISSEN DHAENE AND DE TURCK

and usually it takes a great deal of experience to know how all parssrstteuld be set. Sometimes
this problem is solved through trial and error, but usually it is tackled agptimization problem
and classic optimization algorithms are used guided by a performance metric.

A huge amount of research has been done on this topic, particularly in ttieimadearning
community (see Section 4). This particular problem is not the main focus of tris \Rather we
are more interested in tackling the first problem.

3.3 Proposed Solution

While we are primarily interested in the first problem, the approach desdrittkid paper naturally
incorporates problem 2 as well. In both cases there is little theory that casdiktas a guide.
It is in this setting that the evolutionary approach can be expected to do welldéatribe the
application of a single GA with speciation to both problems: the selection of thegaie type and
the optimization of the surrogate model parameters (= hyperparameter optimjzaticaddition,
we do not assume all data is available at once but must be sampled incrensntaliy is expensive
(active learning).

The idea is to maintain a heterogeneous population of surrogate model typles them evolve
cooperatively and dynamically with the changing data distribution. The detglilserpresented in
Section 5 and a critique in Section 6. In addition, an implementation in the form atlabtoolbox
is available for download frorht t p: / / www. suno. i nt ec. ugent . be.

4. Related Work

The evolutionary generation of regression models for given input-odgda has been widely stud-
ied in the genetic programming community (Vladislavleva et al., 2009; StreeteBeaidar, 2003;
Yeun et al., 2004). Given a set of mathematical primitivess(n, exp, /, X, yetc.) the space of sym-
bolic expression trees is searched to find the best function approximatienapplication of GAs
to the optimization of model parameters of a single model type (homogenedusi@vphas also
been common (Chen et al., 2004; Lessmann et al., 2006; Tomioka et al;,At#iichs and Igel,
2005; Zhang et al., 2000) and the extensive work by Yao (1999);avabXu (2006). Integration
with adaptive sampling has also been discussed (Busby et al., 2007gvEiowhese efforts do not
tackle the modelypeselection problem, they restrict themselves to a particular method (e.g., SVMs
or neural networks). As Knowles and Nakayama (2008) statde is known about which types of
model accord best with particular features of a landscape and, in asg,aeery little may be known
to guide this choice.” Likewise, Solomatine and Ostfeld (2008) note..it is important to stress
that there are always situations when one model type cannot be appl&dfers from inadequa-
cies and can be well complemented or replaced by anothéet dris an algorithm to help solve
this problem in a dynamic, automated way is very useful (Keys et al., 200¥3$. is also noticed
by Voutchkov and Keane (2006) who compare different surrogatesfaddr approximating each
objective during optimization. They note that in theory their approach alloevsigke of a different
model type for each objective. However, such an approach will stilliregan a priori model type
selection and does not allow for dynamic switching of the model type or thergion of hybrids.
There has also been much research on the use of surrogate modelsiiioeaoy optimization
of expensive simulators (to approximate the fitness function). Refesencleide Jin et al. (2002),
Regis and Shoemaker (2004), Paenke et al. (2006) and Emmerich 20@8),(the work by Ong
et al. (2006), and more recently by Lim et al. (2007). In general tharyhis referred to as Surrogate
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Based Optimization or Metamodel Assisted Optimization. A good overview referes given by

Eldred and Dunlavy (2006) and Queipo et al. (2005). For example, ltial. €2007) compare
the utility of different local surrogate modeling techniques (quadratic motyals, GP, RBF, ...)

including the use of (fixed) ensembles, for optimization of computationallyrestpe simulation

codes. Local surrogates are used together with a trust region frakéwquickly and robustly

identify the optimum. As noted in the introduction, the contrast with this work is #farences

such as Lim et al. (2007) are interested in the optimum and not the suriitggfgthey make

only a “mild assumption on the accuracy of the metamodeling techfjiglreaddition the model

parameters are taken as fixed and there is no integration with active leaimiogntrast we place
very strong emphasis on the surrogate model accuracy, the automatic settimgyperparameters,
and the efficient sampling of thmompletedesign space.

The work of Sanchez et al. (2006) and Goel et al. (2007) is moraiugebur context since
they provide new algorithms for generating an optimal set of ensemble memnobexdixed set
of data points (no sampling). Unfortunately, though, the parameters of thelsimvolved must
still be chosen manually. Nevertheless, their approaches are interestthgan be used to further
enhance the approach presented here. For example, instead ahigethesingle final best model,
an optimal ensemble member selection algorithm can be used to return a potentictihybetter
model based on the final population or Pareto front.

From machine learning the work in B. et al. (2004) is also related. The @autlescribe an
interesting classification algorith@OMB that combines online an ensemble of active learners so
as to expedite the learning progress in pool-based active learning. itrteimainology an active
learner is a combination of a model type and a sampling algorithm. A weightethblesef active
learners is maintained and each learner is allowed to express interestahd polabeled training
points. Depending on the interests of the active learners, an unlabeigdspeelected, labeled by
the teacher, and based on the added value of that point the diffetietlaarners are punished or
rewarded. Internally the active learners are SVM models whose parametechosen manually. In
principle, with a number of approximations one could adapt the algorithm tegregsion case. If
one then also included hyperparameter optimization, the result would beiwglgr to the SUMO-
Toolbox (cfr. Section 5.2) configured with one or more of Ereor, LRM, or EGO (Jones et al.,
1998) sample selection algorithms, but without the ability to combine differéetier However,
a problem would be thaEOMB assumes a pool of unlabeled training data is given. However,
when modeling a simulation code in regression no such pool is available. Sbeneat algorithm
would still be needed to generate it in order @D®MB to work. COMB does also naturally allow
for different model types but in a more static way than the algorithm in Secti@ntbere is no
hyperparameter optimization, the number of each active learning type refn@dgthough the
weights can change) leading to a potentially high computational cost, and gbdels are not
considered. The extension to the multi-objective case is also non-triviato@seCOMB could
be extended to incorporate such features, but the result would beiwgtsr to the work presented
here. Nevertheless, the specific scoring functions, probability weighteuwgd ensemble weight
updates, seem very useful and could be implemented in the SUMO-Toollertplement the
approach presented here.

Finally, the work by Escalante et al. (2008) is most similar to the topic of thisrp&sealante
et al. (2008) consider the problem of finding the optimal classifier armtaged hyperparameters
for a given classification problem (active learning is not consider@d3olution is encoded as a
vector and Particle Swarm Optimization (PSO) is used to search for goaifieless Good results
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are shown on various benchmarks. Unlike the GA approach, howeigless straightforward to
cater for multiple sub-populations, giving models room to mature independeefitye entering

competition. The use of operators tuned to specific models is also difficultqftease the search
efficiency). In effect, the PSO approach takes a top-down view, wsinigh level encoding in a
high dimensional space, a typical particle has 25 dimensions (Escalante2807). In contrast

the GA approach is bottom up, the model specific operators result in a mallessearch space,
different for each method (e.g., 1 for the spline models and 2 for the SVMetgpdThis leads to

a more efficient search requiring less fithess evaluations and facilitatésctivporation of prior

knowledge. In addition, by using PSO there is no natural way of enabjibgdcsolutions (ensem-
bles) without extending the encoding and further increasing the sgaack.sin contrast, the hybrid
solutions arise very naturally in the GA framework and do not impact theksagace of the other
model types. The same is true of the extension to the multi-objective case, materal step in the
GA case.

In sum, in by far the majority of the related work considered by the authpesiiation was
always constrained to one particular model type, for example neurabrietwn Stanley and Mi-
ikkulainen (2002). The model type selection problem was still left as amoa-phoice for the user.
Or, if multiple model types are used, the hyperparameters are typically keptdind there is no
tie-in with the active learning process.

5. Heterogeneous Evolution of Surrogate M odels

This Section discusses how different surrogate models may be evolepdratively in order per-
form model type selection.

5.1 Speciated Evolution

Since GAs are population-based they easily lend themselves to parallelismterfige Parallel
Genetic Algorithms (PGA) or Distributed Genetic Algorithms (DGA) refer to theecaehenever
the population is divided up in some way, be it to improve the computational efficier search
efficiency. Unfortunately though, the terminology varies between autadscan be confusing
(Nowostawski and Poli, 1999; Alba and Tomassini, 2002). From a bidbgiandpoint it makes
sense to considespeciation:genomes that differ considerably from the rest of the population are
segregated and continue to evolve semi-independently, forming a neigspec

Theisland modelWhitley et al., 1999.; Hocaoglu and Sanderson, 2001; Giannakoglal, et
2006) is probably the most well known PGA. Different sub-populaticaied demesexist (ini-
tialized differently) and sporadic migration can occur between islands alipfeirthe exchange of
genetic material between species and inter-species competition for reso8getection and recom-
bination are restricted per deme, such that each sub-population may eweares different locally
optimal regions of the search space (also caflietied. An advantage of using migration is that it
allows sub-species to mature in semi-isolation without being forced to cortgistagage in com-
petition. This is particularly useful for the application of this paper. The &laodel introduces
five new parameters: the migration topology, the migration frequency, theerushindividuals to
migrate, a strategy to select the emigrants, and a replacement strategy poiat®the immigrants.
The island model is illustrated in Figure 1 for two topologies.
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Island 3 Il

Figure 1: Ring (left) and grid (right) migration topologies in the Island Model

5.2 Global Surrogate Modeling Control Flow

Before we can discuss the concrete implementation of the automatic model liggt@sealgorithm
it is important to revisit the general global surrogate modeling methodologgritbed in Section 2.
It is important to understand the general control flow since it forms this basthe evolutionary
algorithm described in the next Section.

The general methodology is as follows: Initially, a small initial set of samplelsasen accord-
ing to some experimental design (e.g., Latin hypercube, Box-Behnkeh, Based on this initial
set, one or more surrogate models are constructed and their hyperfasaomtimized according to
a chosen hyperparameter optimization algorithm (e.g., BFGS, Particle Swaimigation (PSO),
Genetic Algorithm (GA), DIRECT, NSGA-II, etc.). Models are assignestare based on one or
more measures (e.g., cross validation, Akaike’s Information Criterion)A8tC.) and the optimiza-
tion continues until no further improvement is possible. The models are th&rdaccording to
their score and new samples are selected based on the best performilg ematithe behavior of
the response (the exact criteria depend on the active learning algostut). 'he hyperparameter
optimization process is continued or restarted intelligently and the whole gromesats itself until
one of the following three conditions is satisfied: (1) the maximum number of lsarhjps been
reached, (2) the maximum allowed time has been exceeded, or (3) theeqe@ed accuracy has
been met.

Recall that the adaptive sampling procedure has an important effece dryperparameter op-
timization. The non-stationary data distribution makes the model parameter optimigatface
dynamic instead of static (as is typically assumed).

A readily available implementation of the control flow described in this Sectiom tla® one we

shall use for the experiments in this paper, is available aSilmeogateM Odeling Toolbox (SUMO
Toolbox) (Gorissen et al., 2009c) fromht p: / / www. suno. i nt ec. ugent . be.
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5.3 Algorithm

Algorithm 1 Automatic global surrogate modeling with heterogeneous evolution and edive
ing

01. Xp = initialExperimentalDesigf) ;

02. X = Xo;

03. f|x = evaluateSampl€¢X) ;

04.T = {t1,...,th};

05. M; = createlnitialModel§;, popsize); i =1,..,h

06.M = U1 M;;

07. while (& not reached)do

08. scores={}; gen=1;

09. while(termination_criterianot reached)do
10. foreachM; C M do

11. scoreg = fitnesgM;, X, f|x,&);

12. elite= sort([scores Mi])|1.e;

13. parents= selec{scoreg M;);

14. parents, = selectXOParentparents pc);
15. of fspring = crossovefparentso, E it f, E Snax);
16. parents,: = parents parentso;

17. of fspringny = mutatd parentsn);

18. M; = elitelJof fspringnuJof fspringco;
19. scores= scoresuscores

20. end

21. if (modgenm) =0)

22. M = migrat€M, scoresms, my)

23. end

24. M = extinctionPreventiofM, Tmin);

25. gen=gen+1,

26. end

27. Xnew= selectSampléX, f|x,M);

28. f|x.., = evaluateSampléXnew);

29. [X, f|x] =mergeéX, f|x, Xnew: |X.en) ;

30. end

31. returnbestModel);

We now present the concrete GA for heterogeneous evolution as it ieetdbéas a plugin) in the
SUMO Toolbox. The speciation model used is the island model since we fotimel most natu-
ral way of evolving multiple model types while still allowing for hybrid solution$eTalgorithm is
based on the Matlab GADS toolbox and works as follows (see Algorithm tedacence (Gorissen,
2007) for more details): After the initial DOE has been calculated (cfr. ¢mgrol flow in Section
5.2), an initial sub-populatiol; is created for each model typec T (i = 1,..,h). The exact cre-
ation algorithm is different for each model type so that model specific letdye can be exploited.
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Subsequently, each deme is allowed to evolve according to an elitist GAtPare selected ac-
cording a selection algorithm (e.g., tournament selection) and offspridgrga either crossover
(with probability pc) or mutation (with probability - p;). The modeldvi; are implemented as Mat-
lab objects (with full polymorphism) thus each model type can choose its quvasentation and
mutation/crossover implementations (this implements the minimizationBoze® of Equation 1).

While mutation is straightforward, the crossover operator is more invohasgection 5.5 below).

The fitness function calculates the quality of the model fit, according to criefldne current
deme population is then replaced with its offspring together withlite individuals. Once every
deme has gone through a generation, migration between individuals is allowecur at migration
interval m;, with migration fractionm; and migration directiomny (a ring topology is used). The
migration strategy is as follows: the= (|M;| - my) fittest individuals ofM; replace theé worst indi-
viduals in the next deme (defined by). As in Pei and Goodman (2001), migrants are duplicated,
not removed from the source population. Note that in this contribution wprararily concerned
with inter-model speciation (speciation as in different model types). mwdel speciation (e.qg.,
through the use of fithess sharing within one model type) is something whchataone but could
easily be incorporated.

Once the GA has terminated, control passes back to the main global sarmogdeling algo-
rithm of the SUMO Toolbox. At that poiri¥l contains the best set of models that can be constructed
for the given data. If the accuracy of the models is sufficient the main loopirtates. If not, a
new set of maximally informative sample points is selected based on seviahdiquality of the
models, non-linearity of the response, etc.) and scheduled for evalu&®ioce new simulations
become available the GA is resumed.

Note that sample evaluation and model construction/hyperparameter optimizationparal-
lel. For clarity, algorithm 1 shows them running sequentially but this is not vdapens in practice.
In reality both are interleaved to allow an optimal use of computational ressurc

5.4 Extinction Prevention

Initial versions of this algorithm exposed a major shortcoming, specificallytduhe fact that
models are being evolved. Since not all data is available at once but trick]¥s| — | X;_1| samples
at a time, models that need a reasonable-to-large number of samples to &lorkivbe at a huge
disadvantage initially. Since they perform badly at first, they may get dv@med by other models
who are less sensitive to this problem. In the extreme case where theyvare ektinct, they will
never have had a fair chance to compete when sufficientdtsabecome available. They may
even have been the superior choice had they still been afblihdrefore an Extinction Prevention
(EP) algorithm was introduced that ensures a model type can nevepd@ampmpletely.

EP works by monitoring the population and each generation recording thberwof individ-
uals of each model type. If this number falls below a certain threshgidfor a certain model
type, the EP algorithm steps in and ensures the model type has its numbenssiesd up to the
threshold. This is done by re-inserting the last models that disappearddfoype (making copies
if necessary). The re-inserted models replace the worst individudife adther model types (who
do have sufficient numbers) evenly.

Strictly speaking, EP goes completely against the survival of the fittetiphérin evolutionary
algorithms. By using it we are manually working against selection, pregemodel types which

4. As an example, this observation was often made when using ratiod&lsnmn electro-magnetic data.
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give poor results at that point in time. However, in this setting it seems a fasuneto take (we do
not want to risk loosing a model type completely) and improves results in mgss geeSection
10). At the same time it is straightforward to implement and understand, nesalgyecial control
parameters. All it has to ensure is that a species is never driven extinct.

5.5 Heterogeneous Recombination

The attentive reader will have noticed that one major problem remains with tHenraptation
as discussed so far. The problem lies in the genetic operators, moiBcsilgdn the crossover
operator. Migration between demes means that model types will mix. This measng et of
parents selected for reproduction may contain more than one model typegué€htion then arises:
how to perform recombination between two models of completely differenstyper example,
how to meaningfully cross an Artificial Neural Network with a rational funetioThe solution we
propose here is to use ensembles (behavioral recombination). If two noddbfterent types are
selected to recombine, an ensemble is created with the models as ensemble mEmiserss soon
as migration occurs, model types start mixing, and ensemble models arisesdta These are
treated as a distinct model type just as the other model types.

However, the danger with this approach is that the population may quicklydr@belmed by
large ensembles containing duplicates of the best models (as was notigegl iditial tests). To
counter this phenomenon we apply the similarity idea from Holland’s sharingegd (Holland,
1975). Individual models will try to mate only with individuals of the same typalyGn the case
where selection has made this impossible shall different model types comliaretan ensemble.
In addition we enforce a maximum ensemble ¥4, and require that ensemble members must
differ ESjis ¢ percentin their response (their ‘behavior’). This is calculated by atialg the models
on a dense grid.

This leaves us with only three cases left to explain:

1. ensemble - ensemhbiecombination: a single-point crossover is made between the ensemble

member lists of each model (note that the type of the ensemble members is itelevan

2. ensemble - modeécombination: the model replaces a randomly selected ensemble member

with probability pswapOr gets absorbed into the ensemble with probabilitydap (respect-
ing E SnaxandE Syif+).

3. ensemblenutation: one ensemble member is randomly deleted

Besides enabling hybrid solutions, using ensembles has the additionéit béadowing a model
to lie ‘dormant’ in an ensemble with the possibility of re-emerging later (e.qg., if aftéation only
one ensemble member remains). Note that, in contrast to Lim et al. (200Xdinpée, the type of
the ensemble members is not fixed in any way but varies dynamically.

We have not yet mentioned what type of ensemble will be used. Thereageak methods
for combining the outputs of models, such as average, weighted av&agmster-Shafer meth-
ods, using rank-based information, supra-Bayesian approackedtgeneralization, etc (Sharkey,
1996). To keep the implementation straightforward and the complexity (nurhparameters) low
we have opted for a simple average ensemble. Of course different, meerfpbcombination
methods could be used instead and they will only improve results. The ex#ubangsed is of
lesser importance since it does not change the methodology. The advafitagimple average
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ensemble is that it works in all cases: It makes no assumption on the modslitypésed, nor
does it mandate any changes to the models or training algorithms (for examgpleetjktive corre-
lation learning) since this is not always possible (e.g., when using proptiagplication specific,
modeling code).

5.6 Multi-objective Model Selection

A crucial aspect of the model generation algorithm is the choice of a suitaldeia&. In prac-
tice it turns out that selecting an appropriate function/ige and a target value for is difficult.
Particularly if little is known about the structure of the response. This is kl@ighe ‘The 5
percent probler (Gorissen et al., 2009b). The fundamental reason for this difficulty as &m
approximation task inherently involves multiple, conflicting, criteria (Li and2006). Thus a
multi-objective approach is very useful here since it enables the useltplaeriteria during the
hyperparameter optimization process (see Jin and Sendhoff 2008 éxcaltent overview of this
line of research).

Secondly, it is not uncommon that a simulation engine has multiple outputs thaedltmée
modeled (Conti and O’Hagan, 2007). The direct approach is to modbl@atput independently
with separate models (possibly sharing the same data). This, howeves leavoom for trade-offs
nor gives any information about the correlation between different esitgustead of performing
two modeling runs (doing a separate hyperparameter optimization for efait)daoth outputs can
be modeled simultaneously if models with multiple outputs are used in conjunction withtia mu
objective optimization routine.

In both cases such a multi-objective approach can be integrated with theaigtsurrogate
model type selection algorithm described here. This means that the bedttypedean vary per
criteria or, more interestingly, that it enables automatic selection of the bes! type for each
output without having to resort to multiple runs. A full discussion of these&soig out of scope for
this paper. However, details and some initial results can already be fo@atissen et al. (2009a)
and Gorissen et al. (2009b).

6. Critique

The algorithm presented so far has a number of strengths and weekn€ke obvious advantage is
the ability to perform automatic selection of the model type and complexity foremgiata source
(no need to do multiple parallel runs or train a complex classifier). In additierakjorithm is
generic in that it is independent of the data origin (application), model type,data collection
strategy. New approximation methods can easily be incorporated withougiolgathe algorithm.
Problem specific knowledge and model type specific optimizations basegert &nowledge can
also be incorporated if needed (i.e., by customizing the genetic operatoirshermore, the algo-
rithm naturally integrates with the data collection strategy, allowing the best mgueto change
dynamically and naturally allows for hybrid solutions. Finally, it naturally egtteto the multi-
objective case (Section 5.6) and can be easily parallelized to allow for tastgoutations (though
the computational cost is still outweighed by the simulation cost).

The main disadvantage is due to the fact that the approach is based dipeasiualgorithms:
full determinism can not be guaranteed. This raises the obvious quettiowstable the conver-
gence is over multiple runs. The same can be said of standard appro@aehess hyperparameter
optimization (which typically include randomization) or for any algorithm involvanGA for that
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matter. Formulating theoretical foundations in order to come to convergeraargees for GAs
is a difficult undertaking and has been the topic of intense researctsiener their inception in
the late 80s. Characterizing the performance of genetic algorithms is cormuledepends on the
application domain as well as the implementation parameters (Rawlins, 199 fjthdoretic work
has been done on schema theorems for the Canonical Genetic Algorith#),(@bch try to prove
convergence in a simplified framework using a binary representation.etovwprediction of the
future behavior of a GA turns out to be very difficult and much contreyeemains over the useful-
ness of these theorems (Poli, 2001; Goldberg, 1989). Theoreticklamoother classes of GAs or
using specific operators has also been done (Nakama, 2008; Neul2@i& Rawlins, 1991; Qi and
Palmieri, 1994a,b) but is unfortunately of little practical use here. For ebarth@ work in Anken-
brandt (1990) requires the calculation of fitness ratios, but this is impaf¢tiod computationally
expensive) to do in this situation and the results will vary with the application.

Thus, for the purposes of this paper a full mathematical treatment of algotignd its conver-
gence is out of scope. Due to the island model, sampling procedure, enddeneous representa-
tion/operators used, such a treatment will be far from trivial to constmdtdistract from the main
theme of the paper. In addition its practical usefulness would remain quastéotue to the many
assumptions that will be required. However, gaining a deeper theorietigtt into the robustness
of the algorithm is still very important. A sensitivity study of the main GA parametersved will
shed more light on this issue.

Theoretical remarks aside, the authors have found that in practice pneaap works quite
well. If reasonable population sizes are used together with migration andtthet®n prevention
algorithm described in Section 5.4, the results of the algorithm are quitetrabdgjive useful re-
sults and insights into the modeling problem. Besides the results given in this papd results
have also been reported on various real world problems from aesadga (Gorissen et al., 2009a),
electronics (Gorissen et al., 2008a), hydrology (Couckuyt et al.9R@hd chemistry (Gorissen,
2007).

In sum, this approach is useful if: little information is known about the explesteicture of the
response, if it is unclear which model type is most suited to the problem, dagaeagve and must
be collected iteratively, and hybrid solutions are useful. In other camesxample it is clear from a
priori knowledge which model type will be the most suitable (e.g., basedistirexrules of thumb
for a well defined, restricted problem), this approach should not bigeappave as a comparison.

7. Test Problems

We now consider five test problems to which we apply the heterogeneou$r@A now on ab-
breviated by HGA). The objective is to validate if the best model type carethtbe determined
automatically, and in a way that is cheaper and better than the simple brutenfetbed: doing
multiple, single model type runs in parallel. The problems include 2 predefindtematical func-
tions, and real-world problems from electronics and aerodynamics.

The dimensionality of the examples ranges from 2 to 13. This is no inherent limgifmply
depends on the model types used. For example if only SVM-type modelsagethe number of
dimensions can be arbitrarily high, while for smoothing spline models the dimetigjoshould be
kept low. It all depends on which model types make up the population.
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We also hope to see evidence of a ‘battle’ between model types. While initiadyspecies
may have the upper hand, as more data becomes available (dynamicallynghayygerparameter
optimization landscape) a different species may become dominant. This glksuldin clearly
noticeable population dynamics, a kind of oscillatory stage before coeweeg We briefly discuss
each of the test problems in turn.

7.1 Ackley Function (AF)

The first test problem is Ackley's Path, a well known benchmark prolftem optimization. Its
mathematical definition fod dimensions is:

d
—exp (; . ZLCOQZT[- xi)> +20+e
|

with x; € [-2,2] fori =1, ...,d. For easy visualization we take= 2. For this function a validation
set and a test set of 5000 random points each is available. Although thfsnsteon from opti-
mization we are not interested in optimizing it, rather in reproducing it usingr@ssipn method
with minimal data.

7.2 Kotanchek Function (KF)

The second predefined function is the Kotanchek function (Smits and &wk&n2004). Its mathe-
matical definition is given as:

2
e

——+¢
1.2+%2 *
with x; € [-2.5,1.5], xo € [-1.0,3.0], and withe uniform random simulated numeric noise with

mean 0 and variance 1t. As you can see only the first two variables are relevant. For this function
a validation set and a test set of 5000 scattered points each is available.

F (X1, %2,U1,Up,U3) =

7.3 EM Example (EE)

The fourth example is a 3D Electro-Magnetic (EM) simulator problem (Lehrakn2001). Two
perfectly conducting round posts, centered in the E-plane of a redtarvgaveguide, are modeled,
as shown in Figure 2. The 3 inputs to the simulation code are: the signaéfregfl, the diameter

of the postgl, and the distance between the two pagtd he outputs are the complex reflection and
transmission coefficientS;; andS$;1. The simulation model was constructed for a standard WR90
rectangular waveguide with €[7 GHz, 13 GHz],d €[1 mm, 5 mm] andw €[4 mm, 18 mm]. In
addition, a 28 data set is available for testing purposes.

7.4 LGBB Example (LE)

NASAs Langley Research Center is developing a small launch vehicM)(@amadi et al., 2004;
Rogers et al., 2003) that can be used for rapid deployment of smallgus/to low earth orbit
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(a) LGBB geometry (Rogers et al., 2003) (b) Lift plotted as a function of speed and an-
gle of attack with side-slip angle fixed to zero
(Gramacy et al., 2004).

Figure 3: LGBB Example

at significantly lower launch costs, improved reliability and maintainability. Thecke is a three-
stage system with a reusable first stage and expendable upper stagesudable first stage booster,
which glides back to launch site after staging around Mach 3 is named thdelya@{ide-Back
Booster (LGBB). In particular, NASA is interested in the aerodynamicattaristics of the LGBB
from subsonic to supersonic speeds when the vehicle reenters the agmdphing its gliding
phase.

More concretely, the goal is to gain insight about the response in lift, gich, side-force,
yaw, and roll of the LGBB as a function of three inputs: Mach humbereanitattack, and side slip
angle. For each of these input configurations the Cart3D flow solvereid tassolve the inviscid
Euler equations over an unstructured mesh of 1.4 million cells. Each run &ulee solver takes
on the order of 5-20 hours on a high end workstation (Rogers et al3)20bhe geometry of the
LGBB used in the experiments is shown in Figure 3a.
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Figure 3b shows the lift response plotted as a function of speed (Machagle of attack
(alpha) with the side-slip angle (beta) fixed at zero. The ridge at Madparates subsonic from
supersonic cases. From the figure it can be seen there is a markedtfamsition between flows
at subsonic and supersonic speeds. This transition is distinctly non-tnedamay even be non-
differentiable or non-continuous (Gramacy et al., 2004). Given the otatipnal cost of the CFD
solvers, the LGBB example is an ideal application for metamodeling techniduiertunately
access to the original simulation code is restricted. Instead a data setdin@chosen adaptively
according to the method described in Gramacy et al. (2004) was used.

7.5 Boston Housing Example (BH)

The Boston Housing data set contains census information for 506 hausatgin the Boston area
and is a classic data set used in statistical analysis. It was collected bydraat al. and described
in Harrison and Rubinfeld (1978). In the case of regression the olgeistito predict the Median

value of owner-occupied homes (in $1000's) from 13 input varialdes (per capita crime rate by
town, nitric oxide concentration, pupil-teacher ratio by town, etc.).

8. Model Types

For the tests the following model types are used: Artificial Neural Netw@k#N), rational func-
tions, RBF models, Kriging models, LS-SVMs, and for the AF example: alsm#nmy splines.
For the EM example only the model types that support complex valued outpetslyl (rational
functions, RBF, Kriging) were included. Each type has its own reptatien and genetic operator
implementation (thanks to the polymorphism as a result of the object orientaghjleds stated
in subsection 5.5 the result of a heterogeneous recombination will be eagadeensemble. So in
total up to seven model types will be competing to approximate the data. Remeiabal thodel
parameters are chosen automatically as part of the GA. No user inpuuisegtghe models and
data points are generated automatically.

The ANN models are based on the Matlab Neural Network Toolbox andaine tt with Leven-
berg Marquard backpropagation with Bayesian regularization (MadRaesee and Hagan, 1997)
(300 epochs). The topology and initial weights are determined by the GA&n\n alone (without
the HGA) this results in high quality models with a much faster run time than training efghts
by evolution as well. Nevertheless, the high level Matlab code and compieing&unction do
make the ANNs much slower than any of the other model types.

The LS-SVM models are based on the implementation from Suykens et aR)(286 kernel
type is fixed to RBF, leaving ando to be chosen by the GA. The Kriging model implementation
is based on Lophaven et al. (2002) (except for the EM example) arabthelation parameters are
set by the GA (the regression function is set to linear and the correlatigtidn to Gaussian). The
RBF models (and the Kriging models for the EM example, since the data is comgiledy are
based on a custom implementation where the regression function, corréletabion, and correla-
tion parameters are all evolved. The rational functions are also basedustom implementation,
the free parameters being the orders of the two polynomials, the weightstofpasameter, and
which parameters belong in the denominator. The spline models are basesl Matthb Splines
Toolbox and only have one free parameter: the smoothness.

Remember that the specific model types chosen for the different testsiimpessant. This can
be freely chosen by the user. What is important is rather how theseedlitferodel types are used
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together in a single algorithm. Thus a full explanation of the virtues of eactehtypuks, as well as
the representation and genetic operators used is out of scope forpleisgral would consume too
much space. Details can be found in Gorissen (2007) or in the implementatias évailable as

part of the SUMO Toolbox.

9. Experimental Setup

The following subsections describe the configuration settings used (aindhtbtivation) for per-
forming the experiments.

9.1 Sample Selection Settings

For the LE and BH examples only a fixed, small size, data set is availabls, $&lecting samples
adaptively makes little sense. So for these examples the adaptive samplingdsawitched off.
For the other examples the settings were as follows: an initial optimized Latinmdujpe design,
using the method from Ye et al. (2000), of size 50 is used augmented witlothergoints. Mod-
eling is allowed to commence once at least 90% of the initial samples are avaltableiteration a
maximum of 50 new samples are selected using the Local Linear (LOLAY}imdaampling algo-
rithm (Crombecq et al., 2009). LOLA identifies new sample locations by makireglaoff between
eploration (covering the design space evenly) and exploitation (coatiegton regions where true
response is nonlinear). LOLAs strengths are that it scales well with tineber of dimensions,
makes no assumptions about the underlying problem or surrogate modehtygh works in both
theR andC domains. LOLA is able to automatically identify non-linear regions in the domain and
sample these more densely compared to more linear, ‘flatter’ regions.

By default LOLA does not rely on the (possibly misleading) approximationetduit only on
the true response. This is useful here since it allows us to consider thé setsltion results inde-
pendent from the sample selection settings. I.e., the final distribution of mbiasen by LOLA is
the same across all runs and model types. This means that any diffengergormance between
models can not be due to differences in sample distribution. However, in ozgs it may be
desirable to also include information about the surrogate model itself witarsicty potential sam-
ple locations. In this case the LOLA algorithm can be combined with one or ntbes sampling
criteria that do depend on model characteristics (for examplE thar, LRM, and EGO algorithms
available in SUMO).

9.2 GA Settings

The GA is run for a maximum of 15 generations between each sampling iteratten §ampling,
the GA continues with the final population of the previous iteration). It terminitene of the
following conditions is satisfied: (1) the maximum number of generations ishieghor (2) 8 gen-
erations with no improvement. The size of each deme is set to 15. The migratioraimeis set
to 7, the migration fractiom; to 0.1 and the migration direction l®th (copies of then; best indi-
viduals from island replace the worst individuals in islands 1 and i+ 1). A stochastic uniform
selection function was used. Since we want to find the best approximagonh®completedesign
space, the fitness of an individual is defined as the root relativesguar (RRSE):
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Sa(yi—¥i)?

Sia(yi—y)?

wherey;,Vi,y are the true, predicted, and mean true response values respectiveljively the
RRSEindicates how much better an approximation is than the most simple approximatsibl@os
(the mean) (Ganser et al., 2007). In the case of the BH and LE examp$epamte validation set
is available, instead 20% of the available data is reserved for this purasgey(care to ensure the
validation set is representative of the full data set by maximizing the minimum destagtween
validation points). Note that we are using a validation set since it is cheag@hdve enough data
available. In the case where data is scarce we would most likely use the rperesasek-fold cross
validation as a fitness measure. This is the case for the EM example.

The remaining parameters are set as follopgs= 0.2, pc = 0.7,k =1, pswap= 0.8,el = 1, ESnax=
3,ESjirt = 0.1, Tmin = 2. The random generator seed was set to Matlab’s default initial seed.

RRSRYy;, Vi) =

9.3 Termination Criteria

In case of adaptive modeling only (no sample selection), the objective ig tots the most accu-
rate model is that can be found in a limited period of time (= a typical use cakak the required
accuracy (= target fitness value) is set to 0. For the LE the timeout is s@dtmihutes. For the BH
example the timeout is significantly extended to 1200 minutes. Given the high dimelity, the
noise and discontinuities in the input domain it is a hard problem to fit accurditetiis case we
are more interested to see how the population would evolve over such adecttgeriod of time.

In case of adaptive sampling, the criteria are: a target accuracy (R&SEO1, and for the
AF example a maximum number of 500 data points is enforced (to see whatrparfce can be
reached with a limited sample budget).

9.4 Others

Each problem was modeled twice with the heterogeneous evolution algorittue{athE P =true,

once withEP = fals€ and once with homogeneous evolution (a single model type run for each
model type in the HGA). To smooth out random effects each run was texpda times. This
resulted in a total of 516 runs which used up atotal of at least 130 dayis efdCPU time (excluding
initial tests and failed runs). All experiments were run on CalcUA, the clustailable at the
University of Antwerp, which consists of 256 Sun Fire V20z nodes (@D Opteron with 4 or

8 GB RAM), running SUSE linux, and Matlab 7.6 R2008a. Due to spaceideradions, only the
results for theS11(EE), andift (LE) outputs are considered in this paper. For all examples the input
space is normalized to the interyall, 1].

10. Discussion

We now discuss the results of each problem separately in the followingcdrss.

10.1 Ackley Function

The composition of the final population for each run is shown in Figure Extinction Prevention
(EP) equal tarue andEP=false. The title above each sub figure shows the average and standard
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Figure 5: AF: Error histogram of the final best model in each run (LEft=false Right: EP=true)

deviation over all runs. The first element of each vector correspinthe first (top) legend entry.
The error histogram of the final model of each run on the test data isrshoWwigure 5. The
population evolution for the run that produced the best model in both ¢aséswn in Figure 6.
Figure 7 then depicts the evolution of the relative error (calculated acgptaliBquation 2) on the
test set as modeling progresses (again in both cases, for the runatiated the best model). The
lighter the regions in Figure 7, the larger the percentage of test sampldstiealiow relative error
(RE) (according to Equation 2).

_ly=9
141yl

Finally, a summary of the results for each run is shown in Table 1. The tatwesshe number
of samples usedX]|), the validation error\{E), the test set errofTE), and the run time for each

RE(Y.9) (2)
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Figure 6: AF: Population evolution of the best run (Lé&P=false Right: EP=true)
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Figure 7: AF: Error evolution of the best run (LeEP=false Right: EP=true)

Method

x| |

” V Errse |

” T Errse |

” time (min) |

) o (¢ (@)

ANN 4.973E+02| 1.759E+01| 1.308E-02| 3.428E-03| 1.298E-02| 3.456E-03| 1.810E+02| 3.176E+01
Kriging 5.263E+02| 1.193E+01| 2.014E-02| 4.266E-03 || 2.038E-02| 4.521E-03 || 7.256E+01| 9.194E+00
LS-SVM 5.202E+02| 1.200E+01| 1.367E-02| 2.262E-03 || 1.375E-02| 2.314E-03 | 3.995E+01| 3.276E+00
Rational 5.170E+02| 1.023E+01 | 1.881E-01| 5.854E-02|| 1.861E-01| 5.932E-02 || 2.033E+01| 2.221E+00
RBF 5.193E+02| 1.540E+01| 1.326E-02| 2.365E-03 || 1.324E-02| 2.313E-03 || 4.371E+01| 4.133E+00
Splines 5.308E+02| 1.360E+01| 2.471E-02| 5.660E-03 || 2.428E-02| 5.404E-03 || 4.292E+01| 4.984E+00
HGAgp—faise | 5.055E+02| 6.512E+00 || 3.142E-02| 1.777E-02|| 3.094E-02 | 1.711E-02|| 2.366E+02| 1.566E+02
HGAep-true | 5.040E+02| 0.000E+00 || 1.346E-02| 1.936E-03|| 1.367E-02| 1.897E-03|| 3.696E+02| 6.175E+01

Table 1: AF: Comparison with homogeneous evolution
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experiment. All entries are averaged over 15 runs with the standardideshown in the adjacent
column. The plot of the best model found overall is shown in Figure 8.

Regarding the composition of the final population in Figure 4, we see tha¢$éis are some-
what mixed forEP=false.In some runs RBF models perform best, in others LS-SVM models. This
is also reflected in the corresponding error histogram plot in Figure & giihlity of the best model
found in each run differs considerably between runs. In contrasERetrue, the results are more
clear cut, RBF models dominate in 14 of the 15 runs. This already demongtratesefulness of
extinction prevention. Due to randomness in the initial population and genetratops a model
type may be driven extinct, unable to return. EP prevents this. In this particase LS-SVM
models generally perform best initially, pushing the RBF models out of thelatipn. However, as
more data becomes available (active learning), and as the hyperparaptéatézation continues,
superior RBF models are discovered and quickly take over the populatiisis also nicely shown
in Figure 6. In both cases the RBF models are driven out of the populatiomé generation 50.
Though in theEP=true case the RBF models are able to make a re-appearance around generation
100.

Of course nothing prevents this process from recurring. The fatttiigaoptimal solution
changes with time is not a disadvantage and should actually be expectedh&nmgtimization
landscape is dynamic (due to the incremental sampling). Without EP thesetmstliare impossi-
ble and everything depends on the initial conditions. As a result the dahgenverging to a poor
local optimum is considerably greater. Given the form of the Ackley functice should really not
be surprised that the RBF models end on top. The different radial hasitdns that make up the
RBF model (= alocal model) can be expected to match up quite well with the ‘Burfiibe Ackley
function.

If we assess the quality of the final models (Figure 7) we see that it pesfeery well. After 500
samples the model has an error smaller than 0.01 on 98% of the test samplesimyortantly,
these results are consistent as can be seen froaRk¢rue plot in Figure 5. Actually, from an
application standpoint consistency at this level (accuracy) is more impdhan consistency in
model type selection. Since at the end of the day, from an applicationgutirgg the accuracy of
the model is typically most important, not its type.
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Figure 9: KF: Error histogram of the final best model in each run (LEfR=false Right: EP=true)

Method ‘ X] ‘ o H V ErrsE ‘ o H T Errse ‘ o H time (min) ‘ o ‘
ANN 1.413E+02| 2.200E+01|| 8.102E-04| 1.614E-04 || 8.456E-04| 1.671E-04| 6.055E+01| 1.258E+01
Kriging 5.200E+02| 0.000E+00 | 1.989E-03| 3.541E-04|| 2.023E-03| 3.619E-04 || 1.170E+02| 6.224E+01
LS-SVM 5.106E+02| 2.849E+00| 1.187E-01| 4.967E-03|| 1.194E-01| 5.304E-03|| 5.674E+01| 3.571E+00
Rational 1.478E+02| 9.146E+01|| 5.880E-04| 2.115E-04|| 6.276E-04 | 2.469E-04 || 1.191E+01| 7.547E+00
RBF 5.200E+02| 0.000E+00 || 1.072E-01| 3.620E-03 | 1.089E-01| 4.410E-03| 9.187E+01| 2.157E+01

HGAep—faise | 3.059E+02| 2.071E+02| 1.071E-03| 3.396E-04 | 1.085E-03| 3.253E-04 || 3.034E+02| 2.656E+02
HGAEp—true | 6.267E+01| 1.486E+01| 7.009E-04| 2.288E-04 || 7.096E-04| 2.024E-04 | 5.490E+01| 3.533E+01

Table 2: KF: Comparison with homogeneous evolution

The natural question that remains, is how do these results compare with sioipdyrdultiple
homogeneous evolution (single model type, using the same GA settingsonsm&r each type
separately? Those results are shown in Table 1. Studying the table weasdethiGA compares
favorably. The accuracy of the final models are the essentially the sathesasfound by the best
performing single model type run, while the variance on the results tendddavbe (EP=true). Of
course this is paid for by an increase in computation time due to the incregsaldfian size of the
HGA. Still, the HGA has a factor of 6 larger population size (90 vs 15) bgiires only double the
running time of the best performing homogeneous run (ANN). Also the tdBA IFunning time is
still less than the combined run time of all homogeneous runs.

10.2 Kotanchek Function

The composition of the final population and final error histograms for sathre shown in Figures
9 and 10. The population evolution and corresponding error evoluticthédbest run are shown in
Figures 11 and 12. The comparison with homogeneous evolution is shovablia 7.

The Kotanchek function is an interesting example since the GA has to ‘distbae3 of the 5
variables are irrelevant. Considering the composition of the final populdi@Kriging functions
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Figure 10: KF: Composition of the final population (LefiP=false Right: EP=true)
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Figure 11: KF: Population evolution of the best run (L&fP=false Right: EP=true)

seem to be able to do this best in tBB=falsecase, with sporadic ‘wins’ for rational functions.
In the EP=true case the situation is different, rational functions dominating all 15 runs.fddte

that the rational functions succeed in doing this is thanks to a weighting salmssden the genetic
operators and described further in Hendrickx et al. (2006).

The usefulness of EP is demonstrated again as well. While the results of sheubefor
EP=falseare better than the best run 6P=true (less samplesjhe former is much more a product
of chance than the latter (which has lower varian&®=true should still be preferred as it is more
robust. Finally, the quality of the final models is excellent in all runs, and #ré®pnance and
running time of the HGA remains competitive with the single model type runs.
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Figure 12: KF: Error evolution of the best run (LeEP=false Right: EP=true)
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Figure 13: EE: Composition of the final population (LefP=false Right: EP=true)

10.3 EM Example

The composition of the final population for each run is shown in Figureridflze associated error
histogram in Figure 14. The population evolution and corresponding&rotution for the best run
are shown in Figures 15 and 16. Table 3 summarizes the results and athletafst model can be
found in Figure 17. Note that Table 3 shows the cross validation ezkdyiqstead of the validation
error.

The results are very clear cut, rational functions dominate in every @asilyereaching the
accuracy requirements in about 200 data points (withBRetrue runs generally reaching higher
accuracies). This is to be expected. The physical behavior of two timdumosts in a rectangular
waveguide is well described by a quotient of two differential multinomials (frdwesfer function)
and it is this function that needs to be modeled. Thus it is not surprisingatianal functions do
well since their form fits the underlying function.
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Figure 14: EE: Error histogram of the final best model in each runt(E#t=false Right: EP=true)
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Figure 15: EE: Population evolution of the best run (L&R=falsg Right: EP=true)

If we compare the HGA runs with the single model type runs we see significanbvements.
Interestingly, the HGA runs need roughly 33-25% less sample evaluatioaadh the target accu-
racy, and do so in a fraction of the time (less then 8 minutes vs. an averd@enahutes for the
homogeneous runs). Thus here we have a strong case for the useHid

10.4 LGBB Example

The composition of the final population for each run is shown in Figure ti8l@associated error
histogram in Figure 19. The population evolution of the best run is showiguré&20. Table 4
shows the comparison with the homogeneous runs. A plot of the respand®dound in Figure
21.

Adaptive sampling was switched off for the LGBB example. The objective wasee what
accuracy can be reached and what model type prevails within a fixed tidgetbuThe LGBB
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Figure 16: EE: Error evolution of the best run (LdiP=false Right: EP=true)
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’ Method ‘ X] ‘ o H CVRrse ‘ o H TErrsE ‘ o H time (min) ‘ o ‘
Kriging 7.980E+02| 1.137E+02| 8.541E-03| 7.926E-04| 1.881E-02| 2.833E-03|| 7.202E+01| 2.780E+01
Rational 8.147E+02| 2.314E+02| 1.152E-02| 4.128E-03|| 1.708E-02| 4.976E-03 || 4.046E+01| 1.914E+01

RBF 6.080E+02 | 4.226E+01 || 8.123E-03| 6.333E-04 || 1.556E-02| 2.403E-03| 1.713E+01| 2.159E+00

HGAep—faise | 1.880E+02| 2.536E+01| 6.297E-03| 1.770E-03 || 3.518E-02| 4.571E-02 || 7.907E+00| 1.440E+00
HGAep—truie | 1.980E+02| 2.070E+01 || 6.733E-03| 1.457E-03 || 2.227E-02| 1.149E-02 || 7.722E+00| 1.079E+00

Table 3: EE: Comparison with homogeneous evolution

example consists of a 3 dimensional data set and unlike the AF and EE exdngpkeare no clues
as to which model type is most adequate. Running the heterogeneous exapttgorithm it turns
out that ANNSs give the best fit overall (see Figure 18), achievingkat accuracy. Changing the
EP setting does not influence this, though the variance is lower foEByerue case.
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Figure 18: LE: Composition of the final population (LeP=false Right: EP=true)
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Figure 19: LE: Error histogram of the final best model in each runt(lEP=false Right: EP=true)

‘ Method ‘ IX| H V Errse ‘ o H time (min) ‘
ANN 7.800E+02|| 7.47E-003| 5.60E-004 || 3.00E+002
Kriging 7.800E+02|| 1.08E-001| 1.96E-002|| 3.00E+002
LS-SVM 7.800E+02|| 1.40E-001| 4.09E-005|| 3.00E+002
Rational 7.800E+02|| 5.20E-002| 3.02E-004 || 3.00E+002
RBF 7.800E+02|| 7.34E-002| 3.53E-008|| 3.00E+002
HGAgp_tase | 7.800E+02 || 7.68E-003| 4.38E-004|| 3.00E+002
HGAgp=true | 7.800E+02|| 7.59E-003| 4.26E-004|| 3.00E+002

Table 4: LE: Comparison with homogeneous evolution
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Figure 20: LE: Population evolution of the best run (L&P=falsg Right: EP=true)
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Within the same time limits the models produced by the HGA are comparable in actaracy
the best performing homogeneous runs, which again demonstrates finleessof the HGA.
Interestingly it turns out that the third dimension is negligible, the three slicesgimrd-21
almost coincide. This was confirmed by using the SUMO model browser todufyore the re-
sponse. Thus we can safely conclude that side-slip angle has little diecbai the lift on re-entry
of the LGBB into the atmosphere.

10.5 Boston Housing Example

The final example is the Boston Housing data set, adaptive sampling wasnétisloes! off. The

composition of the final population for each run is shown in Figure 22 ancskeciated error
histogram in Figure 23. The population evolution of the best run is shownguré& 24. Table 5
shows the comparison with the homogeneous runs.
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Figure 22: BH: Composition of the final population (LefP=false Right: EP=true)
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Figure 23: BH: Error histogram of the final best model in each runt(lEEP=false Right: EP=true)

| Method | x| || VEese | o | time(min) |
ANN 5.060E+02|| 2.985E-01 | 8.962E-03 || 1.200E+03
Kriging | 5.060E+02|| 3.448E-01| 1.077E-02 | 1.200E+03
LS-SVM | 5.060E+02|| 3.421E-01| 6.012E-06 | 1.200E+03
Rational | 5.060E+02|| 5.006E-01| 4.296E-02 | 1.200E+03
RBF | 5.060E+02|| 1.228E+15| 2.104E+15|| 1.200E+03
HGAEp_rase | 5.060E+02]| 2.764E-01| 2.768E-02 || 1.200E+03
HGAep_que | 5.060E+02|| 2.735E-01| 1.372E-02 | 1.200E+03

Table 5: BH: Comparison with homogeneous evolution
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Figure 24: BH: Population evolution of the best run (Lé&EP=false Right: EP=true)

This is a somewhat curious example since it has high dimensionality (13), sipptis (506 tu-
ples), and the types and ranges of the different inputs parametergreatjy (e.g., input 4 (CHAS)
is a boolean variable that is 1 if the tract borders the river and 0 othemhsge input 5 (NOX)
is the nitric oxide concentration). Consequently, any analysis of this datddshe preceded by a
thorough statistical treatment (feature selection, variance analysis,We&egxplicitly chose not to
do this but take the data as is and treat is as black box regression problem.

The results are mixedéeFigure 22), though the HGA runs again outperform the homogeneous
runs. (LS-)SVM and ANN models seem to be preferred over KrigingRBE models but there is
no evidence to distinguish between the models any further. Striking, thsuplat about half of the
final population consists of ensembles and that most of these ensemblestttoie {ANN, RBF}
pairs or multiple ANNs. Figure 25 shows the evolution of the composition of tkegrrforming
ensemble. The popularity of ensembles in this case is in line with the authoreysexperiences.
When the individual model types are having trouble to fit a difficult respowith none really
performing much better than the other, hybrids (ensembles) tend to do wedlthiey can produce
more complicated responses. It is a signal that none of the included modslayp really fit for
the approximation problem.

Also striking (and interesting) are the oscillations in the population evoluseeKigure 24,
or Figure 26 for a more marked example). It turns out that every ruwshbese oscillations
between ensembles and one or two other model types. Interestingly thg®s occur every 10
or 7 generations. It remains unclear to the authors how these oscillationsengxylained. This is
an issue that is being investigated in more detail.

11. Summary

In summary the results for the different test problems are very promisithgndime with previous
results (Gorissen, 2007; Gorissen et al., 2008a; Couckuyt et ab; Zaf¥issen et al., 2009a). The
results show a consensus about which model type to use in all test cps®#ng the BH example
for the moment). In the case the consensus is not absolute (e.dgPttteue run for the AF in
Figure 4) the final model accuracies are essentially the same thus this eafiptar problem from
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Figure 26: BH: Oscillations in the population evolutidh®Ae p—trye)

an application standpoint. More important is that the target accuracy kaséached and that all
model types have been given a fair chance without having to resortrtdeforce approach.

In general we found the algorithm to be quite consistent across manyWren variation does
show up in the model selection results it typically is because two or more moas tgm fit the
data equally well with only a minor difference in accuracy. This means thaGthenay alternate
between the different local optima, giving different model selectionltgshut still reaching the
targets. The other reason is if the data is simply too difficult to fit using the meihotlided in the
evolution. In this case ensembles may tend to do well. The BH example seemsivedidahis
situation.

It is important to remind the reader, though, that the overall performahttedGA will of
course depend on the quality of the model types themselves, and more inlgodiarthe quality
of the creation function and genetic operators (and adequacy of tiserchepresentation). Good
results have already been obtained with the current implementations thoughstiséi room for
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improvement with respect to the application by an expert in any one’tyjoekily, an advantage of
the HGA based approach is that since the general algorithm is now in filaeepmes possible to
focus on such improvements without requiring changes to the HGA itseltif@penprovements
(e.g., devised by an expert in a certain model type) are straightforwanteggrate into the existing
genetic operators allowing an accumulation knowledge that will improve thalbgeiality of the
models produced by the HGA.

A next step is to further increase the number of test problems and, moretanfhgrinvestigate
the influence of the different parameters involved. In this respect thatiagrinterval and migra-
tion topology parameters are particularly important since they determine houlffiient model
types interact. For example, if the migration interval is set too high, each ddim@educe high
guality models (most of the time is spent optimizing the parameters of a single moegbtyghere
will have been very little competition between models. If it is set too low, the asavis true. More
research is needed to to better understand this balance and investigateabieafgenetic drift.

12. Conclusion and Future Work

Due to the computational complexity of current simulation codes, the use dlgalrogate mod-
eling techniques (adaptive sampling, adaptive modeling) has becomerst@naetice among sci-
entists and engineers alike. However, a recurring problem is selectimyasieadequate surrogate
model type and associated complexity. In this contribution we explored aoagpbased on the
evolutionary migration model that can help tackle this problem in an automatic \itgiinforma-
tion is known about the true response behavior and there are no apodel type requirements. In
addition, we have illustrated the usefulness of extinction prevention aednahs based recombina-
tion. Extinction prevention is a straightforward algorithm that prevents eispé&om disappearing
from the gene pool at the expense of a minor cost (keeping 2 extradoelg per species ‘alive’).
As a result, the optimal solution is able to change with time, making for a more flexidladaptive
system which, as demonstrated in the different examples, gives bettaraadonsistent results.

Future work will consist of investigating the oscillations in the BH example, exgiadiffer-
ent GA parameter values (role of the migration frequency, migration topoétgy, incorporating
more model types, and more advanced ensemble methods (e.g., strorgjesintson ensemble
composition). As mentioned above, improvements to the genetic operatonsggni@@in order to
get more out of each model type. The utility of adding a penalty to the fithestidm proportional
to the model complexity and/or training time will also be investigated. Furthermorbawebeen
experimenting with sampling strategies that vary dynamically depending onrtteniag sample
budget and quality & type of surrogate currently used in the modeling psodée idea is to work
towards an optimal interplay between sampling and modeling. E.qg., initially the &haudd be on
exploration of the design space while, as accuracy of the models imptbedecus should shift to-
wards refining the model in places where it is uncertain and ensuring tineeopexhibits are really
true optima. Likewise, we are experimenting with dynamic model selection critesiaexample,
if only little data is available cross validation type measures may be unreliable erakds little
sense enforcing problem specific constraints (e.g., the model resglomslel be bounded between
given bounds). However, when the data density is sufficiently high thesite will be true. Thus
there seems to be some intuition advocating the use of annealing type strategies.

5. There is a trade-off involved here. Expert application of a suteogeodel type will invariably lead to problem
specific bias, reducing the performance on other problems.
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In addition to the global modeling use case. We are also experimenting with litikenig GA
described here with the EGO framework from Jones et al. (1998). frhetwe of the SUMO
Toolbox allows natural linking of these two components. This allows for auiomaodel type
switching during optimization (any model type that supports prediction vegiaan be used) and
may be beneficial for computational expensive codes.

Finally it should be noted that all the algorithms and examples described fecagailable for
download att t p: / / www. suno. i nt ec. ugent . be.
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