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In this paper we propose a new multilayer classifier architec The proposed hybrid architecture
has two cascaded modules: feature extraction module asdifitation module. In the feature
extraction module we use the multilayered perceptron (MidRjral networks, although other tools
such as radial basis function (RBF) networks can be usedhelnlaissification module we use sup-
port vector machines (SVMs)—here also other tool such as MLRBF- can be used. The feature
extraction module has several sub-modules each of whickpisoted to extract features capturing
the discriminating characteristics of different areashaf input space. The classification module
classifies the data based on the extracted features. THeargsarchitecture with MLP in feature
extraction module and SVM in classification module is cal#lJROSVM. The NEUROSVM is
tested on twelve benchmark data sets and the performanite SEUROSVM is found to be better
than both MLP and SVM. We also compare the performance ofgseg architecture with that of
two ensemble methods: majority voting and averaging. Hie the NEUROSVM is found to
perform better than these two ensemble methods. Furthekplere the use of MLP and RBF in
the classification module of the proposed architecture.iibst attractive feature of NEUROSVM
is that it practically eliminates the severe dependency\d¥1®n the choice of kernel. This has
been verified with respect to both linear and non-linear &stiVe have also demonstrated that for
the feature extraction module, the full training of MLPs & needed.

Keywords: feature extraction, neural networks (NNs), support veatachines (SVMs), hybrid

system, majority voting, averaging
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1. Introduction

A classifier designed from a data et {x;|i=1,2,...,N,x; € OP}, whereOP is thep dimensional
Cc
real space, can be defined as a func@irilP — N.. HereN; = {y € 0y, € {0,1}Vk, T =1}
k=1

is the set of label vectors awds the number of classes. For any input vesterJP, G(x) is a vector
in ¢ dimension with only one component as 1 and all others 0. In this paper iouanyrobjective
is to find a goods combining neural networks (NNs) and support vector machines (SVMs)

In machine learning literature NN and SVM are two widely used classifierss hiive been
developed for many years and been used in various applications (Ha@é8; Pal et al., 2006).
The SVM (Vapnik, 1995) is a classification and regression tool. It is coatpaly a new family of
learning tools including training algorithms for optimal margin classifiers (Betat., 1992) and
support vector networks (Cortes and Vapnik, 1995). In SVM the idjptd are often transformed
into a high dimensional space using some kernel functions. A linear $iegahgper plane with
the maximal margin between the closest positive and closest negative samthkesnapped space
is found. The SVM works by solving a quadratic optimization problem that minisnizeum of
two terms. The first term is related with the reciprocal of norm of weightore&gssociated with
the hyper plane and the second term is related to the sum of classification €he SVM is a
very active topic of research (von Luxburg et al., 2004; AdankahG@lneriet, 2007) and it has been
successfully applied to many areas including handwritten digit recognitiapn(ii, 1995), object
recognition (Pontil and Verri, 1998), protein structure prediction (Ngugnd Rajapakse, 2003) and
texture classification (Kim et al., 2002). But there are some computatiofigudties associated
with using SVM. One of them is the required memory, which grows very quiakily the size of
the training data since the SVM algorithm involves solving a large quadratipgamaming problem
where every training data point forms a constraint. This is a constraineapiblication of SVM to
very large data sets. More importantly, the performance of SVM is significedapendent on the
choice of kernel. Needless to say that for non-linearly separabletbatperformance of linear and
nonlinear SVM also differs significantly.

Use of an ensemble of classifiers is a popular approach to improve thdictdiss perfor-
mance. Many ensemble methods are used by researchers to report theeimgnt in performance
over single classifier (Hansen, 1999; Magsood et al., 2004; Chavdh, €2004). An ensemble
of classifiers can be constructed using both homogeneous and hemvagelassifiers (Hansen,
1999; Prevost et al., 2003; Garcia-Pedrajas et al., 2005). An etesefibeural networks is often
used for pattern classification problems (Garcia-Pedrajas et al., )@ &t al., 2003) including
face recognition (Melin et al., 2005), weather forecasting (Magsoall,&2004), protein secondary
structure prediction (Guimaraes et al., 2003). Different approadresohstructing ensemble of
neural networks have been suggested in the literatures (Wu et al.,2081 gt al., 2002; Windeatt,
2006). In this paper for the purpose of comparison we have conditieceensemble methods for
neural networks, one uses the average output of the ensemble ofketwuole the other one makes
the ensemble vote on a classification task.

In this context, the ensemble method of Garcia-Pedrajas et al. (20074 aesgecial attention
as this method also uses a multilayer perceptron network for feature extraatichence one may
get a false impression that this method and our proposed method are quite similar

This is an ensemble method where a large number of classifiers are trashéteartheir out-
comes are aggregated using the majority voting rule. This is an interesting nbetropdte different
from our proposed scheme.
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Like AdaBoost the first baseline classifier is trained using the originalitigritiata while each
of the subsequent classifiers is trained using a projected data setansatg the hidden output
of a trained MLP. The second baseline classifier uses data projecteghitee hidden layer of a
projection network (MLP here). The projection network is an MLP netweaitk number of hidden
nodes equal to the number of inputs in the original training data and it is trasiad only that
subsetof the training data which are not classified correctly by the first baselassifier. The
projection network (again an MLP with number of hidden nodes equal touhbar of inputs in
the original data) for the third baseline classifier is trained using the oridital points whose
projected versions are wrongly classified by the second baseline @asslie process is repeated
to generate a large number of baseline classifiers.

Note that, our proposed method falls in the category of hybrid system. Tiagesbeen several
attempts to combine different machine learning tools to develop efficient hgystéms for pattern
classification problems (Huang and LeCun, 2006; Happel and Mu8&4; Vincent and Bengio,
2000; Mitra et al., 2006, 2005). To design a hybrid system differemtaioation of classifiers is used
including neural network-SVM (Mitra et al., 2005, 2006; Vincent anah@e, 2000), convolution
network-SVM (Huang and LeCun, 2006). Neural networks and stmgctor machines are used to
design a hybrid system for text classification in Mitra et al. (2005) andrlddgection of underwater
objects in Mitra et al. (2006). Mitra et al. (2005) proposed a hybrid systadled neuro-SVM which
takes the component wise product of the outputs of a cascaded-S\ifielaand a recurrent neural
network, and applies a set of heuristic rules to decide on the class. ItkefiMitra et al. (2006),
after preprocessing Lidar signal is modeled using a polynomial as wellinasa predictor. The
optimal coefficients of the polynomial are used as inputs to train a RBF, whifidents of the
linear predictor are used to train an MLP. The products of the corregmpiedmponents of the
output vectors from the two networks are used as input to a cascaddd:&ssifier. Huang and
LeCun (2006) presented a hybrid system for object recognition thett the outputs of the last
hidden layer of a convolution network to train a SVM with Gaussian kernele ddmvolution
network is generally used for computer vision problems. A convolution néthas several hidden
layers alternately consisting of convolution layer and sub-sampling layarconvolution network,
the successive layers are designed to learn progressively higeéfdatures until the last layer,
which produces categories.

There have been a number of attempts to develop modular networks to sotpdéerqrob-
lems efficiently (Ronco and Gawthrop, 1995; Bottou and Gallinari, 1991 Bdsic philosophy
of developing a modular network is to divide the task into a number of, @ielfigrmeaningful
subtasks, and then design one module for each subtask. Finally oretoetslise a mechanism
to integrate these modules—this will dictate how different modules interact addtdethe final
output. Sometimes the knowledge of the problem domain can be used to findtasks, but often
clustering is used for this purpose. For example in Pal et al. (2003) arg@lhized map (SOM) is
used to find natural clusters (subtasks) in the data and then for eatér duseparate network is
trained. A given input is routed to the appropriate MLP module using the SJ@hkins and Yuhas
(1993) have presented a simple solution to the truck backer-upper prayielecomposing it into
subtasks. Then all subtasks are realized in parallel (that is, off linebtairothe final two-layer
feed-forward network, which is used to control the truck. Althoughpoposed architecture uses
several modules, this is not designed following the usual principle of modatarork.

In this paper we propose a new classifier architecture called NEUROSYi®Iproposed clas-
sifier has two modules. In the first module we have used an MLP. We viewrgtarfodule as a
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feature extraction module (FM), because outputs of this module can besseguts to any other
classifier. This new set of features is used in the next module, termed asssdication module
(CM). In the classification module we have used SVM with different kefuettions. Instead of
SVM, one can use any other classifier also. We also consider the MLRBRdheural networks in
the CM of our proposed architecture. To further demonstrate the effeetss of NEUROSVM we
compare it with two other ensemble methods: majority voting and averaging. Wvendé¢rate the
effect of the kernel on SVM and NEUROSVM.

Our proposed method is neither an ensemble method nor has any relatiorstimdgpodhere is
only one classifier. The classifier uses features extracted from therhitzies of several trained
networks where typically the number of hidden nodes in a network is smalteirthat dimension.
Each network used for feature extraction is trained using the same dat@aahdetwork sees
the entire input space as represented through the training data. Thusllyypicget improved
performance we need fewer feature extraction networks than that Wweuldeded by the ensemble
type methods.

2. Methods

The section is arranged as follows. First, we provide a brief descripfiorewral networks for
the sake of completeness. Next, we give a brief description of the suygmior machine (SVM)
classifier and how several binary SVMs can be combined to solve a multpalsem. Then we
explain two popular existing ensemble methods that will be used for compaiigimis followed
by a detailed discussion of the proposed method.

2.1 MLP and RBF Neural Networks

The two most widely used neural networks for pattern recognition are mefifagrceptron (MLP)
and radial basis function (RBF) networks (Haykin, 1999). We haws uke back-propagation
algorithm for training MLP networks with single hidden layer.

The RBF network consists of exactly three layers: input layer, basidiumlayer and output
layer. Unlike MLP, the activation functions of the hidden nodes are ngigrhoidal type, rather
each hidden node represents a radial basis function. The transfamrfratiothe input space to the
hidden space is nonlinear but each node in the output layer computesgustidihted sum of the
outputs of the previous layer, that is, each output layer node makes atiaeaformation. The
learning of RBF network is usually performed in two phases. An unsigeJearning method
is applied to estimate the basis function parameters. Then a superviseddeagthod, such as
gradient descent or least square error estimate, is applied to tune therlneteights between
the hidden layer and the output layer. However, the parameters of tiseftiastions can also be
tuned using gradient descent technique. Here we have used the MAFhplementation of RBF
network.

2.2 Support Vector Machines (SVMs)

The basic SVM (Haykin, 1999; Vapnik, 1995) formulation is for two classbpems. If the training
data are linearly separable, then SVM finds an optimum hyperplane that mesithz margin of
separation between the two classes.
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Given a training setX,Y), x; € X, x; € 0P andy; €Y, the class label associated with
yi € {—1,+1}, the learning problem for SVMs is to find the weight veatoand biash such that
they satisfy the constraints:

Xiw+b>+1 foryi=+1 (1)

Xiw+b< -1 foryi=—1 2)

and the weight vectaw minimizes the cost function

1
P(W) = éWTW.

The constraints written in Equations (1)-(2) can be combined as
Yi(Xi.w+b) > +1Vi.

If the training points are not linearly separable, then there is no hyperphant separates them
into positive and negative classes. In this case, the problem is reforohglatsidering the slack
variablestj > 0;i = 1,2,...,N. For mostx;, &; = 0. The constraints are now modified as follows:

XiwW+b>+1-¢; foryi =+1 3)
XiW+b< —1+§; fory,=-1 (4)
& >0, Vi 5)

The SVM then findsv, minimizing
1 N
d(w,&) = éW W+Cizl£i

subject to constraints as in Equations (3)-(5). The con&@ntermed as a regularization parameter
as it controls the trade off between the complexity of the machine and the nofminéclassifica-
tions.

Typically, when the training points are not linearly separable, a nonlineppimg¢ is used to
map the training data fromiP to some higher dimensional feature space H, with a hope that the
data may be linearly separable in H. The mapping is implicitly realized using alKenution.

Two kernels that are popular for non-linear SVMs are:

1. Polynomial of degred: K(x,x;) = (sx.x; +1)?, where s is the scaling coefficient of the dot
product.

2. Radial Basis Function (RBF(x, xi) = e YIx~%l” y> 0.

In this study, we shall extensively use the RBF kernel with a wide rangeWe shall also demon-
strate the utility of the proposed method with polynomial kernel.

We have use&V I\/I"Q_lht (Joachims, 2002) software for learning the SVM classifier. Note that,
NEUROSVM usessV M9Nt in the classification module. We also use SVMs on the original data
to compare its performance with that of NEUROSVM.
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2.3 SVM for Multiclass Problems

The preceding SVM formulation is for two class problems. Multiclass SVMganerally realized
using several two class SVMs. We use the One versus One (OVO) mé&tgagldn and Rajapakse,
2003; Weston and Watkins, 1999). Let us assume that we hawaas problem. In this method
we construct one binary classifier for every pair of distinct classesveSgetc x (c—1)/2 binary
classifiers for & class problem. In the training data, suppksgamples are from clagsN = Elki.

i=
For the class paif, j), a binary classifie€j; is trained using; andk; data points from classand.
An unknown sample is then classified by each of tieex (c— 1) /2 different classifiers. If classifier
Cij classifiesx as class then the vote for classfor samplex is increased by one. Otherwise, vote
for classj for samplex is increased by one. In this way for samplehe votes for alt classes are
calculated using the output of alx (c—1)/2 classifiers. After that we assigrto clasd, if class
| has the largest number of votes forTies are randomly resolved.

2.4 Ensemble Methods: Majority Voting and Averaging

Different methods of classifier fusion are available in the literature (Madjsbal., 2004; Ko et al.,
2007; Brown et al., 2005; Tang et al., 2006; Kuncheva and Whitak&3;2Vindeatt, 2006; Islam
et al., 2003), of which the majority voting scheme is probably the most populiiothéStepenosky
et al., 2006). In this method, the final class is determined by the maximum numkmes counted
among all the classifiers fused. Let us consider @dass problem and lan be the number of
classifiers to be fused. For an unknown samyleote for classg, vj,(j =1,2,...,c) is computed
from the ensemble of classifie@s, (i = 1,2,...,m). If G, (i = 1,2,...,m) assigns sample to class

j thenvy; is incremented by 1. Note that, initially vote for every class is initialized to O; thaf is,

0,(j=1,2,...,c). The final class determination by the ensemble for samdd, if v = m%1lx{vj}.
J:

Averaging also is a simple but effective method and is used in many classifigatiblems
(Guimaraes et al., 2003; Naftaly et al., 1997). In this method, the final idatetermined by the
average of continuous outputs of all classifiers (here MLPs) fusedafr unknown sample, let
the output for clasg (j = 1,2, ...,c) from classifielC;, (i = 1,2,...,m) beo;;. Then the output from

m
the ensemble classifier is obtained@s= %] > Gij, ] =1,2,...,c. The final class assignment by
i=1

the ensemble tg isk, if Ok = mcalx{oj}.
J:

2.5 Proposed NEUROSVM Classifier

The proposed multilayer architecture can be thought of as a combinatiom ¢ypes of modules:
feature extraction module (FM) and classification module (CM). The FMistsef a number of
sub-modules SFM i =1,2,...,m. Each sub-module SFMakes the sam@ dimensional data
X = (X1,X2,--.,Xp)" as input and produces dimensional output vectong = (Vi, Viz, . .., Vin ) -

m
Thusn= 3 n; output values together as shown in Equations (6) and (7) constitutdiamensional
i=1

596



NEUROSVM: AN ARCHITECTURE TOREDUCE THEEFFECT OF THECHOICE OFSVM KERNEL

input to the classification module.

A%
V2
i~ . c Dn1+n2+...+nm (6)
Vm
and
T
vi = (Vip,Viz,...,Vin)
T
V2 — (V217 V227 e 7V2I’]2) 9 (7)
T

In general, different SFiVcan use different methods of feature extractions or they can use the
same principle for feature extraction. Similarly, the classification module eaamsprinciple like
neurocomputing, support vector machines and so on.

In this investigation, the sub-modules SFEMre derived from multilayer perceptron networks,
while the classification module consists of support vector machines. Andehee call the result-
ing architecture NEUROSVM.

In order to constitute thé" sub-module SFM we consider an MLP with just one hidden layer,
with architecturep, nj, c), wherep is the input dimensiony; is the number of nodes in the hidden
layer andc is the number of classes. Note that, although the number of input and owtpes n
in each MLP remains the same, the number of nodes in the hidden layer codiffdvent for
different MLPs. Each MLP is then trained using the training déata {x;;i = 1,2,...,N} c OP,

Y ={yi;i=12...,N} C O°wherey; is the target output correspondingxo

Once each network is trained, the output of the hidden layer can be tak#me a&xtracted
features. These features capture characteristics of the data thascamitate between classes;
hence using these features we can do the classification job using justealay®y network.

Note that, instead of MLP, we can use RBF also in the feature extraction molukgure
1, the top panel haws different trained MLPs labeled as MELPMLP,, ... MLP,. After the train-
ing, we remove the output layer and its associated connections from é#uh MLPs and then
the truncated two-layer sub-networks are taken as feature extractiemadules. The subnets
SFMy, SFM, ..., SFMy, in the lower panel of the NEUROSVM are constructed from the trained
MLPs in the upper panel. The first two layers of Mld®nstitute SFMi=1,2,...,m.

As depicted in the lower panel of Figure 1, the output fromrhgub-modules, taken together
constitutes the input to the classification module. Here we consider SVMdafsification, but
other classifiers such as neural networks (MLP or RBF network) isanbe used. Note that, each
sub-module receives the same ingut (g, xg, . .. ,xp)T.

Given the training datX andY, in order to train the CM we use the following data set. For
eachx; € X, the FM produces an outpat € (1" as in Equation (6). Like an MLP, every node in
the second layer of NEUROSVM computes the weighted sum of its input anigsippsigmoidal
activation function to produce its output. Thas= {z;i =1,2,...,N},z € 0", as in Equation (6),
is used as the input data and corresponding to gaelz, the associateg € (1€, y; € Y is taken as
the target output. The CM is trained usifigY).
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In the present case the CM has two layers. The first layer, as showgureF., is the SVM
kernel layer where each node is associated to a mapped training saripie the output from an
FM that represents a support vector) and it computes the kernel dUfpi# ) on a mapped input
Z, while the other layer is the output layer.

VOTING
final class

Binary SVMs Einary SVMs

Kernel Layar Out Layer
Feature extraction Module Classification Module

Figure 1: The proposed NEUROSVM classifier

2.6 Advantages of the Proposed Method

A natural question comes, why such an architecture (NEUROSVM) willdigebor more useful
than the usual SVM or MLP? There are number of reasons behind thite tNat, we are not
considering very simple data sets where most classifiers will lead to zermgraast errors.

598



NEUROSVM: AN ARCHITECTURE TOREDUCE THEEFFECT OF THECHOICE OFSVM KERNEL

1. Typically, due to the local minima problem of MLP training and its dependenciaitial-
ization, different MLPs may learn different areas of the input spatiebedence when we
combine the output of the hidden layer of different networks to genematefe@atures, the
learning task becomes simpler to the CM. This is true irrespective of whetheZlthis a
neural network or SVM.

2. The extracted features result in simpler classification boundariess®essingle layer net-
work can classify the new data (consider a two layer network consistitigedfiidden and
output layers of an MLP). This also makes the learning task of the CM simpler.

3. For high dimensional data, typically the number of nodes in the hiddenikagarch smaller
than the number of the input nodes and one does not need many fealtaetiex sub-
modules (SFMs). Hence, the dimensionality of the input for the CM can heceedcom-
pared to the original dimension of the input. This makes simpler error suféester learning
and allows us to do more experiments, if CM is a neural network.

4. This is not an ensemble method but it makes fusion of salient characten$tibe input
space as extracted/learnt by different feature extraction netwarntan lat least be viewed as
an implicit fusion of multiple classifiers, and hence improvement in performaregected.

5. For large data sets, it may not be necessary to make full training of tisKtlr constructing
the SFMs, because the objective of the MLPs here is to capture the inherenttatrifithe
data by the FM.

For low dimensional data sets or simpler data sets this method may not have nvacktage be-
cause them (dimension of input to the CM) can be more thatforiginal dimension of the input)
and different SFMs may capture the same attributes of the data resulting mucbt of benefits.
Note that, the advantages mentioned in 2 and 3 are also applicable to MLPs.

3. Experiments

The section is arranged as follows. First we have listed the selected tat@sadidate our proposed
method. Then experimental setup is described. Next, the experimentts eespresented. Finally,
a control experiment to justify one of the advantages of the proposed mistethonstrated.

3.1 Data Sets

To demonstrate the effectiveness of the proposed method, we consitles tata sets from the UCI
Machine Learning Repository (Blake and Merz, 1998). We divide tha dgats into two Groups:
A and B. The Group A consists of eight data sets: Iris, Vehicle, Breasc& (WDBC), Glass,

Sonar, lonosphere, Lymphography Domain (Lymph) and Pima Indiarsea (Pima) data. The
Group B contains Pendigits, Image-Segmentation (Img. Seg.), Landsiéitesateage (Sat. Img.)

and Optdigits data. For Group A data sets some results are available in ther#dmnatthe details

of the experimental protocols (such as training/test divisions) usedatravailable. Hence, we
report the performance with ten-fold cross-validation experiments. &aiehset is divided into ten
subsets of almost equal size. One of the subsets is used for testing archdiring nine subsets
are used for training. The procedure is repeated ten times and the eperdgrmance is reported.
We report the results in terms of mean test error and its standard erférdap A data sets. For the
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four data sets in Group B, benchmark results with different classifieranailable along with the
training-test partition. Hence we have used the same training-test partitieame report the error
on the fixed test set. Table 1 and Table 2 summarize the Group A and Gratp Bals respectively.

Data set No. of | No. of features| Size of the data set and class wise
classes distribution
Iris 3 4 150 (=50 + 50 +50)
Vehicle 4 18 846 (=212+217+218+199)
WDBC 2 30 569 (=212 + 357)
Glass 6 9 214 (=70+76+17+13+9+29)
Sonar 2 60 208 (=97+111)
lonosphere 2 34 351 (=225+126)
Lymph 4 18 148 (=2+81+61+4)
Pima 2 8 768 (=500+268)
Table 1: Group A data sets
Data set | No. of | No. of Training data Test data
classes features| Size | Class distribution | Size | Class distribution
780, 779, 780, 719 363, 364, 364, 336
Pendigits 10 16 7494 | 780, 720, 720, 778 3498 | 364, 335, 336, 364
719,719 336, 336
Img. Seg. 7 18 210 | 30ineachclass | 2100 | 300 in each class
104, 68, 108, 47 1429, 635, 1250, 579
Sat. Img. 6 4 500 | 58, 115 5935 | 649, 1393
376, 389, 380, 389 178, 182,177,183
Optdigits 10 64 3823 | 387, 376,377,387 1797 | 181, 182,181, 179
380, 382 174, 180

3.2 Experimental Setup

Table 2: Group B data sets

In this subsection we describe the selection method for hyper paramedtsodind SVM classi-
fiers. To select the optimal architecture for an MLP, Andersen and Martif1999) used ten-fold
cross-validation experiments. Adankon and Cheriet (2007) discumsatther scheme for SVM
model selection. Here we have used ten-fold cross-validation experifter¥4_P architecture
selection as well as for selection of SVM kernel parameters. For Grodat® sets training-test
partitions are fixed and hence we have used ten-fold cross-validatitre draining set to select the
hyper parameters of classifiers. For Group A data sets, as mentiotied, ¢ae performances are
reported based on ten-fold cross-validation. So, we perform dolibkk ten-fold cross-validation
experiments to select hyper parameters of classifiers for Group A data se

Note that, for the FM of NEUROSVM, we need to selatt 1 MLPs. A natural choice would
be to select the besh architectures corresponding to the smali@stalues of validation errors.
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Based on validation error we choosearchitectures for each of the ten folds for Group A data sets
andm architectures for each of the Group B data sets for NEUROSVM.

In a similar manner the regularization parameieand sprea¢ of RBF kernels of SVMs are
chosen based on ten-fold cross-validation experiments. We havaragpéed withn; choices of
C andng choices ofy. So, we have useqt x ng sets of choice of parameters. For each choice, the
ten-fold cross-validation experiments are conducted. Here we alst edéC, y) pair that leads to
the minimum average validation error. In this investigatigr= 12 andng = 15 are used resulting
in a total of 180 pairs of parameters.

We have also used ten-fold cross-validation to find the sub-modules fOIRIESVM. The
hyper parameters of SVMs in the classification module of NEUROSVM aresstimated through
ten-fold cross-validation experiments. Note, for Group A data sets we trsad double blind ten-
fold cross-validation. We have selected(=5) SFMs. Hence using thma SFMs we can generate
2M _ 1 different feature subsets combinations. In our case iPis 2= 31. Then for each of
the 31 combinations with all 180 pairs ¢€,y) we have conducted the ten-fold cross-validation
experiments on training set(s). We have obtained the (@2$) for each of the 31 combinations.
Then the best combination is chosen based on the minimum average validatioover all 31
combinations. Finally using the best combination and correspori@ing pair the performance of
NEUROSVM is reported.

We have performed statistical tests (Dietterich, 1998) to compare the paptgorithms with
that of standard algorithms. For Group A data sets where cross-validatmrformed, we have
applied the ten-fold cross-validation paired t-test with 9 degrees ofdreeahd 95% significance
level. For the four data sets of Group B where a single test set is emphgeldave constructed
McNemar test with 1 degree of freedom and 95% significance level. Theifations of these tests
are as follows.

3.2.1 K-FoLD CROSSVALIDATION PAIRED T-TEST(DIETTERICH, 1998)

Consider two classifier model&®; andD,, and a data seX. The data set is split int& parts

of approximately equal sizes, and each part is used in turn for testinglagsifier built on the
pooled remainingk — 1 parts. Classifier®; andD5 are trained on the training set and tested on the
test set. Denote the observed test accuraci®s andP,, respectively. This process is repeaked
times and test accuracies are tagged with supergcyipt1,2,. .., K. Thus a set oK differences is
obtainedP® = P! — P to PK) = P) _ p*) Under the null hypothesié: equal accuracies),
the following statistic has a t-distribution wit— 1 degrees of freedom

VK

t= ,

¢§m®—mwm—n

_ K .
whereP = (1/K) 3 PO, If the calculated is greater than the tabulated value for chosen level of
i=1

1=
significance (here 0.05) arii— 1 (here 9) degrees of freedom, we reject null hypothelgiand
accept that there are significant differences in the two compared aassddels.
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3.2.2 MCNEMAR TEST(DIETTERICH, 1998)

As done before consider two classifi@s andD,. Let us define the followingNgg = number of
samples which botb; andD, classify incorrectlyNp1 = number of samples which; classifies
incorrectly butD» classifies correctlyiNig = number of samples whicB; classifies correctly but
D, classifies incorrectly an;1= number of samples which boby andD- classify correctly. Let,
N = Ngo+ No1+ N1o+ N1 be the total number of samples in the test set. The null hypothésis,
is that there is no difference between the accuracies of the two classifigrs null hypothesis is
correct, then the expected counts Ky; andNjp are% (No1+ Ni1p). The discrepancy between the
expected and the observed counts is measured by the following statistic

2 (|No1—Nio| — 1)
No1+ Nio

)

which is approximately distributed &% with 1 degree of freedom. To carry out the test we simply
calculatex? and compare it with the tabulated value for a given level of significance, say, 0.05
(in our case).

We have performed all experiments using two Sun Blade 2500 with duaégsors. The
svmlearn and svntlassify modules for binary SVMs training and classification are used from
svMIght (30achims, 2002) software. For the RBF neural network MATLAB towliscused. All
other programs are written in c.

3.3 Experimental Results

In this subsection first we list the selected hyper parameters of MLP aMil8\cross-validation
experiments. Next selection of sub-modules and hyper parameters dRAEUM is discussed.
The performance comparison of NEUROSVM with the baseline classifierstandard ensemble
methods is presented. Finally, we present the performance of othentgaofaNEUROSVM and
compare it with the baseline classifiers as well as ensemble methods.

3.3.1 FLECTION OFHYPERPARAMETERS FORMLPsS TO CONSTRUCT THEFM

For Group A data set we use double blind ten-fold cross-validation. ahiipning of data for
Group A data sets is explained in Appendix A. For each of the outer leaskaralidation loop,
finding the optimal number of hidden nodes and computation of the test eerexplained in the
procedure RunMLP in Appendix B. The initial weights of the MLPs are enasindomly in [-0.5,
+0.5] and the learning rate used to train the MLPs is 0.60. The number of itesatged to train
the networks for different data sets are chosen based on a few iafiedents. For each data set,
a set of choices on the number of hidden nodes is used to train the MLHabl& 3, number of
iterations and number of hidden nodes that are used to train the MLPs ftwehe data sets are
listed. We have decided to use= 5 neural networks for feature extraction modules and hence for
each fold, we have to select a set of five hidden nodes to train five MLPs.

First we display the variation of the average validation error of crobdataon experiments as
a function of the number of hidden nodes for both Group A and Groupt8 skts. Since for each
data set in Group A 10 panels are required for the 10 folds, we includigtive for only one data
set, Vehicle, in Figure 2. In Figure 3, four panels are included, onedoh of the four data sets in
Group B. In both Figures 2 and 3 we also include the average trainingeAsmentioned earlier,
for the FM of NEUROSVM, we want to use = 5 networks (SFMs). Consider a data set in Group
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A. Suppose, we have trained MLPs withdifferent architectures, that is, witl different choices
of hidden nodes. Then for each of the outer level fold, we shall Madéferent hidden nodes each
associated with an average validation error. Now we order tiesielden nodes in ascending order
of the associated validation error. Then select the top five hidden niemhestis ordered list. These
five different choices of hidden nodes will be used to train five MLPddature extraction for that
particular fold. For each data set, in Table 4, we depict the list of selemtddiinnodes for each fold
(outer level). As an example, for the IRIS data for the first fold (outeellevwhe selected hidden
nodes are (7, 2, 5, 6, 8). This means that for the first fold (outer lex@kyot the least validation
error with 7 hidden nodes; the next smaller validation error is obtained witddeh nodes and so
on.

Since the first element of this set of five resulted in the smallest validation &reouse this
choice of hidden nodes to train MLPs when we report the performantieedfILP networks as
classifiers. For each data set in Group B, since the training and test parttie fixed, we have
only one outer loop and hence only one set with five choices of hiddessreishown in Table 4.
We follow the same protocol as that of Group A data sets to choose the nofrtbhdden nodes for
computing the performance of MLP networks.

Data set | Training iterations| Hidden nodes explore

Iris 1500 2-10

Vehicle 2000 3-16

WDBC 1500 3,5-10, 12, 15, 20

Glass 1500 2-15

Sonar 2000 3,5,7,10, 12, 15, 20, 25, 30, 35, 40
lonosphere 1500 5-10, 12, 15, 20, 25, 30

Lymph 1500 4-10, 12, 15, 20

Pima 1500 2-10

Pendigits 1500 5-10, 12, 15, 18, 20, 25

Img. Seg. 1500 3-10, 12, 15, 20

Sat. Img. 5000 2-10

Optdigits 1500 5,8, 10, 12, 15, 18, 20, 25, 30, 35, 40, 50

Table 3: List of explore hidden nodes and number of iterations for MltRhi@ twelve data sets

3.3.2 FLECTION OFHYPER PARAMETERS FORSVMS

In this section we consider the problem of selecting hyper parametersréguéar SVM that we
shall use as benchmark in experiments for the purpose of comparison BIRESVM. To select
the regularization paramet€rand spreag for RBF kernel of SVM classifiers we have tried a wide
range ofC andy. In this experiment we have used 12 different valuesS ahd 15 different values of

y resulting in a total of 180 pairs ¢C,y). The 12 different values & are 0.001, 0.01, 0.10, 0.20,
0.50, 1.00, 2.00, 5.00, 10.00, 20.00, 100.00 and 1000.00. The 1ediffealues of/ that we have
used are 0.0001, 0.001, 0.01, 0.10, 0.20, 0.40, 0.80, 1.00, 2.00, B8.00, 20.00, 100.00, 1000.00
and 10000.00. In a manner similar to the way the optimal number of hidden noldesien for each
fold (outer level), the optimalC,y) is chosen using ten-fold cross-validation experiments. This is
further explained by Procedure RunSVM included in Appendix C. Foh efthe twelve data sets,
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Figure 2: For each of the ten-folds the variation of cross-validatiorr erith different choices of
number of hidden nodes for MLPs on the Vehicle data set. The lines witls-onask
denote the validation error while the lines with circles denote the training error.
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the obtained optimal set of parameters is in Table 5. The results report8¥fds correspond to

these choices.

Data set Hidden nodes
Iris (7,2,5,6,8),(7,9,3,6,5),(7,6,5,8,9), (5,6, 7, 8, 3),

(7,9,10,8,6),(5,6,7,8,9),(7,8,9,5,6), (56,7, 8,9),
(9,8,7,10,6),(2,5,6,7,8)

Vehicle | (11,9, 13,10, 5), (10, 13,9, 7, 8), (12, 11, 10, 13, 9), (10,1235, 16),
(12, 13,7,15,14), (12,6, 14,8,5), (9, 5, 8, 13, 12), (126,31, 9),
(11, 6, 10, 15, 13), (9, 11, 14, 8, 10)

WDBC (12, 10,9, 15,7), (10,6, 8,9, 7), (8, 15,12, 9, 10), (12, 1,.3,10),
(15, 8,12, 10, 9), (8, 20, 15, 10, 7), (12, 10, 15, 7, 9), (7,819, 10),
(12, 15, 6, 9, 10), (9, 7, 20, 10, 12)

Glass (11, 15, 13, 4,9), (12,9, 13,7, 8), (13, 12, 7, 10, 14), (11,124 15, 10),
(10, 15, 9, 13, 6), (10, 12,9, 14, 8), (14, 5, 13, 4, 8), (11,123,10, 14),
(12, 15, 8, 6, 9), (11, 13, 14, 15, 12)

Sonar (25, 15, 12, 35, 30), (25, 35, 20, 30, 5), (30, 35, 7, 40, 1®, 63 20, 25, 7),
(20, 35, 15, 30, 25), (25, 30, 10, 12, 7), (30, 15, 25, 10, ZH, 85, 7, 10, 30),
(20, 25, 7,12, 15), (10, 12, 15, 7, 20)

lonosphere (7, 25, 10, 12, 15), (15, 9, 7, 20, 8), (15, 9, 8, 12, 20), (9,188, 20),
(8, 25, 12,9, 10), (7,9, 8, 20, 15), (10, 8, 7, 25, 15), (8, A1, 10),
(15, 25, 20, 6, 5), (6, 15, 12, 20, 7)
Lymph (9, 6, 15, 5, 10), (10, 8, 15, 6, 7), (9, 10, 8, 12, 20), (15, 1@07 12),
(9, 10, 12, 6, 20), (9, 15, 10, 8, 6), (7, 6, 10, 8, 9), (7, 10,111,8),
(12, 8, 9, 10, 6), (10, 12, 8, 15, 9)

Pima 6,7,8,9,5),(7,9,8,5,6),(6,7,9, 8, 10), (7,5, 9, 6, 8),
(7,9,10,6,8),(7,6,9,5,8),(7,5,6,8,9), (8,7, 9, 10, 5),
(5,9,8,7,10),(6,7,8,9,5)

Pendigits | (15, 18, 20, 12, 10)
Img. Segq. | (12,7, 8, 10, 15)
Sat. Img. | (8,9, 7, 10, 6)
Optdigits | (30, 35, 40, 25, 20)

Table 4: List of selected hidden nodes for SFMs of the NEUROSVM foinledve data sets se-
lected by cross-validation experiments

3.3.3 FLECTION OFSFMs AND HYPER PARAMETERS FORNEUROSVM

We have already explained, for each fold how to choose the number dérhidodes for the five
MLPs that will be required in the feature extraction module of NEUROSVMesEnhchoices for
different data sets are listed in Table 4. In order to use these data extriittis, two issues need
to be addressed. First do we need all five feature extraction MLPsy diifferent folds, different
subsets of the five would be more appropriate. In other words, for fédhusing five feature
extraction MLPs we can have 31 possible combinations of feature setswérthve to use the
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Data set (C,y)
Iris (2.00, 0.20), (2.00, 0.20), (100.00, 0.01), (1.00, 0.20),
(20.00, 0.01), (20.00, 0.01), (0.10, 1.00), (0.50, 0.40),
(5.00, 0.10), (1.00, 0.40)
Vehicle | (100.00, 0.0001), (1000.00, 0.0001), (100.00, 0.0001), (100.000@),
(100.00, 0.0001), (100.00, 0.0001), (100.00,0.0001), (1000.0000)0
(100.00, 0.0001), (100.00, 0.0001)
wDBC | (5.00, 0.0001), (20.00, 0.0001), (0.20, 0.0001), (2.00, 0.0001),
(10.00, 0.0001), (20.00, 0.0001), (20.00, 0.0001), (2.00, 0.0001),
(20.00, 0.0001), (2.00, 0.0001)
Glass (20.00, 0.20), (5.00, 0.80), (10.00, 0.80), (5.00, 0.80),
(10.00, 0.80), (20.00, 0.20), (5.00, 0.10), (10.00, 0.40),
(5.00, 1.00), (10.00, 1.00)
Sonar | (2.00, 1.00), (2.00, 1.00), (20.00, 0.40), (20.00, 0.20),
(2.00, 0.80), (5.00, 0.40), (10.00, 0.40), (2.00, 1.00),
(5.00, 2.00), (5.00, 0.40)
lonosphere| (5.00, 0.10), (20.00, 0.20), (20.00, 0.20), (20.00, 0.40),
(100.00, 0.01), (100.00, 0.40), (2.00, 0.10), (2.00, 0.20),
(20.00, 0.40), (5.00, 0.40)
Lymph | (1000.00, 0.0001), (1000.00, 0.0001), (2.00, 0.20), (100.00, p.001
(1000.00, 0.0001), (5.00, 0.10), (1000.00, 0.0001), (100.00, p.001
(100.00, 0.01), (1000.00, 0.001)
Pima (0.50, 0.0001), (1.00, 0.0001), (0.50, 0.0001), (10.00, 0.0001),
(5.00, 0.0001), (2.00, 0.0001), (5.00, 0.0001), (10.00, 0.0001),
(2.00, 0.0001), (1.00, 0.0001)
Pendigits | (10.00, 0.0001)
Img. Seg. | (100.00, 0.0001)
Sat. Img. | (20.00, 0.01)
Optdigits | (20.00, 0.0001)

Table 5: List of regularization parameter and spread of the RBF kesn8MMs selected by cross-

validation experiments

most appropriate combination for each fold. The second issue is to fingtineab hyper parameter
for each combination of feature sets. Thus for each fold, to obtain thecbhege of combination
of feature subsets and the associated optimal hyper parameter, fasfehet31 combinations, as
we did for SVM (in Procedure RunSVM) we use ten-fold cross-validatidhis is summarized
in Appendix D by Procedure RUNNEUROSVM. The selected combinatior&-ds along with
the hyper parameters for the twelve data sets are listed in Table 6. The sethvdbes in the
second column of Table 6 shows the best combination of feature extractiBs belected by cross-
validation experiments. As an illustration, for fold 1 of Iris, a set of 7 fesgus used in the
classification module, which is generated by two selected SFMs each with 2 lsidden nodes.
The (C,y) pair within parenthesis followed by the combination shows the regularizati@meder
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(C) and spreadyf of the RBF kernel for SVM classifiers in the classification module that deetesl

by the cross-validation. From Table 6 we see that NEUROSVM with single BFMt selected
for any data sets. Hence using just one SFM we shall not gain anythirggsdlected combination
of SFMs and correspondin@,y) are used to report the results of NEUROSVM. From Table 5
and Table 6 we observe that the valuesyahosen for SVM are usually smaller than those for
NEUROSVM. It is probably because the hidden layers of neural né&s\eme more suited for linear
classification than the original inputs, so a high€less non-linearity) is more appropriate.

Four of the twelve data sets have dimensionality 30 or more. For these frauseta dimen-
sionality is reduced in the classification module of NEUROSVM. The dimensibtieedour data
sets, WDBC, Sonar, lonosphere and Optdigits, in the classification modIN&EWROSVM are
reduced by 16.67-56.67% (average 41.33%), 16.67-80.00% (&vé488§3%), 47.06-67.65% (av-
erage 54.41%) and 14.06% respectively. Hence for high dimensiotatiiza dimensionality of
input for the CM can be reduced compared to original dimension of the input.

3.3.4 EERFORMANCE COMPARISON ONEUROSVMWITH THE BASELINE CLASSIFIERS
AND STANDARD ENSEMBLE METHODS

We compare the performance of NEUROSVM with MLP, SVM as well as twotiexjsneural
ensemble methods. The majority voting and averaging are simple yet effentemble methods.
In Table 7, test error results of NEUROSVM, MLP, SVM, majority voting avdraging are shown.
In Table 7, majority voting ensemble method is denoted by MVOTING while theageeensemble
method is denoted by AVERAGING. The results in Table 7 show that basebeopaired t-test
for Group A data sets and McNemar test for Group B data sets NEUROSIdrifficantly better
than the baseline classifiers for 11 data sets when compared with MLP mfidifda sets when
compared with SVM.

Note that the results of MVOTING and AVERAGING in Table 7 are obtainddgighe same
combinations of networks (SFMs) that are used in the FM of NEUROSVMImFFable 7 we see
that NEUROSVM performs significantly better than the standard ensemble dsdtiral 1 data sets
when compared with majority voting and for 10 data sets when compared withgive.

As a summary, NEUROSVM is superior to MLP, SVM as well as two ensemble ristioo
6 data sets. These data sets are Vehicle, WDBC, lonosphere, LymphaRiérieng. Seg. For
four out of remaining six data sets NEUROSVM performs significantly bettan tLP, MVOT-
ING and AVERAGING. The performance of NEUROSVM and SVM for tedeur data sets, Iris,
Sonar, Pendigits and Sat. Img, is not significantly different. For the Ghtss the performance of
NEUROSVM is significantly better than MLP and MVOTING but is not signifidadifferent from
that of SVM and AVERAGING. For the Optdigits data set all algorithms penfequally well. No
data set is found where two baseline classifiers (MLP and SVM) or twenelnle methods perform
better than NEUROSVM.

For the results in Table 7, for each data set, the combination of SFMs ussddtesl by cross-
validation for NEUROSVM. So, a natural question arises, will other containa perform better
with majority voting or averaging than NEUROSVM? To investigate this we hawepened the
performance of NEUROSVM using the combinations selected by crossatialidseparately for
each of MVOTING and AVERAGING. Following the same protocol as ussdNEUROSVM, the
SFMs for MVOTING and AVERAGING are selected using the double tdd-fooss-validation for
Group A data sets and ten-fold cross-validation for Group B data se¢ssdlacted combinations of
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Data set Selected combinations ari@,y) pair of these combinations

Iris {2, 5}(0.10, 2.00){3, 5}(0.10, 2.00){6, 5}(0.10, 0.10),

{5, 3}(0.10, 2.00){7, 6}(0.10, 5.00){5, 6}(0.10, 1.00),

{5, 6}(0.001, 0.0001){5, 6}(0.50, 10.00),

{7, 6}(1000.00, 0.80){2, 5}(0.10, 2.00)

Vehicle {11, 13}(1.00, 0.20){9, 7}(1000.00, 2.00){12, 13}(20.00, 0.80),
{10, 5}(0.50, 0.10){12, 13(1000.00, 0.40){12, 14;(1000.00, 2.00),
{8, 13}(1000.00, 0.001)12, 13}(0.20, 1.00),

{11, 6, 10, 13(1.00, 0.40){11, 8}(20.00, 0.01)

WDBC {10, 15/(0.50, 0.20){6, 7}(0.001, 0.0001){8, 12}(20.00, 0.20),
{7, 10}(0.10, 5.00){8, 10}(0.20, 20.00){8, 7}(0.50, 0.40),

{15, 7}(5.00, 0.40){7, 8}(0.01, 0.40){6, 9}(0.01, 0.40),

{9, 7}(0.50, 0.01)

Group A | Glass {11, 15, $(1000.00, 0.01){7, 8}(1.00, 2.00){13, 7}(1.00, 5.00),
{11, 10;(2.00, 10.00){9, 6}(1000.00, 0.01){12, 14, 8(0.50. 0.20),
{5, 4}(5.00, 0.40){11, 14}(0.10, 0.20){12, 8, 6:(10.00, 0.10),
{14, 15/(1000.00, 0.01)

Sonar {12, 30;(0.20, 2.00){35, 5}(100.00, 0.10){30, 7, 13(0.20, 2.00),
{5, 7}(0.50, 5.00){20, 30}(1.00, 2.00){7, 9}(2.00, 0.01),

{25, 20;(1.00, 5.00){7, 10}(0.10, 0.10){7, 12}(0.10, 0.20),

{15, 7}(2.00, 0.01)

lonosphere {7, 10;(0.001, 0.0001){7, 8}(0.001, 0.0001){9, 8}(0.001, 0.0001),
{9, 8}(0.001, 0.0001){8, 9}(0.001, 0.0001){7, 8}(0.001, 0.0001),
{8, 7}(0.001, 0.0001){8, 10}(0.001, 0.0001){6, 5}(0.001, 0.0001),
{6, 7}(0.001, 0.0001)

Lymph {6, 5}(0.10, 2.00){6, 7}(20.00, 0.40){9, 8}(5.00, 0.10),

{10, 7}(0.10, 0.20){9, 12}(0.10, 2.00){8, 6}(0.10, 0.10),

{7, 9}(2.00, 5.00){7, 8}(0.10, 0.10){9, 6}(0.50, 0.20),

{10, 12, 8, 9(0.20, 0.01)

Pima {6, 5}(5.00, 100.00){5, 6}(0.10, 100.00){6, 7}(5.00, 0.40),

{5, 6}(0.50, 1.00){7, 6}(1000, 0.40){6, 5}(0.20, 100.00),

{5, 6}(1.00, 10000.00) 7, 5}(10.00, 20.00){5, 7}(20.00, 0.40),
{6, 5}(100.00, 0.10)

Pendigits | {15, 20, 10 (20.00, 0.10)

Group B | Img. Seg. | {12, 15 (10.00, 1.00)

Sat. Img. | {7, 6} (100.00, 0.40)

Optdigits | {30, 25 (2.00, 0.10)

Table 6: The combination of SFMs ari@,y) pair for NEUROSVM selected by cross-validation
for each of the twelve data sets

SFMs for MVOTING and AVERAGING are listed in Table 8. Table 9 reportstist error statistics
using the combinations shown in Table 8. Based on the paired t-test fopGralata sets and
McNemar test for Group B data sets, Table 9 reveals that NEUROSVM idisatly better than
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Baseline classifiers Standard ensemble methods
Data set NEUROSVM MLP SVM MVOTING AVERAGING
Iris 0.013:£0.008 0.040+0.017 0.033:0.014 0.040:0.017 0.048-0.017

Vehicle 0.1030.013 0.166+0.016 0.1960.011 0.152-0.022 0.1420.013
WDBC 0.019:0.009 0.042+0.007 0.076:0.008 0.046-0.007 0.03#0.008

Gr. A Glass 0.2520.034 0.309:0.024 0.290+0.026 0.308:0.025 0.290+0.030
Sonar 0.06%0.017 0.168:0.025 0.138:0.038 0.148:0.029 0.148-0.027
lonosphere  0.0110.002 0.074:0.017 0.06@:0.014 0.088:0.016 0.08@-0.018
Lymph 0.094:0.019 0.168:0.030 0.202-0.034 0.148:0.029 0.168:0.030
Pima 0.21%#0.013 0.252:£0.014 0.249-0.013 0.246-0.010 0.249-0.012
Pendigits 0.022 0.077 0.016 0.074 0.074

Gr.B Img. Seg. 0.059 0.075 0.075 0.074 0.075
Sat. Img. 0.154 0.178 0.158 0.178 0.179
Optdigits 0.027 0.033 0.026 0.034 0.032
Win/Loss 11/0 6/0 11/0 10/0

bold/Italic significantly worse/better than NEUROSVM using ten-foldss-validation paired
t-test for Group A data sets and McNemar test for Group B deata s

Table 7: Performance comparison of NEUROSVM with baseline classifiefstandard ensemble
methods

the standard ensemble methods for 8 data sets when compared with majority wokifoy Z data
sets when compared with averaging. Here also no data set is found lreemsemble methods
perform better than NEUROSVM. Hence we can conclude that NEURO$#Mfbrms consistently
better than majority voting and averaging.

3.3.5 EERFORMANCECOMPARISON OFOTHER VARIANTS OF NEUROSVMWITH BASELINE
CLASSIFIERS AND STANDARD ENSEMBLE METHODS

As stated earlier, for the proposed architecture, in the classification megutan use other tools
also. Here we demonstrate the effect of using MLP and RBF neural rehwothe classification
module instead of SVM. We termed these two architectures as NMLP and N&fpeatively.
The combination of SFMs and the number of hidden nodes for MLP and RBKorks in the
classification module are selected using double ten-fold cross-validati@rdoip A data sets and
using ten-fold cross-validation for Group B data sets. The performaoro@arison of these variants
of NEUROSVM with the original NEUROSVM is shown in Table 10. From Table We see that
original NEUROSVM is significantly better than other variants for 4 data seesweompared with
NMLP and better than 2 data sets when compared with NRBF. The perforrnaht&8JROSVM
and NMLP is equally well for 8 data sets. There is no significant diffexémperformance between
NEUROSVM and NRBF for 10 data sets. For six out of twelve data sets,rak thariants of the
proposed architecture perform equally well. So, proposed archigecéur be considered a general
one.

Now we compare the performance of baseline classifiers and two ensenthiedsievith the
two new variants of NEUROSVM, that is, NMLP and NRBF, by statistical teshesE results
are summarized in Table 11 for NMLP and in Table 12 for NRBF. The restRMDTING and
AVERAGING are obtained in Table 11 and Table 12 using the same combinati@#Ms that are
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Selected combinations

Data set MVOTING AVERAGING

Iris {2, 5}, {3, 5}, {6, 5}, {6, 3}, {2, 5}, {3, 5}, {6, 5}, {6, 8},
{7, 6}, {5, 6}, {5, 6}, {5, 6}, {7. 6}, {5, 6}, {5, 6}, {5, 6},
{7.6},{2,5) {7.6},{2,5)

Vehicle {9,13,10, 5, {13, 7, 8, {11,10,, {13, 9}, {12, 13, 9,
{10, 13, 9, {13, 12, {13, 7}, {10, 5, {13, 7}, {12, 14, §,
{12, 14, 8, {9, 13, 12, {11, 9}, {9, 8,13, {13, 11},
{11, 6,13, {14, 10 {11, 6,10, {11, 14

WDBC {10, 7}, {6, 8, 9}, {8, 10}, {10, 9}, {6, 7}, {15, 12,
{12,7,1%, {8, 9}, {8, 7}, {12, 8, {8, 9}, {8, 7},
{15, 7, {8, 10}, {6, 9}, {9, 7} {15, 7}, {7,8, {6,9}, {9, 7}

Group A ~ Glass {15, 4, {12,13, {12, 7, 14, {15, 9}, {13, 7}, {7, 14},

{12, 10}, {15, €}, {10, 8}, {14, 8}, | {15, 10}, {10, 6}, {12, 9}, {4, 8},
{11, 10, {12, 8}, {11, 12 {11, 13, {8, 9}, {11, 12

Sonar {25,12,{20, 5, {7, 10}, {5, 7}, | {25, 12, {20, 5}, {7, 10},
{20, 15, {25, 7}, {15, 10}, {5, 7}, {20, 15}, {25, 7}, {15, 10},
7,10, {7,12,15, {15, 7 {7,10}, {7, 12, {10, 7}

lonosphere {7, 10}, {9, 8}, {8, 12}, {9, 15}, {7,10}, {9, 8}, {9, 12}, {15, 8},
{8, 10}, {7, 8}, {8, 7}, {8, 20}, {8,12, {7, 8}, {8, 7}, {8, 15},
{6, 5}, {12, 20, {6, 5}, {15, 12

Lymph {6, 5}, {6, 7}, {9, 8}, {10, 7}, 9,5}, {6, 7}, {9, 8}, {10, 7},
{9,12, {8, 6}, {10, 8, 9, {6, 20}, {10, 6}, {10, 9},
{7, 8}, {9, 6}, {8, 9} {7, 8}, {8, 6}, {8, 9}

Pima {8, 9}, {9, 8}, {6, 7}, {6, 8}, {9, 5}, {9, 6}, {6, 10}, {5, 8},
{10, 8}, {7, 8}, {7, 5}, {8, 10}, {6, 8}, {5, 8}, {6, 8}, {8, 9},
{8,10}, {6, 7} {5, 8, {6, 7}

Pendigits {15, 18,12 {15, 18, 20

GroupB Img. Seg. {8,15 {7, 8,10, 15
Sat. Img. {9, 7, 10, § {8,9,7,10,6
Optdigits {35, 40, 20 {35, 40

Table 8: The combination of SFMs for MVOTING and AVERAGING selectgdchoss-validation
for each of the twelve data sets

used in the FM of NMLP and NRBF respectively. From Table 11 we cartsgeNMLP performs
significantly better than baseline classifiers for 8 data sets when compitineéd P and better than
5 data sets when compared with SVM. The NMLP performs significantly betiaMtVOTING on
8 data sets. It also performs significantly better than AVERAGING for 7 slets. From Table 12,
it is observed that NRBF performs significantly better than MLP on 8 dataagels is better than
SVM for 4 data sets. The SVM performs significantly better than NRBFy with one data set.
When compared with the standard ensemble methods the NRBF is found topsigmificantly
better for majority of the data sets. For example, NRBF performs significaettgrithan majority
voting for 8 data sets and better than averaging for 7 data sets.

Now we compare the results of NMLP and NRBF with the results of MVOTING AVER-
AGING in Table 9 by statistical test. We find that the NMLP is significantly bettem tha standard
ensemble methods for 3 data sets (Pima, Pendigits and Sat. Img.) when comjthnedjority
voting and for 2 data sets (Pima and Pendigits) when compared with averamlRBF performs
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Standard ensemble methods

Data set NEUROSVM MVOTING AVERAGING
Iris 0.013t0.008 0.033-0.017 0.033-0.017
Vehicle 0.101%0.013 0.123+0.014 0.125-0.016
WDBC 0.019:0.009 0.033t0.008 0.032:0.009
Group A Glass 0.2510.034 0.2720.031 0.274:0.030
Sonar 0.0620.017 0.124+0.024 0.134-0.027
lonosphere  0.010.002 0.074+0.016 0.065-0.017
Lymph 0.094:0.019 0.134+0.027 0.14%0.022
Pima 0.213%#0.013 0.2280.009 0.229-0.011
Pendigits 0.022 0.074 0.072
Group B Img. Seg. 0.059 0.071 0.074
Sat. Img. 0.154 0.172 0.164
Optdigits 0.027 0.032 0.032
Win/Loss 8/0 7/0

bold/Italic significantly worse/better than NEUROSVM using ten-fold cross-validation
paired t-test for Group A data sets and McNemar test for Group B data sets

Table 9: Performance comparison of NEUROSVM, MVOTING and AVERNG for selected
combinations with corresponding algorithm

Data set NEUROSVM NMLP NRBF
Iris 0.013+0.008 0.02#0.014 0.013-0.013
Vehicle 0.1010.013 0.116-0.013 0.114+0.014
WDBC 0.019t0.009 0.0306+£0.008 0.019+0.009
Group A Glass 0.2510.034 0.255-0.026 0.253-0.024
Sonar 0.06#0.017 0.119+0.029 0.05A-0.015
lonosphere  0.010.002 0.062+0.016 0.045+0.013
Lymph 0.094+0.019 0.135+0.025 0.101-0.020
Pima 0.21%0.013 0.192-0.009 0.194-0.012
Pendigits 0.022 0.023 0.032
Group B Img. Seg. 0.059 0.063 0.067
Sat. Img. 0.154 0.159 0.171
Optdigits 0.027 0.029 0.029
Win/Loss 4/0 2/0

bold/Italic significantly worse/better than NEUROSVM using ten-fold cross-validation
paired t-test for Group A data sets and McNemar test for Group B data sets

Table 10: Performance comparison of three variants of proposedthigor

significantly better than both of MVOTING and AVERAGING on 5 data setseSEh5 data sets are
WDBC, Sonar, Lymph, Pima and Pendigits. It is worth noticing here thatdatata set the pro-

posed methods are worse than standard ensemble methods. So, thegrmptdsod consistently
works better than baseline classifiers and standard ensemble methods.
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Baseline classifiers

Standard ensemble methods

Data set NMLP MLP SVM MVOTING AVERAGING
Iris 0.027:0.014 0.046-0.017 0.033-0.014 0.046:0.017 0.046-0.017
Vehicle 0.116:0.013 0.166+0.016 0.198-:0.011 0.153-0.013 0.15%0.015
WDBC 0.030:0.008 0.042+:-0.007 0.078:0.008 0.044-0.008 0.035+-0.008
Gr. A Glass 0.25%0.026 0.309:0.024 0.290£0.026 0.294+-0.030 0.294-0.030
Sonar 0.1190.029 0.168:0.025 0.138:0.038 0.144-0.021 0.139+0.027
lonosphere 0.0620.016 0.074-0.017 0.06@-:0.014 0.093:0.019 0.068-0.016
Lymph 0.135:0.025 0.168:0.030 0.202-0.034 0.155:0.026 0.161-0.028
Pima 0.1992:0.009 0.252-0.014 0.249-0.013 0.245:0.010 0.2380.011
Pendigits 0.023 0.077 0.016 0.074 0.072
Gr. B Img. Seg. 0.063 0.075 0.075 0.083 0.078
Sat. Img. 0.159 0.178 0.158 0.176 0.168
Optdigits 0.029 0.033 0.026 0.033 0.036
Win/Loss 8/0 5/0 8/0 7/0

bold/Italic significantly worse/better than NMLP using ten-fold cresdidation paired t-test
for Group A data sets and McNemar test for Group B data sets.

Table 11: Performance comparison of NMLP with baseline classifierstandard ensemble meth-

ods
Baseline classifiers Standard ensemble methods
Data set NRBF MLP SVM MVOTING AVERAGING
Iris 0.013:£0.013 0.046-:0.017 0.033-0.014 0.046:0.017 0.046-0.017
Vehicle 0.114-0.014 0.166+0.016 0.198-:0.011 0.148:0.018 0.137%0.013
WDBC 0.019:0.009 0.042:0.007 0.078:0.008 0.042-0.007 0.048-0.007
Gr. A Glass 0.2530.024 0.309:0.024 0.290+0.026 0.309+:0.029 0.295+0.040
Sonar 0.0570.015 0.168:-0.025 0.138+:0.038 0.153+0.027 0.153-0.030
lonosphere  0.0450.013 0.074+0.017 0.060t0.014 0.0914-0.017 0.07#40.018
Lymph 0.101-0.020 0.168+0.030 0.202-0.034 0.161%0.031 0.182-0.031
Pima 0.194-0.012 0.252:-0.014 0.249-0.013 0.252-0.014 0.24#0.011
Pendigits 0.032 0.077 0.016 0.074 0.075
Gr.B Img. Seg. 0.067 0.075 0.075 0.074 0.075
Sat. Img. 0.171 0.178 0.158 0.172 0.167
Optdigits 0.029 0.033 0.026 0.033 0.033
Win/Loss 8/0 4/1 8/0 7/0

bold/Italic significantly worse/better than NRBF using ten-fold creaeation paired t-test
for Group A data sets and McNemar test for Group B data sets.

Table 12: Performance comparison of NRBF with baseline classifiersamdizsd ensemble meth-
ods

3.4 Controlled Experiments - Avoiding Full Training of Networks for Feature Extraction

We have mentioned in Section 2.6 that for large data sets it may not be ngcessaake full
training of the MLPs for constructing the SFMs. Now we are going to prowy iexperiments.
We consider two data sets, one from each group for this experiment. $pewddfically, we use
the Sonar data (in 60 dimension) from Group A and Optdigits (in 64 dimension) Group B.
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We have conducted the experiments as before for NEUROSVM excegtopethe training of
MLPs to construct SFMs only after 100 iterations. In this case, we hateneldl the test error of
0.135+0.087 for Sonar and 0.023 for Optdigits data sets. By statistical test weveltbat these
errors are not significantly different from the previous NEUROSVNber when the MLPs were
fully trained.

4. The Kernel Independence of NEUROSVM

In this section we shall illustrate an attractive feature of NEUROSVM, itskéndlependence. In
order to perform such study we choose three kernels for SVM: li®AF, and polynomial. We
choose these kernels also for SVMs in the classification module of NEURDSYe different
kernels are tried with a set of parameters. We perform ten-fold (doubifoke for Group A data
sets) cross-validation to select the best parameter set for each &E@M. We also conducted
cross-validation experiments to select the best combination of SFMs ardpgameters of NEU-
ROSVM for each of three choices of kernel. For the RBF kernel weshd 2 differenC and 15
differenty resulting 180 pairs. Similarly, for the polynomial kernel we choose 12 réiffeC, 5
different degreed and 7 different scaling coefficients of dot produstssulting 420 triplets and 12
differentC are used in linear kernel. The values®andy are presented in Section 3.3.2. The five
values ofd for the polynomial kernel are 2, 3, 4, 5 and 6. The seven differemitels ofsare 0.001,
0.01, 0.10, 1.00, 10.00, 100.00 and 1000.00.

In Figure 4, the test errors of SVM and NEUROSVM with three choicesafiél for the twelve
data sets are shown. It is clear from Figures 4(b)-4(h) that the npeafuce of SVM significantly
depends on the choice of kernels for Vehicle, WDBC, Glass, Sonawsfihere, Lymph and Pima
data sets respectively. Also the kernel dependency of SVM is noticéabtbe data sets Iris,
Pendigits, Img. Seg. and Optdigits (Figure 4(a), 4(i), 4(j) and 4(l)). OQoiythe Sat. Img. the
SVM produces almost the same test errors for all three choices oflk€nehe other hand, from
Figures 4(a)-4(l) we see that the performance of NEUROSVM for €mlitof the twelve) data sets
practically does not depend on the choice of kernels. To observe itctum@y for each data set we
find out the difference of percentage errors between the maximum and mingmars produce by
the three kernels for SYM and NEUROSVM (Table 13). To explain the enitnidable 13, consider
the WDBC data set. The test errors produced by SVM on WDBC data sethetthree kernels
are 0.049, 0.070 and 0.095 respectively. Hence the minimum and maximurs aned0.049 and
0.095 respectively. So, the difference in error rates and hence tbenpege are 0.046 and 4.60%
respectively. Whereas the test error rates for NEUROSVM on WDB& sk with the three kernels
are 0.023, 0.019 and 0.023 respectively. Here the minimum, maximum andizgreef difference
of these two errors are 0.019, 0.023 and 0.40% respectively. Frola Tahit is clear that for eight
data sets the performance of NEUROSVM using the three kernels remainst adhesame (with
error less than 1%). On the other hand, with SVM only for Sat. Img. therdifiiee is less than 1%.
Thus NEUROSVM is found to perform equally well with different choicé&ernels of the SVM
in the classification module.

5. Conclusions

We have proposed a multilayer classifier architecture consisting of two modiledirst module is
the feature extraction module (FM), while the second module is the classificatidale (CM). In
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Figure 4: Comparison of the test errors of SVM and NEUROSVM for twdb#a sets using Linear,

RBF, and Polynomial kernels.
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Differences of the percentage error

Data set SVM NEUROSVM
Iris 1.40% 0.00%
Vehicle 4.10% 0.60%
WDBC 4.60% 0.40%
Glass 10.80% 0.00%
Sonar 8.40% 2.30%
lonosphere 6.50% 2.10%
Lymph 4.80% 2.00%
Pima 9.30% 1.40%
Pendigits 2.70% 0.10%
Img. Seg. 1.90% 0.90%
Sat. Img. 0.20% 0.20%
Optdigits 1.40% 0.10%

Table 13: Differences of the percentage errors between the maximumiandum errors pro-
duced by linear, RBF and polynomial kernels for SVM and NEUROSVM

the FM, we have used MLP, while for the CM we have used SVM resulting icldssifier, called
NEUROSVM. The architecture is general in nature and both for FM ando@idr tools can be
used. We have experimented using RBF and MLP in the CM. We have testeerfbemance of the
proposed system on twelve benchmark data sets and NEUROSVM is fopeddom consistently
better than MLP and SVM. The performance of NEUROSVM is also better tharensemble
methods based on majority voting and averaging. A noticeable feature oRREBVM is that

nonlinear NEUROSVM and linear NEUROSVM perform equally well on atbdsets tried.

Other advantages of NEUROSVM are as follows:

e For large data sets, it may not be necessary to make a full training of thes MiLthe FM
because in an MLP, the extraction of the salient feature of the data is ttiveetseginning of
the training.

e Typically the number of nodes in the hidden layer of MLPs is much smaller thamutimber
of the input nodes, and one does not need many feature extractionaiddes. Hence, the
dimensionality of the input for the SVMs (or MLP/RBF) in the classification moduale
be reduced compared to the original dimension of the input. So, for soligfdrmatics
problems such as protein secondary structure prediction or proteingotdmition such an
architecture may be very useful.

e It may be viewed as an implicit fusion of multiple classifiers and hence the imprenein
performance is expected.

We have demonstrated the advantages of the proposed architectucalBxperimental results.
In our experimental results we have noticed that most of the time out of thevis,SFor 3 are
selected for NEUROSVM by the cross-validation method. This limited use of rittétectures
could be due to the fact that all networks are trained using the same dasaraedf the networks
may be extracting similar information from the data. We are currently workingemeloping a
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more theoretical view of our proposed method that may help further explairegults reported
here.

Appendix A. Procedure DataPreparation

Input: A data seX
Output: Training and test data sets
Algorithm:
1. if X belongs to Group A then
2. Setno.of_fold = 10.
3.  Xisrandomly partitioned into 10 subsefsi =1,2,...,10

such thatX = U X XiNXj = @i #j.

4. Getthe tralnlng set for foldof X asXT; = U X; and the test data set is
j#i
XTe = X. So we get 10 training-test seXT;,XTq),i = 1,2,,10.

5. else /* for Group B data sets */

6. Setnoof_fold=1.

7 Let the training set b¥ T, and the test set béTe .

8. endif
End DataPreparation
NB: For a given data set (in Group A), the Procedure DataPrepar#on returns the same outer
level ten-folds to RunMLP, RunSVM and RunNEUROSVM.

Appendix B. Procedure RunMLP

Input: A data set X.
A set of hidden nodeld = {hy,hy, ... . hn}.
Output: Test error of MLP on X
Algorithm:
1. Perform DataPreparation
2. fori = 1tonoof_fold
/* To choose the optimal network size f&(T;, we use ten-fold cross-validation
experiment orX T, */
3. XTis divided into 10 equal (or almost equal) pafisj = 1,2,...,10

10
suchthatXTi = U Z;,.ZiNZ= @, ] #K.
j=1

4.  Getthe training set for folgl of XT; asZT; = U Z and the validation
k]
setasZV; = Z;. So we get 10 training-validation seT;,ZV;),
j=1,2,...,10 for foldi of X.

5. foreachain {hy,hy,....hn}

6. forj = 1to10

7. Train a network (MLP) for architectuwith training data seZ T,
and find validation error o&V;. Let the validation error with fold
(ZT},2V;) be€.
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end for /* end forj */
The average validation error for an architectarelated toXT; of the
10
original fold (XT;,XTe) is & = {5 5 €.
=1
end for /* end of foa */
Letel = main{e?}, then we choosk as the optimal architecture for foXiT;.
Train a network (MLP) for architectukewith training dataX T; and find

test error oriXTg. Let the test error with foldXT;, XTeg) beE;.
13. end for /* end of foi */

14. Find average test errir=

End RunMLP

Appendix C.

no_of_fold
no_of_fold z Ei'

Procedure RunSVM

Input: A data seKX.
A set of 12 choices of and 15 choices of for RBF kernel resulting in a total
of 180 pairs of(C,y).

Output: Test error of SVM oX

Algorithm:

1. Perform DataPreparation

2. fori = 1tonoof_fold
* To choose the begC,y) pair for XT;, we use ten-fold cross-validation
experiment orXT; */

3-4.

No o

10.
11.

Same as steps 3-4 of RunMLP
for each(Cy, yk) pair on 180 pairs

forj = 1to10
Train SVM with parameter&y, yk) of RBF kernel for training
dataZT; and find validation error o&V;.
Let the validation error with foldZT;,ZV) bee.

end for /* end of forj */

The average validation error f(€y, yk) pair related toXT; of the

10
original fold (XT;,XTe) is& = 3 €.
=

end for /* end of fo(Cy, yk) */
Lete" = mkin{é,k}, then we chooséCn, ym) pair as the best hyper

parameters for fol T;.

12.

Train SVM with RBF kernel an(Cr,, ym) pair with training dat&XT; and

find test error orKTq. Let the test error with foldX T, XTeq) bekE;.
13. end for /* end of foii */

14. Find average test errr=
End RunSVM

no_of_fold
no_of_fold 'Zl Ei‘
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Appendix D. Procedure RUNNEUROSVM

Input: A data sekX.
A set of hidden nodell = {hy,hy, ..., hn}.
A set of 12 choices of and 15 choices of for RBF kernel resulting in a total
of 180 pairs of(C,y).
Output: Test error of NEUROSVM oK
Algorithm:
1. Perform DataPreparation
2. fori = 1tonoof_fold
/* To choose 5 MLPs for 5 SFMs foX T, we use ten-fold cross-validation
experiment orX T, */
3-10. Same as steps 3-10 of RunMLP

11. We needto select 5 MLP architectures for 5 SFMs to construct NEBYRO
The best 5 architectures corresponding to the smallest 5 val@s of
In other word, we select 5 architectui@,, ajz, . . ., a5) where
el ez ... &% ... isthe sequence @s sorted in ascending order.

12.  Train 5 networks with above 5 selected architectures for trainingdita

13.  Find projected data ¢XT;,XTq) from hidden layer of above 5 MLPs
and hence we get 5 SFMs.

14. Construct 2— 1 = 31 combinations of projected data using 5 SFMs, that is,
31 sets of training-test data using 5 SFMs. So, we get 31 sets of trairsing-te
data(ZT},ZTd,),p=1,2,...,31 for NEUROSVM.

I* To select the best combination among 31 combinations(&ng) pair
of RBF kernel of SVM in the classification module we perform ten-fold
cross-validation experiment */

15. forp = 1to31

16. Perform ten-fold cross-validation as steps 3-10 of RunSVI\ﬁij

17. ChooséC,y) for combinationp with minimum average validation error

saye’.

18. end for /* end of fop */

19.  Finally choos&" combination and correspondiri@, y) pair (say(Cx, yk))
whereel = mpin{ép} :

20.  Train SVM with training datZ T, and(Cx, k) pair of RBF kernel.
Find test error ol Tg, , say test error if;.
21. end for /* end of for */
no_of_fold

22. Find average testernr= —1—- y E.
-of- =
End RunNEUROSVM

References

M. M. Adankon and M. Cheriet. Optimizing resources in model selectiondppsrt vector ma-
chine. Pattern Recognitioj40(3):953-963, 2007.

619



GHANTY, PauL AND PAL

T. Andersen and T. Martinezr. Cross validation and mlp architecturetgaletn Proceedings of the
International Joint Conference on Neural Networks (IJCNN ;98)lume 3, pages 1614-1619,
1999.

C. L. Blake and C. J. MerzUCI Repository of Machine Learning Databases: Univ. of California
Dept. of Inform. and Comput. Sci, 1998.

B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algorithm for optimaargin classifiers.
In Proceedings of the 5th Annual ACM Workshop on Computational Legrfiieory pages
144-152, 1992.

L. Bottou and P. Gallinari. A framework for the cooperation of learning algms. Advances in
Neural Information Processing Syster8s/81-788, 1991.

G. Brown, J. L. Wyatt, and P. Tino. Managing diversity in regressiaearblesJournal of Machine
Learning Researct6:1621-1650, 2005.

N. V. Chawla, L. O. Hall, K. W. Bowyer, and W. P. Kegelmeyer. Learnéimyembles from bites: A
scalable and accurate approadburnal of Machine Learning Researdhi421-451, 2004.

C. Cortes and V. Vapnik. Support vector network#achine Learning20(3):273-297, 1995.

T. G. Dietterich. Approximation statistical tests for comparing superviseditilzion learning
algorithms.Neural Computation10(7):1895-1923, 1998.

N. Garcia-Pedrajas, C. Hervas-Martinez, and D. Ortiz-Boyer. €ajve coevolution of artificial
neural network ensembles for pattern classificati®EE Trans. on Evolutionary Computation
9(3):271-302, 2005.

N. Garcia-Pedrajas, C. Garcia-Osorio, and C. Fyfe. Nonlineartimgogrojections for ensemble
construction.Journal of Machine Learning Resear@®11-33, 2007.

K. S. Guimaraes, J. C. B. Melo, and G. D. C. Cavalcanti. Combining fewaheetworks for ef-
fective secondary structure prediction.Rroceedings of the IEEE Symposium on Bioinformatics
and BioEngineering (BIBE'03)pages 415420, 2003.

J. V. Hansen. Combining predictors: comparison of five meta machine lgameéthodsInforma-
tion Sciencesl19(1-2):91-105, 1999.

B. Happel and J. Murre. Design and evolution of modular neural né&taarhitectures.Neural
Networks 7(6-7):985-1004, 1994.

S. Haykin. Neural Networks: A Comprehensive Foundatiénglewood Cliffs, NJ: Prentice-Hall,
1999.

F. J. Huang and Y. LeCun. Large-scale learning with svm and convohltior generic object
categorization. InProceedings of the Computer Vision and Pattern Recognition Conference
(CVPRO06)volume 1, pages 284-291, 2006.

Md. M. Islam, X. Yao, and K. Murase. A constructive algorithm for tragnitooperative neural
network ensemblesEEE Trans. on Neural Network&4(4):820-834, 2003.

620



NEUROSVM: AN ARCHITECTURE TOREDUCE THEEFFECT OF THECHOICE OFSVM KERNEL

R. E. Jenkins and B. P. Yuhas. A simplified neural network solution thrpugblem decomposition:
The case of the truck backer-uppHtEE Trans. on Neural Networkd(4):718-720, 1993.

T. Joachims SVM9": Support Vector Machinehttp://svmlight.joachims.org/., 2002.

K. 1. Kim, K. Jung, S. H. Park, and H. J. Kim. Support vector machinegexture classification.
IEEE Trans. Pattern Anal. Machine IntelR4(11):1542-1550, 2002.

A. H. R. Ko, R. Sabourin, A. de Souza Britto Jr., and L. Oliveira. Paiewission matrix for
combining classifiersPattern Recognitior40(8):2198-2210, 2007.

L. I. Kuncheva and C. J. Whitaker. Measures of diversity in classfisembles and their relation-
ship with the ensemble accuradylachine Learning51(2):181-207, 2003.

I. Magsood, M. R. Khan, and A. Abraham. An ensemble of neural nédsvfor weather forecasting.
Neural Computing and Application$3(2):112-122, 2004.

P. Melin, C. Felix, and O. Castillo. Face recognition using modular neutalanks and the fuzzy
sugeno integral for response integratiomernational Journal of Intelligent Systen0(2):275—
291, 2005.

V. Mitra, C-J. Wang, and S. Banerjee. A neuro-svm model for texsdiaation using latent seman-
tic indexing. InProceedings of the International Joint Conference on Neural NesvGdCNN
'05), volume 1, pages 564-569, 2005.

V. Mitra, C-J. Wang, and S. Banerjee. Lidar detection of underwatgctbusing a neuro-svm-
based architecturéEEE Trans. on Neural Network&7(3):717-731, 2006.

U. Naftaly, N. Intrator, and D. Horn. Optimal ensemble averaging of aleugtworks. Network:
Computation in Neural Systenty3):283-296, 1997.

M. N. Nguyen and J. C. Rajapakse. Multi-class support vector macldngsotein secondary
structure predictionGenome Informatigsl4:218-227, 2003.

N. R. Pal, S. Pal, J. Das, and K. Majumder. Sofm-mlp: A hybrid neural ortfor atmospheric
temperature predictiodEEE Trans. Geoscience and Remote Sengifh@l2):2783-2791, 2003.

N. R. Pal, A. Sharma, S. K. Sanadhya, and Karmeshu. On identifyingemggnes from gene
expression data in a neural framework through online feature analpsésnational Journal of
Intelligent System®1(4):453—-467, 2006.

M. Pontil and A. Verri. Support vector machines for 3-d object redimm IEEE Trans. Pattern
Anal. Machine Intell.20(6):637-646, 1998.

L. Prevost, C. Michel-Sendis, L. Oudot A. Moises, and M. Milgram. Corimgirmodel-based and
discriminative classifiers: application to handwritten character recognitidroceedings of the
Seventh International Conference on Document Analysis and Recog(iii®@AR’'03) pages
31-35, 2003.

621



GHANTY, PauL AND PAL

E. Ronco and P. GawthropModular Neural Networks: A State of the ArfTechnical Report
CSC-95026. Centre for System and Control. Faculty of MechanicahEagng, University of
Glasgow, UK, 1995.

N. Stepenosky, D. Green, J. Kounios, C. M. Clark, and R. Polikarjoig vote and decision
template based ensemble classifiers trained on event related potentialslyfodi@gnosis of
alzheimers’s disease. Iroceedings of the IEEE Int. Conf. on Acoustics, Speech and Signal
Processingpages 901-904, 2006.

E. K. Tang, P. N. Suganthan, and X. Yao. An analysis of diversity measMachine Learning65
(1):247-271, 2006.

V. Vapnik. The Nature of Statistical Learning TheomMew York: Springer-Verlag, 1995.

P. Vincent and Y. Bengio. A neural support vector network architeciith adaptive kernels. In
Proceedings of the International Joint Conference on Neural Netsv@dCNN 2000)volume 5,
pages 187-192, 2000.

U. von Luxburg, O. Bousquet, and B. Scholkopf. A compressionaagr to support vector model
selection.Journal of Machine Learning Researdh1293—-323, 2004.

J. Weston and C. Watkins. Support vector machines for multi-class pageognition. InPro-
ceedings of the Seventh European Symposium On Artificial Neural Nsfvpages 219-224,
1999.

T. Windeatt. Accuracy/diversity and ensemble mlp classifier dedigBE Trans. on Neural Net-
works 17(5):1194-1211, 2006.

J-X. Wu, Z-H. Zhou, and Z-Q. Chen. Ensemble of ga based seleaiemhnetwork ensembles.
In Proceedings of the 8th International Conference on Neural Informa&mcessingvolume 3,
pages 1477-1482, 2001.

Z-H. Zhou, J. Wu, and W. Tang. Ensembling neural networks: Manydcbe better than all.
Artificial Intelligence 137(1-2):239-263, 2002.

622



