Journal of Machine Learning Research 10 (2009) 2157-2192 Submitted 2/09; Published 10/09

Optimized Cutting Plane Algorithm for
Large-Scale Risk Minimization*

Vojtéch Franc XFRANCV@CMP.FELK.CVUT.CZ
Center for Machine Perception

Department of Cybernetics

Faculty of Electrical Engineering

Czech Technical University in Prague

Technicka 2, 166 27 Praha 6,

Czech Republic

Soren Sonnenburg SOERENSONNENBURG@TUEBINGEN.MPG.DE
Friedrich Miescher Laboratory

Max Planck Society

Spemannstr. 39

72076 Tbingen, Germany

Editor: Michele Sebag

Abstract

We have developed an optimized cutting plane algorithm (PfoAsolving large-scale risk mini-
mization problems. We prove that the number of iteration®\@&2juires to converge tosprecise
solution is approximately linear in the sample size. We disive OCAS, an OCA-based linear bi-
nary Support Vector Machine (SVM) solver, and OCAM, a linemuti-class SVM solver. In an ex-
tensive empirical evaluation we show that OCAS outperfocorsent state-of-the-art SVM solvers
like SVYM'9t - SvMPe™ and BMRM, achieving speedup factor more than 1,200 over $¥\on
some data sets and speedup factor of 29 over ®{Mwhile obtaining the same precise sup-
port vector solution. OCAS, even in the early optimizatioeps, often shows faster convergence
than the currently prevailing approximative methods irs thdomain, SGD and Pegasos. In addi-
tion, our proposed linear multi-class SVM solver, OCAM, iesles speedups of factor of up to 10
compared to SYNUIi—class — Finally, we use OCAS and OCAM in two real-world application
the problem of human acceptor splice site detection and aralsletection. Effectively paral-
lelizing OCAS, we achieve state-of-the-art results on ateptor splice site recognition problem
only by being able to learn from all the available 50 millioraeples in a 12-million-dimensional
feature space. Source code, data sets and scripts to reprtitiel experiments are available at
http://cmp.felk.cvut.cz/ ~xfrancv/ocas/html/

Keywords: risk minimization, linear support vector machine, mulass classification, binary
classification, large-scale learning, parallelization
1. Introduction

Many applications in, for example, bioinformatics, IT-security and textsifi@ation come with
hugenumbers (e.g., millions) of data points, which are indeedessaryto obtain state-of-the-

x. A large part of the work was done while VF and SS were at the Fraentostitute FIRST, Kekulestr. 7, 12489
Berlin, Germany.

(©2009 Vojich Franc and@en Sonnenburg.

FRANC AND SONNENBURG

art results. They, therefore, require extremely efficient computatioe#hods capable of dealing
with ever growing data sizes. A wide range of machine learning methodsecdaedtribed as the
unconstrained regularized risk minimization problem

w* = argminF (w) := %||w\|2+CR(W) , (1)

we[n

wherew € 0" denotes the parameter vector to be learggu|| is a quadratic regularization term,
C > 0 is a fixed regularization constant aRd (0" — [is a non-negative convex risk function
approximating the empirical risk (e.g., training error).

Special cases of problem (1) are, for example, support vectoifataisn and regression (e.g.,
Cortes and Vapnik, 1995; Cristianini and Shawe-Taylor, 2000), logisticession (Collins et al.,
2000), maximal margin structured output classification (Tsochantaridis 2085), SVM for multi-
variate performance measures (Joachims, 2005), novelty detectidgiK&uiet al., 1999), learning
Gaussian processes (Williams, 1998) and many others.

Problem (1) has usually been solved in its dual formulation, which typically wses the com-
putation of dot products between examples. This enables the use ofskirateé mplicitly compute
the dot product between examples in a Reproducing Kernel HilbereSpi¢HS) (Scllkopf and
Smola, 2002). On the one hand, solving the dual formulation is efficienhwbaling with high-
dimensional data. On the other hand, efficient and accurate solvepgtiorizing the kernelized
dual formulation for large sample sizes do not exist.

Recently, focus has shifted towards methods optimizing problem (1) directiyeirprimal.
Using the primal formulation is efficient when the number of examples is vegg land the di-
mensionality of the input data is moderate or the inputs are sparse. This id ippégaplications
like text document analysis and bioinformatics, where the inputs are strimgsdeled into a sparse
high-dimensional feature space, for example, by using the bag-afswepresentation. A way to
exploit the primal formulation for learning in the RKHS is based on decompdbkmgernel matrix
and thus effectively linearizing the problem ($tkopf and Smola, 2002).

Due to its importance, the literature contains a plethora of specialized soledisated to
particular risk functionsR(w) of problem (1). Binary SVM solvers employing the hinge risk
R(w) = n% yih,max{0,1—y;(w,Xx;)} especially have been studied extensively (e.g., Joachims, 1999;
Zanni et al., 2006; Chang and Lin, 2001; Sindhwani and Keerthi, 208@pelle, 2007; Lin et al.,
2007). Recently, Teo et al. (2007) proposed the Bundle Method fdr Risimization (BMRM),
which is a general approach for solving problem (1). BMRM is not ordgaeral but also a highly
modular solver that only requires two specialized procedures, oneltaévghe riskR(w) and one
to compute its subgradient. BMRM is based on iterative approximation of theéeriskby cutting
planes. It solves a reduced problem obtained by substituting the cutting gggmoximation of the
risk into the original problem (1). Teo et al. (2007) compared BMRM witbcsglized solvers for
SVM classification, SV regression and ranking, and reported promissgts. However, we will
show that the implementation of the cutting plane algorithm (CPA) used in BMRMoeatras-
tically sped up making it efficient even for large-scale SVM binary and midsscclassification
problems.

In this paper, we develop afficient and generadlgorithm to solve the regularized risk mini-
mization problem (1). Building on the work of Teo et al. (2007), we prepasoptimized cutting
plane algorithm(OCA) that extends the standard CPA in two ways. First, unlike CPA, wehese
solution of the reduced problem as a direction in the line-search to directly manitmézoriginal

2158

OPTIMIZED CUTTING PLANE SUPPORTVECTORMACHINES

(master) problem (1). Second, we introduce a new cutting plane selettbegy that reduces the
number of cutting planes required to achieve the prescribed precisiahasdignificantly speeds
up convergence. Aefficientline-search procedure for the optimization of (1) is ¢timy additional
requiremenif OCA compared to the standard CPA (or BMRM).

While our proposed method (OCA) is applicable to a wide range of risk t&yme will—due
to their importance—discuss in more detail two special cases: learning ofrthey lftwo-class)
and multi-class SVM classifiers. We show that the line-search proceeguéred by OCA can be
solved exactly for both the binary and multi-class SVM problem®{mlogm) and O(m-Y? +
m-Ylog(m-Y)) time, respectively, wheren is the number of examples antis the number of
classes. We abbreviate OCA for binary SVM classifiers with OCAS and tHe-class version
with OCAM.

We perform an extensive experimental evaluation of the proposed nsetBQ@RAS and OCAM,
on several problems comparing them with the current state of the art. tinysar, we would like
to highlight the following experiments and results:

e We compare OCAS with the state-of-the-art solvers for binary SVM claa$ibin on pre-
viously published data sets. We show that OCAS significantly outperformsoiimpeting
approaches achieving speedups factors of more than 1,200.

e We evaluate OCAS using the large-scale learning challenge data setssaration protocols
described in Sonnenburg et al. (2009). Although OCAS is an implementatiargeneral
method for risk minimization (1), it is shown to be competitive with dedicated binaiiyl S
solvers, which ultimately won the large-scale learning challenge.

¢ We demonstrate that OCAS can be sped up by efficiently parallelizing its sbpeablems.

e We compare OCAM with the state-of-the-art implementation of the CPA-badedrdor
training multi-class SVM classifiers. We show that OCAM achieves speeaafugrs order of
magnitude.

e We show that OCAS and OCAM achieve state-of-the-art recognitioropednce for two
real-world applications. In the first application, we attack a splice site deteptiablem
from bioinformatics. In the second, we address the problem of learnimgware behavioral
classifier used in computer security systems.

The OCAS solver for training the binary SVM classification was publisheduinprevious
paper (Franc and Sonnenburg, 2008a). This paper extends theysravork in several ways. First,
we formulate OCA for optimization of the general risk minimization problem (1¢o8d, we give
an improved convergence proof for the general OCA (in Franc amhé&tourg 2008a the upper
bound on the number of iterations as a function of precisi@tales witho(s—lz), while in this
paper the bound is improved @(%)). Third, we derive a new instance of OCA for training the
multi-class SVM classifiers. Fourth, the experiments are extended by (iginglthe comparison
on the challenge data sets and using the challenge protocol, (ii) perforrpegraents on multi-
class classification problems and (iii) solving two real-world applications ta@imformatics and
computer security.

The remainder of this paper is organized as follows. The standard cutang plgorithm
(CPA) to solve (1) is reviewed in Section 2. In Section 3, we point out acgoaf inefficiency

2159

FRANC AND SONNENBURG

of CPA and propose a new optimized cutting plane algorithm (OCA) to drastieadlyce training
times. We then develop OCA for two special cases linear binary SVMs (QGé&&Section 3.1)
and linear multiclass SVMs (OCAM, see Section 3.2). In Section 4, we empirgtadiy that using
OCA, training times can be drastically reduced on a wide range of larde-dat sets including
the challenge data sets. Finally, we attack two real-world applications. FirSgdtion 5.1, we
apply OCAS to a human acceptor splice site recognition problem achievingp$ttite art results
by training on all available sequences—a data set of 50 million examples (ieeif 2GB in size)
using a 12 million dimensional feature space. Second, in Section 5.2, we @QQ#W to learn
a behavioral malware classifier and achieve a speedup of factor cbr@Pared to the previous
approach and a speedup of factor of 10 compared to the state-aftihgpementation of the CPA.
Section 6 concludes the paper.

2. Cutting Plane Algorithm

In CPA terminology, the original problem (1) is called the master problem. Ukiegpproach of
Teo et al. (2007), one may define a reduced problem of (1) whiclsread

Wy = arnginH(w) = %HWHZ-FCR(W)] : 2)

(2) is obtained from master problem (1) by substituting a piece-wise lingaogmationR; for the
risk R. Note that only the risk terrR is approximated while the regularization teéﬁw”2 remains
unchanged. The idea is that in practise one usually needs only a small naflinear terms in
the piece-wise linear approximatidt to adequately approximate the rikaround the optimum
w*. Moreover, it was shown in Teo et al. (2007) that the number of linearsereeded to achieve
arbitrary precise approximation does not depend on the number of example

We now derive the approximation ® Since the risk ternR is a convex function, it can be
approximated at any poimt’ by a linear under estimator

R(w) > R(wW) + (a,w—w'), vwe O", (3)

wherea’ € dR(W) is any subgradient d® at the poiniv’. We will use a shortcut’ = R(w') — (&', w’)
to abbreviate (3) aR(w) > (&’,w) + b'. In CPA terminology,(a’,w) + b’ = 0 is called a cutting
plane.

To approximate the risRk better than by using a single cutting plane, we can compute a collec-
tion of cutting planeq(a;,w) +b; =0]|i =1,...,t} att distinct points{ws,...,w;} and take their
point-wise maximum

R (w) :max{o,imaxt(<a,w>+bi)}. 4)

The zero cutting plane is added to the maximization as thdrislkassumed to be non-negative. The
subscript; denotes the number of cutting planes used in the approximgtioht follows directly
from (3) that the approximatioR; is exact at the pointéws,...,w;} and thatR; lower boundsR,
that is, thaR(w) > Ri(w),vw € 0" holds. In turn, the objective functidf of the reduced problem
lower bounds the objectivieé of the master problem.

Having readily compute®;, we may now use it in the reduced problem (2). Substituting (4)
with (2), the reduced problem can be expressed as a linearly condtrpiadratic problem

Tl
(we. &) = argmin | 2lw]+CE] . (5)
welngell

2160

OPTIMIZED CUTTING PLANE SUPPORTVECTORMACHINES

subject to
£>0, &> (aw+b, i=1...t.

The number of constraints in (5) equals the number of cutting plamdsch can be drastically
lower than the number of constraints in the master problem (1) when egdras& constrained QP
task. As the number of cutting planes is typically much smaller than the data dimalitgionit is
convenient to solve the reduced problem (5) by optimizing its dual formulatibith reads

t 1 t 2
= XD (a) = ib — = 0|, 6
o = argma e(0t) L_} aiby 2Hi§: aiat | } (6)

where%, is a convex feasible set containing all vectars ' satisfying

t
a; <C, a; >0,i=1,...,t.
2
The dual formulation contains ontyariables bound by+ 1 constraints of simple form. Thus task
(6) can be efficiently optimized by standard QP solvers. Having (6) sptliecprimal solution can
be computed as

t
Wy = —Zaa[at]i ,and &= max((w,a)+bi).

Solving the reduced problem is beneficial if we can effectively seleatadl \umber of cutting
planes such that the solution of the reduced problem is sufficiently close tmaister problem.
CPA selects the cutting planes using a simple strategy described by Algorithm 1.

Algorithm 1 Cutting Plane Algorithm (CPA)
1: t:=0.
2: repeat
3: Computew; by solving the reduced problem (5).
4: Add a new cutting plane to approximate the gkt the current solutiow;, that is, compute
a1 € OR(wy) andbry1 = R(Wt) — (841, Wr).
t:=t+1
until a stopping condition is satisfied.

The algorithm is very general. To use it for a particular problem one oegds to supply a
formula to compute the cutting plane as required in Step 4, that is, formulafgouting the
subgradienti € dR(w) and the objective valuB(w) at given pointw.

It is natural to stop the algorithm when

F(w) —R(w) <e (7

holds. Becausé&;(w;) is the lower bound of the optimal value(w*), it follows that a solution

w; satisfying (7) also guarante&gw;) — F(w*) < g, that is, the objective value differs from the

optimal one bye at most. An alternative stopping condition advocated in Joachims (2006 stop

the algorithm wherR(w;) — Ri(w;) < €. It can be seen that the two stopping conditions become

equivalent if we set¢ = CE. Hence we will consider only the former stopping condition (7).
Theorem 1 by Teo et al. (2007) guarantees convergence of the Igé¥tlam in O(%) time for

a broad class of risk functions:

2161

FRANC AND SONNENBURG

Theorem 1 (Teo et al., 2007) Assume thaR(w)|| < G for all w € W, where/ is some domain
of interest containing allvy for t’ <t. In this case, for ang > 0 and C> 0, Algorithm 1 satisfies
the stopping condition (7) after at most

F(0) 8C2G2
+ —_

2 AC2G2 € 2

log

iterations.

3. Optimized Cutting Plane Algorithm (OCA)

We first point out a source of inefficiency in CPA and then proposenamethod to alleviate the
problem.

CPA selects a new cutting plane such that the reduced problem objectat®fu (w;) mono-
tonically increases w.r.t. the number of iteratidnsHowever, there is no such guarantee for the
master problem objectivE (w;). Even though it will ultimately converge arbitrarily close to the
minimumF (w*), its value can heavily fluctuate between iterations (Figure 1). The reastreke

105,

104,

103,

102 ‘ ‘ ‘ ‘
10 20 30 40 50
iteration t

Figure 1: Convergence behavior of the standard CPA vs. the pro@GaA.

fluctuations is that at each iteratibonCPA selects the cutting plane that perfectly approximates the
master objectivé- at the current solutiorw;. However, there is no guarantee that such a cutting
plane will be an active constraint in the vicinity of the optimwh, nor must the new solutiony 1
of the reduced problem improve the master objective. In fact, it oftenrs¢batF (Wi 1) > F(W;).
As aresult, a lot of the selected cutting planes do not contribute to the apaton of the master
objective around the optimum which, in turn, increases the number of itesation

To speed up the convergence of CPA, we propose a new method whichlivtbe optimized
cutting plane algorithn{OCA). Unlike standard CPA, OCA aims at simultaneously optimizing the
master and reduced problents'andR objective functions, respectively. In addition, OCA tries to
select cutting planes that have a higher chance of actively contributing tapbroximation of the
master objective functioR around the optimurw*. In particular, we propose the following three
changes to CPA.

2162

OPTIMIZED CUTTING PLANE SUPPORTVECTORMACHINES

Change 1 We maintain the best-so-far best solutigfobtained during the firgtiterations, that is,
F(w?),...,F(wP) forms a monotonically decreasing sequence.

Change 2 The new best-so-far solutic\rrz{J is found by searching along a line starting at the previous
solutionwf_, and crossing the reduced problem’s solutignthat is,

b

W = MinF (w3 (1 k) +wik). ®8)

Change 3 The new cutting plane is computed to approximate the master objéctwe pointwy
which lies in a vicinity of the best-so-far solutiavP. In particular, the poinv¢ is computed
as

wE = wWP(1—) + Wi, 9)

wherep € (0,1] is a prescribed parameter. Having the peifitthe new cutting plane is given
by a1 € OR(Wf) andbyr1 = R(Wf) — (@11, WE).

Algorithm 2 describes the proposed OCA. Figure 1 shows the impact ofrtipwged changes
to the convergence. OCA generates a monotonically decreasing seqiemnaster objective values
and a monotonically and strictly increasing sequence of reduced objeatiwes, that is,

FW?)>...>FWwp), and Fi(wi)<...<R(w).

Note that for CPA only the latter is satisfied. Similar to CPA, a natural stoppinditton for OCA
reads
Fwf) —R(w) <e, (10)

wheree > 0 is a prescribed precision parameter. Satisfying the condition (10) mpeasathat
F(wp) — F(w*) < £ holds.

Algorithm 2 Optimized Cutting Plane Algorithm (OCA)
1: Sett := 0 andwj := 0.
2: repeat
3. Computew; by solving the reduced problem (5).
4: Compute a new best-so-far solutiofl using the line-search (8).
5. Add a new cutting plane: compugg;1 € OR(WY) andbyy1 := R(Wf) — (a1, Wf) wherewy
is given by (9).
6: t:=t+1
7: until a stopping condition is satisfied

Theorem 2 Assume thafoR(w)|| < G for all w € W, where?/ is some domain of interest con-
taining all wy for t’ <t. In this case, for ang > 0, C > 0 and pe (0,1}, Algorithm 2 satisfies the
stopping condition (10) after at most

F(0) , 8C°G%

+

2 AC2G2 £ 2

log

iterations.

2163

FRANC AND SONNENBURG

Theorem 2 is proven in Appendix A. Finally, there are two relevant remeegarding Theo-
rem 2:

Remark 1 Although Theorem 2 holds for any from the interval(0, 1] its particular value has
impact on the convergence speed in practice. We found experimental$éation 4.1) that
u= 0.1 works consistently well throughout experiments.

Remark 2 Note that the bound on the maximal number of iterations of OCA given in The@re
coincides with the bound for CPA in Theorem 1. Despite the same theoretivatlb, in
practice OCA converges significantly faster compared to CPA, achiepieedsips of more
than one order of magnitude as will be demonstrated in the experiments (Séxtidn
the convergence analysis (see Appendix A) we give an intuitive exjbenaf why OCA
converges faster than CPA.

In the following subsections we will use the OCA Algorithm 2 to develop effidmary linear
and multi-class SVM solvers. To this end, we develop fast methods to solpeabiem-dependent
subtasks, the line-search step (step 4 in Algorithm 2) and the addition @f eutéing plane (step 5
in Algorithm 2).

3.1 Training Linear Binary SVM Classifiers

Given an example s€t(X1,y1),...,(Xm,Ym)} € (0" x {—=1,4+1})™, the goal is to find a parameter
vectorw € " of the liner classification rula(x) = sgnw,x). The parameter vectev is obtained
by minimizing

F(w) = ;HW\ZJF;imax{o,l—yi<w,xi>}, (12)

which is a special instance of the regularized risk minimization problem (1) wathisk
1 m
R(w) := — 1-vy i} 12
(W) mi;max{(l yl <W7 X|>} ()

It can be seen that (12) is a convex piece-wise linear approximation wéihing errornl1 S [h(xi) #
yil-

To use the OCA Algorithm 2 for solving (12), we need the problem-depsrgteps 4 and 5.
First, we need to supply a procedure performing the line-search (&8casred in Step 4. Sec-
tion 3.1.1 describes an efficient algorithm solving the line-search exactlyrmogm) time. Sec-
ond, Step 5 requires a formula for computing a subgragiendR(w) of the risk (12) which reads

L 1g 1 yiwxi) <1,
a——mi;n.y.x., ﬂi—{ 0 if yi(w,x)>1.

Both the line-search and computation of the subgradient can be sped tipevirallelization
described in Section 3.1.2. We call the resulting algorithmab&émized cutting plane algorithm
for SVM(OCAS).

2164

OPTIMIZED CUTTING PLANE SUPPORTVECTORMACHINES

3.1.1 LUNE-SEARCHFOR LINEAR BINARY SVM CLASSIFIERS

The line-search (8) requires minimization of a univariate convex function
1
F(WP_1(1—K) +wik) = é\\wgl(l— K) +wik||? + CRWP_; (1 —K) +wk) (13)
with R defined by (12). Note that the line-search very much resembles the masttarp (1) with

one-dimensional data. We show that the line-search can be solved éra@tiyplogm) time.
We abbreviatd (WP ; (1—k) +w;k) by f(k) which is defined as

k) +‘Z fi(k) = ;k2A0+kBo+Co+_Zlmax{o, kB +Ci},

where) ,
Ao = Hth)fl_WtH . X .
By = <1Wt,1,wt—wt,1>, B = Syilxi,wWe—W),i=1....m, (14)
Co = Slwall?, G = SA-yxwy),i=1..,m

Hence the line-search (8) involves solvikig= argmin., f (k) and computingv? =w ,(1—k*) +
w;k*. Sincef (k) is a convex function, its unconstrained minimum is attained at the kiiat which
the sub-differentiad f (k) contains zero, that is, @ df (k") holds. The subdifferential of reads

m 0 if kB+G <0,
6f(k):kA0+Bo+zlafi(k), where 9f; (k) = B if kB+G >0,
= 0,Bi] if KB+Ci=0.

Note that the subdifferential is not a function because there legifr whichdf (k) is an interval.
The first term of the subdifferentialf (k) is an ascending linear functidw\, + By sinceAy must be
greater than zero. Note thag = HW{[l — w2 equals 0 only if the algorithm has converged to the
optimumw*, but in this case the line-search is not invoked. The t@fitk) appearing in the sumis

| k<k | k=k | k>k
Bi=0 0 0 0
Bi <0 B; [Bi, 0] 0
B > 0 0 [0, Bi] B;

Table 1: The value o fi(k) with respect tc.

either constantly zero, B; = 0, or it is a step-like jump whose value changes at the pou&t——
In particular, the value adfj(k) w.r.t. kis summarized in Table 1. Hence the subdlﬁererﬁlb(lk)
is @ monotonically increasing function as is illustrated in Figure 2. To ddlveargmin.q f (k) w
proceed as follows: -

1. We compute the maximal value of the subdifferergi(k) at point O:

maxdf(0)) = Bﬁ—_i[{(Bi <0k >0)V (B >0Ak <0)B;.

2165

FRANC AND SONNENBURG

2. Ifmax(af(0)) is strictly greater than zero, we know that the unconstrained minimum
argmin, f (k) is attained at a point less than or equal to 0. Thus, the constrained minimum
k* = argmin.q f (k), that is, the result of the line-search, is attained at the poiat0.

3. If max(df(0)) is less than zero, then the optimuth= argmin. f (k) corresponds to the
unconstrained optimum argmif(k). To getk* we need to find an intersection between the
graph ofdf (k) and the x-axis. This can be done efficiently by sorting poits {k; | ki >
0,i = 1,....,m} and checking the condition @ 0f (k) for k € K and fork in the intervals
which split the domairi0,) in the pointsK. These computations are dominated by sorting
the numberK, which takesO(|K|log|K]) time.

Computing the parameters (14) of the functibfk) requiresO(mn) time, wherem is the number
of examples and is the number of features. Having the parameters computed, the wordtrsase
complexities of the steps 1, 2 and 3 @ém), O(1) and O(mlogm), respectively.

3.1.2 RARALLELIZATION

Apart from solving the reduced problem (2), all subtasks of OCASbeaefficiently parallelized:

Output computation. This involves computation of the dot products;, x;) for alli=1,...,m,
which requiresO(s) time, wheres equals the number of all non-zero elements in the training
examples. Distributing the computation equallyp@rocessors reduces the eﬁort(ﬂ@%).
Note that the remaining products with data required by OCAS, thaivfs x;) and (W, ;),
can be computed frorfwy, X;) in time O(m).

of (k)

Figure 2: Graph depicting the subdifferen@dl(k) of the objective functiorf (k). The line-search
requires computind* = min=o f (k) which is equivalent to finding the intersectiéh
between the graph @ff (k) and the positive part of the x-axis.

2166

OPTIMIZED CUTTING PLANE SUPPORTVECTORMACHINES

Line-search. The dominant part is sorting<| numbers which can be done @(|K|log|K|) time.
A speedup can be achieved by parallelizing the sorting function by ysipgocessors,
reducing time complexity t@(%). Note that our implementation of OCAS uses
quicksort, whose worst-case time complexity(dg/K|?), although itsexpectedun-time is
O(|K{log|K).

Cutting plane computation. The dominant part requires the sulﬂq}—1 3N THYiXi, which can be
done inO(sy) time, wheresy = [{i|T§ # 0, Vi = 1,...,m}| is the number of non-zerg;.
Using p processors results in a time complexity@(fs—g).

It is worth mentioning that OCAS usually requires a small number of iteratiosisa(ly less
than 100 and almost always less than 1000). Hence, solving the reprad®#dm, which cannot be
parallelized, is not the bottleneck, especially when the number of exampieiarge.

3.2 Training General Linear Multi-Class SVM Classifiers

So far we have assumed that (i) the ultimate goal is to minimize the probability of nsidicason,
(i) the input observationg are vectors fronil" and (iii) the labely can attain only two values
{—1,41}. In this section, we will consider the regularized risk minimization framewogkieg to
the learning of a general linear classifier (Tsochantaridis et al., 2005).

We assume that the input observatiotis from an arbitrary seX’ and the labely can have
values from9y = {1,...,Y}. In addition, letd: 9" x 9 — O be an arbitrary loss function which
satisfied(y,y) = 0,Vy € 9, andd(y,y) > 0,V(y,Y) € 9 x 9,y # Y. We consider the multi-class
classification ruldr: X — 9 defined as

h(x;w) = argmaxw, ¥Y(x,y)),
yey

wherew € 09 is a parameter vector atd: X x 9 — 0% is an arbitrary map from the input-output
space to the parameter space. Given examplé(gety1), ..., (Xm,Ym)} € (X x 9)™, learning the
parameter vectow using the regularized risk minimization framework requires solving problem
(1) with the empirical riskRemp(h(-;w)) = %z{';lé(h(xi),yi). Tsochantaridis et al. (2005) propose
two convex piece-wise linear upper bounds on Relp(h(-;w)). The first one, called theargin
re-scalingapproach, defines the proxy risk as

m

ROW) = - 5 max(Blyy) + (¥(.Y) ~ W) w). (15)

The second one, called tstack re-scalingapproach, defines the proxy risk as
== Zlmaxé YY) (14 (W(xi,y) — W%, ¥1),w)) - (16)

In the rest of this section we will derive the OCA solver for minimization of thegimare-scaling
risk (15). Note that modification of the solver to optimize the slack re-scalikg(1) is straight-
forward and that both variants have exactly the same computational compheity also that for
the special case wheiy,y') is the 0/1-loss, both (15) and (16) become equivalent.

2167

FRANC AND SONNENBURG

To use the OCA Algorithm 2 for the regularized minimization of (15), we neest, tio derive
a procedure performing the line-search (8) required in Step 4 anoihdetm derive a formula for
the computation of the subgradient of the rRRlas required in Step 5. Section 3.2.1 describes an
efficient algorithm solving the line-search exactlydm-Y?+m-Ylog(m-Y)) time. The formula
for computing the subgradieate dR(w) of the risk (15) reads

a= ;i(q’(m,ﬁi) —~Wx,v)),

where

Vi = argr;a><(6(yi,y) +(W0,Y) — WX ¥),w)) -
ye
We call the resulting method thaptimized cutting plane algorithm for multi-class SYGICAM).
Finally, note that the subtasks of OCAM can be parallelized in a fashion simitaetbinary case
(see Section 3.1.2).

3.2.1 UNE-SEARCHFOR GENERAL MULTI-CLASS LINEAR SVM CLASSIFIERS

In this section, we derive an efficient algorithm to solve the line-seaddio&e margin re-scaling
risk (15). The algorithm is a generalization of the line-search for the pi8&M described in
Section 3.1.1. Since the core idea remains the same we only briefly describaithdifferences.
The goal of the line-search is to minimize a univariate functg¢w? (1 — k) +wk) defined
by (13) with the riskR given by (15). We can abbreviakgw?® ; (1 — k) +w;k) by f (k) which reads

9= 10(K)+ 3 () = ;k2A0+kBo+co+_zlrygayx(kay+C¥) ,

where the constani&g, By, Co, (Biy,Ciy),i =1,...,my € 9 are computed accordingly. Similar to
the binary case, the core idea is to find an explicit formula for the subseiiffed 01 (k), which,
consequently, allows solving the optimality conditior @ f (k). For a givenf;(k), Ietﬁf(k) ={ye
9 | KB +C = max;cy (k&y +Ciy)} be a set of indices of the linear terms which are active at the

pointk. Then the subdifferential of (k) reads

0f (k) = kg + BO+'§16fi(k) where 0f;(k) = co{BY |y € %(K)}. (17)

The subdifferential (17) is composed of a linear tég + By and a sum of mapsf;: [0 — 1,
i=1,....m wherel is a set of all closed intervals on a real line. From the definition (17) it
follows thatof; is a step-function (or staircase function), thatds$;, is composed of piece-wise
linear horizontal and vertical segments. An explicit description of thesarlisegments is crucial
for solving the optimality condition @ df (k) efficiently. Unlike the binary case, the segments
cannot be computed directly from the parame(@?éciy),y € 9, however, they can be found by
the simple algorithm described below.

First, we introduce an equivalent representatio®d fjf Unlike (17), the new representation
explicitly defines intervals wher@f; (k) is a constant and the points for which the constant value of

2168

OPTIMIZED CUTTING PLANE SUPPORTVECTORMACHINES

fi(k) = max, (kB! + CF)

(B2, CP) = (B, C)

(B7,C?) = (B!,Ch)

(B}, CH = (B},CF)

I

Figure 3: Figure shows an example of the functipfk) which is defineq as the point-wise maxi-
mum over linear termgB’ +C/, y=1,...,4. The parameter@?,C?), z=1,...,3, and
pointsk’, z= 1,2 found by Algorithm 3 are also visualized.

afi(k) changes. LeZ € {1,...,Y — 1} be a given integer ankf .. .,k,-Z*1 be a strictly increasing
sequence of real numbers. Then we define a systefropen intervalg I1,.. ., I#} such that

Iil = (—007 kll)) Iiz = (kiZ%Lvoo) > and Iiz = <ki271’ klz) Vi<z<Z.

It can be seen that there exist an integemd a sequende, . . ., k,-Z*1 such that the ma@f; can be
equivalently written as

B? if ke I,
ofifk) = { BB i kele,

171

(18)

where{B!,...,B?} isasubset of B, ...,BY}. Provided the representation (18) is known fod]|
i=1,...,m, the line-searck* = argmin. ¢ f (k) can be solved exactly by finding the intersection of
of (k) and the x-axis, that is, solving the optimality conditiog @ f (k). To this end, we can use the
same algorithm as in the binary case (see Section 3.1.1). The only difereti@t the number of
pointsk’ in which the subdifferential f (k) changes its value is highem: (Y — 1) in the worst case.
As the computations of the algorithm for solvinge@ f (k) are dominated by sorting the poirks
the worst-case computational complexity is approximat¥lm-Y log(m-Y)).

Finally, we introduce Algorithm 3, which finds the required representafi8 fior a giverd f;.
In the description of Algorithm 3, we do not use the subsgriptsimplify the notation. Figure 3
shows an example of input linear ternt&v,ciy), y € 9 defining the functionfi(k) and the sorted

sequence of active ternt8?,C?),z=1,...,Z, and points?, z=1,...,Z, in which the activity of
the linear terms changes. At the beginning, the algorithm finds a linear teich vghactive in the
leftmost interval(—oo, k1), that is, the line with the maximal slope. Then the algorithm computes
intersections with the leftmost active linear term that was found and the remaimés with lower
slopes. The leftmost intersection identifies the next active term. This wdxespeated until the
rightmost active term is found. The worst-case computational complexityguirithm 3 isO(Y?).

In turn, the total complexity of the line-search procedur@isn- Y2+ m-Ylog(m-Y)), that is,
O(m-Y?) time is required for running Algorithm B1times andO(m-Y log(m-Y)) time for solving

the optimality condition @ df;(k) as described above.

2169

FRANC AND SONNENBURG

Algorithm 3 Finding explicit piece-wise linear representation (189 gf
Require: (BY,CY),ye Y
Ensure: Z, {B,...,B%}, and{k!,... k¥ 1}

1 Y= argma>§€5,Cy wherey ;= {y | BY = miny., BY1.

2: Z:=1,k:= —o andB! := BY

3: while k < do

4 9:={y|p>B}

5. if 9 is emptythen

6: K:=o0

7. else X
8: y = argmin s $-5
o: kzlzzgéé%
10 Z:=Z+1
11; BZ := BY
12: y:=y
13: endif
14: end while

Note that the described algorithm is practical only if the output spaiseof moderate size since
the complexity of the line-search grows quadratically Witk |9|. For that reason, this algorithm
is ineffective for structured output learning where the cardinality’@rows exponentially with the
number of hidden states.

4. Experiments

In this section we perform an extensive empirical evaluation of the pempogtimized cutting
plane algorithm (OCA) applied to linear binary SVM classification (OCAS) iamdti-class SVM
classification (OCAM) .

In particular, we compare OCAS to various state-of-the-art SVM salv&ince several of
these solvers did not take part in the large-scale learning challengeesem an evaluation
of SVM'9"t ' pegasos, GPDT, SGD, BMRM, S\ version 2.0 and version 2.1 on previously
published medium-scale data sets (see Section 4.1.1). We show that OCABpetes previous
solvers gaining speedups of several orders of magnitude over sothe afethods and we also
analyze the speedups gained by parallelizing the various core compoh&@EAS.

In addition, we use the challenge data sets and follow the challenge pradamhpare OCAS
with the best performing methods, which were LaRank and LibLinear (segdd 4.1.2). Finally,
in section 4.2, we compare the multi-class SVM solver OCAM to the standard CHarmepted
for multi-class SVM on four real-world problems using the challenge evaluatiotocol.

4.1 Comparison of Linear Binary SVM

We first compare OCAS with several binary linear SVM solvers on pralopublished data sets
followed by an analysis using the challenge criteria on the challenge data sets

2170

OPTIMIZED CUTTING PLANE SUPPORTVECTORMACHINES

4.1.1 B/ALUATION ON PREVIOUSLY USED DATA SETS

We now compare current state-of-the-art SVM solvers (SGD, Pegastfi9™ | SyMPeT BMRM,
GPDT?), on a variety of data sets with the proposed method (OCAS), using 6ieges measur-
ing:

Influence of the hyper-parameteon the speed of convergence
Training time and objective for optimal C

Speed of convergence (time vs. objective)

Time to perform a full model selection

Effects of parallelization

Scalability w.r.t. data set size

ok wbdE

To this end, we implemented OCAS and the standard?GP&. We use the very general com-
pressed sparse column (CSC) representation to store the data. Hérelezaent is represented by
an index and a value (each 64bit). To solve the reduced problem (2jseveur implementation of
improved SMO (Fan et al., 2005). The source code of OCAS is freelialafor download as part
of LIBOCAS (Franc and Sonnenburg, 2008b) and as a part of the@bBN toolbox (Sonnenburg
and Ratsch, 2007).

All competing methods train SVM classifiers by solving the convex probleneifhgr in its
primal or dual formulation. Since in practice only limited precision solutions camlitained,
solvers must define an appropriate stopping condition. Based on the gt@opidition, solvers can
be categorized intapproximativeandaccurate

Approximative Solvers make use of heuristics (e.qg., learning rate, number of iterations) to obtain
(often crude) approximations of the optimal solution. They have a very Emwteration cost and

low total training time. Especially for large-scale problems, they are claimed suftfieiently
precise while delivering the best performance vs. training time tradeBofftqu and Bousquet,
2007), which may be attributed to the robust naturdaoje-margin SVM solutions. However,
while they are fast in the beginning they often fail to achieve a precise solulimong the most
efficient solvers to-date are Pegasos (Shwartz et al., 2007) and B@&{y and Bousquet, 2007),
both of which are based on stochastic (sub-)gradient descent.

Accurate Solvers In contrast to approximative solvers, accurate methods solve the optimization
problem up to a given precisiaywheree commonly denotes the violation of the relaxed KKT con-
ditions (Joachims, 1999) or the (relative) duality gap. Accurate methoels bfive good asymptotic
convergence properties, and thus for sraatbnverge to very precise solutions being limited only by
numerical precision. Among the state-of-the-art accurate solversvé®! | SVMPe'" BMRM
and GPDT.

Because there is no widely accepted consensus on which approadtter™bowe used both
types of methods in our comparison.

1. Solvers include: SGD version 1.1 (svmsgd@ip://leon.bottou.org/projects/sgd , SVMIight 6,01 and
SVMPeT 2 1 http://svmlight.joachims.org , pegasoshttp:/ittic.uchicago.edu/ ~shailcode/ , BMRM
version 0.0http://users.rsise.anu.edu.au/ ~chteo/BMRM.html and GPDThttp://dm.unife.it/gpdt

2. To not measure implementation specific effects (solver, dot-ptaducputation etc.).

2171

FRANC AND SONNENBURG

Experimental Setup We trained all methods on the data sets summarized in Table 2. We aug-
mented the Covl, CCAT, Astro data sets from Joachims (2006) by the MMIgartificial dense
data set and two larger bioinformatics splice site recognition data sets for ammt human.

] Data SetH MNIST \ Astro \ Artificial \ Covl\ CCAT \ Worm \ Human\

Examples|| 70,000| 99,757| 150,000| 581,012| 804,414| 1,026,036| 15,028,326
Dim 784 | 62,369 500 54 | 47,236 804 564
Sparsity 19 0.08 100 22 0.16 25 25
Split || 77/09/14| 43/05/52| 33/33/33| 81/09/10| 87/10/03| 80/05/15 -

Table 2: Summary of the data sets used in the experimental evaluation. Sgarsitgs the aver-
age number of non-zero elements of a data set in percent. Split destibsize of the
train/validation/test sets in percent.

These data sets have been used and are described in detail in Joadltif)s $hwartz et al.
(2007) and Franc and Sonnenburg (2008a). The Covertype,phsiss and CCAT data sets were
provided to us by Shai Shalev-Shwartz and should match the ones useatchinds (2006). The
Worm splice data set was provided by GunnatdRh. We did not apply any extra preprocessing to
these data sefs.

The artificial data set was generated from two Gaussian distributions widhedif diagonal
covariance matrices of multiple scale. Unless otherwise stated, experimeantpevéormed on a
2.4GHz AMD Opteron Linux machine. We disabled the bias term in the compafsortopping
conditions we use the defaultgignt = £gpgt = 0.001, €perf = 0.1 andepmm = 0.001 For OCAS we

used the same stopping condition that is implemented in $Mhat is w < slpe” 1073
Note that these have very different meanings denoting the maximum KKT violation for $9#
the maximum tolerated violation of constraints for SR8land for BMRM the relative duality gap.
For SGD we fix the number of iterations to 10 and for Pegasos we usé\ 186 suggested in
Shwartz et al. (2007). For the regularization param€endA we use the following relations:
A =1/C, Cpert = C/100, Comm = C andCjignt = Cm Throughout the experiments we uS&s a
shortcut forGiignt.>

Influence of the Hyper-parameter 1 on the Speed of Convergence In contrast to the standard
CPA, OCAS has a single hyper-paramgidsee Section 3). The value pfdetermines the point
w¢ = wP(1—) +wp at which the new cutting plane is selected. The convergence proof keee T
rem 2) requirest to be from the interva(0, 1], however, the theorem does not indicate which value
is the optimal one. For this reason, we empirically determined the value of

For varyingu € {0.01,0.05,0.1,...,1} we measured the time required by OCAS to train the
classifier on the Astro, CCAT and Covl data sets. The regularizationasuis was set to the

3. Data sets found at: Worm and Humiattp://www.fml.tuebingen.mpg.de/raetsch/projects/ls mkl, Covl
http://kdd.ics.uci.edu/databases/covertype/covertyp e.html , CCAT http://www.daviddlewis.com/
resources/testcollections/rcvl/ , MNIST http:/lyann.lecun. com/exdb/mnlst/

4. However, we noted that the Covertype Astro-ph and CCAT datdreeidy underwent preprocessmg because the
latter two have|xi||2 =

5. The exact cmdlines are: svm_perf _learmn -1 2 -m 0 -t 0 -b 0 -e 0.1 -c Cperf, Ppegasos -lambda
A -iter 100/A -k 1, svmlearn -m 0 -t 0 -b 0 -e 1le-3 ¢ Giight, bmrm-train -r 1 -m 10000 -i
999999 -e le-3 ¢ Cpmrm SVMsgd2 -lambda A -epochs 10 .

2172

OPTIMIZED CUTTING PLANE SUPPORTVECTORMACHINES

optimal value for the given data set. Figure 4 shows the results. For Astir€&AT the optimal
value isp = 0.1 while for Covl it isyu= 0.01. For all three data sets the training time does not
change significantly within the intervé, 0.2). Thus we selected = 0.1 to be the best value and
we used this setting in all remaining experiments.

10*

-®@-astro
=*-ccat
covl

Time [s]

0 02 04 06 08 1

Figure 4: Training time vs. value of the hyper-paramet@&f the OCAS solver measured on the
Astro, CCAT and Covl data sets. The value 0.1 (dash line) is used in all remaining
experiments.

Training Time and Objective For Optimal C We trained all methods on all except the human
splice data set using the training data and measured training time (in secadds)raputed the
unconstrained objective vallgw) (cf. Equation 11).

The results are displayed in Table 3. The proposed method—OCAS—Emiki©utperforms
all its competitors in theccurate solvercategory on all benchmark data sets in terms of training
time while obtaining a comparable (often the best) objective value. BMRM andP$Vimplement
the same CPA algorithm but due to implementation-specific details, results caffiebend. Our
implementation of CPA gives very similar results (not shofvyote that for SGD, Pegasos (and
SVMPerf20__not shown), the objective value sometimes deviates significantly from theotsu
jective. As a result, the learned classifier may differ substantially from pienal parametew™.
However, as training times for SGD are significantly below all others, it ideanavhether SGD
achieves the same precision using less time with further iterations. An anses tpestion is
given in the next paragraph.

Speed of Convergence (Time vs. Objective) To address this problem we re-ran the best meth-
ods, CPA, OCAS and SGD, recordiimgermediateprogress, that is, in the course of optimization
record time and objective for several time points. The results are showiguineFs. OCAS was
stopped when reaching the maximum time or a precision-efF{w*) /F(w) < 107¢ and in all
cases achieved the minimum objective. In three of the six data sets, OCA®BIgoachieves the

6. In contrast to SVNE™ , BMRM and our implementation of CPA did not converge for la@yen Worm even after
5000 iterations. Most likely, the core solver of SY#f is more robust.

2173

FRANC AND SONNENBURG

\ [Astro CCAT Covl MNIST Worm Artificial |
svmlight || 2.0939e+03| 8.1235e+04 2.5044e+06 6.7118e+05 3.1881e+04 1.3170e+02
2972 22| 77429 5295 1027310 41531 622391 2719 2623193 44852 231059 3060
svmperf2.1]| 2.1180e+03 8.1744e+04 2.5063e+06 6.7245e+05 3.2224e+04 1.3186e+02
38 2| 228 228| 520 152| 1295 228| 2029 4436| 709 162
svmperf2.0|| 2.1188e+03 8.1760e+04 2.5071e+06 6.7276e+05 3.2327e+04 1.3182e+02
-1 11| -1 1250 -1 345] -1 6115| -1 16515| -1 455
bmrm || 2.1152e+03| 8.1682e+04 2.5060e+06 6.7250e+05

42 2| 327 248| 678 225| 2318 4327 -
ocas|| 2.1103e+03 8.1462e+04 2.5045e+06 6.7158e+05 3.1920e+04 1.3172e+02
21 1|48 25| 80 10| 137 10| 125 258| 76 13
pegasos| 2.1090e+03 8.1564e+04 2.5060e+06 Error 4.6212e+04 1.3120e+03
2689K 4| 70M 127 | 470M 460| 270M 647| 82M 213 | 25K 1
sgd || 2.2377e+03| 8.2963e+04 2.6490e+06 1.3254e+06 2.1299e+05 1.8097e+02
10 1|10 4110 1|10 1|10 9] 10 2
gpdt| 1.1725e+03| 1.5418e+05 1.3034e+06 5.9796e+06 1.3205e+04 1.2642e+02
130 5| 3570 2263| 4844 1794| 526 118| 38092 39095 615 137

Table 3: Training time for optimal C comparing OCAS with other SVM solvers. réans not

converged, blank not attempted. Shown in bold is the unconstrained Syédtiok value
Eg. (11). The two numbers below the objective value denote the numbernratiates
(left) and the training time in seconds (right). Lower time and objective valtebetter.

All methods solve the unbiased problem. As convergence criteria, theastesettings de-
scribed in Section 4.1.1 are used. On MNIST Pegasos ran into numeonbéms. OCAS
clearly outperforms all of its competitors in tlaecurate solvercategory by a large mar-

gin achieving similar and often the lowest objective value. The objectiveevatitained
by SGD and Pegasos is often far away from the optimal solution; see teatftather
discussion.

best objective as expected at a later time point, but already from the egiryriing. Further analysis
made clear that OCAS wins over SGD in cases wihenge Cs were used and thus the optimization

problem is more difficult. Still, plain SGD outcompetes even CPA. One may arguieptacti-

cally, the true objective is not the unconstrained SVM-primal value (11}H®iperformance on
a validation set, that is, optimization is stopped when the validation error doehaoge. This
has been discussed for leave-one-out in Franc et al. (2008) ardornsome extent—agree with
this. One should, however, note that in this case one does not obtainMrb®\&some classifier
instead. A comparison should not then be limited to SVM solvers but shouldealspen to any
other large scale approach, like online algorithms (e.g., perceptronsargile that to compare
SVM solversn a fair way one needs to compare objective values. We therefore gasé®using
a larger number of iterations on the Astro and splice data sets. On the AsdreadlaPegasos sur-

passed the SVKM objective after 18 iterations, requiring 228 seconds. SV , in comparison,

needed only 22 seconds. Also, on the splice data set we ran Pega$6¥fterations, which took
13,000 seconds and achieved a similar objective as that of SV, requiring only 1224 sec-
onds. Finally, note that, although BMRM, SVRIf and our implementation of CPA solve the same

equivalent problem using the CPA, differences in implementations leadymgaesults’ Since it

7. Potentially due to a programming error in this pre-release of BMRM, ihdidshow convergence on the splice data

set even after- 6500 iterations.

2174

OPTIMIZED CUTTING PLANE SUPPORTVECTORMACHINES

Astro CCAT
1 — 1 - :
—_ 9 ' —_ i -=-cpa
g g 9 :
Q0.8 Q0.8 |
c c [l
£ £ ,
L.06 L06
S S
§0.4 §0.4
g g
'_CQ_J'O'Z -g-O.Z
0 0
_ 10 10° 10 10
Time [s] Time [s]
Covertype MNIST
1 1 : : :
= = ~=cpa
Sosl Sosl ~-sgd |
>C\O'8 =% --ocas
= £
Fos L06
S S
© 0.45 \ ‘0 0.4f
2 2
3 g
20.2 20.
o) o)
0 — "
10 10° 10 10 10
Time [s] Time [s]
Worm Artificial
X 1
5 5
20.8f 208
c oy
£ £
L.06 L06
S S
‘0 0.4 © 0.4
2 2
g g
5.0.2 30.2
o) o)

o

N
I

10
Time [s]

10
Time [s]

Figure 5: Obijective value vs. training time of CPA (red), SGD (green)@G&S (blue) measured
for different numbers of training examples.The dashed line shows the tiquered to
run SGD for 10 iterations. OCAS was stopped when the precision fell blofor the
training time for CPA was achieved. In all cases, OCAS achieves the minirjeitvie
value and, even from the beginning, outperforms all other methods, ingl&GD, on
half of the data sets.

2175

FRANC AND SONNENBURG

is still interesting to see how the methods perform w.r.t. classification perfaename describe the
analysis under this criterion in the next paragraph.

Time to Perform a Full Model Selection When using SVMs in practice, their C parameter needs
to be tuned during model selection. We therefore train all methods usinggditfeetting® for C on

the training part of all data sets, evaluate them on the validation set angectimbest model to do
predictions on the test set. As the performance measure, we use thedeethe receiver operator
characteristic curve (auROC) (Fawcett, 2003). Results are displayledia 4.

\ Astro CCAT Covl MNIST Worm Artificial
[‘avg svm perf][98.15+-0.00 | 9851+0.01 [8392+0.01 [9586+0.01[9945+0.00 | 8638+0.02 |

svmlight || 1 152| 1 124700 10 282703| 10 9247| 0.5 86694| 0.005 42491
svmperf2.0|| 1 67| 1 20827| 50 1765| 5 21113| 5 106241| 0.005 111621
svmperf2.1|| 1 131 1750| 5 781 10 887 1 22983| 0.005 24520

bmrm || 1 1711 2735| 10 1562| 10 20278 -
ocas| 1 4] 1 163| 50 5110 35/ 0.1 1438| 0.005 6740
pegasos 98.15 98.51 83.89 95.84 99.27 78.35
1 59| 1 2031| 5 731| 5 2125| 5 1438| 5 201
sgd 98.13 98.52 83.88 95.71 99.43 80.88
0.5 111 20| 1 5|1 3| 0.005 69| 0.005 7
gpdt || 1 30| 1 33693| 5 11615| 10 408| 0.5 283941| 0.005 90807

Table 4: Model selection experiment comparing OCAS with other SVM salvéfsmeans not
converged, blank not attempted. Shown in bold is the area under theaeoperator
characteristic curve (auROC) obtained for the best model chosed baseodel selection
over a wide range of regularization consta@tsin each cell, numbers on the left denote
the optimalC, numbers on the right the training time in seconds to perform the whole
model selection. Because there is little variance, for accurate SVM salubrshe mean
and standard deviation of the auROC are shown. SGD is clearly fastesviag similar
performance for all except the artificial data set. However, oft€rsmaller than the ones
chosen by accurate SVMs is selected—an indication that the learned deftisiiion
is only remotely SVM-like. Among the accurate solvers, OCAS clearly oubpers its
competitors. It should be noted that training times for all accurate method®aneated
by training for largeC (see Table 3 for training times for the optim@). For further
discussion see the text.

Again, among theccurate method®CAS outperforms its competitors by a large margin, fol-
lowed by SVMeT . Note that for allaccurate methodthe performance is very similar and has
little variance. Except for the artificial data set, plain SGD is clearly fasthgewachieving a sim-
ilar accuracy. However, the optimal parameter settings for accurate SVMMSGD are different.
Accurate SVM solvers use a larger C constant than SGD. For a lowee@pijlctive function is
dominated by the regularization terfw/||. A potential explanation is that SGD’s update rule puts
more emphasis on the regularization term, and SGD, when not run for anlangiger of iterations,
does imply early stopping.

Our suggestion for practitioners is to use OCAS whenever a reliable &indmf large-scale
solver with proven convergence guarantees is required. This is typihallyase when the solver is

8. For Worm and Artificial we usedC € {0.0010.0050.01,0.05,0.1,0.5,1,5}, for CCAT, Astro, CovlC €
{0.1,0.5,1,5,10} and for MNISTC € {1,5,10,50,100}.

2176

OPTIMIZED CUTTING PLANE SUPPORTVECTORMACHINES

2 3 4 5 6

10 10 10 10 10
Dataset Size

Figure 6: This figure displays how the methods scale with data set size orotine 8fulice data set.
The slope of the “lines” in this figure denotes the exporeeint O(m®), where the black
line denotes linear effor®(m).

to be operated by non-expert users who know little (or nothing) aboungtine hyper-parameters of
the optimization algorithm. Therefore, as long as the full data set fits into mememgcommend
OCAS. Otherwise, if sub-sampling is not an option, online approximativeeslike SGD are the
only viable way to proceed.

Effects of Parallelization As OCAS training times are very low on the above data sets, we also
apply OCAS to the 15 million human splice data set. Using a 2.4GHz 16-core AMBr@pLinux
machine, we run OCAS usirg= 0.0001 on 1 to 16 CPUs and show the accumulated times for each
of the subtasks, the total training time and the speedup w.r.t. the single CPldhmgor Table 5.
Also shown is the accumulated time for each of the threads. As can be sreept-for the line-

| CPUs | 1] 2] 4] 8] 16]

| speedup | 1] 177]3.09] 45] 4.6
line search (s) 238| 184| 178| 139| 117
a (s) 270 | 155| 80| 49| 45
output (s) 2476| 1300 | 640| 397 | 410

| total (s) | 3087 1742| 998 684 | 671 |

Table 5: Speedups due to parallelizing OCAS on the 15 million human splice data se

search—computations distribute nicely. Using 8 CPU cores the speedugtsatat a factor of 4.5,
most likely as memory access becomes the bottleneck (for 8 CPUs output ctimpuataates a
load of 28GB/s just on memory reads).

Scalability w.r.t. Data Set Size In this section, we investigate how computational times of OCAS,
CPA and SGD scale with the number of examples on the Worm splice data sarder100 to
1,026,036. Results are shown in Figure 6. We again use our implementation of CPA wlachssh
essential sub-routines with OCAS. Both OCAS and SGD scale roughly lnééote that SGD is
much faster (because it runs for a fixed number of iterations and thus eholy).

2177

FRANC AND SONNENBURG

4.1.2 B/ALUATION ON CHALLENGE DATA

In this section, we use the challenge data sets and follow the challengegbtotcompare OCAS
to the best-performing methods, which were LaRank (Bordes et al., 20@A)ibLinear (Fan et al.,
2008). To this end, we apply OCAS to the challenge data sets Alpha, Gamnzetnibllowing
the challenge protocol for the SVM track.

The data sets are artificially generated based on a mixture of Gaussianawncertain prop-
erties (see Table 6): The Alpha data set is separable with a large marginqueidratic features.

Optimal Number of examples
Data Set Model training \ testing \ validation | Dim. Description
Alpha guadratic | 500,000| 300,000 100,000 | 500 well separable

Gamma | semi-quadratig 500,000 300,000| 100,000 | 500 | Multiscale low var.
Zeta linear 500,000| 300,000/ 100,000 | 2000 | Intrinsic dim. 400

Table 6: Summary of the three challenge data sets used: Alpha, Gamma, Zeta.

The Gamma data set is well separable too, but contains features livingferedifscales. Fi-
nally, the optimal model for Zeta is a linear classifier—of its 2,000 features01a6@ nuisance
dimensions. The challenge protocol requires training on the unmodifiecsdttavithC = 0.01
and precisiore = 0.01. To measure convergence speed, objective values are meaghitedrain-
ing. The second challenge experiment simulates model selection by trainingfferent C
{0.0001,0.001,0.01,0.1,1,10}.

The left column in Figure 7 displays the course of convergence of the theghods. While
OCAS is quite competitive on Gamma and Zeta in this experiment, it is slower on Algtaould
also be noted that OCAS, in contrast to the online-style algorithms LaRankilhithear, has to
do a full pass through the data in each iteration. However, it usually esquary few iterations to
obtain precise solutions.

In the simulated model selection experiment (right column of Figure 7), OGXfanmns well
for low values of C on all data sets. However, at first glance it is compefitivlarge values of C
only on Zeta. Investigating objective values on Gamma for LibLinear, we extitat they signifi-
cantly deviate (objective values much larger, deviation by 50%fer10) from LaRank/OCAS for
C € {1,10}. still, on Alpha OCAS is slower.

4.2 Comparison of Linear Multi-Class SVMs

In this section, we compare the proposed multi-class SVM solver OCAM ibeskcin Section 3.2
with multi-class CPA (CPAM). We consider the Crammer and Singer (200)utation of multi-
class SVMs which corresponds to the minimization of the following convex tiagec

1 cQx
F(w):= Z|jw[?+ = - — Wy, Xi 1
wherew = [wi,...,Wy] is a matrix of parameter vectors afitk1, i), . .., (Xm,Ym) } € (O"x 9)Mis a
set of training examples. The multi-class classification rule then rebds =

argmaxco- (X, wy).

2178

OPTIMIZED CUTTING PLANE SUPPORTVECTORMACHINES

Alpha
4600 fP— 180 ‘ ‘ ‘ ‘ ‘ \
aran -®-larank
4500 liblinear 1608 tiblinear
4400 <4-ocas 140
—_ --ocas
4300 2120
g)
£ 4200 _ElOO
%4100 S 80
4000 % 60
3900 40
3800 - 20)
3700, ¥ - . P!
10 10 10 10 10° 10 10° 10° 10 10 10
CPU Time [s] C
Gamma
3400 o larank Ak (
aran -@-laran
4 4000t
3200 liblinear liblinear,
<4-ocas 3500r
— --ocas
3000 2,3000¢
g)
= € 2500}
$ 2800 i
5 — 2000
2600 3 1500
1000¢
2400
500f
2200 o
10° 100 10° 10° 10
CPU Time [s]
Zeta
5010 250
-®-larank --larank
liblinear e
5005 +-ocas 200 liblinear
- --ocas
25000 2 150
8 =
o]
O 4995 2100
o
4990 ¢ 50 "
4
4985 0‘ N
10° 10" 107 10° 10* 10° 107 100 10° 10"
CPU Time [s] C

Figure 7: Results of LaRank, LibLinear and OCAS on the Alpha, Gamma etalchallenge data
sets. The left column of the figures displays the unconstrained SVM priojedtive (11)
(C is not scaled withm) w.r.t. SVM training time for fixedC = 0.01. The right column
displays the SVM training time for differei@. We omitted the data set size vs. CPU
time figure since all three methods show a similar curve (a line with slogen log-
log representation, corresponding to the expecéu) effort) . Note that for the Zeta
data set OCAS converges after a single pass through the data, whitth regollapsing
the performance curve into a single point. For IBWOCAS achieves very competitive

results. For further explanation see text.

2179

FRANC AND SONNENBURG

We implemented OCAM and CPAM in C, exactly according to the description in $e8tih
Both implementations use the Improved Mitchel-Demyanov-Malozemov algoritham¢F2005)
as the core QP solver and they use exactly the same functions for the cbmpatautting planes
and classifier outputs. The implementation of both methods is freely availabtiofanload as
part of LIBOCAS (Franc and Sonnenburg, 2008b). The experimaetperformed on an AMD
Opteron-based 2.2GHz machine running Linux.

In the evaluation we compare OCAM with CPAM to minimize programming bias. In additio
we perform a comparison with SVRA!i—classy2 20 |ater in Section 5.2.

We use four data sets with inherently different properties that are sunedaniZlable 7. The
Malware data set is described in Section 5.2. The remaining data sets,TiVN8®s20 and Sector,
are downloaded frortp://www.csie.ntu.edu.tw/ ~ ¢jlinflibsvmtools/datasets/multiclass.
html . We used the versions with the input features scaled to the ini€x\&l Each data set is ran-
domly split into a training and a testing part.

features number of| num. of examples

number of| type classes training | testing

Malware 3,413 | dense 14 3,413| 3,414
MNIST 780 | dense 10| 60,000| 10,000
News20 62,060 | sparse 20| 15,935| 3,993
Sector 55,197 sparse 105 6,412 | 3,207

Table 7: Multi-class data sets used in the comparison of OCAM and CPAM.

Malware MNIST News20 Sector
error | time || error| time | error| time | error| time
Standard CPAM || 10.25| 12685| 7.07 | 15898 | 14.45| 7276| 5.58 | 12840
Proposed OCAM| 10.16| 1705| 7.08| 5387 14.45| 1499 5.61| 3970
speedup 7.4 3.0 4.9 3.2

Table 8: Comparison of OCAM and CPA on a simulated model selection problée.reported
time corresponds to training over the whole range of regularization casa€mnThe error
is the minimal test classification over the classifiers trained with difféZent

In the first experiment, we train the multi-class classifiers on training data widnger of
regularization constants = {10, 10',...,10’} (for MalwareC = {1(°,...,10°} since the op-
timal C = 10’ is the boundary value). Both solvers use the same stopping condition {tD) w
¢ = 0.01F (w). We measure the total time required for training over the whole range of Cthan
best classification error measured on the testing data. Table 8 summarizesute While the
classification accuracy of OCAM and CPAM are comparable, OCAM cterdly outperforms the
standard CPAM in terms of runtime, achieving speedup of factor from 34to 7

In the second experiment, we measure the three performance figuresddefithe large-scale
challenge: (i) the objective value as a function of the runtime, (ii) the runtimreefasction ofC
and (i) the runtime as a function of the data set size. For figures (i) and €iijse the optimal
C obtained in the first experiments. Results for the first three data sets @t s Figure 8.

2180

OPTIMIZED CUTTING PLANE SUPPORTVECTORMACHINES

n)/obj]

0.8f

©c o 2o
N A~ O

Objective [(obj—m

o

| |—CcPAM

10° 10° 10 10
time [s]

n)/obj]

0.8f

o o o
N A~ O

| |—cPAM

---OCAM|

Objective [(obj—-m

o

10° 10° 10 10
time [s]

o
©

o
o))

I
N

Objective [(obj—min)/obj]
=)
>

o

time [s]

10 10" 107

Malware
10°
2
E 10 3
(0]
E L -¢-OCAM
104+ ~CPAM||
--0(x)
0
10 :
10 ° 10*
of examples
MNIST
10°
-¢-OCAM
102 |-~ CPAM .
=) --0(x)
(0]
E 10
10°
-1
10
107 10° 10* 10°
of examples
News20
102/-*-OCAM
-—CPAM
= --0(x) -
£10%

10 10° 10*
of examples

12000
-+-OCAM
10000(—--CcpAM
8000¢
6000¢
4000

2000y

time [s]

10° 10° 10

6000

4000

[s]

ime

t

2000

Figure 8: Results of the standard CPAM and the proposed OCAM on thedvial MNIST and
News20 data sets. The left column of figures displays the unconstrawigidoBjec-
tive (19) w.r.t. SVM training time. The middle column displays the training time as a
function of the number of examples. In both experim&higas fixed to its optimal value
as determined in model selection. The right column shows the training time ferediff
Cs. See text for a discussion of the results.

The obijective vs. time figure is consistent with the results obtained in Sectidar4tie two-class
variant, that is, the objective value of the standard CPAM significantly #uetuwhile OCAM
decreases the objective monotonically and converges faster in all cikesdata size vs. time
figure shows that in both cases the runtime is approximately linear w.r.t. the nafndgeamples,
though the curve of CPAM grows slightly faster compared to OCAM. The mifierence shows
the figure depicting the runtime as a function®flt is seen that OCAM is considerably faster for
large values o€, which is crucial for efficient model selection (see the experiment in SebtR) .

2181

FRANC AND SONNENBURG

5. Applications

In this section we attack two real-world applications. First, in Section 5.1, \pt/ &pCAS to a
human acceptor splice site recognition problem. Second, in Section 5.2ev33A8M for learning
a behavioral malware classifier.

5.1 Human Acceptor Splice Site Recognition

To demonstrate the effectiveness of our proposed method, OCAS, plie iafo the problem of
human acceptor splice site detection. Splice sites mark the boundaries bpbteetmlly protein-
coding exons and (non-coding) introns. In the process of translatitdy @ protein, introns are
excised from pre-mRNA after transcription (Figure 9). Most splice sitessa-calledcanonical
splice siteghat are characterized by the presence of the di@€es1dAGat the donor and acceptor
sites, respectively.

— €XON — intron 1€X0N - intron 1€X0ON - intron 1 €Xon rintron T— exon

DNA - || | [

ATG GT AG GT AG GT AG GT AG TAGTAA
TGA

transcription

AUG GU AG GU AG GU AG GU A

G
pre-mRNA <P N [I = - oA

UAG,UAA

splicing UGA
mRNA c=» I
AUG UAG,UAA
translation UCA
protein N I ¢

Figure 9: The major steps in protein synthesis. In the process of comy®&NiA to messenger
RNA, the introns (green) are spliced out. Here we focus on detectingotoalked ac-
ceptor splice sites that employ tA& consensus and are found at the “left-hand side”
boundary of exons. Figure taken from (Sonnenburg, 2002).

However, the occurrence of the dimer alone is not sufficient to detgatice site. The classifi-
cation task for splice site sensors, therefore, consists in discriminatingglige sites from decoy
sites that also exhibit the consensus dimers. Assuming a uniform distribiitibve dour bases,
adenine §), cytosine €), guanine ¢ and thymine T), one would expect 1/16th of the dimers to
contain theAG acceptor splice site consensus. Considering the size of the human gemloicte,
consists of about 3 billion base pairs, this constitutes a large-scale lepnobigm (the expected
number ofAGs is 180 million).

Many different methods to detect splice sites have been proposed.alltpFgdict splice sites
based on the local context, that is, a short window aroundA@dimer. Currently, support vec-
tor machines are the most accurate splice site detectors (Degroeve e04].Spdnenburg et al.,
2007b). Sonnenburg et al. (2007b) showed that prediction agcataadily increases with training
sample size. However, even though they already usednduel algorithm (Sonnenburg et al.,
2007a) to speed up string kernel-based SVMs on a quad-core syseneotld not use all avail-
able 50 million training points (but “only” 8 million). The string kernel that penmfed best was the

2182

OPTIMIZED CUTTING PLANE SUPPORTVECTORMACHINES

weighted degree (WD) string kernaith shifts(Ratsch et al., 2005). It basically counts matching
k-mers for various k in a position-dependent way. Employing a giant skemngel feature space,
Sonnenburg et al. (2007b) achieved 386+ 0.38 aoPRC in a genome-wide study on human ac-
ceptor splice sites—also available as the DNA data set used in the largdescalag challenge.

On the other hand, Degroeve et al. (2005) trained a linear SVM basednumber of pre-
selected and explicitly computed string kernel feature spaces that asetsudiom the spectrum
(Leslie et al., 2002) and WD kernel @éisch et al., 2005) feature spaces: Left and right of the splice
site spectrum kernels of order 3 up to order 6 were used (Leslie et 8R).2@ver the whole
window, a WD kernel of order 3 with weights equal to 1 was useat¢h and Sonnenburg, 2004).
Even though this approach scales well, they uset00 000 data points (potentially, since they
relied on the unmodified SV binary).

Here, we propose to train OCAS on all available 50 million strings of length @ Son-
nenburg et al. (2007b) using the features corresponding to two wdigheetrum kernels (one left
and one right of the splice site, that is, positions 1-59 and 62-141) anD &aMnel (applied to the
whole string). For the spectrum kernels of order 1 up to 8 and for the ¥@fDek of order 8 is used.
Thus, the spanned string kernel feature space has 12,495,340 dinsensio

As the raw string-based data set already has a sizeloL@ bytes and even a sparse represen-
tation of each string would increase the data set by a factor of more thath 818+ 59+ 80) - 12
bytes per feature vector, assuming a 4 byte integer and an 8 byte floatjllvi@plicitly compute
features from the raw input strings on demand. The only required tigasan OCAS for which we
will have to expand the features are the addition to a dense wectew + a®(x) and the output
computationw - d(x).

We implemented a rather general framework that allows stacking of arbiratyres that sup-
port such operations (dense and sparse real-valued, weightdtuspend WD kernel features for
specified k-mer length). As we know from Section 4.1.1, most time is spentip@ting outputs,
hence we parallelized this part of the code (based on shared memoliglEaidon, that is, posix
threads).

Before training on the 50 million examples, we perform model selection on omhyllibn
examples to determine the optimal k-mer length for the two spectrum kernels,Bhiee¥iel and
its weighting and the SVM regularization const&ntThe optimal parameter setting was found to
beC = 1, kyspec= 8, kwa = 8, where the WD kernel weights are taken from the first 8 weights
of the weights of a wd kernel of order #0Parameters were selected fr@re {0.5,1,3,5,10},
kwspec€ {3,6,8}, kwa = {3,6,8} with the WD kernel-weighting from order 8, 25 or 40.

We then trained on 50 million examples on an 8-core AMD Opteron Linux-basazhine,
obtaining a record area over the precision recall curve (aoPRC).28%® For comparison, the
previous best method achieved aoPRC ob8%6 (variance (B8%). Note that this is the DNA data
set used in the large-scale learning challenge, for which the best pantigptained an aoPRC
of 80.89% (lower is better). OCAS converged in just 138 iterations, howevertdtal training
time was about 40 hours, of which almost 34 hours were spent on computipgt® (already in a
parallelized way; see Table 9 for the detailed timing statistics). Even though seeveldl that this
parallelization was quite effective, it suggests that we are measuringmammory access speed.
Due to the size of the normal vector (about 100MB since we are usindealptdcision floats) we
see only cache misses. This suggests that even using just single préoigisnwould reduce the

9. In Sonnenburg (2008) it was suggested that the WD kernel-weidgihfingnces the effect of mismatches of the WD
kernel score.

2183

FRANC AND SONNENBURG

training time by 17 hours. Even though modern DDR-SDRAM is capable adspef up to 8
GB/s (Wikipedia, 2009) when being accessed in a linear way, we olisam@mory speed of only
1.4GB/s on this system. It turns out that only DDR-333 memory is installed wittak pansfer
rate of 2.7GB/s. Thus, additional speedups can be achieved by digirinet@ory parallelization
and by grouping the access of featuresvito minimize cache misses. Alternatively, switching to
a many-core architecture like the NVIDIA Tesla s1070 computing sy$témat employs 960 CPU
cores and a peak memory rate of 400GB/s could drastically reduce training, firontially to
even under 1 minute. Finally, it should be noted that storing the 138 cuttingsptequired almost
13 GB of memory.

Iterations|| Output | Line Search| Adda; | Solver| Total
138 34 hours 222s 7 hours| 5min || 41 hours

Table 9: Timing statistics for the human acceptor splice site experiment.

5.2 Malware Classification

Malware is malicious software that occurs in the form of Internet worromputer viruses and
Trojan horses. Due to an enormous increase of new variants of malwatieods for its automatic
detection and categorization are becoming crucial in modern anti-malwadeqis. Rieck et al.
(2008) propose a malware behavioral classifier trained from label@th@es. Malware binaries
are collected via honeypots and spam-traps, and malware family labeksrameated by running an
anti-virus tool. This results in a corpus of more than 10,000 unique malwstanices. The behavior
of each binary is monitored in a sand box environment and behaviod-lbasdysis reports summa-
rizing operations, such as opening an outgoing IRC connection or stpppietwork service, are
generated. The reports have a form of text files which are then emibéutdea high-dimensional
vector space using the bag-of-words model. Finally, a discriminative muts &M classifier is
trained.

Rieck et al. (2008) use the multi-class classifier based on one-agaidsteathposition, where
each binary classifier is trained by a kernel SVM. To increase claggificeerformance, the scale
of the independently trained binary discriminant functions, forming the mulsisctdassifier, is
normalized by fitting a logistic function. Rieck et al. (2008) report promisesylts achieving 88%
classification accuracy, which is competitive with commercial anti-virus soéwols handcrafted
manually by computer security experts. Apart from the classification acguthe ability to re-
train swiftly on new examples is a crucial feature for practical applicatidhe@tystem. While the
classification accuracy was the main focus in Rieck et al. (2008), the addast training was not
addressed. The SV that they used required approximately 13-14 hours to perform the whole
model selection on a high-end single CPU comptter.

To resolve the problem of fast training, we apply our proposed OCAMes@nd compare its
performance with SVYNIUi—class(Joachims et al., 2009). SVMti-classyersion 2.28° is a highly
optimized implementation of CPAM which uses numerous heuristic speedups kéadaccu-

10. Found ahttp://www.nvidia.com/object/product_tesla_s1070_us html .
11. Personal communication with authors of Rieck et al. (2008).
12. Found ahttp://www.cs.cornell.edu/People/tj/svm_light/svm_m ulticlass.html

2184

OPTIMIZED CUTTING PLANE SUPPORTVECTORMACHINES

racy management, caching or 1-slack reformulation (for more details sebide et al. 2009).
Note that OCAM is the plain implementation of the proposed Algorithm 2, hence thetill the
possibility to improve its performance by implementing the same heuristics.™S\{/nlass

optimizes a slightly modified risR (w) = 5™, max.cq (100[y; # y] + (wy —Wy,,X;)). To make
objectives of SVMMIi-classand OCAM equivalent we use the transform: = x//100 andC =

100C’ wherex! andC’ denote inputs and the regularization constant used by "SYVFlass . Syymulti—class
stops optimization whehR (w;) — R (w;) < C¢’, hence we applg = Ce’ in OCAM to use equivalent

stopping conditions. In addition, we use= 0.1, which is the default setting in S\VR!ti—class,

| solver | error[%] | training time |
SvyMmuli—classy2 20 [11.45+0.72 | 25,330 sec ~ 7 hours
OCAM 11494091 | 2,451 sec =~ 40 minutes
Rieck et al. (2008) 12 ~ 13-14 hours

Table 10: Comparison of SVRH!i=classy2 20 with the proposed OCAM on the malware classifi-
cation problem. The reported error is a 5-fold cross-validation estimateqfghclass
average classification error. The training time refers to the total time reqoyreabdel
selection. We also compare with the previous results reported in Rieck 08B)(
OCAS achieves a speedup of factor 10 over SV ¢2sSand of factor 20 compared to
the one-against-all based classifier trained by kernel $¥Msed in Rieck et al. (2008).

We adopted the evaluation protocol from Rieck et al. (2008). The clest$ifin accuracy is
measured in terms of average per-class classification error, tE&t:i%,zyey % Yilyi—ylyi 7 h(xi)],
wherem; is the number of examples in thi¢h class. The malware corpus of 10,072 examples is
randomly split 5 times into training, validation and testing partitions of approximatgiglesize.
The training partition is used to train the multi-class SVM using a range of diffeegularization
constant€ € {1, 10%,...,10'°}. The besC is selected based on classification accuracy measured
on the validation part. Finally, we report average and standard deviatfdhe per-class average
classification error computed on testing data over the 5 random splits.

Due to the very high-dimensional feature space, the explicit representdtibe input vectors
is inefficient. To apply the linear SVM solvers, we use the standard trickmesenting the kernel
matrix by the whitened empirical kernel map (8ttopf and Smola, 2002). This representation
reduces the number of features to the number of training examples. Ttmewequired by the
singular value decomposition (SVD) to compute the whitened matrix is approximataiputes,
which is negligible w.r.t. the runtime of the SVM solvers. Note that training lineakiSén the
whitened kernel map is equivalent to training the kernel SVM classifier.

The experiments are performed on a laptop computer with an Intel CPU @ z8TaHle 10
summarizes the results. The classification performance of 8YNF2Sand OCAM is almost
identical. The performance of both methods is slightly better than the resultsed by Rieck et al.
(2008), who used a heuristic one-against-all decomposition combined witbgtstic regression.
Comparison of the runtimes shows that the proposed OCAM is more than 10 tistesthan the
competing SVMIi—classgnd more than 20 times faster than the S¥Msolver used in Rieck et al.
(2008).

2185

FRANC AND SONNENBURG

6. Conclusions

We have developed a novel method for solving large-scale risk minimizataigons. Our pro-
posed optimized cutting plane algorithm (OCA) extends the standard CPAthigaf Teo et al.
(2007) by, first, optimizing directly the primal problem via a line-search aedpnd, developing
a new cutting plane selection strategy which significantly reduces the nurhigetiting planes
needed to achieve an accurate solution. We have shown that the nunitbeatodns OCA requires
to converge to a-precise solution is approximately linear in the sample size. Applying OCA to two
important learning problems, we obtained very fast specialized solvelindar binary SVM clas-
sification (OCAS), and linear multi-class SVM classification (OCAM). In ateegive empirical
evaluation on a large variety of problems comparing the proposed OCA vettopis state-of-the-
art SVM solvers, we achieved (depending on the task) speedupstoftigee orders of magnitude
obtaining the same precise SV solution. By parallelizing the subtasks of thetlaigoOCAS
gained additional speedups of factors of up to 4.6 on a multi-core multimocesachine. Ap-
plying OCAS to a real-world splice site detection problem, we were able to traa I#million
dimensional data set containing 50 million examples, achieving a new recdodmance for that
task. Finally, we could reduce the training time on a malware classification pndiptea factor of
20 over the previous approach. It remains as future work to deriveSXGr general structured out-
put learning problems. Furthermore, we plan to extend OCAS to incorpatstes term. Finally, it
will be future work to investigate how the kernel framework can be inc@igal into OCAS.

Acknowledgments

This work was supported in part by the FP7-ICT Programme of the Earopmion under the
PASCAL2 Network of Excellence (ICT-216886) and by the Learnind bmerference Platform of
the Max Planck and Fraunhofer Societies. The main part of this work w@es while VF was with

the Fraunhofer IDA.FIRST when he was supported by a Marie Curia-lBtropean Fellowship
Grant SCOLES (MEIF-CT-2006-042107). VF was also supporte@isch Ministry of Education
project 1M0567 during his current fellowship in the Center for Machieec€ption. We thank
Alexander Zien, Gunnar&sch, Konrad Rieck and Gilles Blanchard for great discussions. \WWe als
thank Konrad Rieck for providing us with the malware corpus.

Appendix A. Convergence Analysis

In this section we prove the convergence of OCA (Theorem 2). The abthe proof is adopted
from Teo et al. (2007) who proved the Convergence Theorem 1 atémelard CPA. The main idea
of the convergence theorem is based on deriving a lower bound on theviempent of the duality
gapF (wP) — R (w;) = & and expressing this lower bound as a difference inequality (20), define
Theorem 3. Having the difference inequality, (20) the proof of the emgence Theorem 2 follows
easily.

The most laborious part is thus proving the auxiliary Theorem 3. The Ibwand on the
improvement; — &1, which is the core inequality (20) in Theorem 3, is proven by showing that
the objective value of the reduced problem solved at iterdtioh must increase, provided the new
added cutting plane violates the constraints of the reduced problem at iteratiothe standard
CPA, it is trivial to show that the new added cutting plane violates these eimtstby at least;.

2186

OPTIMIZED CUTTING PLANE SUPPORTVECTORMACHINES

Due to the sophisticated cutting plane selection strategy used in OCA, the viathtionstraints
is not obvious. Nevertheless, it can be proven, as we show in Lemmanimael constitutes the
main difference in the proofs of the standard CPA and the proposed OAAsame lemma also
explains why OCA converges faster than CPA. It will be shown that the minm@aovement of
the reduced problem objective is a function of the constraint violation. Vifnilee standard CPA
the violation is guaranteed to leg the inequality (21) shows that the new cutting plane added in
OCA violates the constraints tey + %||w§ —w||2. Unfortunately, we do not know how to bound
the second term and thus the resulting lower bounds are the same for lwithaig.

The rest of this section is organized as follows. We first derive Lemm2sad then we prove
the auxiliary Theorem 3. Finally, we give the proof of the Convergerfteofem 2, which uses all
previous results.

Theorem 3 Assume thafoR(w)|| < G for all w € W, where?/ is some domain of interest con-
taining all wy for t’ <t, and that RwP) — R (w;) = & > 0. In this case

& . &
€ — &1 > 2tm|n{1,4cztez}. (20)

Lemmal Let F(WP) — R(w;) = & > 0. Then Algorithm 2 computes a new cutting plane
(w,a11) + b1 = 0 which violates the constraints of the reduced problem (5) solved in the t-th
iteration by at Ieas%, that is, it holds that

C
C(brs1+ (W, a1) — &) 28t+§||Wt°*Wt||225t- (21)

PROOF: We use the subgradiewf 4+ Ca;1 € 0F (W) to put a lower bound on the master objective
F by means of a linear function at the poimg, that is,

f(w) = F(W) + (Wf +Cag1,Ww —wp) < F(w), vw e O". (22)

In Step 4 of Algorithm 2, the new best-so-far solutiaw, is computed as the minimizer &
over the line connecting the old best-so-far solutwhl, and the solution of reduced problem.
In step 5, the new cutting plangv,a..1) + b1 = 0 is taken at the pointf = wP(1 — p) + wy,
ue (0,1). Hence we conclude tha&(wP) < F(wf). Using the latter inequality and the lower
bound (22), we obtain

fwp) < F(wp) < F(wf) = f(wp).

Sincewf lies on the line segment connecting with w; and becausé(wp) < f(wf) we conclude
that

F(Wf) < F(wy). (23)
Note that the inequality (23) holds only fapre (0,1]. Using (22) we can rewrite (23) as
F(wE) < F(wg) + (wg +Cagq, W — W) - (24)

CombiningF (wP) < F(wf) andF (WP) — k(W) = & we getF (W) — R(w;) > &. Finally, substi-
tuting (24) to the latter inequality yields

F(wg) + (Wi +Cagr1, we —We) — R(w) > &,

which can be further rearranged into (21). [|

2187

FRANC AND SONNENBURG

Lemma 2 (Teo et al., 2007) LeA(t) =It1— '—Z‘TZ be a concave guadratic function such tét0) >
L>0and|A”(1)] =h <H, Vvt € [0,1]. Then the maximal value dfattained for the interval0, 1]
has a lower bound defined by

L L
maxA(t) > -min{ 1 — |.
1€[0,] ()_2 <7H>
PROOF: Usingl > L andh < H we obtain a lower bound(t) by Lt — %Tz. The unconstrained

maximum of the lower bound is attained at pofptwhich leads to the value (gé If &> 1then
the constrained maximum of the lower bound is attained at 1, which yields the masdha of
L— 4. Using 5 > 1, the value oL — has a lower bound of. Taking the minimum over both
maxima proves the claim. |

PROOF OFTHEOREM 3: We can put a lower bound on the differergge- €, 1 using the improve-
ment of the dual objective functidd;1(0t+1) — Dt(0t) because

g—&s1 = FW))—R(W)—F(W)+FRi1(Wiia)

> Rya(Weg) —R(w)
= Dtya(0tr1) —De(a).
The inequality follows after excluding the terfi(wP) — F(Wtb+1) > 0 and the last equality is the
result of the fact that the primal and dual optimal values are equal.
The value oDy, 1(ai41) is defined as the maximum 8%, w.r.t. the convex feasible sgk ;.

Hence, by maximizind;.1 w.r.t. a line segment lying entirely insid& 1 we get a lower bound
onDy¢,1(0ty1), thatis,

Diy1(aty1) — De(ar) > Q?ﬁA(T) := D41 (B(1—1) +y1) — D(anr)

wheref3 andy are arbitrary vectors fromi; 1. Specifically, we define the vectors as
B=(0y;0) 0" and y=(0,C) e O, (25)

Now we show that\(1) is a function compliant with the assumptions of Lemma 2, which will
allow us to lower bound its value for the intenjal 1]. To this end, we need to derive the explicit
form of A(1) and then comput&’(0) and an upper bound ai’(1), V1 € [0, 1]. Defining a vector
b= (by;...;b 1) € O and a matrixA = (ay,...,a 1) € O™ D we can write the objective of
the dual of the reduced problemBs.1(a) = (a,b) — % |Aa||?. Using the latter definition oDy 1
and (25), we can rewrit&(t) as

1 2
A(T) =1(y—B,b—ATAB) — éTZHAB —Ay|".
The value of the derivativA’(0) can be written as

N'(0) = <V— B,b— ATA|3> = C(bt+1+ (W, a11) — &) (26)

The second equality of (26) was derived by using (2&)= —Z}:la[at]i and R (w;) = Dy(ay).
Using Lemma 1, we get a lower bound of the right-hand side of (26), that is

N(0) > &. (27)

2188

OPTIMIZED CUTTING PLANE SUPPORTVECTORMACHINES

The absolute value of the second derivati%&(t)| can be upper bound by

A"(0)] = | AB— AV < [ABIP+ |AVIE < 4% _max [lal?<4C?G?, (28)

where we use the assumptian= ||0F (w)|| < G and the fact that the vectérAO(equals the convex
combination of the columns & for anya € 41, hence, its norm cannot be greater than max .
Finally, using (27) and (28) in Lemma 2 yields the claim of Theorem 3. [|

PROOF OFTHEOREM 2: The proof is adopted from Teo et al. (2007). For any 4C2G? it follows
from (20) thate; ;1 < 8—2‘ Moreover,gy < F(0), sinceF is nonnegative. Hence, we need at most
log, 42(222 iterations to achieve a level of precision better th@3@?. Subsequently, we need to

solve the following difference equation:

2

- 8C2G2”

Since this is monotonically decreasing, we can upper bound this by solvidiffégrential equation
2

£ (t) = — 42, with the boundary condition(0) = 4C?G2. This in turn yieldse(t) = &°S°, and

T2

22 . . . 202 . .
hencet < &5 — 2 to achievee(t) < e. For a givene we will need &5 — 2 more iterations to
converge. This proves the claim.

&+1— & =

References

A. Bordes, L. Bottou, P. Gallinari, and J. Weston. Solving multiclass stmeotor machines with
LaRank. InProceedings of International Machine Learning Conference (ICNdepges 89 — 96.
OmniPress, 2007.

L. Bottou and O. Bousquet. The tradeoffs of large scale learnirdirances in Neural Information
Processing Systems (NIR8plume 20, pages 161 — 168. MIT Press, 2007.

C.C. Chang and C.J. LirLIBSVM: a library for support vector maching®001. Software available
at http://iwww.csie.ntu.edu.tw/ ~ cjlinflibsvm

O. Chapelle. Training a Support Vector Machine in the PrinNgural Computation19(5):1155—
1178, 2007.

M. Collins, R.E. Schapire, and Y. Singer. Logistic regression AdaBawndtBregman distance. In
Proceedings of Annual Conference on Computational Learning TH&DLT) pages 158—-169.
Morgan Kaufman, San Francisco, 2000.

C. Cortes and V.N. Vapnik. Support-vector networkkachine Learning20(3):273-297, 1995.

K. Crammer and Y. Singer. On the algorithmic implementation of multiclass kernellbasctor
machinesJournal of Machine Learning Resear@1265-292, 2001.

N. Cristianini and J. Shawe-TayloAn Introduction to Support Vector Machine€ambridge UP,
Cambridge, UK, 2000.

2189

FRANC AND SONNENBURG

S. Degroeve, Y. Saeys, P. De Baets, B. Rgand Y. Van de Peer. SpliceMachine: predicting splice
sites from high-dimensional local context representati@iginformatics 21(8):1332-8, 2005.

R. Fan, K.W. Chang, C.J. Hsieh, X.R. Wang, and C.J. Lin. LIBLINEARib&ary for large linear
classification.Journal of Machine Learning Research1871-1874, 2008.

R.E. Fan, P.H. Chen, and C.J. Lin. Working set selection using secdadinformation for training
SVM. Journal of Machine Learning Researd11889-1918, 2005.

T. Fawcett. ROC graphs: Notes and practical considerations for datagmesearchers. Technical
Report HPL-2003-4, HP Laboratories, Palo Alto, CA, USA, Janu@gi2

V. Franc. Optimization Algorithms for Kernel MethodBPhD thesis, Czech Technical University in
Prague, July 2005. Supervised by V. Hiav

V. Franc and S. Sonnenburg. OCAS optimized cutting plane algorithm pgostivector machines.
In Proceedings of International Machine Learning Conference (ICMilages 320-327. ACM
Press, 2008a.

V. Franc and S. Sonnenburg. LIBOCAS, 2008b. Software availabhat@//mloss.org/
software/view/85/

V. Franc, P. Laskov, and K.-R. Mler. Stopping conditions for exact computation of leave-one-out
error in support vector machines. Rroceedings of International Machine Learning Conference
(ICML), pages 328-335. ACM Press, 2008.

T. Joachims. Making large—scale SVM learning practical. Aivances in Kernel Methods —
Support Vector Learningpages 169-184. MIT Press, Cambridge, MA, USA, 1999.

T. Joachims. A support vector method for multivariate performance memasimProceedings of
International Conference on Machine Learning (ICMpages 377 — 384. ACM New York, NY,
USA, 2005.

T. Joachims. Training linear SVMs in linear time.Pnoceedings of ACM Conference on Knowledge
Discovery and Data Mining (KDDQ)ages 217 — 226. ACM New York, NY, USA, 2006.

T. Joachims, T. Finley, and C.N. Yu. Cutting-plane training of structurdMSMViachine Learning
76(1), May 20009.

C. Leslie, E. Eskin, and W.S. Noble. The spectrum kernel: A string kéon&VM protein classi-
fication. InProceedings of Pacific Biocomputing Symposium (PB&)es 564-575. River Edge,
NJ, World Scientific, 2002.

C.J. Lin, R.C. Weng, and S.S. Keerthi. Trust region Newton methods fopedscale logistic re-
gression. InProceedings of International Conference on Machine Learning (I;\ages 561
—568. ACM Press New York, 2007.

G. Ratsch and S. Sonnenburg. Accurate splice site detectioCéd@norhabditis elegans In
K. Tsuda B. Schlkopf and J.-P. Vert, editoré&ernel Methods in Computational BiologyIT
Press, 2004.

2190

OPTIMIZED CUTTING PLANE SUPPORTVECTORMACHINES

G. Ratsch, S. S. Sonnenburg, and B. 8i&bpf. RASE: recognition of alternatively spliced exons
in C. elegansBioinformatics 21(Suppl. 1):i369—-i377, June 2005.

K. Rieck, T. Holtz, C. Willems, P. Dssel, and P. Laskov. Learning and classification of malware
behaviour. IrDetection of Intrusions and Malware, and Vulnerability Assessment YA)Fifth
International Conferencgpages 108—-125, July 2008.

B. Sclolkopf and A. SmolaLearning with KernelsThe MIT Press, MA, 2002.

B. Scholkopf, J. Platt, J. Shawe-Taylor, A.J. Smola, and R.C. Williamson. Estimatinguiygort
of a high-dimensional distribution. Technical Report TR 87, Microses&arch, Redmond, WA,
1999.

S.S. Shwartz, Y. Singer, and N. Srebro. Pegasos: Primal Estimate@rsutient SOlver for SVM.
In Proceedings of International Conference on Machine Learning (IGNdages 807 — 814.
ACM Press, 2007.

V. Sindhwani and S.S. Keerthi. Newton methods for fast solution of sepeérsised linear svms.
In L. Bottou, O. Chapelle, D. DeCoste, and J. Weston, edilcasge Scale Kernel Machines
MIT Press, 2007.

S. Sonnenburg. New methods for splice site recognition. Master’s thésmboldt University,
2002. supervised by K.-R. Mler H.-D. Burkhard and G.&sch.

S. SonnenburgVachine Learning for Genomic Sequence AnalyBiD thesis, Fraunhofer Institute
FIRST, 2008. supervised by K.-R.iMer and G.Rtsch.

S. Sonnenburg and G.disch. Shogun, 2007. Software availablehtyp://mloss.org/
software/view/2/

S. Sonnenburg, G.&sch, and K. Rieck. Large scale learning with string kernels. In L. Bp@ou
Chapelle, D. DeCoste, and J. Weston, editbesge Scale Kernel MachineMIT Press, 2007a.

S. Sonnenburg, G. Schweikert, P. Philips, J. Behr, anddBsdR. Accurate Splice Site Prediction.
BMC Bioinformatics, Special Issue from NIPS workshop on New Protdech&/ethods in Com-
putational Biology Whistler, Canada, 18 December 2Suppl. 10):S7, December 2007b.

S. Sonnenburg, V. Franc, E. Yomtov, and M. Sebag. The pasca $ae learning challenge.
Journal of Machine Learning Researc009. (manuscript in preparation).

C.H. Teo, Q. Le, A. Smola, and S.V.N. Vishwanathan. A scalable modulaegaolver for regu-
larized risk minimization. IrfProceedings of International Conference on Knowledge Discovery
and Data Mining (KDD) August 2007.

I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large margithodaks for structured
and interdependent output variabldsurnal of Machine Learning Researd1453-1484, Sep.
2005.

Wikipedia. DDR2 SDRAM — Wikipedia, the free encyclopedia, 2009. UfRitp://en.
wikipedia.org/wiki/DDR2_SDRAM} . [Online; accessed 5-February-2009].

2191

FRANC AND SONNENBURG

C.K.I Williams. Prediction with Gaussian processes: From linear regressitmetr prediction

and beyond. Iiearning and Inference in Graphical Modefgages 599-621. Kluwer Academic,
1998.

L. Zanni, T. Serafini, and G. Zanghirati. Parallel software for trainitagirnal of Machine Learning
Research7:1467-1492, July 2006.

2192

