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Abstract

In this paper we propose a new multilayer classifier architecture. The proposed hybrid architecture
has two cascaded modules: feature extraction module and classification module. In the feature
extraction module we use the multilayered perceptron (MLP)neural networks, although other tools
such as radial basis function (RBF) networks can be used. In the classification module we use sup-
port vector machines (SVMs)—here also other tool such as MLP or RBF can be used. The feature
extraction module has several sub-modules each of which is expected to extract features capturing
the discriminating characteristics of different areas of the input space. The classification module
classifies the data based on the extracted features. The resultant architecture with MLP in feature
extraction module and SVM in classification module is calledNEUROSVM. The NEUROSVM is
tested on twelve benchmark data sets and the performance of the NEUROSVM is found to be better
than both MLP and SVM. We also compare the performance of proposed architecture with that of
two ensemble methods: majority voting and averaging. Here also the NEUROSVM is found to
perform better than these two ensemble methods. Further we explore the use of MLP and RBF in
the classification module of the proposed architecture. Themost attractive feature of NEUROSVM
is that it practically eliminates the severe dependency of SVM on the choice of kernel. This has
been verified with respect to both linear and non-linear kernels. We have also demonstrated that for
the feature extraction module, the full training of MLPs is not needed.

Keywords: feature extraction, neural networks (NNs), support vectormachines (SVMs), hybrid
system, majority voting, averaging
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1. Introduction

A classifier designed from a data setX = {xi |i = 1,2, . . . ,N,xi ∈ℜp}, whereℜp is thep dimensional

real space, can be defined as a functionG : ℜp → Nc. HereNc = {y ∈ ℜc : yk ∈ {0,1}∀k,
c
∑

k=1
yk = 1}

is the set of label vectors andc is the number of classes. For any input vectorx∈ℜp, G(x) is a vector
in c dimension with only one component as 1 and all others 0. In this paper our primary objective
is to find a goodG combining neural networks (NNs) and support vector machines (SVMs).

In machine learning literature NN and SVM are two widely used classifiers. NNs have been
developed for many years and been used in various applications (Haykin, 1999; Pal et al., 2006).
The SVM (Vapnik, 1995) is a classification and regression tool. It is comparatively a new family of
learning tools including training algorithms for optimal margin classifiers (Boseret al., 1992) and
support vector networks (Cortes and Vapnik, 1995). In SVM the inputdata are often transformed
into a high dimensional space using some kernel functions. A linear separating hyper plane with
the maximal margin between the closest positive and closest negative samplesin the mapped space
is found. The SVM works by solving a quadratic optimization problem that minimizes a sum of
two terms. The first term is related with the reciprocal of norm of weight vector associated with
the hyper plane and the second term is related to the sum of classification error. The SVM is a
very active topic of research (von Luxburg et al., 2004; Adankon and Cheriet, 2007) and it has been
successfully applied to many areas including handwritten digit recognition (Vapnik, 1995), object
recognition (Pontil and Verri, 1998), protein structure prediction (Nguyen and Rajapakse, 2003) and
texture classification (Kim et al., 2002). But there are some computational difficulties associated
with using SVM. One of them is the required memory, which grows very quicklywith the size of
the training data since the SVM algorithm involves solving a large quadratic programming problem
where every training data point forms a constraint. This is a constraint on the application of SVM to
very large data sets. More importantly, the performance of SVM is significantly dependent on the
choice of kernel. Needless to say that for non-linearly separable data,the performance of linear and
nonlinear SVM also differs significantly.

Use of an ensemble of classifiers is a popular approach to improve the classification perfor-
mance. Many ensemble methods are used by researchers to report the improvement in performance
over single classifier (Hansen, 1999; Maqsood et al., 2004; Chawla etal., 2004). An ensemble
of classifiers can be constructed using both homogeneous and heterogeneous classifiers (Hansen,
1999; Prevost et al., 2003; Garcia-Pedrajas et al., 2005). An ensemble of neural networks is often
used for pattern classification problems (Garcia-Pedrajas et al., 2005; Islam et al., 2003) including
face recognition (Melin et al., 2005), weather forecasting (Maqsood etal., 2004), protein secondary
structure prediction (Guimaraes et al., 2003). Different approaches for constructing ensemble of
neural networks have been suggested in the literatures (Wu et al., 2001;Zhou et al., 2002; Windeatt,
2006). In this paper for the purpose of comparison we have considered two ensemble methods for
neural networks, one uses the average output of the ensemble of networks while the other one makes
the ensemble vote on a classification task.

In this context, the ensemble method of Garcia-Pedrajas et al. (2007) needs a special attention
as this method also uses a multilayer perceptron network for feature extraction and hence one may
get a false impression that this method and our proposed method are quite similar.

This is an ensemble method where a large number of classifiers are trained and then their out-
comes are aggregated using the majority voting rule. This is an interesting methodbut quite different
from our proposed scheme.

592



NEUROSVM: AN ARCHITECTURE TOREDUCE THEEFFECT OF THECHOICE OFSVM KERNEL

Like AdaBoost the first baseline classifier is trained using the original training data while each
of the subsequent classifiers is trained using a projected data set created using the hidden output
of a trained MLP. The second baseline classifier uses data projected through the hidden layer of a
projection network (MLP here). The projection network is an MLP networkwith number of hidden
nodes equal to the number of inputs in the original training data and it is trainedusing only that
subsetof the training data which are not classified correctly by the first baseline classifier. The
projection network (again an MLP with number of hidden nodes equal to the number of inputs in
the original data) for the third baseline classifier is trained using the originaldata points whose
projected versions are wrongly classified by the second baseline classifier. The process is repeated
to generate a large number of baseline classifiers.

Note that, our proposed method falls in the category of hybrid system. Therehave been several
attempts to combine different machine learning tools to develop efficient hybridsystems for pattern
classification problems (Huang and LeCun, 2006; Happel and Murre, 1994; Vincent and Bengio,
2000; Mitra et al., 2006, 2005). To design a hybrid system different combination of classifiers is used
including neural network-SVM (Mitra et al., 2005, 2006; Vincent and Bengio, 2000), convolution
network-SVM (Huang and LeCun, 2006). Neural networks and support vector machines are used to
design a hybrid system for text classification in Mitra et al. (2005) and Lidar detection of underwater
objects in Mitra et al. (2006). Mitra et al. (2005) proposed a hybrid system called neuro-SVM which
takes the component wise product of the outputs of a cascaded-SVM classifier and a recurrent neural
network, and applies a set of heuristic rules to decide on the class. In the work of Mitra et al. (2006),
after preprocessing Lidar signal is modeled using a polynomial as well as alinear predictor. The
optimal coefficients of the polynomial are used as inputs to train a RBF, while coefficients of the
linear predictor are used to train an MLP. The products of the corresponding components of the
output vectors from the two networks are used as input to a cascaded-SVM classifier. Huang and
LeCun (2006) presented a hybrid system for object recognition that uses the outputs of the last
hidden layer of a convolution network to train a SVM with Gaussian kernel. The convolution
network is generally used for computer vision problems. A convolution network has several hidden
layers alternately consisting of convolution layer and sub-sampling layer. In a convolution network,
the successive layers are designed to learn progressively higher-level features until the last layer,
which produces categories.

There have been a number of attempts to develop modular networks to solve complex prob-
lems efficiently (Ronco and Gawthrop, 1995; Bottou and Gallinari, 1991). The basic philosophy
of developing a modular network is to divide the task into a number of, preferably, meaningful
subtasks, and then design one module for each subtask. Finally one needs to devise a mechanism
to integrate these modules—this will dictate how different modules interact and lead to the final
output. Sometimes the knowledge of the problem domain can be used to find the subtasks, but often
clustering is used for this purpose. For example in Pal et al. (2003) a selforganized map (SOM) is
used to find natural clusters (subtasks) in the data and then for each cluster a separate network is
trained. A given input is routed to the appropriate MLP module using the SOM.Jenkins and Yuhas
(1993) have presented a simple solution to the truck backer-upper problem by decomposing it into
subtasks. Then all subtasks are realized in parallel (that is, off line) to obtain the final two-layer
feed-forward network, which is used to control the truck. Although ourproposed architecture uses
several modules, this is not designed following the usual principle of modularnetwork.

In this paper we propose a new classifier architecture called NEUROSVM.The proposed clas-
sifier has two modules. In the first module we have used an MLP. We view the first module as a
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feature extraction module (FM), because outputs of this module can be usedas inputs to any other
classifier. This new set of features is used in the next module, termed as theclassification module
(CM). In the classification module we have used SVM with different kernelfunctions. Instead of
SVM, one can use any other classifier also. We also consider the MLP andRBF neural networks in
the CM of our proposed architecture. To further demonstrate the effectiveness of NEUROSVM we
compare it with two other ensemble methods: majority voting and averaging. We demonstrate the
effect of the kernel on SVM and NEUROSVM.

Our proposed method is neither an ensemble method nor has any relation to boosting. There is
only one classifier. The classifier uses features extracted from the hidden nodes of several trained
networks where typically the number of hidden nodes in a network is smaller than input dimension.
Each network used for feature extraction is trained using the same data andeach network sees
the entire input space as represented through the training data. Thus typically to get improved
performance we need fewer feature extraction networks than that wouldbe needed by the ensemble
type methods.

2. Methods

The section is arranged as follows. First, we provide a brief description of neural networks for
the sake of completeness. Next, we give a brief description of the support vector machine (SVM)
classifier and how several binary SVMs can be combined to solve a multiclassproblem. Then we
explain two popular existing ensemble methods that will be used for comparison. This is followed
by a detailed discussion of the proposed method.

2.1 MLP and RBF Neural Networks

The two most widely used neural networks for pattern recognition are multilayer perceptron (MLP)
and radial basis function (RBF) networks (Haykin, 1999). We have used the back-propagation
algorithm for training MLP networks with single hidden layer.

The RBF network consists of exactly three layers: input layer, basis function layer and output
layer. Unlike MLP, the activation functions of the hidden nodes are not ofsigmoidal type, rather
each hidden node represents a radial basis function. The transformation from the input space to the
hidden space is nonlinear but each node in the output layer computes just the weighted sum of the
outputs of the previous layer, that is, each output layer node makes a lineartransformation. The
learning of RBF network is usually performed in two phases. An unsupervised learning method
is applied to estimate the basis function parameters. Then a supervised learning method, such as
gradient descent or least square error estimate, is applied to tune the network weights between
the hidden layer and the output layer. However, the parameters of the basis functions can also be
tuned using gradient descent technique. Here we have used the MATLAB implementation of RBF
network.

2.2 Support Vector Machines (SVMs)

The basic SVM (Haykin, 1999; Vapnik, 1995) formulation is for two class problems. If the training
data are linearly separable, then SVM finds an optimum hyperplane that maximizes the margin of
separation between the two classes.
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Given a training set(X,Y), xi ∈ X, xi ∈ ℜp and yi ∈ Y, the class label associated withxi ;
yi ∈ {−1,+1}, the learning problem for SVMs is to find the weight vectorw and biasb such that
they satisfy the constraints:

xi .w+b > +1 for yi = +1 (1)

xi .w+b 6 −1 for yi = −1 (2)

and the weight vectorw minimizes the cost function

Φ(w) =
1
2

wTw.

The constraints written in Equations (1)-(2) can be combined as

yi(xi .w+b) > +1 ∀i.

If the training points are not linearly separable, then there is no hyperplane that separates them
into positive and negative classes. In this case, the problem is reformulated considering the slack
variablesξi > 0;i = 1,2, . . . ,N. For mostxi , ξi = 0. The constraints are now modified as follows:

xi .w+b > +1−ξi for yi = +1 (3)

xi .w+b 6 −1+ξi for yi = −1 (4)

ξi > 0, ∀i. (5)

The SVM then findsw, minimizing

Φ(w,ξ) =
1
2

wTw+C
N

∑
i=1

ξi

subject to constraints as in Equations (3)-(5). The constantC is termed as a regularization parameter
as it controls the trade off between the complexity of the machine and the numberof misclassifica-
tions.

Typically, when the training points are not linearly separable, a nonlinear mappingϕ is used to
map the training data fromℜp to some higher dimensional feature space H, with a hope that the
data may be linearly separable in H. The mapping is implicitly realized using a kernel function.

Two kernels that are popular for non-linear SVMs are:

1. Polynomial of degreed: K(x,xi) = (sx.xi +1)d, where s is the scaling coefficient of the dot
product.

2. Radial Basis Function (RBF):K(x,xi) = e−γ‖x−xi‖2
, γ > 0.

In this study, we shall extensively use the RBF kernel with a wide range ofγ. We shall also demon-
strate the utility of the proposed method with polynomial kernel.

We have usedSVMlight (Joachims, 2002) software for learning the SVM classifier. Note that,
NEUROSVM usesSVMlight in the classification module. We also use SVMs on the original data
to compare its performance with that of NEUROSVM.
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2.3 SVM for Multiclass Problems

The preceding SVM formulation is for two class problems. Multiclass SVMs aregenerally realized
using several two class SVMs. We use the One versus One (OVO) method (Nguyen and Rajapakse,
2003; Weston and Watkins, 1999). Let us assume that we have ac class problem. In this method
we construct one binary classifier for every pair of distinct classes. So we getc× (c−1)/2 binary

classifiers for ac class problem. In the training data, supposeki samples are from classi, N =
c
∑

i=1
ki .

For the class pair(i, j), a binary classifierCi j is trained usingki andk j data points from classi and j.
An unknown samplex is then classified by each of thec×(c−1)/2 different classifiers. If classifier
Ci j classifiesx as classi then the vote for classi for samplex is increased by one. Otherwise, vote
for class j for samplex is increased by one. In this way for samplex, the votes for allc classes are
calculated using the output of allc× (c−1)/2 classifiers. After that we assignx to classl , if class
l has the largest number of votes forx. Ties are randomly resolved.

2.4 Ensemble Methods: Majority Voting and Averaging

Different methods of classifier fusion are available in the literature (Maqsood et al., 2004; Ko et al.,
2007; Brown et al., 2005; Tang et al., 2006; Kuncheva and Whitaker, 2003; Windeatt, 2006; Islam
et al., 2003), of which the majority voting scheme is probably the most popular method (Stepenosky
et al., 2006). In this method, the final class is determined by the maximum number of votes counted
among all the classifiers fused. Let us consider ac class problem and letm be the number of
classifiers to be fused. For an unknown samplex, vote for classj, v j ,( j = 1,2, . . . ,c) is computed
from the ensemble of classifiersCi ,(i = 1,2, ...,m). If Ci ,(i = 1,2, ...,m) assigns samplex to class
j thenv j is incremented by 1. Note that, initially vote for every class is initialized to 0; that is,v j =

0,( j = 1,2, ...,c). The final class determination by the ensemble for samplex is k, if vk =
c

max
j=1

{v j}.

Averaging also is a simple but effective method and is used in many classification problems
(Guimaraes et al., 2003; Naftaly et al., 1997). In this method, the final classis determined by the
average of continuous outputs of all classifiers (here MLPs) fused. For an unknown samplex, let
the output for classj ( j = 1,2, ...,c) from classifierCi ,(i = 1,2, ...,m) beoi j . Then the output from

the ensemble classifier is obtained asO j = 1
m

m
∑

i=1
oi j , j = 1,2, . . . ,c. The final class assignment by

the ensemble tox is k, if Ok =
c

max
j=1

{O j}.

2.5 Proposed NEUROSVM Classifier

The proposed multilayer architecture can be thought of as a combination of two types of modules:
feature extraction module (FM) and classification module (CM). The FM consists of a number of
sub-modules SFMi , i = 1,2, . . . ,m. Each sub-module SFMi takes the samep dimensional data
x = (x1,x2, . . . ,xp)

T as input and producesni dimensional output vectorsvi = (vi1,vi2, . . . ,vini )
T .

Thusn=
m
∑

i=1
ni output values together as shown in Equations (6) and (7) constitute ann dimensional
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input to the classification module.

z =











v1

v2
...

vm











∈ ℜn1+n2+...+nm (6)

and

v1 = (v11,v12, . . . ,v1n1)
T ,

v2 = (v21,v22, . . . ,v2n2)
T , (7)

...

vm = (vm1,vm2, . . . ,vmnm)T .

In general, different SFMi can use different methods of feature extractions or they can use the
same principle for feature extraction. Similarly, the classification module can use any principle like
neurocomputing, support vector machines and so on.

In this investigation, the sub-modules SFMis are derived from multilayer perceptron networks,
while the classification module consists of support vector machines. And, hence, we call the result-
ing architecture NEUROSVM.

In order to constitute theith sub-module SFMi , we consider an MLP with just one hidden layer,
with architecture(p,ni ,c), wherep is the input dimension,ni is the number of nodes in the hidden
layer andc is the number of classes. Note that, although the number of input and output nodes
in each MLP remains the same, the number of nodes in the hidden layer could bedifferent for
different MLPs. Each MLP is then trained using the training dataX = {xi ; i = 1,2, . . . ,N} ⊂ ℜp,
Y = {yi ; i = 1,2, . . . ,N} ⊂ ℜc whereyi is the target output corresponding toxi .

Once each network is trained, the output of the hidden layer can be taken as the extracted
features. These features capture characteristics of the data that can discriminate between classes;
hence using these features we can do the classification job using just a single layer network.

Note that, instead of MLP, we can use RBF also in the feature extraction module. In Figure
1, the top panel hasm different trained MLPs labeled as MLP1,MLP2, . . . ,MLPm. After the train-
ing, we remove the output layer and its associated connections from each of the MLPs and then
the truncated two-layer sub-networks are taken as feature extraction sub-modules. The subnets
SFM1,SFM2, . . . ,SFMm in the lower panel of the NEUROSVM are constructed from the trained
MLPs in the upper panel. The first two layers of MLPi constitute SFMi , i = 1,2, . . . ,m.

As depicted in the lower panel of Figure 1, the output from them sub-modules, taken together
constitutes the input to the classification module. Here we consider SVMs for classification, but
other classifiers such as neural networks (MLP or RBF network) can also be used. Note that, each
sub-module receives the same inputx = (x1,x2, . . . ,xp)

T .
Given the training dataX andY, in order to train the CM we use the following data set. For

eachxi ∈ X, the FM produces an outputzi ∈ ℜn as in Equation (6). Like an MLP, every node in
the second layer of NEUROSVM computes the weighted sum of its input and applies a sigmoidal
activation function to produce its output. ThusZ = {zi ; i = 1,2, . . . ,N},zi ∈ ℜn, as in Equation (6),
is used as the input data and corresponding to eachzi ∈ Z, the associatedyi ∈ ℜc, yi ∈Y is taken as
the target output. The CM is trained using(Z,Y).
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In the present case the CM has two layers. The first layer, as shown in Figure 1, is the SVM
kernel layer where each node is associated to a mapped training samplezi (it is the output from an
FM that represents a support vector) and it computes the kernel outputK(z,zi) on a mapped input
z, while the other layer is the output layer.

Figure 1: The proposed NEUROSVM classifier

2.6 Advantages of the Proposed Method

A natural question comes, why such an architecture (NEUROSVM) will be better or more useful
than the usual SVM or MLP? There are number of reasons behind this. Note that, we are not
considering very simple data sets where most classifiers will lead to zero training-test errors.

598



NEUROSVM: AN ARCHITECTURE TOREDUCE THEEFFECT OF THECHOICE OFSVM KERNEL

1. Typically, due to the local minima problem of MLP training and its dependenceon initial-
ization, different MLPs may learn different areas of the input space better. Hence when we
combine the output of the hidden layer of different networks to generate new features, the
learning task becomes simpler to the CM. This is true irrespective of whether the CM is a
neural network or SVM.

2. The extracted features result in simpler classification boundaries because a single layer net-
work can classify the new data (consider a two layer network consisting ofthe hidden and
output layers of an MLP). This also makes the learning task of the CM simpler.

3. For high dimensional data, typically the number of nodes in the hidden layeris much smaller
than the number of the input nodes and one does not need many feature extraction sub-
modules (SFMs). Hence, the dimensionality of the input for the CM can be reduced com-
pared to the original dimension of the input. This makes simpler error surface, faster learning
and allows us to do more experiments, if CM is a neural network.

4. This is not an ensemble method but it makes fusion of salient characteristics of the input
space as extracted/learnt by different feature extraction networks. It can at least be viewed as
an implicit fusion of multiple classifiers, and hence improvement in performanceis expected.

5. For large data sets, it may not be necessary to make full training of the MLPs for constructing
the SFMis, because the objective of the MLPs here is to capture the inherent attributes of the
data by the FM.

For low dimensional data sets or simpler data sets this method may not have much advantage be-
cause thenn (dimension of input to the CM) can be more thanp (original dimension of the input)
and different SFMs may capture the same attributes of the data resulting in notmuch of benefits.
Note that, the advantages mentioned in 2 and 3 are also applicable to MLPs.

3. Experiments

The section is arranged as follows. First we have listed the selected data sets to validate our proposed
method. Then experimental setup is described. Next, the experimental results are presented. Finally,
a control experiment to justify one of the advantages of the proposed methodis demonstrated.

3.1 Data Sets

To demonstrate the effectiveness of the proposed method, we consider twelve data sets from the UCI
Machine Learning Repository (Blake and Merz, 1998). We divide the data sets into two Groups:
A and B. The Group A consists of eight data sets: Iris, Vehicle, Breast Cancer (WDBC), Glass,
Sonar, Ionosphere, Lymphography Domain (Lymph) and Pima Indians Diabetes (Pima) data. The
Group B contains Pendigits, Image-Segmentation (Img. Seg.), Landsat satellite image (Sat. Img.)
and Optdigits data. For Group A data sets some results are available in the literature but the details
of the experimental protocols (such as training/test divisions) used are not available. Hence, we
report the performance with ten-fold cross-validation experiments. Eachdata set is divided into ten
subsets of almost equal size. One of the subsets is used for testing and theremaining nine subsets
are used for training. The procedure is repeated ten times and the average performance is reported.
We report the results in terms of mean test error and its standard error forGroup A data sets. For the
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four data sets in Group B, benchmark results with different classifiers are available along with the
training-test partition. Hence we have used the same training-test partition here and report the error
on the fixed test set. Table 1 and Table 2 summarize the Group A and Group B data sets respectively.

Data set No. of No. of features Size of the data set and class wise
classes distribution

Iris 3 4 150 (= 50 + 50 +50 )
Vehicle 4 18 846 (=212+217+218+199 )
WDBC 2 30 569 (=212 + 357 )
Glass 6 9 214 (=70+76+17+13+9+29)
Sonar 2 60 208 (=97+111)
Ionosphere 2 34 351 (=225+126)
Lymph 4 18 148 (=2+81+61+4)
Pima 2 8 768 (=500+268)

Table 1: Group A data sets

Data set No. of No. of Training data Test data
classes features Size Class distribution Size Class distribution

780, 779, 780, 719 363, 364, 364, 336
Pendigits 10 16 7494 780, 720, 720, 778 3498 364, 335, 336, 364

719, 719 336, 336
Img. Seg. 7 18 210 30 in each class 2100 300 in each class

104, 68, 108, 47 1429, 635, 1250, 579
Sat. Img. 6 4 500 58, 115 5935 649, 1393

376, 389, 380, 389 178, 182, 177, 183
Optdigits 10 64 3823 387, 376, 377, 387 1797 181, 182, 181, 179

380, 382 174, 180

Table 2: Group B data sets

3.2 Experimental Setup

In this subsection we describe the selection method for hyper parameters ofMLP and SVM classi-
fiers. To select the optimal architecture for an MLP, Andersen and Martinezr (1999) used ten-fold
cross-validation experiments. Adankon and Cheriet (2007) discussedanother scheme for SVM
model selection. Here we have used ten-fold cross-validation experimentsfor MLP architecture
selection as well as for selection of SVM kernel parameters. For Group Bdata sets training-test
partitions are fixed and hence we have used ten-fold cross-validation onthe training set to select the
hyper parameters of classifiers. For Group A data sets, as mentioned earlier, the performances are
reported based on ten-fold cross-validation. So, we perform double blind ten-fold cross-validation
experiments to select hyper parameters of classifiers for Group A data sets.

Note that, for the FM of NEUROSVM, we need to selectm> 1 MLPs. A natural choice would
be to select the bestm architectures corresponding to the smallestm values of validation errors.
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Based on validation error we choosem architectures for each of the ten folds for Group A data sets
andmarchitectures for each of the Group B data sets for NEUROSVM.

In a similar manner the regularization parameterC and spreadγ of RBF kernels of SVMs are
chosen based on ten-fold cross-validation experiments. We have experimented withnc choices of
C andng choices ofγ. So, we have usednc×ng sets of choice of parameters. For each choice, the
ten-fold cross-validation experiments are conducted. Here we also select the(C,γ) pair that leads to
the minimum average validation error. In this investigationnc = 12 andng = 15 are used resulting
in a total of 180 pairs of parameters.

We have also used ten-fold cross-validation to find the sub-modules for NEUROSVM. The
hyper parameters of SVMs in the classification module of NEUROSVM are alsoestimated through
ten-fold cross-validation experiments. Note, for Group A data sets we have used double blind ten-
fold cross-validation. We have selectedm (=5) SFMs. Hence using them SFMs we can generate
2m− 1 different feature subsets combinations. In our case it is 25 − 1 = 31. Then for each of
the 31 combinations with all 180 pairs of(C,γ) we have conducted the ten-fold cross-validation
experiments on training set(s). We have obtained the best(C,γ) for each of the 31 combinations.
Then the best combination is chosen based on the minimum average validation error over all 31
combinations. Finally using the best combination and corresponding(C,γ) pair the performance of
NEUROSVM is reported.

We have performed statistical tests (Dietterich, 1998) to compare the proposed algorithms with
that of standard algorithms. For Group A data sets where cross-validationis performed, we have
applied the ten-fold cross-validation paired t-test with 9 degrees of freedom and 95% significance
level. For the four data sets of Group B where a single test set is employed,we have constructed
McNemar test with 1 degree of freedom and 95% significance level. The formulations of these tests
are as follows.

3.2.1 K-FOLD CROSS-VALIDATION PAIRED T-TEST (DIETTERICH, 1998)

Consider two classifier models,D1 and D2, and a data setX. The data set is split intoK parts
of approximately equal sizes, and each part is used in turn for testing of aclassifier built on the
pooled remainingK−1 parts. ClassifiersD1 andD2 are trained on the training set and tested on the
test set. Denote the observed test accuracies asP1 andP2, respectively. This process is repeatedK
times and test accuracies are tagged with superscript(i), i = 1,2, . . . ,K. Thus a set ofK differences is

obtained,P(1) = P(1)
1 −P(1)

2 to P(K) = P(K)
1 −P(K)

2 . Under the null hypothesis (H0: equal accuracies),
the following statistic has a t-distribution withK−1 degrees of freedom

t =
P
√

K
√

K
∑

i=1
(P(i)−P)2/(K−1)

,

whereP = (1/K)
K
∑

i=1
P(i). If the calculatedt is greater than the tabulated value for chosen level of

significance (here 0.05) andK −1 (here 9) degrees of freedom, we reject null hypothesisH0 and
accept that there are significant differences in the two compared classifier models.
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3.2.2 MCNEMAR TEST (DIETTERICH, 1998)

As done before consider two classifiersD1 andD2. Let us define the following:N00 = number of
samples which bothD1 andD2 classify incorrectly,N01 = number of samples whichD1 classifies
incorrectly butD2 classifies correctly,N10 = number of samples whichD1 classifies correctly but
D2 classifies incorrectly andN11= number of samples which bothD1 andD2 classify correctly. Let,
N = N00+N01+N10+N11 be the total number of samples in the test set. The null hypothesis,H0,
is that there is no difference between the accuracies of the two classifiers. If the null hypothesis is
correct, then the expected counts forN01 andN10 are 1

2 (N01+N10). The discrepancy between the
expected and the observed counts is measured by the following statistic

χ2 =
(|N01−N10|−1)

N01+N10
,

which is approximately distributed asχ2 with 1 degree of freedom. To carry out the test we simply
calculateχ2 and compare it with the tabulatedχ2 value for a given level of significance, say, 0.05
(in our case).

We have performed all experiments using two Sun Blade 2500 with dual processors. The
svm learn and svmclassify modules for binary SVMs training and classification are used from
SVMlight (Joachims, 2002) software. For the RBF neural network MATLAB toolbox is used. All
other programs are written in c.

3.3 Experimental Results

In this subsection first we list the selected hyper parameters of MLP and SVM by cross-validation
experiments. Next selection of sub-modules and hyper parameters of NEUROSVM is discussed.
The performance comparison of NEUROSVM with the baseline classifiers and standard ensemble
methods is presented. Finally, we present the performance of other variants of NEUROSVM and
compare it with the baseline classifiers as well as ensemble methods.

3.3.1 SELECTION OFHYPER PARAMETERS FORMLPS TO CONSTRUCT THEFM

For Group A data set we use double blind ten-fold cross-validation. The partitioning of data for
Group A data sets is explained in Appendix A. For each of the outer level cross validation loop,
finding the optimal number of hidden nodes and computation of the test error are explained in the
procedure RunMLP in Appendix B. The initial weights of the MLPs are chosen randomly in [-0.5,
+0.5] and the learning rate used to train the MLPs is 0.60. The number of iterations used to train
the networks for different data sets are chosen based on a few trial experiments. For each data set,
a set of choices on the number of hidden nodes is used to train the MLPs. InTable 3, number of
iterations and number of hidden nodes that are used to train the MLPs for thetwelve data sets are
listed. We have decided to usem= 5 neural networks for feature extraction modules and hence for
each fold, we have to select a set of five hidden nodes to train five MLPs.

First we display the variation of the average validation error of cross-validation experiments as
a function of the number of hidden nodes for both Group A and Group B data sets. Since for each
data set in Group A 10 panels are required for the 10 folds, we include thefigure for only one data
set, Vehicle, in Figure 2. In Figure 3, four panels are included, one foreach of the four data sets in
Group B. In both Figures 2 and 3 we also include the average training errors. As mentioned earlier,
for the FM of NEUROSVM, we want to usem= 5 networks (SFMs). Consider a data set in Group
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A. Suppose, we have trained MLPs withM different architectures, that is, withM different choices
of hidden nodes. Then for each of the outer level fold, we shall haveM different hidden nodes each
associated with an average validation error. Now we order theseM hidden nodes in ascending order
of the associated validation error. Then select the top five hidden nodes from this ordered list. These
five different choices of hidden nodes will be used to train five MLPs forfeature extraction for that
particular fold. For each data set, in Table 4, we depict the list of selected hidden nodes for each fold
(outer level). As an example, for the IRIS data for the first fold (outer level), the selected hidden
nodes are (7, 2, 5, 6, 8). This means that for the first fold (outer level)we got the least validation
error with 7 hidden nodes; the next smaller validation error is obtained with 2 hidden nodes and so
on.

Since the first element of this set of five resulted in the smallest validation error, we use this
choice of hidden nodes to train MLPs when we report the performance ofthe MLP networks as
classifiers. For each data set in Group B, since the training and test partitions are fixed, we have
only one outer loop and hence only one set with five choices of hidden nodes as shown in Table 4.
We follow the same protocol as that of Group A data sets to choose the numberof hidden nodes for
computing the performance of MLP networks.

Data set Training iterations Hidden nodes explore
Iris 1500 2-10
Vehicle 2000 3-16
WDBC 1500 3, 5-10, 12, 15, 20
Glass 1500 2-15
Sonar 2000 3, 5, 7, 10, 12, 15, 20, 25, 30, 35, 40
Ionosphere 1500 5-10, 12, 15, 20, 25, 30
Lymph 1500 4-10, 12, 15, 20
Pima 1500 2-10
Pendigits 1500 5-10, 12, 15, 18, 20, 25
Img. Seg. 1500 3-10, 12, 15, 20
Sat. Img. 5000 2-10
Optdigits 1500 5, 8, 10, 12, 15, 18, 20, 25, 30, 35, 40, 50

Table 3: List of explore hidden nodes and number of iterations for MLP for the twelve data sets

3.3.2 SELECTION OFHYPER PARAMETERS FORSVMS

In this section we consider the problem of selecting hyper parameters for aregular SVM that we
shall use as benchmark in experiments for the purpose of comparison with NEUROSVM. To select
the regularization parameterC and spreadγ for RBF kernel of SVM classifiers we have tried a wide
range ofC andγ. In this experiment we have used 12 different values ofC and 15 different values of
γ resulting in a total of 180 pairs of(C,γ). The 12 different values ofC are 0.001, 0.01, 0.10, 0.20,
0.50, 1.00, 2.00, 5.00, 10.00, 20.00, 100.00 and 1000.00. The 15 different values ofγ that we have
used are 0.0001, 0.001, 0.01, 0.10, 0.20, 0.40, 0.80, 1.00, 2.00, 5.00, 10.00, 20.00, 100.00, 1000.00
and 10000.00. In a manner similar to the way the optimal number of hidden node ischosen for each
fold (outer level), the optimal(C,γ) is chosen using ten-fold cross-validation experiments. This is
further explained by Procedure RunSVM included in Appendix C. For each of the twelve data sets,
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Figure 2: For each of the ten-folds the variation of cross-validation error with different choices of
number of hidden nodes for MLPs on the Vehicle data set. The lines with cross-mark
denote the validation error while the lines with circles denote the training error.
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Figure 3: Variation of cross-validation error with different choices of number of hidden nodes for
MLPs on four data sets in Group B: (a) Pendigits (b) Img. Seg. (c) Sat. Img. and
(d) Optdigits. The lines with cross-mark denote the validation error while the lines with
circles denote the training error.
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the obtained optimal set of parameters is in Table 5. The results reported forSVMs correspond to
these choices.

Data set Hidden nodes
Iris (7, 2, 5, 6, 8), (7, 9, 3, 6, 5), (7, 6, 5, 8, 9), (5, 6, 7, 8, 3),

(7, 9, 10, 8, 6), (5, 6, 7, 8, 9), (7, 8, 9, 5, 6), (5, 6, 7, 8, 9),
(9, 8, 7, 10, 6), (2, 5, 6, 7, 8)

Vehicle (11, 9, 13, 10, 5), (10, 13, 9, 7, 8), (12, 11, 10, 13, 9), (10, 13, 12, 5, 16),
(12, 13, 7, 15, 14), (12, 6, 14, 8, 5), (9, 5, 8, 13, 12), (12, 13,6, 11, 9),
(11, 6, 10, 15, 13), (9, 11, 14, 8, 10)

WDBC (12, 10, 9, 15, 7), (10, 6, 8, 9, 7), (8, 15, 12, 9, 10), (12, 7, 8,15, 10),
(15, 8, 12, 10, 9), (8, 20, 15, 10, 7), (12, 10, 15, 7, 9), (7, 15,8, 9, 10),
(12, 15, 6, 9, 10), (9, 7, 20, 10, 12)

Glass (11, 15, 13, 4, 9), (12, 9, 13, 7, 8), (13, 12, 7, 10, 14), (11, 14, 12, 15, 10),
(10, 15, 9, 13, 6), (10, 12, 9, 14, 8), (14, 5, 13, 4, 8), (11, 13,12, 10, 14),
(12, 15, 8, 6, 9), (11, 13, 14, 15, 12)

Sonar (25, 15, 12, 35, 30), (25, 35, 20, 30, 5), (30, 35, 7, 40, 10), (30, 5, 20, 25, 7),
(20, 35, 15, 30, 25), (25, 30, 10, 12, 7), (30, 15, 25, 10, 20), (25, 35, 7, 10, 30),
(20, 25, 7, 12, 15), (10, 12, 15, 7, 20)

Ionosphere (7, 25, 10, 12, 15), (15, 9, 7, 20, 8), (15, 9, 8, 12, 20), (9, 12,15, 8, 20),
(8, 25, 12, 9, 10), (7, 9, 8, 20, 15), (10, 8, 7, 25, 15), (8, 20, 15, 12, 10),
(15, 25, 20, 6, 5), (6, 15, 12, 20, 7)

Lymph (9, 6, 15, 5, 10), (10, 8, 15, 6, 7), (9, 10, 8, 12, 20), (15, 10, 7, 20, 12),
(9, 10, 12, 6, 20), (9, 15, 10, 8, 6), (7, 6, 10, 8, 9), (7, 10, 15,12, 8),
(12, 8, 9, 10, 6), (10, 12, 8, 15, 9)

Pima (6, 7, 8, 9, 5), (7, 9, 8, 5, 6), (6, 7, 9, 8, 10), (7, 5, 9, 6, 8),
(7, 9, 10, 6, 8), (7, 6, 9, 5, 8), (7, 5, 6, 8, 9), (8, 7, 9, 10, 5),
(5, 9, 8, 7, 10), (6, 7, 8, 9, 5)

Pendigits (15, 18, 20, 12, 10)
Img. Seg. (12, 7, 8, 10, 15)
Sat. Img. (8, 9, 7, 10, 6)
Optdigits (30, 35, 40, 25, 20)

Table 4: List of selected hidden nodes for SFMs of the NEUROSVM for thetwelve data sets se-
lected by cross-validation experiments

3.3.3 SELECTION OFSFMS AND HYPER PARAMETERS FORNEUROSVM

We have already explained, for each fold how to choose the number of hidden nodes for the five
MLPs that will be required in the feature extraction module of NEUROSVM. These choices for
different data sets are listed in Table 4. In order to use these data extraction MLPs, two issues need
to be addressed. First do we need all five feature extraction MLPs, or for different folds, different
subsets of the five would be more appropriate. In other words, for eachfold, using five feature
extraction MLPs we can have 31 possible combinations of feature sets. Andwe have to use the
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Data set (C,γ)
Iris (2.00, 0.20), (2.00, 0.20), (100.00, 0.01), (1.00, 0.20),

(20.00, 0.01), (20.00, 0.01), (0.10, 1.00), (0.50, 0.40),
(5.00, 0.10), (1.00, 0.40)

Vehicle (100.00, 0.0001), (1000.00, 0.0001), (100.00, 0.0001), (100.00, 0.0001),
(100.00, 0.0001), (100.00, 0.0001), (100.00,0.0001), (1000.00, 0.0001),
(100.00, 0.0001), (100.00, 0.0001)

WDBC (5.00, 0.0001), (20.00, 0.0001), (0.20, 0.0001), (2.00, 0.0001),
(10.00, 0.0001), (20.00, 0.0001), (20.00, 0.0001), (2.00, 0.0001),
(20.00, 0.0001), (2.00, 0.0001)

Glass (20.00, 0.20), (5.00, 0.80), (10.00, 0.80), (5.00, 0.80),
(10.00, 0.80), (20.00, 0.20), (5.00, 0.10), (10.00, 0.40),
(5.00, 1.00), (10.00, 1.00)

Sonar (2.00, 1.00), (2.00, 1.00), (20.00, 0.40), (20.00, 0.20),
(2.00, 0.80), (5.00, 0.40), (10.00, 0.40), (2.00, 1.00),
(5.00, 2.00), (5.00, 0.40)

Ionosphere (5.00, 0.10), (20.00, 0.20), (20.00, 0.20), (20.00, 0.40),
(100.00, 0.01), (100.00, 0.40), (2.00, 0.10), (2.00, 0.20),
(20.00, 0.40), (5.00, 0.40)

Lymph (1000.00, 0.0001), (1000.00, 0.0001), (2.00, 0.20), (100.00, 0.001),
(1000.00, 0.0001), (5.00, 0.10), (1000.00, 0.0001), (100.00, 0.001),
(100.00, 0.01), (1000.00, 0.001)

Pima (0.50, 0.0001), (1.00, 0.0001), (0.50, 0.0001), (10.00, 0.0001),
(5.00, 0.0001), (1.00, 0.0001), (5.00, 0.0001), (10.00, 0.0001),
(2.00, 0.0001), (1.00, 0.0001)

Pendigits (10.00, 0.0001)
Img. Seg. (100.00, 0.0001)
Sat. Img. (20.00, 0.01)
Optdigits (20.00, 0.0001)

Table 5: List of regularization parameter and spread of the RBF kernel for SVMs selected by cross-
validation experiments

most appropriate combination for each fold. The second issue is to find the optimal hyper parameter
for each combination of feature sets. Thus for each fold, to obtain the best choice of combination
of feature subsets and the associated optimal hyper parameter, for eachof the 31 combinations, as
we did for SVM (in Procedure RunSVM) we use ten-fold cross-validation. This is summarized
in Appendix D by Procedure RunNEUROSVM. The selected combinations ofSFMs along with
the hyper parameters for the twelve data sets are listed in Table 6. The set within braces in the
second column of Table 6 shows the best combination of feature extraction MLPs selected by cross-
validation experiments. As an illustration, for fold 1 of Iris, a set of 7 features is used in the
classification module, which is generated by two selected SFMs each with 2 and5 hidden nodes.
The(C,γ) pair within parenthesis followed by the combination shows the regularization parameter
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(C) and spread (γ) of the RBF kernel for SVM classifiers in the classification module that are selected
by the cross-validation. From Table 6 we see that NEUROSVM with single SFMis not selected
for any data sets. Hence using just one SFM we shall not gain anything. The selected combination
of SFMs and corresponding(C,γ) are used to report the results of NEUROSVM. From Table 5
and Table 6 we observe that the values ofγ chosen for SVM are usually smaller than those for
NEUROSVM. It is probably because the hidden layers of neural networks are more suited for linear
classification than the original inputs, so a higherγ (less non-linearity) is more appropriate.

Four of the twelve data sets have dimensionality 30 or more. For these four data sets dimen-
sionality is reduced in the classification module of NEUROSVM. The dimensions of the four data
sets, WDBC, Sonar, Ionosphere and Optdigits, in the classification module ofNEUROSVM are
reduced by 16.67-56.67% (average 41.33%), 16.67-80.00% (average 48.33%), 47.06-67.65% (av-
erage 54.41%) and 14.06% respectively. Hence for high dimensional data the dimensionality of
input for the CM can be reduced compared to original dimension of the input.

3.3.4 PERFORMANCE COMPARISON OFNEUROSVM WITH THE BASELINE CLASSIFIERS

AND STANDARD ENSEMBLE METHODS

We compare the performance of NEUROSVM with MLP, SVM as well as two existing neural
ensemble methods. The majority voting and averaging are simple yet effectiveensemble methods.
In Table 7, test error results of NEUROSVM, MLP, SVM, majority voting andaveraging are shown.
In Table 7, majority voting ensemble method is denoted by MVOTING while the average ensemble
method is denoted by AVERAGING. The results in Table 7 show that based onthe paired t-test
for Group A data sets and McNemar test for Group B data sets NEUROSVM issignificantly better
than the baseline classifiers for 11 data sets when compared with MLP and for 6 data sets when
compared with SVM.

Note that the results of MVOTING and AVERAGING in Table 7 are obtained using the same
combinations of networks (SFMs) that are used in the FM of NEUROSVM. From Table 7 we see
that NEUROSVM performs significantly better than the standard ensemble methods for 11 data sets
when compared with majority voting and for 10 data sets when compared with averaging.

As a summary, NEUROSVM is superior to MLP, SVM as well as two ensemble methods for
6 data sets. These data sets are Vehicle, WDBC, Ionosphere, Lymph, Pimaand Img. Seg. For
four out of remaining six data sets NEUROSVM performs significantly better than MLP, MVOT-
ING and AVERAGING. The performance of NEUROSVM and SVM for these four data sets, Iris,
Sonar, Pendigits and Sat. Img, is not significantly different. For the Glass data, the performance of
NEUROSVM is significantly better than MLP and MVOTING but is not significantly different from
that of SVM and AVERAGING. For the Optdigits data set all algorithms perform equally well. No
data set is found where two baseline classifiers (MLP and SVM) or two ensemble methods perform
better than NEUROSVM.

For the results in Table 7, for each data set, the combination of SFMs used is selected by cross-
validation for NEUROSVM. So, a natural question arises, will other combinations perform better
with majority voting or averaging than NEUROSVM? To investigate this we have compared the
performance of NEUROSVM using the combinations selected by cross-validation separately for
each of MVOTING and AVERAGING. Following the same protocol as used for NEUROSVM, the
SFMs for MVOTING and AVERAGING are selected using the double ten-fold cross-validation for
Group A data sets and ten-fold cross-validation for Group B data sets. The selected combinations of
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Data set Selected combinations and(C,γ) pair of these combinations
Iris {2, 5}(0.10, 2.00),{3, 5}(0.10, 2.00),{6, 5}(0.10, 0.10),

{5, 3}(0.10, 2.00),{7, 6}(0.10, 5.00),{5, 6}(0.10, 1.00),
{5, 6}(0.001, 0.0001),{5, 6}(0.50, 10.00),
{7, 6}(1000.00, 0.80),{2, 5}(0.10, 2.00)

Vehicle {11, 13}(1.00, 0.20),{9, 7}(1000.00, 2.00),{12, 13}(20.00, 0.80),
{10, 5}(0.50, 0.10),{12, 13}(1000.00, 0.40),{12, 14}(1000.00, 2.00),
{8, 13}(1000.00, 0.001),{12, 13}(0.20, 1.00),
{11, 6, 10, 13}(1.00, 0.40),{11, 8}(20.00, 0.01)

WDBC {10, 15}(0.50, 0.20),{6, 7}(0.001, 0.0001),{8, 12}(20.00, 0.20),
{7, 10}(0.10, 5.00),{8, 10}(0.20, 20.00),{8, 7}(0.50, 0.40),
{15, 7}(5.00, 0.40),{7, 8}(0.01, 0.40),{6, 9}(0.01, 0.40),
{9, 7}(0.50, 0.01)

Group A Glass {11, 15, 9}(1000.00, 0.01),{7, 8}(1.00, 2.00),{13, 7}(1.00, 5.00),
{11, 10}(2.00, 10.00),{9, 6}(1000.00, 0.01),{12, 14, 8}(0.50. 0.20),
{5, 4}(5.00, 0.40),{11, 14}(0.10, 0.20),{12, 8, 6}(10.00, 0.10),
{14, 15}(1000.00, 0.01)

Sonar {12, 30}(0.20, 2.00),{35, 5}(100.00, 0.10),{30, 7, 10}(0.20, 2.00),
{5, 7}(0.50, 5.00),{20, 30}(1.00, 2.00),{7, 9}(2.00, 0.01),
{25, 20}(1.00, 5.00),{7, 10}(0.10, 0.10),{7, 12}(0.10, 0.20),
{15, 7}(2.00, 0.01)

Ionosphere {7, 10}(0.001, 0.0001),{7, 8}(0.001, 0.0001),{9, 8}(0.001, 0.0001),
{9, 8}(0.001, 0.0001),{8, 9}(0.001, 0.0001),{7, 8}(0.001, 0.0001),
{8, 7}(0.001, 0.0001),{8, 10}(0.001, 0.0001),{6, 5}(0.001, 0.0001),
{6, 7}(0.001, 0.0001)

Lymph {6, 5}(0.10, 2.00),{6, 7}(20.00, 0.40),{9, 8}(5.00, 0.10),
{10, 7}(0.10, 0.20),{9, 12}(0.10, 2.00),{8, 6}(0.10, 0.10),
{7, 9}(2.00, 5.00),{7, 8}(0.10, 0.10),{9, 6}(0.50, 0.20),
{10, 12, 8, 9}(0.20, 0.01)

Pima {6, 5}(5.00, 100.00),{5, 6}(0.10, 100.00),{6, 7}(5.00, 0.40),
{5, 6}(0.50, 1.00),{7, 6}(1000, 0.40),{6, 5}(0.20, 100.00),
{5, 6}(1.00, 10000.00),{7, 5}(10.00, 20.00),{5, 7}(20.00, 0.40),
{6, 5}(100.00, 0.10)

Pendigits {15, 20, 10} (20.00, 0.10)
Group B Img. Seg. {12, 15} (10.00, 1.00)

Sat. Img. {7, 6} (100.00, 0.40)
Optdigits {30, 25} (2.00, 0.10)

Table 6: The combination of SFMs and(C,γ) pair for NEUROSVM selected by cross-validation
for each of the twelve data sets

SFMs for MVOTING and AVERAGING are listed in Table 8. Table 9 reports the test error statistics
using the combinations shown in Table 8. Based on the paired t-test for Group A data sets and
McNemar test for Group B data sets, Table 9 reveals that NEUROSVM is significantly better than
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Baseline classifiers Standard ensemble methods
Data set NEUROSVM MLP SVM MVOTING AVERAGING

Iris 0.013±0.008 0.040±0.017 0.033±0.014 0.040±0.017 0.040±0.017
Vehicle 0.101±0.013 0.166±0.016 0.190±0.011 0.159±0.022 0.142±0.013
WDBC 0.019±0.009 0.042±0.007 0.070±0.008 0.040±0.007 0.037±0.008

Gr. A Glass 0.251±0.034 0.309±0.024 0.290±0.026 0.308±0.025 0.290±0.030
Sonar 0.067±0.017 0.168±0.025 0.138±0.038 0.148±0.029 0.148±0.027
Ionosphere 0.011±0.002 0.074±0.017 0.060±0.014 0.088±0.016 0.080±0.018
Lymph 0.094±0.019 0.168±0.030 0.202±0.034 0.148±0.029 0.168±0.030
Pima 0.211±0.013 0.252±0.014 0.249±0.013 0.246±0.010 0.249±0.012
Pendigits 0.022 0.077 0.016 0.074 0.074

Gr. B Img. Seg. 0.059 0.075 0.075 0.074 0.075
Sat. Img. 0.154 0.178 0.158 0.178 0.179
Optdigits 0.027 0.033 0.026 0.034 0.032
Win/Loss 11/0 6/0 11/0 10/0

bold/Italic significantly worse/better than NEUROSVM using ten-fold cross-validation paired
t-test for Group A data sets and McNemar test for Group B data sets.

Table 7: Performance comparison of NEUROSVM with baseline classifiers and standard ensemble
methods

the standard ensemble methods for 8 data sets when compared with majority voting and for 7 data
sets when compared with averaging. Here also no data set is found wheretwo ensemble methods
perform better than NEUROSVM. Hence we can conclude that NEUROSVMperforms consistently
better than majority voting and averaging.

3.3.5 PERFORMANCECOMPARISON OFOTHER VARIANTS OF NEUROSVM WITH BASELINE

CLASSIFIERS ANDSTANDARD ENSEMBLE METHODS

As stated earlier, for the proposed architecture, in the classification modulewe can use other tools
also. Here we demonstrate the effect of using MLP and RBF neural networks in the classification
module instead of SVM. We termed these two architectures as NMLP and NRBF respectively.
The combination of SFMs and the number of hidden nodes for MLP and RBF networks in the
classification module are selected using double ten-fold cross-validation for Group A data sets and
using ten-fold cross-validation for Group B data sets. The performancecomparison of these variants
of NEUROSVM with the original NEUROSVM is shown in Table 10. From Table 10, we see that
original NEUROSVM is significantly better than other variants for 4 data sets when compared with
NMLP and better than 2 data sets when compared with NRBF. The performanceof NEUROSVM
and NMLP is equally well for 8 data sets. There is no significant difference in performance between
NEUROSVM and NRBF for 10 data sets. For six out of twelve data sets, all three variants of the
proposed architecture perform equally well. So, proposed architecture can be considered a general
one.

Now we compare the performance of baseline classifiers and two ensemble methods with the
two new variants of NEUROSVM, that is, NMLP and NRBF, by statistical test. These results
are summarized in Table 11 for NMLP and in Table 12 for NRBF. The results of MVOTING and
AVERAGING are obtained in Table 11 and Table 12 using the same combinationsof SFMs that are
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Selected combinations
Data set MVOTING AVERAGING

Iris {2, 5}, {3, 5}, {6, 5}, {6, 3}, {2, 5}, {3, 5}, {6, 5}, {6, 8},
{7, 6}, {5, 6}, {5, 6}, {5, 6}, {7, 6}, {5, 6}, {5, 6}, {5, 6},
{7, 6}, {2, 5} {7, 6}, {2, 5}

Vehicle {9, 13, 10, 5}, {13, 7, 8}, {11, 10}, {13, 9}, {12, 13, 9},
{10, 13, 9}, {13, 12}, {13, 7}, {10, 5}, {13, 7}, {12, 14, 8},
{12, 14, 8}, {9, 13, 12}, {11, 9}, {9, 8, 13}, {13, 11},
{11, 6, 13}, {14, 10} {11, 6, 10}, {11, 14}

WDBC {10, 7}, {6, 8, 9}, {8, 10}, {10, 9}, {6, 7}, {15, 12},
{12, 7, 15}, {8, 9}, {8, 7}, {12, 8}, {8, 9}, {8, 7},
{15, 7}, {8, 10}, {6, 9}, {9, 7} {15, 7}, {7, 8}, {6, 9}, {9, 7}

Group A Glass {15, 4}, {12, 13}, {12, 7, 14}, {15, 9}, {13, 7}, {7, 14},
{12, 10}, {15, 6}, {10, 8}, {14, 8}, {15, 10}, {10, 6}, {12, 9}, {4, 8},
{11, 10}, {12, 8}, {11, 12} {11, 13}, {8, 9}, {11, 12}

Sonar {25, 12}, {20, 5}, {7, 10}, {5, 7}, {25, 12}, {20, 5}, {7, 10},
{20, 15}, {25, 7}, {15, 10}, {5, 7}, {20, 15}, {25, 7}, {15, 10},
{7, 10}, {7, 12, 15}, {15, 7} {7, 10}, {7, 12}, {10, 7}

Ionosphere {7, 10}, {9, 8}, {8, 12}, {9, 15}, {7, 10}, {9, 8}, {9, 12}, {15, 8},
{8, 10}, {7, 8}, {8, 7}, {8, 20}, {8, 12}, {7, 8}, {8, 7}, {8, 15},
{6, 5}, {12, 20} {6, 5}, {15, 12}

Lymph {6, 5}, {6, 7}, {9, 8}, {10, 7}, {9, 5}, {6, 7}, {9, 8}, {10, 7},
{9, 12}, {8, 6}, {10, 8, 9}, {6, 20}, {10, 6}, {10, 9},
{7, 8}, {9, 6}, {8, 9} {7, 8}, {8, 6}, {8, 9}

Pima {8, 9}, {9, 8}, {6, 7}, {6, 8}, {9, 5}, {9, 6}, {6, 10}, {5, 8},
{10, 8}, {7, 8}, {7, 5}, {8, 10}, {6, 8}, {5, 8}, {6, 8}, {8, 9},
{8, 10}, {6, 7} {5, 8}, {6, 7}

Pendigits {15, 18, 12} {15, 18, 20}
Group B Img. Seg. {8, 15} {7, 8, 10, 15}

Sat. Img. {9, 7, 10, 6} {8, 9, 7, 10, 6}
Optdigits {35, 40, 20} {35, 40}

Table 8: The combination of SFMs for MVOTING and AVERAGING selected by cross-validation
for each of the twelve data sets

used in the FM of NMLP and NRBF respectively. From Table 11 we can seethat NMLP performs
significantly better than baseline classifiers for 8 data sets when compared with MLP and better than
5 data sets when compared with SVM. The NMLP performs significantly better than MVOTING on
8 data sets. It also performs significantly better than AVERAGING for 7 datasets. From Table 12,
it is observed that NRBF performs significantly better than MLP on 8 data setsand it is better than
SVM for 4 data sets. The SVM performs significantly better than NRBFonly with one data set.
When compared with the standard ensemble methods the NRBF is found to perform significantly
better for majority of the data sets. For example, NRBF performs significantly better than majority
voting for 8 data sets and better than averaging for 7 data sets.

Now we compare the results of NMLP and NRBF with the results of MVOTING and AVER-
AGING in Table 9 by statistical test. We find that the NMLP is significantly better than the standard
ensemble methods for 3 data sets (Pima, Pendigits and Sat. Img.) when comparedwith majority
voting and for 2 data sets (Pima and Pendigits) when compared with averaging. The NRBF performs
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Standard ensemble methods
Data set NEUROSVM MVOTING AVERAGING

Iris 0.013±0.008 0.033±0.017 0.033±0.017
Vehicle 0.101±0.013 0.123±0.014 0.125±0.016
WDBC 0.019±0.009 0.033±0.008 0.032±0.009

Group A Glass 0.251±0.034 0.279±0.031 0.274±0.030
Sonar 0.067±0.017 0.124±0.024 0.134±0.027
Ionosphere 0.011±0.002 0.074±0.016 0.065±0.017
Lymph 0.094±0.019 0.134±0.027 0.141±0.022
Pima 0.211±0.013 0.228±0.009 0.229±0.011
Pendigits 0.022 0.074 0.072

Group B Img. Seg. 0.059 0.071 0.074
Sat. Img. 0.154 0.172 0.164
Optdigits 0.027 0.032 0.032
Win/Loss 8/0 7/0

bold/Italic significantly worse/better than NEUROSVM using ten-fold cross-validation
paired t-test for Group A data sets and McNemar test for Group B data sets.

Table 9: Performance comparison of NEUROSVM, MVOTING and AVERAGING for selected
combinations with corresponding algorithm

Data set NEUROSVM NMLP NRBF
Iris 0.013±0.008 0.027±0.014 0.013±0.013
Vehicle 0.101±0.013 0.116±0.013 0.114±0.014
WDBC 0.019±0.009 0.030±0.008 0.019±0.009

Group A Glass 0.251±0.034 0.255±0.026 0.253±0.024
Sonar 0.067±0.017 0.119±0.029 0.057±0.015
Ionosphere 0.011±0.002 0.062±0.016 0.045±0.013
Lymph 0.094±0.019 0.135±0.025 0.101±0.020
Pima 0.211±0.013 0.199±0.009 0.194±0.012
Pendigits 0.022 0.023 0.032

Group B Img. Seg. 0.059 0.063 0.067
Sat. Img. 0.154 0.159 0.171
Optdigits 0.027 0.029 0.029
Win/Loss 4/0 2/0

bold/Italic significantly worse/better than NEUROSVM using ten-fold cross-validation
paired t-test for Group A data sets and McNemar test for Group B data sets.

Table 10: Performance comparison of three variants of proposed algorithm

significantly better than both of MVOTING and AVERAGING on 5 data sets. These 5 data sets are
WDBC, Sonar, Lymph, Pima and Pendigits. It is worth noticing here that for no data set the pro-
posed methods are worse than standard ensemble methods. So, the proposed method consistently
works better than baseline classifiers and standard ensemble methods.

612



NEUROSVM: AN ARCHITECTURE TOREDUCE THEEFFECT OF THECHOICE OFSVM KERNEL

Baseline classifiers Standard ensemble methods
Data set NMLP MLP SVM MVOTING AVERAGING

Iris 0.027±0.014 0.040±0.017 0.033±0.014 0.040±0.017 0.040±0.017
Vehicle 0.116±0.013 0.166±0.016 0.190±0.011 0.153±0.013 0.151±0.015
WDBC 0.030±0.008 0.042±0.007 0.070±0.008 0.044±0.008 0.035±0.008

Gr. A Glass 0.255±0.026 0.309±0.024 0.290±0.026 0.294±0.030 0.294±0.030
Sonar 0.119±0.029 0.168±0.025 0.138±0.038 0.144±0.021 0.139±0.027
Ionosphere 0.062±0.016 0.074±0.017 0.060±0.014 0.093±0.019 0.068±0.016
Lymph 0.135±0.025 0.168±0.030 0.202±0.034 0.155±0.026 0.161±0.028
Pima 0.199±0.009 0.252±0.014 0.249±0.013 0.245±0.010 0.238±0.011
Pendigits 0.023 0.077 0.016 0.074 0.072

Gr. B Img. Seg. 0.063 0.075 0.075 0.083 0.078
Sat. Img. 0.159 0.178 0.158 0.176 0.168
Optdigits 0.029 0.033 0.026 0.033 0.036
Win/Loss 8/0 5/0 8/0 7/0

bold/Italic significantly worse/better than NMLP using ten-fold cross-validation paired t-test
for Group A data sets and McNemar test for Group B data sets.

Table 11: Performance comparison of NMLP with baseline classifiers and standard ensemble meth-
ods

Baseline classifiers Standard ensemble methods
Data set NRBF MLP SVM MVOTING AVERAGING

Iris 0.013±0.013 0.040±0.017 0.033±0.014 0.040±0.017 0.040±0.017
Vehicle 0.114±0.014 0.166±0.016 0.190±0.011 0.148±0.018 0.137±0.013
WDBC 0.019±0.009 0.042±0.007 0.070±0.008 0.042±0.007 0.040±0.007

Gr. A Glass 0.253±0.024 0.309±0.024 0.290±0.026 0.309±0.029 0.295±0.040
Sonar 0.057±0.015 0.168±0.025 0.138±0.038 0.153±0.027 0.153±0.030
Ionosphere 0.045±0.013 0.074±0.017 0.060±0.014 0.091±0.017 0.077±0.018
Lymph 0.101±0.020 0.168±0.030 0.202±0.034 0.161±0.031 0.189±0.031
Pima 0.194±0.012 0.252±0.014 0.249±0.013 0.252±0.014 0.247±0.011
Pendigits 0.032 0.077 0.016 0.074 0.075

Gr. B Img. Seg. 0.067 0.075 0.075 0.074 0.075
Sat. Img. 0.171 0.178 0.158 0.172 0.167
Optdigits 0.029 0.033 0.026 0.033 0.033
Win/Loss 8/0 4/1 8/0 7/0

bold/Italic significantly worse/better than NRBF using ten-fold cross-validation paired t-test
for Group A data sets and McNemar test for Group B data sets.

Table 12: Performance comparison of NRBF with baseline classifiers and standard ensemble meth-
ods

3.4 Controlled Experiments - Avoiding Full Training of Networks for Feature Extraction

We have mentioned in Section 2.6 that for large data sets it may not be necessary to make full
training of the MLPs for constructing the SFMs. Now we are going to prove itby experiments.
We consider two data sets, one from each group for this experiment. Morespecifically, we use
the Sonar data (in 60 dimension) from Group A and Optdigits (in 64 dimension) from Group B.
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We have conducted the experiments as before for NEUROSVM except westop the training of
MLPs to construct SFMs only after 100 iterations. In this case, we have obtained the test error of
0.135±0.087 for Sonar and 0.023 for Optdigits data sets. By statistical test we observe that these
errors are not significantly different from the previous NEUROSVM errors when the MLPs were
fully trained.

4. The Kernel Independence of NEUROSVM

In this section we shall illustrate an attractive feature of NEUROSVM, its kernel independence. In
order to perform such study we choose three kernels for SVM: linear,RBF and polynomial. We
choose these kernels also for SVMs in the classification module of NEUROSVM. The different
kernels are tried with a set of parameters. We perform ten-fold (double ten-fold for Group A data
sets) cross-validation to select the best parameter set for each kernelof SVM. We also conducted
cross-validation experiments to select the best combination of SFMs and hyper parameters of NEU-
ROSVM for each of three choices of kernel. For the RBF kernel we choose 12 differentC and 15
different γ resulting 180 pairs. Similarly, for the polynomial kernel we choose 12 differentC, 5
different degreesd and 7 different scaling coefficients of dot productss resulting 420 triplets and 12
differentC are used in linear kernel. The values ofC andγ are presented in Section 3.3.2. The five
values ofd for the polynomial kernel are 2, 3, 4, 5 and 6. The seven different choices ofsare 0.001,
0.01, 0.10, 1.00, 10.00, 100.00 and 1000.00.

In Figure 4, the test errors of SVM and NEUROSVM with three choices of kernel for the twelve
data sets are shown. It is clear from Figures 4(b)-4(h) that the performance of SVM significantly
depends on the choice of kernels for Vehicle, WDBC, Glass, Sonar, Ionosphere, Lymph and Pima
data sets respectively. Also the kernel dependency of SVM is noticeablefor the data sets Iris,
Pendigits, Img. Seg. and Optdigits (Figure 4(a), 4(i), 4(j) and 4(l)). Onlyfor the Sat. Img. the
SVM produces almost the same test errors for all three choices of kernel. On the other hand, from
Figures 4(a)-4(l) we see that the performance of NEUROSVM for eight(out of the twelve) data sets
practically does not depend on the choice of kernels. To observe it moreclosely for each data set we
find out the difference of percentage errors between the maximum and minimum errors produce by
the three kernels for SVM and NEUROSVM (Table 13). To explain the entries in Table 13, consider
the WDBC data set. The test errors produced by SVM on WDBC data set withthe three kernels
are 0.049, 0.070 and 0.095 respectively. Hence the minimum and maximum errors are 0.049 and
0.095 respectively. So, the difference in error rates and hence the percentage are 0.046 and 4.60%
respectively. Whereas the test error rates for NEUROSVM on WDBC data set with the three kernels
are 0.023, 0.019 and 0.023 respectively. Here the minimum, maximum and percentage of difference
of these two errors are 0.019, 0.023 and 0.40% respectively. From Table 13, it is clear that for eight
data sets the performance of NEUROSVM using the three kernels remains almost the same (with
error less than 1%). On the other hand, with SVM only for Sat. Img. the difference is less than 1%.
Thus NEUROSVM is found to perform equally well with different choices of kernels of the SVM
in the classification module.

5. Conclusions

We have proposed a multilayer classifier architecture consisting of two modules. The first module is
the feature extraction module (FM), while the second module is the classificationmodule (CM). In
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Figure 4: Comparison of the test errors of SVM and NEUROSVM for twelvedata sets using Linear,
RBF, and Polynomial kernels.
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Differences of the percentage error
Data set SVM NEUROSVM
Iris 1.40% 0.00%
Vehicle 4.10% 0.60%
WDBC 4.60% 0.40%
Glass 10.80% 0.00%
Sonar 8.40% 2.30%
Ionosphere 6.50% 2.10%
Lymph 4.80% 2.00%
Pima 9.30% 1.40%
Pendigits 2.70% 0.10%
Img. Seg. 1.90% 0.90%
Sat. Img. 0.20% 0.20%
Optdigits 1.40% 0.10%

Table 13: Differences of the percentage errors between the maximum andminimum errors pro-
duced by linear, RBF and polynomial kernels for SVM and NEUROSVM

the FM, we have used MLP, while for the CM we have used SVM resulting in theclassifier, called
NEUROSVM. The architecture is general in nature and both for FM and CMother tools can be
used. We have experimented using RBF and MLP in the CM. We have tested theperformance of the
proposed system on twelve benchmark data sets and NEUROSVM is found toperform consistently
better than MLP and SVM. The performance of NEUROSVM is also better thanthe ensemble
methods based on majority voting and averaging. A noticeable feature of NEUROSVM is that
nonlinear NEUROSVM and linear NEUROSVM perform equally well on all data sets tried.

Other advantages of NEUROSVM are as follows:

• For large data sets, it may not be necessary to make a full training of the MLPs in the FM
because in an MLP, the extraction of the salient feature of the data is done at the beginning of
the training.

• Typically the number of nodes in the hidden layer of MLPs is much smaller than thenumber
of the input nodes, and one does not need many feature extraction sub-modules. Hence, the
dimensionality of the input for the SVMs (or MLP/RBF) in the classification modulecan
be reduced compared to the original dimension of the input. So, for solving bioinformatics
problems such as protein secondary structure prediction or protein fold recognition such an
architecture may be very useful.

• It may be viewed as an implicit fusion of multiple classifiers and hence the improvement in
performance is expected.

We have demonstrated the advantages of the proposed architecture by good experimental results.
In our experimental results we have noticed that most of the time out of the 5 SFMs, 2 or 3 are
selected for NEUROSVM by the cross-validation method. This limited use of the architectures
could be due to the fact that all networks are trained using the same data andsome of the networks
may be extracting similar information from the data. We are currently working ondeveloping a
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more theoretical view of our proposed method that may help further explain the results reported
here.

Appendix A. Procedure DataPreparation

Input: A data setX
Output: Training and test data sets
Algorithm:

1. if X belongs to Group A then
2. Setno o f f old = 10.
3. X is randomly partitioned into 10 subsetsXi ; i = 1,2, . . . ,10

such that,X =
10
S

i=1
Xi ,Xi ∩Xj = φ, i 6= j.

4. Get the training set for foldi of X asXTi =
S

j 6=i
Xj and the test data set is

XTei = Xi . So we get 10 training-test set(XTi ,XTei), i = 1,2, ,10.
5. else /* for Group B data sets */
6. Setno o f f old = 1.
7. Let the training set beXT1 and the test set beXTe1 .
8. end if

End DataPreparation
NB: For a given data set (in Group A), the Procedure DataPreparation returns the same outer
level ten-folds to RunMLP, RunSVM and RunNEUROSVM.

Appendix B. Procedure RunMLP

Input: A data set X.
A set of hidden nodesH = {h1,h2, . . . ,hm}.

Output: Test error of MLP on X
Algorithm:

1. Perform DataPreparation
2. for i = 1 to no o f f old

/* To choose the optimal network size forXTi , we use ten-fold cross-validation
experiment onXTi */

3. XTi is divided into 10 equal (or almost equal) partsZ j ; j = 1,2, . . . ,10

such that,XTi =
10
S

j=1
Z j ,Z j ∩Zk = φ, j 6= k .

4. Get the training set for foldj of XTi asZTj =
S

k6= j
Zk and the validation

set asZVj = Z j . So we get 10 training-validation set(ZTj ,ZVj),
j = 1,2, . . . ,10 for fold i of X.

5. for eacha in {h1,h2, . . . ,hm}
6. for j = 1 to 10
7. Train a network (MLP) for architecturea with training data setZTj

and find validation error onZVj . Let the validation error with fold
(ZTj ,ZVj) beea

j .
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8. end for /* end forj */
9. The average validation error for an architecturea related toXTi of the

original fold (XTi ,XTei) is ēa
i = 1

10

10
∑
j=1

ea
j .

10. end for /* end of fora */
11. Letēk

i = min
a
{ēa

i }, then we choosek as the optimal architecture for foldXTi .

12. Train a network (MLP) for architecturek with training dataXTi and find
test error onXTei . Let the test error with fold(XTi ,XTei) beEi .

13. end for /* end of fori */

14. Find average test error̄E = 1
no o f f old

no o f f old

∑
i=1

Ei .

End RunMLP

Appendix C. Procedure RunSVM

Input: A data setX.
A set of 12 choices ofC and 15 choices ofγ for RBF kernel resulting in a total
of 180 pairs of(C,γ).

Output: Test error of SVM onX
Algorithm:

1. Perform DataPreparation
2. for i = 1 to no o f f old

/* To choose the best(C,γ) pair forXTi , we use ten-fold cross-validation
experiment onXTi */

3-4. Same as steps 3-4 of RunMLP
5. for each(Ck,γk) pair on 180 pairs
6. for j = 1 to 10
7. Train SVM with parameters(Ck,γk) of RBF kernel for training

dataZTj and find validation error onZVj .
Let the validation error with fold(ZTj ,ZVj) beek

j .
8. end for /* end of forj */
9. The average validation error for(Ck,γk) pair related toXTi of the

original fold (XTi ,XTei) is ēk
i =

10
∑
j=1

ek
j .

10. end for /* end of for(Ck,γk) */
11. Letēm

i = min
k
{ēk

i }, then we choose(Cm,γm) pair as the best hyper

parameters for foldXTi .
12. Train SVM with RBF kernel and(Cm,γm) pair with training dataXTi and

find test error onXTei . Let the test error with fold(XTi ,XTei) beEi .
13. end for /* end of fori */

14. Find average test error̄E = 1
no o f f old

no o f f old

∑
i=1

Ei .

End RunSVM
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Appendix D. Procedure RunNEUROSVM

Input: A data setX.
A set of hidden nodesH = {h1,h2, . . . ,hm}.
A set of 12 choices ofC and 15 choices ofγ for RBF kernel resulting in a total
of 180 pairs of(C,γ).

Output: Test error of NEUROSVM onX
Algorithm:

1. Perform DataPreparation
2. for i = 1 to no o f f old

/* To choose 5 MLPs for 5 SFMs forXTi , we use ten-fold cross-validation
experiment onXTi */

3-10. Same as steps 3-10 of RunMLP
11. We need to select 5 MLP architectures for 5 SFMs to construct NEUROSVM.

The best 5 architectures corresponding to the smallest 5 values of ¯ea
i .

In other word, we select 5 architecture(ai1,ai2, . . . ,ai5) where
ēai1

i , ēai2
i , . . . , ēai5

i , . . . is the sequence of ¯ea
i ’s sorted in ascending order.

12. Train 5 networks with above 5 selected architectures for training dataXTi .
13. Find projected data of(XTi ,XTei) from hidden layer of above 5 MLPs

and hence we get 5 SFMs.
14. Construct 25−1 = 31 combinations of projected data using 5 SFMs, that is,

31 sets of training-test data using 5 SFMs. So, we get 31 sets of training-test
data(Z̃Ti

p, Z̃Tei
p), p = 1,2, . . . ,31 for NEUROSVM.

/* To select the best combination among 31 combinations and(C,γ) pair
of RBF kernel of SVM in the classification module we perform ten-fold
cross-validation experiment */

15. for p = 1 to 31
16. Perform ten-fold cross-validation as steps 3-10 of RunSVM onZ̃Ti

p.
17. Choose(C,γ) for combinationp with minimum average validation error

sayēp
i .

18. end for /* end of forp */
19. Finally choosekth combination and corresponding(C,γ) pair (say(Ck,γk))

whereēk
i = min

p
{ēp

i } .

20. Train SVM with training datãZTi
k and(Ck,γk) pair of RBF kernel.

Find test error oñZTei
k , say test error isEi .

21. end for /* end of fori */

22. Find average test error̄E = 1
no o f f old

no o f f old

∑
i=1

Ei .

End RunNEUROSVM
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