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Abstract
We have developed an optimized cutting plane algorithm (OCA) for solving large-scale risk mini-
mization problems. We prove that the number of iterations OCA requires to converge to aε precise
solution is approximately linear in the sample size. We alsoderive OCAS, an OCA-based linear bi-
nary Support Vector Machine (SVM) solver, and OCAM, a linearmulti-class SVM solver. In an ex-
tensive empirical evaluation we show that OCAS outperformscurrent state-of-the-art SVM solvers
like SVMlight , SVMperf and BMRM, achieving speedup factor more than 1,200 over SVMlight on
some data sets and speedup factor of 29 over SVMperf , while obtaining the same precise sup-
port vector solution. OCAS, even in the early optimization steps, often shows faster convergence
than the currently prevailing approximative methods in this domain, SGD and Pegasos. In addi-
tion, our proposed linear multi-class SVM solver, OCAM, achieves speedups of factor of up to 10
compared to SVMmulti−class. Finally, we use OCAS and OCAM in two real-world applications,
the problem of human acceptor splice site detection and malware detection. Effectively paral-
lelizing OCAS, we achieve state-of-the-art results on an acceptor splice site recognition problem
only by being able to learn from all the available 50 million examples in a 12-million-dimensional
feature space. Source code, data sets and scripts to reproduce the experiments are available at
http://cmp.felk.cvut.cz/ ˜ xfrancv/ocas/html/ .

Keywords: risk minimization, linear support vector machine, multi-class classification, binary
classification, large-scale learning, parallelization

1. Introduction

Many applications in, for example, bioinformatics, IT-security and text classification come with
hugenumbers (e.g., millions) of data points, which are indeednecessaryto obtain state-of-the-
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art results. They, therefore, require extremely efficient computationalmethods capable of dealing
with ever growing data sizes. A wide range of machine learning methods can be described as the
unconstrained regularized risk minimization problem

w∗ = argmin
w∈ℜn

F(w) :=
1
2
‖w‖2 +CR(w) , (1)

wherew ∈ℜn denotes the parameter vector to be learned,1
2‖w‖

2 is a quadratic regularization term,
C > 0 is a fixed regularization constant andR: ℜn→ ℜ is a non-negative convex risk function
approximating the empirical risk (e.g., training error).

Special cases of problem (1) are, for example, support vector classification and regression (e.g.,
Cortes and Vapnik, 1995; Cristianini and Shawe-Taylor, 2000), logisticregression (Collins et al.,
2000), maximal margin structured output classification (Tsochantaridis et al., 2005), SVM for multi-
variate performance measures (Joachims, 2005), novelty detection (Schölkopf et al., 1999), learning
Gaussian processes (Williams, 1998) and many others.

Problem (1) has usually been solved in its dual formulation, which typically only uses the com-
putation of dot products between examples. This enables the use of kernels that implicitly compute
the dot product between examples in a Reproducing Kernel Hilbert Space (RKHS) (Scḧolkopf and
Smola, 2002). On the one hand, solving the dual formulation is efficient when dealing with high-
dimensional data. On the other hand, efficient and accurate solvers foroptimizing the kernelized
dual formulation for large sample sizes do not exist.

Recently, focus has shifted towards methods optimizing problem (1) directly inthe primal.
Using the primal formulation is efficient when the number of examples is very large and the di-
mensionality of the input data is moderate or the inputs are sparse. This is typical in applications
like text document analysis and bioinformatics, where the inputs are strings embedded into a sparse
high-dimensional feature space, for example, by using the bag-of-words representation. A way to
exploit the primal formulation for learning in the RKHS is based on decomposingthe kernel matrix
and thus effectively linearizing the problem (Schölkopf and Smola, 2002).

Due to its importance, the literature contains a plethora of specialized solvers dedicated to
particular risk functionsR(w) of problem (1). Binary SVM solvers employing the hinge risk
R(w) = 1

m ∑m
i=1max{0,1−yi〈w,xi〉} especially have been studied extensively (e.g., Joachims, 1999;

Zanni et al., 2006; Chang and Lin, 2001; Sindhwani and Keerthi, 2007; Chapelle, 2007; Lin et al.,
2007). Recently, Teo et al. (2007) proposed the Bundle Method for Risk Minimization (BMRM),
which is a general approach for solving problem (1). BMRM is not only ageneral but also a highly
modular solver that only requires two specialized procedures, one to evaluate the riskR(w) and one
to compute its subgradient. BMRM is based on iterative approximation of the riskterm by cutting
planes. It solves a reduced problem obtained by substituting the cutting plane approximation of the
risk into the original problem (1). Teo et al. (2007) compared BMRM with specialized solvers for
SVM classification, SV regression and ranking, and reported promising results. However, we will
show that the implementation of the cutting plane algorithm (CPA) used in BMRM canbe dras-
tically sped up making it efficient even for large-scale SVM binary and multi-class classification
problems.

In this paper, we develop anefficient and generalalgorithm to solve the regularized risk mini-
mization problem (1). Building on the work of Teo et al. (2007), we propose anoptimized cutting
plane algorithm(OCA) that extends the standard CPA in two ways. First, unlike CPA, we usethe
solution of the reduced problem as a direction in the line-search to directly minimize the original
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(master) problem (1). Second, we introduce a new cutting plane selection strategy that reduces the
number of cutting planes required to achieve the prescribed precision andthus significantly speeds
up convergence. Anefficientline-search procedure for the optimization of (1) is theonly additional
requirementof OCA compared to the standard CPA (or BMRM).

While our proposed method (OCA) is applicable to a wide range of risk termsR, we will—due
to their importance—discuss in more detail two special cases: learning of the binary (two-class)
and multi-class SVM classifiers. We show that the line-search procedure required by OCA can be
solved exactly for both the binary and multi-class SVM problems inO(mlogm) andO(m·Y2 +
m·Y log(m·Y)) time, respectively, wherem is the number of examples andY is the number of
classes. We abbreviate OCA for binary SVM classifiers with OCAS and the multi-class version
with OCAM.

We perform an extensive experimental evaluation of the proposed methods, OCAS and OCAM,
on several problems comparing them with the current state of the art. In particular, we would like
to highlight the following experiments and results:

• We compare OCAS with the state-of-the-art solvers for binary SVM classification on pre-
viously published data sets. We show that OCAS significantly outperforms thecompeting
approaches achieving speedups factors of more than 1,200.

• We evaluate OCAS using the large-scale learning challenge data sets and evaluation protocols
described in Sonnenburg et al. (2009). Although OCAS is an implementation of a general
method for risk minimization (1), it is shown to be competitive with dedicated binary SVM
solvers, which ultimately won the large-scale learning challenge.

• We demonstrate that OCAS can be sped up by efficiently parallelizing its core subproblems.

• We compare OCAM with the state-of-the-art implementation of the CPA-based solver for
training multi-class SVM classifiers. We show that OCAM achieves speedupsof an order of
magnitude.

• We show that OCAS and OCAM achieve state-of-the-art recognition performance for two
real-world applications. In the first application, we attack a splice site detection problem
from bioinformatics. In the second, we address the problem of learning amalware behavioral
classifier used in computer security systems.

The OCAS solver for training the binary SVM classification was published in our previous
paper (Franc and Sonnenburg, 2008a). This paper extends the previous work in several ways. First,
we formulate OCA for optimization of the general risk minimization problem (1). Second, we give
an improved convergence proof for the general OCA (in Franc and Sonnenburg 2008a the upper
bound on the number of iterations as a function of precisionε scales withO( 1

ε2 ), while in this
paper the bound is improved toO(1

ε )). Third, we derive a new instance of OCA for training the
multi-class SVM classifiers. Fourth, the experiments are extended by (i) including the comparison
on the challenge data sets and using the challenge protocol, (ii) performing experiments on multi-
class classification problems and (iii) solving two real-world applications frombioinformatics and
computer security.

The remainder of this paper is organized as follows. The standard cutting plane algorithm
(CPA) to solve (1) is reviewed in Section 2. In Section 3, we point out a source of inefficiency
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of CPA and propose a new optimized cutting plane algorithm (OCA) to drasticallyreduce training
times. We then develop OCA for two special cases linear binary SVMs (OCAS, see Section 3.1)
and linear multiclass SVMs (OCAM, see Section 3.2). In Section 4, we empiricallyshow that using
OCA, training times can be drastically reduced on a wide range of large-scale data sets including
the challenge data sets. Finally, we attack two real-world applications. First, inSection 5.1, we
apply OCAS to a human acceptor splice site recognition problem achieving state-of-the art results
by training on all available sequences—a data set of 50 million examples (itself about 7GB in size)
using a 12 million dimensional feature space. Second, in Section 5.2, we applyOCAM to learn
a behavioral malware classifier and achieve a speedup of factor of 20compared to the previous
approach and a speedup of factor of 10 compared to the state-of-the-art implementation of the CPA.
Section 6 concludes the paper.

2. Cutting Plane Algorithm

In CPA terminology, the original problem (1) is called the master problem. Usingthe approach of
Teo et al. (2007), one may define a reduced problem of (1) which reads

wt = argmin
w

Ft(w) :=
[1

2
‖w‖2 +CRt(w)

]

. (2)

(2) is obtained from master problem (1) by substituting a piece-wise linear approximationRt for the
risk R. Note that only the risk termR is approximated while the regularization term12 ‖w‖

2 remains
unchanged. The idea is that in practise one usually needs only a small number of linear terms in
the piece-wise linear approximationRt to adequately approximate the riskR around the optimum
w∗. Moreover, it was shown in Teo et al. (2007) that the number of linear terms needed to achieve
arbitrary precise approximation does not depend on the number of examples.

We now derive the approximation toR. Since the risk termR is a convex function, it can be
approximated at any pointw′ by a linear under estimator

R(w)≥ R(w′)+ 〈a′,w−w′〉 , ∀w ∈ℜn , (3)

wherea′ ∈ ∂R(w′) is any subgradient ofRat the pointw′. We will use a shortcutb′= R(w′)−〈a′,w′〉
to abbreviate (3) asR(w) ≥ 〈a′,w〉+ b′. In CPA terminology,〈a′,w〉+ b′ = 0 is called a cutting
plane.

To approximate the riskR better than by using a single cutting plane, we can compute a collec-
tion of cutting planes{〈ai ,w〉+bi = 0 | i = 1, . . . , t} at t distinct points{w1, . . . ,wt} and take their
point-wise maximum

Rt(w) = max
{

0, max
i=1,...,t

(

〈ai ,w〉+bi
)}

. (4)

The zero cutting plane is added to the maximization as the riskR is assumed to be non-negative. The
subscriptt denotes the number of cutting planes used in the approximationRt . It follows directly
from (3) that the approximationRt is exact at the points{w1, . . . ,wt} and thatRt lower boundsR,
that is, thatR(w)≥Rt(w) ,∀w ∈ℜn holds. In turn, the objective functionFt of the reduced problem
lower bounds the objectiveF of the master problem.

Having readily computedRt , we may now use it in the reduced problem (2). Substituting (4)
with (2), the reduced problem can be expressed as a linearly constrained quadratic problem

(wt ,ξt) := argmin
w∈ℜn,ξ∈ℜ

[1
2
‖w‖2 +Cξ

]

, (5)

2160
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subject to
ξ≥ 0, ξ≥ 〈ai ,w〉+bi , i = 1, . . . , t .

The number of constraints in (5) equals the number of cutting planest which can be drastically
lower than the number of constraints in the master problem (1) when expressed as a constrained QP
task. As the number of cutting planes is typically much smaller than the data dimensionality n, it is
convenient to solve the reduced problem (5) by optimizing its dual formulation, which reads

αt := argmax
α∈At

Dt(α) :=
[ t

∑
i=1

αibi−
1
2

∥

∥

t

∑
i=1

aiαi
∥

∥

2
]

, (6)

whereAt is a convex feasible set containing all vectorsα ∈ℜt satisfying

t

∑
i=1

αi ≤C , αi ≥ 0, i = 1, . . . , t .

The dual formulation contains onlyt variables bound byt +1 constraints of simple form. Thus task
(6) can be efficiently optimized by standard QP solvers. Having (6) solved, the primal solution can
be computed as

wt =−
t

∑
i=1

ai [αt ]i , and ξt = max
i=1,...,t

(〈wt ,ai〉+bi) .

Solving the reduced problem is beneficial if we can effectively select a small number of cutting
planes such that the solution of the reduced problem is sufficiently close to the master problem.
CPA selects the cutting planes using a simple strategy described by Algorithm 1.

Algorithm 1 Cutting Plane Algorithm (CPA)
1: t := 0.
2: repeat
3: Computewt by solving the reduced problem (5).
4: Add a new cutting plane to approximate the riskRat the current solutionwt , that is, compute

at+1 ∈ ∂R(wt) andbt+1 := R(wt)−〈at+1,wt〉.
5: t := t +1
6: until a stopping condition is satisfied.

The algorithm is very general. To use it for a particular problem one only needs to supply a
formula to compute the cutting plane as required in Step 4, that is, formulas for computing the
subgradienta∈ ∂R(w) and the objective valueR(w) at given pointw.

It is natural to stop the algorithm when

F(wt)−Ft(wt)≤ ε (7)

holds. BecauseFt(wt) is the lower bound of the optimal value,F(w∗), it follows that a solution
wt satisfying (7) also guaranteesF(wt)−F(w∗) ≤ ε, that is, the objective value differs from the
optimal one byε at most. An alternative stopping condition advocated in Joachims (2006) stops
the algorithm whenR(wt)−Rt(wt) ≤ ε̂. It can be seen that the two stopping conditions become
equivalent if we setε = Cε̂. Hence we will consider only the former stopping condition (7).

Theorem 1 by Teo et al. (2007) guarantees convergence of the CPA algorithm inO(1
ε ) time for

a broad class of risk functions:
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Theorem 1 (Teo et al., 2007) Assume that‖∂R(w)‖ ≤G for all w ∈W , whereW is some domain
of interest containing allwt ′ for t ′ ≤ t. In this case, for anyε > 0 and C> 0, Algorithm 1 satisfies
the stopping condition (7) after at most

log2
F(0)

4C2G2 +
8C2G2

ε
−2

iterations.

3. Optimized Cutting Plane Algorithm (OCA)

We first point out a source of inefficiency in CPA and then propose a new method to alleviate the
problem.

CPA selects a new cutting plane such that the reduced problem objective functionFt(wt) mono-
tonically increases w.r.t. the number of iterationst. However, there is no such guarantee for the
master problem objectiveF(wt). Even though it will ultimately converge arbitrarily close to the
minimumF(w∗), its value can heavily fluctuate between iterations (Figure 1). The reason for these

0 10 20 30 40 50
102

103

104

105 CPA

OCA
F (wb

t
)

Ft(wt)

Ft(wt)

F (wt)

iteration t

Figure 1: Convergence behavior of the standard CPA vs. the proposed OCA.

fluctuations is that at each iterationt, CPA selects the cutting plane that perfectly approximates the
master objectiveF at the current solutionwt . However, there is no guarantee that such a cutting
plane will be an active constraint in the vicinity of the optimumw∗, nor must the new solutionwt+1

of the reduced problem improve the master objective. In fact, it often occurs thatF(wt+1) > F(wt).
As a result, a lot of the selected cutting planes do not contribute to the approximation of the master
objective around the optimum which, in turn, increases the number of iterations.

To speed up the convergence of CPA, we propose a new method which wecall theoptimized
cutting plane algorithm(OCA). Unlike standard CPA, OCA aims at simultaneously optimizing the
master and reduced problems’F andFt objective functions, respectively. In addition, OCA tries to
select cutting planes that have a higher chance of actively contributing to the approximation of the
master objective functionF around the optimumw∗. In particular, we propose the following three
changes to CPA.
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Change 1 We maintain the best-so-far best solutionwb
t obtained during the firstt iterations, that is,

F(wb
1), . . . ,F(wb

t ) forms a monotonically decreasing sequence.

Change 2 The new best-so-far solutionwb
t is found by searching along a line starting at the previous

solutionwb
t−1 and crossing the reduced problem’s solutionwt , that is,

wb
t = min

k≥0
F(wb

t−1(1−k)+wtk) . (8)

Change 3 The new cutting plane is computed to approximate the master objectiveF at a pointwc
t

which lies in a vicinity of the best-so-far solutionwb
t . In particular, the pointwc

t is computed
as

wc
t = wb

t (1−µ)+wtµ, (9)

whereµ∈ (0,1] is a prescribed parameter. Having the pointwc
t , the new cutting plane is given

by at+1 ∈ ∂R(wc
t ) andbt+1 = R(wc

t )−〈at+1,wc
t 〉.

Algorithm 2 describes the proposed OCA. Figure 1 shows the impact of the proposed changes
to the convergence. OCA generates a monotonically decreasing sequence of master objective values
and a monotonically and strictly increasing sequence of reduced objectivevalues, that is,

F(wb
1)≥ . . .≥ F(wb

t ) , and F1(w1) < .. . < Ft(wt) .

Note that for CPA only the latter is satisfied. Similar to CPA, a natural stopping condition for OCA
reads

F(wb
t )−Ft(wt)≤ ε , (10)

whereε > 0 is a prescribed precision parameter. Satisfying the condition (10) guarantees that
F(wb

t )−F(w∗)≤ ε holds.

Algorithm 2 Optimized Cutting Plane Algorithm (OCA)

1: Sett := 0 andwb
0 := 0.

2: repeat
3: Computewt by solving the reduced problem (5).
4: Compute a new best-so-far solutionwb

t using the line-search (8).
5: Add a new cutting plane: computeat+1 ∈ ∂R(wc

t ) andbt+1 := R(wc
t )−〈at+1,wc

t 〉 wherewc
t

is given by (9).
6: t := t +1
7: until a stopping condition is satisfied

Theorem 2 Assume that‖∂R(w)‖ ≤ G for all w ∈W , whereW is some domain of interest con-
taining all wt ′ for t ′ ≤ t. In this case, for anyε > 0, C > 0 and µ∈ (0,1], Algorithm 2 satisfies the
stopping condition (10) after at most

log2
F(0)

4C2G2 +
8C2G2

ε
−2

iterations.
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Theorem 2 is proven in Appendix A. Finally, there are two relevant remarks regarding Theo-
rem 2:

Remark 1 Although Theorem 2 holds for anyµ from the interval(0,1] its particular value has
impact on the convergence speed in practice. We found experimentally (see Section 4.1) that
µ= 0.1 works consistently well throughout experiments.

Remark 2 Note that the bound on the maximal number of iterations of OCA given in Theorem 2
coincides with the bound for CPA in Theorem 1. Despite the same theoretical bounds, in
practice OCA converges significantly faster compared to CPA, achieving speedups of more
than one order of magnitude as will be demonstrated in the experiments (Section4). In
the convergence analysis (see Appendix A) we give an intuitive explanation of why OCA
converges faster than CPA.

In the following subsections we will use the OCA Algorithm 2 to develop efficient binary linear
and multi-class SVM solvers. To this end, we develop fast methods to solve theproblem-dependent
subtasks, the line-search step (step 4 in Algorithm 2) and the addition of a new cutting plane (step 5
in Algorithm 2).

3.1 Training Linear Binary SVM Classifiers

Given an example set{(x1,y1), . . . ,(xm,ym)} ∈ (ℜn×{−1,+1})m, the goal is to find a parameter
vectorw ∈ℜn of the liner classification ruleh(x) = sgn〈w,x〉. The parameter vectorw is obtained
by minimizing

F(w) :=
1
2
‖w‖2 +

C
m

m

∑
i=1

max{0,1−yi〈w,xi〉} , (11)

which is a special instance of the regularized risk minimization problem (1) with the risk

R(w) :=
1
m

m

∑
i=1

max{0,1−yi〈w,xi〉} . (12)

It can be seen that (12) is a convex piece-wise linear approximation of thetraining error1
m ∑m

i=1[[h(xi) 6=
yi ]].

To use the OCA Algorithm 2 for solving (12), we need the problem-dependent steps 4 and 5.
First, we need to supply a procedure performing the line-search (8) as required in Step 4. Sec-
tion 3.1.1 describes an efficient algorithm solving the line-search exactly inO(mlogm) time. Sec-
ond, Step 5 requires a formula for computing a subgradienta∈ ∂R(w) of the risk (12) which reads

a =−
1
m

m

∑
i=1

πiyixi , πi =

{

1 if yi〈w,xi〉 ≤ 1,
0 if yi〈w,xi〉> 1.

Both the line-search and computation of the subgradient can be sped up viathe parallelization
described in Section 3.1.2. We call the resulting algorithm theoptimized cutting plane algorithm
for SVM(OCAS).
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3.1.1 LINE-SEARCHFOR L INEAR BINARY SVM CLASSIFIERS

The line-search (8) requires minimization of a univariate convex function

F(wb
t−1(1−k)+wtk) =

1
2
‖wb

t−1(1−k)+wtk‖
2 +CR(wb

t−1(1−k)+wtk) , (13)

with R defined by (12). Note that the line-search very much resembles the master problem (1) with
one-dimensional data. We show that the line-search can be solved exactlyin O(mlogm) time.

We abbreviateF(wb
t−1(1−k)+wtk) by f (k) which is defined as

f (k) := f0(k)+
m

∑
i=1

fi(k) =
1
2

k2A0 +kB0 +C0 +
m

∑
i=1

max{0,kBi +Ci} ,

where
A0 = ‖wb

t−1−wt‖
2

B0 = 〈wb
t−1,wt −wb

t−1〉 , Bi = C
myi〈xi ,wb

t−1−wt〉 , i = 1, . . . ,m,

C0 =
1
2
‖wb

t−1‖
2 , Ci = C

m(1−yi〈xi ,wb
t−1〉) , i = 1, . . . ,m.

(14)

Hence the line-search (8) involves solvingk∗ = argmink≥0 f (k) and computingwb
t = wb

t−1(1−k∗)+
wtk∗. Sincef (k) is a convex function, its unconstrained minimum is attained at the pointk∗, at which
the sub-differential∂ f (k) contains zero, that is, 0∈ ∂ f (k∗) holds. The subdifferential off reads

∂ f (k) = kA0 +B0 +
m

∑
i=1

∂ fi(k) , where ∂ fi(k) =







0 if kBi +Ci < 0,
Bi if kBi +Ci > 0,

[0,Bi ] if kBi +Ci = 0.

Note that the subdifferential is not a function because there existk’s for which ∂ f (k) is an interval.
The first term of the subdifferential∂ f (k) is an ascending linear functionkA0+B0 sinceA0 must be
greater than zero. Note thatA0 = ‖wb

t−1−wt‖
2 equals 0 only if the algorithm has converged to the

optimumw∗, but in this case the line-search is not invoked. The term∂ fi(k) appearing in the sum is

k < ki k = ki k > ki

Bi = 0 0 0 0
Bi < 0 Bi [Bi ,0] 0
Bi > 0 0 [0,Bi ] Bi

Table 1: The value of∂ fi(k) with respect tok.

either constantly zero, ifBi = 0, or it is a step-like jump whose value changes at the pointki =−
Ci
Bi

.
In particular, the value of∂ fi(k) w.r.t. k is summarized in Table 1. Hence the subdifferential∂ f (k)
is a monotonically increasing function as is illustrated in Figure 2. To solvek∗ = argmink≥0 f (k) we
proceed as follows:

1. We compute the maximal value of the subdifferential∂ f (k) at point 0:

max(∂ f (0)) = B0 +
m

∑
i=1

[[(Bi < 0∧ki > 0)∨ (Bi > 0∧ki ≤ 0)]]Bi .

2165



FRANC AND SONNENBURG

2. If max(∂ f (0)) is strictly greater than zero, we know that the unconstrained minimum
argmink f (k) is attained at a point less than or equal to 0. Thus, the constrained minimum
k∗ = argmink≥0 f (k), that is, the result of the line-search, is attained at the pointk∗ = 0.

3. If max(∂ f (0)) is less than zero, then the optimumk∗ = argmink≥0 f (k) corresponds to the
unconstrained optimum argmink f (k). To getk∗ we need to find an intersection between the
graph of∂ f (k) and the x-axis. This can be done efficiently by sorting pointsK = {ki | ki >
0, i = 1, . . . ,m} and checking the condition 0∈ ∂ f (k) for k ∈ K and for k in the intervals
which split the domain(0,∞) in the pointsK. These computations are dominated by sorting
the numbersK, which takesO(|K| log|K|) time.

Computing the parameters (14) of the functionf (k) requiresO(mn) time, wherem is the number
of examples andn is the number of features. Having the parameters computed, the worst-casetime
complexities of the steps 1, 2 and 3 areO(m), O(1) andO(mlogm), respectively.

3.1.2 PARALLELIZATION

Apart from solving the reduced problem (2), all subtasks of OCAS canbe efficiently parallelized:

Output computation. This involves computation of the dot products〈wt ,xi〉 for all i = 1, . . . ,m,
which requiresO(s) time, wheres equals the number of all non-zero elements in the training
examples. Distributing the computation equally top processors reduces the effort toO( s

p).

Note that the remaining products with data required by OCAS, that is,〈wb
t ,xi〉 and〈wc

t ,xi〉,
can be computed from〈wt ,xi〉 in timeO(m).

ki1

ki3
ki2

= k∗|Bi2
|

|Bi1
|

|Bi3
|

0

k

∂f(k)

Figure 2: Graph depicting the subdifferential∂ f (k) of the objective functionf (k). The line-search
requires computingk∗ = mink≥0 f (k) which is equivalent to finding the intersectionk∗

between the graph of∂ f (k) and the positive part of the x-axis.
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Line-search. The dominant part is sorting|K| numbers which can be done inO(|K| log|K|) time.
A speedup can be achieved by parallelizing the sorting function by usingp processors,
reducing time complexity toO

( |K| log|K|
p

)

. Note that our implementation of OCAS uses

quicksort, whose worst-case time complexity isO(|K|2), although itsexpectedrun-time is
O(|K| log|K|).

Cutting plane computation. The dominant part requires the sum− 1
m ∑m

i=1 πiyixi , which can be
done inO(sπ) time, wheresπ = |{i|πi 6= 0, ∀i = 1, . . . ,m}| is the number of non-zeroπi .
Using p processors results in a time complexity ofO(sπ

p ).

It is worth mentioning that OCAS usually requires a small number of iterations (usually less
than 100 and almost always less than 1000). Hence, solving the reducedproblem, which cannot be
parallelized, is not the bottleneck, especially when the number of examplesm is large.

3.2 Training General Linear Multi-Class SVM Classifiers

So far we have assumed that (i) the ultimate goal is to minimize the probability of misclassification,
(ii) the input observationsx are vectors fromℜn and (iii) the labely can attain only two values
{−1,+1}. In this section, we will consider the regularized risk minimization framework applied to
the learning of a general linear classifier (Tsochantaridis et al., 2005).

We assume that the input observationx is from an arbitrary setX and the labely can have
values fromY = {1, . . . ,Y}. In addition, letδ : Y ×Y → ℜ be an arbitrary loss function which
satisfiesδ(y,y) = 0, ∀y∈ Y , andδ(y,y′) > 0, ∀(y,y′) ∈ Y ×Y , y 6= y′. We consider the multi-class
classification ruleh: X → Y defined as

h(x;w) = argmax
y∈Y

〈w,Ψ(x,y)〉 ,

wherew ∈ℜd is a parameter vector andΨ : X ×Y →ℜd is an arbitrary map from the input-output
space to the parameter space. Given example set{(x1,y1), . . . ,(xm,ym)} ∈ (X ×Y )m, learning the
parameter vectorw using the regularized risk minimization framework requires solving problem
(1) with the empirical riskRemp(h(·;w)) = 1

m ∑m
i=1 δ(h(xi),yi). Tsochantaridis et al. (2005) propose

two convex piece-wise linear upper bounds on riskRemp(h(·;w)). The first one, called themargin
re-scalingapproach, defines the proxy risk as

R(w) :=
1
m

m

∑
i=1

max
y∈Y

(

δ(y,yi)+ 〈Ψ(xi ,y)−Ψ(xi ,yi),w〉
)

. (15)

The second one, called theslack re-scalingapproach, defines the proxy risk as

R(w) :=
1
m

m

∑
i=1

max
y∈Y

δ(y,yi)
(

1+ 〈Ψ(xi ,y)−Ψ(xi ,yi),w〉
)

. (16)

In the rest of this section we will derive the OCA solver for minimization of the margin re-scaling
risk (15). Note that modification of the solver to optimize the slack re-scaling risk (16) is straight-
forward and that both variants have exactly the same computational complexity. Note also that for
the special case whenδ(y,y′) is the 0/1-loss, both (15) and (16) become equivalent.
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To use the OCA Algorithm 2 for the regularized minimization of (15), we need, first, to derive
a procedure performing the line-search (8) required in Step 4 and, second, to derive a formula for
the computation of the subgradient of the riskR as required in Step 5. Section 3.2.1 describes an
efficient algorithm solving the line-search exactly inO(m·Y2 +m·Y log(m·Y)) time. The formula
for computing the subgradienta∈ ∂R(w) of the risk (15) reads

a =
1
m

m

∑
i=1

(

Ψ(xi , ŷi)−Ψ(xi ,yi)
)

,

where

ŷi = argmax
y∈Y

(

δ(yi ,y)+ 〈Ψ(xi ,y)−Ψ(xi ,yi),w〉
)

.

We call the resulting method theoptimized cutting plane algorithm for multi-class SVM(OCAM).
Finally, note that the subtasks of OCAM can be parallelized in a fashion similar tothe binary case
(see Section 3.1.2).

3.2.1 LINE-SEARCHFOR GENERAL MULTI -CLASS L INEAR SVM CLASSIFIERS

In this section, we derive an efficient algorithm to solve the line-search (8) for the margin re-scaling
risk (15). The algorithm is a generalization of the line-search for the binary SVM described in
Section 3.1.1. Since the core idea remains the same we only briefly describe themain differences.

The goal of the line-search is to minimize a univariate functionF(wb
t−1(1− k)+ wtk) defined

by (13) with the riskRgiven by (15). We can abbreviateF(wb
t−1(1−k)+wtk) by f (k) which reads

f (k) := f0(k)+
m

∑
i=1

fi(k) =
1
2

k2A0 +kB0 +C0 +
m

∑
i=1

max
y∈Y

(

kBy
i +Cy

i

)

,

where the constantsA0, B0, C0, (By
i ,C

y
i ), i = 1, . . . ,m,y∈ Y are computed accordingly. Similar to

the binary case, the core idea is to find an explicit formula for the subdifferential ∂ f (k), which,
consequently, allows solving the optimality condition 0∈ ∂ f (k). For a givenfi(k), let Ŷi(k) = {y∈

Y | kBy
i +Cy

i = maxy′∈Y
(

kBy′

i +Cy′

i

)

} be a set of indices of the linear terms which are active at the
pointk. Then the subdifferential off (k) reads

∂ f (k) = kA0 +B0 +
m

∑
i=1

∂ fi(k) where ∂ fi(k) = co{By
i | y∈ Ŷi(k)} . (17)

The subdifferential (17) is composed of a linear termkA0 +B0 and a sum of maps∂ fi : ℜ→ I ,
i = 1, . . . ,m, whereI is a set of all closed intervals on a real line. From the definition (17) it
follows that ∂ fi is a step-function (or staircase function), that is,∂ fi is composed of piece-wise
linear horizontal and vertical segments. An explicit description of these linear segments is crucial
for solving the optimality condition 0∈ ∂ f (k) efficiently. Unlike the binary case, the segments
cannot be computed directly from the parameters(By

i ,C
y
i ),y ∈ Y , however, they can be found by

the simple algorithm described below.
First, we introduce an equivalent representation of∂ fi . Unlike (17), the new representation

explicitly defines intervals where∂ fi(k) is a constant and the points for which the constant value of
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(B2, C2)

kk2

ik1

i

(B̂2

i , Ĉ2

i ) = (B1

i , C1

i )

fi(k) = maxy(kB
y
i + Ck

i )

(B̂3

i , Ĉ3

i ) = (B4

i , C4

i )

(B̂1

i , Ĉ1

i ) = (B3

i , C3

i )

Figure 3: Figure shows an example of the functionfi(k) which is defined as the point-wise maxi-
mum over linear termskBy

i +Cy
i , y = 1, . . . ,4. The parameters(B̂z

i ,Ĉ
z
i ), z= 1, . . . ,3, and

pointskz
i , z= 1,2 found by Algorithm 3 are also visualized.

∂ fi(k) changes. LetZ ∈ {1, . . . ,Y−1} be a given integer andk1
i , . . . ,k

Z−1
i be a strictly increasing

sequence of real numbers. Then we define a system ofZ open intervals{I 1
i , . . . ,I Z

i } such that

I 1
i = (−∞,k1

i ) , I Z
i = (kZ−1

i ,∞) , and I z
i = (kz−1

i ,kz
i ) ,∀1 < z< Z .

It can be seen that there exist an integerZ and a sequencek1
i , . . . ,k

Z−1
i such that the map∂ fi can be

equivalently written as

∂ fi(k) =

{

B̂z
i if k∈ I z

i ,

[B̂z
i , B̂

z+1
i ] if k∈ kz

i ,
(18)

where{B̂1
i , . . . , B̂

Z
i } is a subset of{B1

i , . . . ,B
Y
i }. Provided the representation (18) is known for all∂ fi ,

i = 1, . . . ,m, the line-searchk∗ = argmink>0 f (k) can be solved exactly by finding the intersection of
∂ f (k) and the x-axis, that is, solving the optimality condition 0∈ ∂ f (k). To this end, we can use the
same algorithm as in the binary case (see Section 3.1.1). The only difference is that the number of
pointskz

i in which the subdifferential∂ f (k) changes its value is higher;m· (Y−1) in the worst case.
As the computations of the algorithm for solving 0∈ ∂ f (k) are dominated by sorting the pointskz

i ,
the worst-case computational complexity is approximatelyO(m·Y log(m·Y)).

Finally, we introduce Algorithm 3, which finds the required representation (18) for a given∂ fi .
In the description of Algorithm 3, we do not use the subscripti to simplify the notation. Figure 3
shows an example of input linear terms(By

i ,C
y
i ), y∈ Y defining the functionfi(k) and the sorted

sequence of active terms(B̂z
i ,Ĉ

z
i ),z= 1, . . . ,Z, and pointskz

i , z= 1, . . . ,Z, in which the activity of
the linear terms changes. At the beginning, the algorithm finds a linear term which is active in the
leftmost interval(−∞,k1), that is, the line with the maximal slope. Then the algorithm computes
intersections with the leftmost active linear term that was found and the remaining lines with lower
slopes. The leftmost intersection identifies the next active term. This process is repeated until the
rightmost active term is found. The worst-case computational complexity of Algorithm 3 isO(Y2).
In turn, the total complexity of the line-search procedure isO(m·Y2 + m·Y log(m·Y)), that is,
O(m·Y2) time is required for running Algorithm 3m times andO(m·Y log(m·Y)) time for solving
the optimality condition 0∈ ∂ fi(k) as described above.
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Algorithm 3 Finding explicit piece-wise linear representation (18) of∂ fi
Require: (By,Cy), y∈ Y
Ensure: Z, {B̂1, . . . , B̂Z}, and{k1, . . . ,kZ−1}

1: ŷ := argmaxy∈Ŷ Cy whereŶ := {y | By = miny′∈Y By′}.

2: Z := 1, k :=−∞ andB̂1 := Bŷ

3: while k < ∞ do
4: Ŷ := {y | By > Bŷ}
5: if Ŷ is emptythen
6: k := ∞
7: else
8: ÿ := argminy∈Ŷ

Cy−Cŷ

By−Bŷ

9: kZ := Cÿ−Cŷ

Bÿ−Bŷ

10: Z := Z+1
11: B̂Z := Bÿ

12: ŷ := ÿ
13: end if
14: end while

Note that the described algorithm is practical only if the output spaceY is of moderate size since
the complexity of the line-search grows quadratically withY = |Y |. For that reason, this algorithm
is ineffective for structured output learning where the cardinality ofY grows exponentially with the
number of hidden states.

4. Experiments

In this section we perform an extensive empirical evaluation of the proposed optimized cutting
plane algorithm (OCA) applied to linear binary SVM classification (OCAS) andmulti-class SVM
classification (OCAM) .

In particular, we compare OCAS to various state-of-the-art SVM solvers. Since several of
these solvers did not take part in the large-scale learning challenge, we perform an evaluation
of SVMlight , Pegasos, GPDT, SGD, BMRM, SVMperf version 2.0 and version 2.1 on previously
published medium-scale data sets (see Section 4.1.1). We show that OCAS outcompetes previous
solvers gaining speedups of several orders of magnitude over some ofthe methods and we also
analyze the speedups gained by parallelizing the various core componentsof OCAS.

In addition, we use the challenge data sets and follow the challenge protocolto compare OCAS
with the best performing methods, which were LaRank and LibLinear (see Section 4.1.2). Finally,
in section 4.2, we compare the multi-class SVM solver OCAM to the standard CPA implemented
for multi-class SVM on four real-world problems using the challenge evaluation protocol.

4.1 Comparison of Linear Binary SVM

We first compare OCAS with several binary linear SVM solvers on previously published data sets
followed by an analysis using the challenge criteria on the challenge data sets.
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4.1.1 EVALUATION ON PREVIOUSLY USED DATA SETS

We now compare current state-of-the-art SVM solvers (SGD, Pegasos, SVMlight , SVMperf , BMRM,
GPDT1), on a variety of data sets with the proposed method (OCAS), using 6 experiments measur-
ing:

1. Influence of the hyper-parameterµ on the speed of convergence

2. Training time and objective for optimal C

3. Speed of convergence (time vs. objective)

4. Time to perform a full model selection

5. Effects of parallelization

6. Scalability w.r.t. data set size

To this end, we implemented OCAS and the standard CPA2 in C. We use the very general com-
pressed sparse column (CSC) representation to store the data. Here, each element is represented by
an index and a value (each 64bit). To solve the reduced problem (2), weuse our implementation of
improved SMO (Fan et al., 2005). The source code of OCAS is freely available for download as part
of LIBOCAS (Franc and Sonnenburg, 2008b) and as a part of the SHOGUN toolbox (Sonnenburg
and R̈atsch, 2007).

All competing methods train SVM classifiers by solving the convex problem (1)either in its
primal or dual formulation. Since in practice only limited precision solutions can be obtained,
solvers must define an appropriate stopping condition. Based on the stopping condition, solvers can
be categorized intoapproximativeandaccurate.

Approximative Solvers make use of heuristics (e.g., learning rate, number of iterations) to obtain
(often crude) approximations of the optimal solution. They have a very low per-iteration cost and
low total training time. Especially for large-scale problems, they are claimed to besufficiently
precise while delivering the best performance vs. training time trade-off (Bottou and Bousquet,
2007), which may be attributed to the robust nature oflarge-marginSVM solutions. However,
while they are fast in the beginning they often fail to achieve a precise solution. Among the most
efficient solvers to-date are Pegasos (Shwartz et al., 2007) and SGD (Bottou and Bousquet, 2007),
both of which are based on stochastic (sub-)gradient descent.

Accurate Solvers In contrast to approximative solvers, accurate methods solve the optimization
problem up to a given precisionε, whereε commonly denotes the violation of the relaxed KKT con-
ditions (Joachims, 1999) or the (relative) duality gap. Accurate methods often have good asymptotic
convergence properties, and thus for smallε converge to very precise solutions being limited only by
numerical precision. Among the state-of-the-art accurate solvers are SVM light , SVMperf , BMRM
and GPDT.

Because there is no widely accepted consensus on which approach is “better”, we used both
types of methods in our comparison.

1. Solvers include: SGD version 1.1 (svmsgd2)http://leon.bottou.org/projects/sgd , SVMlight 6.01 and
SVMperf 2.1 http://svmlight.joachims.org , pegasoshttp://ttic.uchicago.edu/ ˜ shai/code/ , BMRM
version 0.01http://users.rsise.anu.edu.au/ ˜ chteo/BMRM.html and GPDThttp://dm.unife.it/gpdt .

2. To not measure implementation specific effects (solver, dot-product computation etc.).
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Experimental Setup We trained all methods on the data sets summarized in Table 2. We aug-
mented the Cov1, CCAT, Astro data sets from Joachims (2006) by the MNIST, an artificial dense
data set and two larger bioinformatics splice site recognition data sets for worm and human.3

Data Set MNIST Astro Artificial Cov1 CCAT Worm Human

Examples 70,000 99,757 150,000 581,012 804,414 1,026,036 15,028,326
Dim 784 62,369 500 54 47,236 804 564

Sparsity 19 0.08 100 22 0.16 25 25
Split 77/09/14 43/05/52 33/33/33 81/09/10 87/10/03 80/05/15 -

Table 2: Summary of the data sets used in the experimental evaluation. Sparsitydenotes the aver-
age number of non-zero elements of a data set in percent. Split describesthe size of the
train/validation/test sets in percent.

These data sets have been used and are described in detail in Joachims (2006), Shwartz et al.
(2007) and Franc and Sonnenburg (2008a). The Covertype, Astrophysics and CCAT data sets were
provided to us by Shai Shalev-Shwartz and should match the ones used in Joachims (2006). The
Worm splice data set was provided by Gunnar Rätsch. We did not apply any extra preprocessing to
these data sets.4

The artificial data set was generated from two Gaussian distributions with different diagonal
covariance matrices of multiple scale. Unless otherwise stated, experiments were performed on a
2.4GHz AMD Opteron Linux machine. We disabled the bias term in the comparison. As stopping
conditions we use the defaults:εlight = εgpdt = 0.001, εper f = 0.1 andεbmrm= 0.001. For OCAS we

used the same stopping condition that is implemented in SVMperf , that is,F(w)−Ft(w)
C ≤

εper f

100 = 10−3.
Note that theseε have very different meanings denoting the maximum KKT violation for SVMlight ,
the maximum tolerated violation of constraints for SVMperf and for BMRM the relative duality gap.
For SGD we fix the number of iterations to 10 and for Pegasos we use 100/λ, as suggested in
Shwartz et al. (2007). For the regularization parameterC and λ we use the following relations:
λ = 1/C, Cper f = C/100,Cbmrm= C andClight = Cm. Throughout the experiments we useC as a
shortcut forClight .

5

Influence of the Hyper-parameterµ on the Speed of Convergence In contrast to the standard
CPA, OCAS has a single hyper-parameterµ (see Section 3). The value ofµ determines the point
wc

t = wb
t (1−µ)+wtµ at which the new cutting plane is selected. The convergence proof (see Theo-

rem 2) requiresµ to be from the interval(0,1], however, the theorem does not indicate which value
is the optimal one. For this reason, we empirically determined the value ofµ.

For varyingµ∈ {0.01,0.05,0.1, . . . ,1} we measured the time required by OCAS to train the
classifier on the Astro, CCAT and Cov1 data sets. The regularization constant C was set to the

3. Data sets found at: Worm and Humanhttp://www.fml.tuebingen.mpg.de/raetsch/projects/ls mkl , Cov1
http://kdd.ics.uci.edu/databases/covertype/covertyp e.html , CCAT http://www.daviddlewis.com/
resources/testcollections/rcv1/ , MNIST http://yann.lecun.com/exdb/mnist/ .

4. However, we noted that the Covertype, Astro-ph and CCAT data set already underwent preprocessing because the
latter two have‖xi‖2 = 1.

5. The exact cmdlines are: svm perf learn -l 2 -m 0 -t 0 --b 0 -e 0.1 -c Cper f, pegasos -lambda
λ -iter 100/λ -k 1 , svm learn -m 0 -t 0 -b 0 -e 1e-3 -c Clight , bmrm-train -r 1 -m 10000 -i
999999 -e 1e-3 -c Cbmrm, svmsgd2 -lambda λ -epochs 10 .
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optimal value for the given data set. Figure 4 shows the results. For Astro and CCAT the optimal
value isµ = 0.1 while for Cov1 it isµ = 0.01. For all three data sets the training time does not
change significantly within the interval(0,0.2). Thus we selectedµ = 0.1 to be the best value and
we used this setting in all remaining experiments.
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Figure 4: Training time vs. value of the hyper-parameterµ of the OCAS solver measured on the
Astro, CCAT and Cov1 data sets. The valueµ = 0.1 (dash line) is used in all remaining
experiments.

Training Time and Objective For Optimal C We trained all methods on all except the human
splice data set using the training data and measured training time (in seconds) and computed the
unconstrained objective valueF(w) (cf. Equation 11).

The results are displayed in Table 3. The proposed method—OCAS—consistently outperforms
all its competitors in theaccurate solvercategory on all benchmark data sets in terms of training
time while obtaining a comparable (often the best) objective value. BMRM and SVMperf implement
the same CPA algorithm but due to implementation-specific details, results can be different. Our
implementation of CPA gives very similar results (not shown).6 Note that for SGD, Pegasos (and
SVMper f2.0—not shown), the objective value sometimes deviates significantly from the true ob-
jective. As a result, the learned classifier may differ substantially from the optimal parameterw∗.
However, as training times for SGD are significantly below all others, it is unclear whether SGD
achieves the same precision using less time with further iterations. An answer tothis question is
given in the next paragraph.

Speed of Convergence (Time vs. Objective)To address this problem we re-ran the best meth-
ods, CPA, OCAS and SGD, recordingintermediateprogress, that is, in the course of optimization
record time and objective for several time points. The results are shown in Figure 5. OCAS was
stopped when reaching the maximum time or a precision of 1−F(w∗)/F(w) ≤ 10−6 and in all
cases achieved the minimum objective. In three of the six data sets, OCAS notonly, achieves the

6. In contrast to SVMperf , BMRM and our implementation of CPA did not converge for largeC on Worm even after
5000 iterations. Most likely, the core solver of SVMperf is more robust.
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Astro CCAT Cov1 MNIST Worm Artificial

svmlight 2.0939e+03 8.1235e+04 2.5044e+06 6.7118e+05 3.1881e+04 1.3170e+02
2972 22 77429 5295 1027310 41531 622391 2719 2623193 44852 231059 3060

svmperf2.1 2.1180e+03 8.1744e+04 2.5063e+06 6.7245e+05 3.2224e+04 1.3186e+02
38 2 228 228 520 152 1295 228 2029 4436 709 162

svmperf2.0 2.1188e+03 8.1760e+04 2.5071e+06 6.7276e+05 3.2327e+04 1.3182e+02
-1 11 -1 1250 -1 345 -1 6115 -1 16515 -1 455

bmrm 2.1152e+03 8.1682e+04 2.5060e+06 6.7250e+05
42 2 327 248 678 225 2318 4327 -

ocas 2.1103e+03 8.1462e+04 2.5045e+06 6.7158e+05 3.1920e+04 1.3172e+02
21 1 48 25 80 10 137 10 125 258 76 13

pegasos 2.1090e+03 8.1564e+04 2.5060e+06 Error 4.6212e+04 1.3120e+03
2689K 4 70M 127 470M 460 270M 647 82M 213 25K 1

sgd 2.2377e+03 8.2963e+04 2.6490e+06 1.3254e+06 2.1299e+05 1.8097e+02
10 1 10 4 10 1 10 1 10 9 10 2

gpdt 1.1725e+03 1.5418e+05 1.3034e+06 5.9796e+06 1.3205e+04 1.2642e+02
130 5 3570 2263 4844 1794 526 118 38092 39095 615 137

Table 3: Training time for optimal C comparing OCAS with other SVM solvers. ”-”means not
converged, blank not attempted. Shown in bold is the unconstrained SVM objective value
Eq. (11). The two numbers below the objective value denote the number of iterations
(left) and the training time in seconds (right). Lower time and objective values are better.
All methods solve the unbiased problem. As convergence criteria, the standard settings de-
scribed in Section 4.1.1 are used. On MNIST Pegasos ran into numerical problems. OCAS
clearly outperforms all of its competitors in theaccurate solvercategory by a large mar-
gin achieving similar and often the lowest objective value. The objective value obtained
by SGD and Pegasos is often far away from the optimal solution; see text for a further
discussion.

best objective as expected at a later time point, but already from the very beginning. Further analysis
made clear that OCAS wins over SGD in cases wherelarge Cs were used and thus the optimization
problem is more difficult. Still, plain SGD outcompetes even CPA. One may argue that, practi-
cally, the true objective is not the unconstrained SVM-primal value (11) but the performance on
a validation set, that is, optimization is stopped when the validation error does notchange. This
has been discussed for leave-one-out in Franc et al. (2008) and we—to some extent—agree with
this. One should, however, note that in this case one does not obtain an SVM but some classifier
instead. A comparison should not then be limited to SVM solvers but should alsobe open to any
other large scale approach, like online algorithms (e.g., perceptrons). Weargue that to compare
SVM solversin a fair way one needs to compare objective values. We therefore ran Pegasos using
a larger number of iterations on the Astro and splice data sets. On the Astro data set, Pegasos sur-
passed the SVMlight objective after 108 iterations, requiring 228 seconds. SVMlight , in comparison,
needed only 22 seconds. Also, on the splice data set we ran Pegasos for 1010 iterations, which took
13,000 seconds and achieved a similar objective as that of SVMper f2.0, requiring only 1224 sec-
onds. Finally, note that, although BMRM, SVMperf and our implementation of CPA solve the same
equivalent problem using the CPA, differences in implementations lead to varying results.7 Since it

7. Potentially due to a programming error in this pre-release of BMRM, it didnot show convergence on the splice data
set even after> 6500 iterations.
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Figure 5: Objective value vs. training time of CPA (red), SGD (green) andOCAS (blue) measured
for different numbers of training examples.The dashed line shows the time required to
run SGD for 10 iterations. OCAS was stopped when the precision fell below10−6 or the
training time for CPA was achieved. In all cases, OCAS achieves the minimal objective
value and, even from the beginning, outperforms all other methods, including SGD, on
half of the data sets.
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is still interesting to see how the methods perform w.r.t. classification performance, we describe the
analysis under this criterion in the next paragraph.

Time to Perform a Full Model Selection When using SVMs in practice, their C parameter needs
to be tuned during model selection. We therefore train all methods using different settings8 for C on
the training part of all data sets, evaluate them on the validation set and choose the best model to do
predictions on the test set. As the performance measure, we use the area under the receiver operator
characteristic curve (auROC) (Fawcett, 2003). Results are displayed inTable 4.

Astro CCAT Cov1 MNIST Worm Artificial

avg svm perf 98.15±0.00 98.51±0.01 83.92±0.01 95.86±0.01 99.45±0.00 86.38±0.02

svmlight 1 152 1 124700 10 282703 10 9247 0.5 86694 0.005 42491
svmperf2.0 1 67 1 20827 50 1765 5 21113 5 106241 0.005 111621
svmperf2.1 1 13 1 1750 5 781 10 887 1 22983 0.005 24520

bmrm 1 17 1 2735 10 1562 10 20278 -
ocas 1 4 1 163 50 51 10 35 0.1 1438 0.005 6740

pegasos 98.15 98.51 83.89 95.84 99.27 78.35
1 59 1 2031 5 731 5 2125 5 1438 5 201

sgd 98.13 98.52 83.88 95.71 99.43 80.88
0.5 1 1 20 1 5 1 3 0.005 69 0.005 7

gpdt 1 30 1 33693 5 11615 10 408 0.5 283941 0.005 90807

Table 4: Model selection experiment comparing OCAS with other SVM solvers. ”-” means not
converged, blank not attempted. Shown in bold is the area under the receiver operator
characteristic curve (auROC) obtained for the best model chosen based on model selection
over a wide range of regularization constantsC. In each cell, numbers on the left denote
the optimalC, numbers on the right the training time in seconds to perform the whole
model selection. Because there is little variance, for accurate SVM solversonly the mean
and standard deviation of the auROC are shown. SGD is clearly fastest achieving similar
performance for all except the artificial data set. However, often aC smaller than the ones
chosen by accurate SVMs is selected—an indication that the learned decision function
is only remotely SVM-like. Among the accurate solvers, OCAS clearly outperforms its
competitors. It should be noted that training times for all accurate methods aredominated
by training for largeC (see Table 3 for training times for the optimalC). For further
discussion see the text.

Again, among theaccurate methodsOCAS outperforms its competitors by a large margin, fol-
lowed by SVMperf . Note that for allaccurate methodsthe performance is very similar and has
little variance. Except for the artificial data set, plain SGD is clearly fastest while achieving a sim-
ilar accuracy. However, the optimal parameter settings for accurate SVMsand SGD are different.
Accurate SVM solvers use a larger C constant than SGD. For a lower C, the objective function is
dominated by the regularization term‖w‖. A potential explanation is that SGD’s update rule puts
more emphasis on the regularization term, and SGD, when not run for a largenumber of iterations,
does imply early stopping.

Our suggestion for practitioners is to use OCAS whenever a reliable and efficient large-scale
solver with proven convergence guarantees is required. This is typicallythe case when the solver is

8. For Worm and Artificial we usedC ∈ {0.001,0.005,0.01,0.05,0.1,0.5,1,5}, for CCAT, Astro, Cov1C ∈
{0.1,0.5,1,5,10} and for MNISTC∈ {1,5,10,50,100}.

2176



OPTIMIZED CUTTING PLANE SUPPORTVECTORMACHINES

10
2

10
3

10
4

10
5

10
6

10
−2

10
0

10
2

T
im

e 
[s

]
Dataset Size

 

 

cpa
sgd
ocas
linear

Figure 6: This figure displays how the methods scale with data set size on the Worm splice data set.
The slope of the “lines” in this figure denotes the exponente in O(me), where the black
line denotes linear effortO(m).

to be operated by non-expert users who know little (or nothing) about tuning the hyper-parameters of
the optimization algorithm. Therefore, as long as the full data set fits into memory,we recommend
OCAS. Otherwise, if sub-sampling is not an option, online approximative solvers like SGD are the
only viable way to proceed.

Effects of Parallelization As OCAS training times are very low on the above data sets, we also
apply OCAS to the 15 million human splice data set. Using a 2.4GHz 16-core AMD Opteron Linux
machine, we run OCAS usingC= 0.0001 on 1 to 16 CPUs and show the accumulated times for each
of the subtasks, the total training time and the speedup w.r.t. the single CPU algorithm in Table 5.
Also shown is the accumulated time for each of the threads. As can be seen—except for the line-

CPUs 1 2 4 8 16

speedup 1 1.77 3.09 4.5 4.6

line search (s) 238 184 178 139 117
at (s) 270 155 80 49 45
output (s) 2476 1300 640 397 410

total (s) 3087 1742 998 684 671

Table 5: Speedups due to parallelizing OCAS on the 15 million human splice data set.

search—computations distribute nicely. Using 8 CPU cores the speedup saturates at a factor of 4.5,
most likely as memory access becomes the bottleneck (for 8 CPUs output computation creates a
load of 28GB/s just on memory reads).

Scalability w.r.t. Data Set Size In this section, we investigate how computational times of OCAS,
CPA and SGD scale with the number of examples on the Worm splice data set forsizes 100 to
1,026,036. Results are shown in Figure 6. We again use our implementation of CPA which shares
essential sub-routines with OCAS. Both OCAS and SGD scale roughly linearly. Note that SGD is
much faster (because it runs for a fixed number of iterations and thus stops early).
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4.1.2 EVALUATION ON CHALLENGE DATA

In this section, we use the challenge data sets and follow the challenge protocol to compare OCAS
to the best-performing methods, which were LaRank (Bordes et al., 2007)and LibLinear (Fan et al.,
2008). To this end, we apply OCAS to the challenge data sets Alpha, Gamma andZeta following
the challenge protocol for the SVM track.

The data sets are artificially generated based on a mixture of Gaussians andhave certain prop-
erties (see Table 6): The Alpha data set is separable with a large margin using quadratic features.

Optimal Number of examples
Data Set Model training testing validation Dim. Description

Alpha quadratic 500,000 300,000 100,000 500 well separable
Gamma semi-quadratic 500,000 300,000 100,000 500 Multiscale low var.

Zeta linear 500,000 300,000 100,000 2000 Intrinsic dim. 400

Table 6: Summary of the three challenge data sets used: Alpha, Gamma, Zeta.

The Gamma data set is well separable too, but contains features living on different scales. Fi-
nally, the optimal model for Zeta is a linear classifier—of its 2,000 features 1,600 are nuisance
dimensions. The challenge protocol requires training on the unmodified datasets withC = 0.01
and precisionε = 0.01. To measure convergence speed, objective values are measuredwhile train-
ing. The second challenge experiment simulates model selection by training for different C ∈
{0.0001,0.001,0.01,0.1,1,10}.

The left column in Figure 7 displays the course of convergence of the three methods. While
OCAS is quite competitive on Gamma and Zeta in this experiment, it is slower on Alpha.It should
also be noted that OCAS, in contrast to the online-style algorithms LaRank andLibLinear, has to
do a full pass through the data in each iteration. However, it usually requires very few iterations to
obtain precise solutions.

In the simulated model selection experiment (right column of Figure 7), OCAS performs well
for low values of C on all data sets. However, at first glance it is competitive for large values of C
only on Zeta. Investigating objective values on Gamma for LibLinear, we noticed that they signifi-
cantly deviate (objective values much larger, deviation by 50% forC = 10) from LaRank/OCAS for
C∈ {1,10}. Still, on Alpha OCAS is slower.

4.2 Comparison of Linear Multi-Class SVMs

In this section, we compare the proposed multi-class SVM solver OCAM described in Section 3.2
with multi-class CPA (CPAM). We consider the Crammer and Singer (2001) formulation of multi-
class SVMs which corresponds to the minimization of the following convex objective,

F(w) :=
1
2
‖w‖2 +

C
m

m

∑
i=1

max
y∈Y

(

[[yi 6= y]]+ 〈wy−wyi ,xi〉
)

, (19)

wherew = [w1, . . . ,wY] is a matrix of parameter vectors and{(x1,yi), . . . ,(xm,ym)}∈ (ℜn×Y )m is a
set of training examples. The multi-class classification rule then readsh(x) =
argmaxy∈Y 〈x,wy〉.
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Figure 7: Results of LaRank, LibLinear and OCAS on the Alpha, Gamma and Zeta challenge data
sets. The left column of the figures displays the unconstrained SVM primal objective (11)
(C is not scaled withm) w.r.t. SVM training time for fixedC = 0.01. The right column
displays the SVM training time for differentC. We omitted the data set size vs. CPU
time figure since all three methods show a similar curve (a line with slope≈ 1 in log-
log representation, corresponding to the expectedO(m) effort) . Note that for the Zeta
data set OCAS converges after a single pass through the data, which results in collapsing
the performance curve into a single point. For lowC, OCAS achieves very competitive
results. For further explanation see text.
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We implemented OCAM and CPAM in C, exactly according to the description in Section 3.2.
Both implementations use the Improved Mitchel-Demyanov-Malozemov algorithm (Franc, 2005)
as the core QP solver and they use exactly the same functions for the computation of cutting planes
and classifier outputs. The implementation of both methods is freely available fordownload as
part of LIBOCAS (Franc and Sonnenburg, 2008b). The experimentsare performed on an AMD
Opteron-based 2.2GHz machine running Linux.

In the evaluation we compare OCAM with CPAM to minimize programming bias. In addition,
we perform a comparison with SVMmulti−classv2.20 later in Section 5.2.

We use four data sets with inherently different properties that are summarized in Table 7. The
Malware data set is described in Section 5.2. The remaining data sets, MNIST, News20 and Sector,
are downloaded fromhttp://www.csie.ntu.edu.tw/ ˜ cjlin/libsvmtools/datasets/multiclass.
html . We used the versions with the input features scaled to the interval[0,1]. Each data set is ran-
domly split into a training and a testing part.

features number of num. of examples
number of type classes training testing

Malware 3,413 dense 14 3,413 3,414
MNIST 780 dense 10 60,000 10,000
News20 62,060 sparse 20 15,935 3,993
Sector 55,197 sparse 105 6,412 3,207

Table 7: Multi-class data sets used in the comparison of OCAM and CPAM.

Malware MNIST News20 Sector
error time error time error time error time

Standard CPAM 10.25 12685 7.07 15898 14.45 7276 5.58 12840
Proposed OCAM 10.16 1705 7.08 5387 14.45 1499 5.61 3970
speedup 7.4 3.0 4.9 3.2

Table 8: Comparison of OCAM and CPA on a simulated model selection problem. The reported
time corresponds to training over the whole range of regularization constantsCs. The error
is the minimal test classification over the classifiers trained with differentCs.

In the first experiment, we train the multi-class classifiers on training data with a range of
regularization constantsC = {100,101, . . . ,107} (for MalwareC = {100, . . . ,108} since the op-
timal C = 107 is the boundary value). Both solvers use the same stopping condition (10) with
ε = 0.01F(w). We measure the total time required for training over the whole range of Cs and the
best classification error measured on the testing data. Table 8 summarizes theresults. While the
classification accuracy of OCAM and CPAM are comparable, OCAM consistently outperforms the
standard CPAM in terms of runtime, achieving speedup of factor from 3 to 7.4.

In the second experiment, we measure the three performance figures defined in the large-scale
challenge: (i) the objective value as a function of the runtime, (ii) the runtime asa function ofC
and (iii) the runtime as a function of the data set size. For figures (i) and (ii) we use the optimal
C obtained in the first experiments. Results for the first three data sets are shown in Figure 8.
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Figure 8: Results of the standard CPAM and the proposed OCAM on the Malware, MNIST and
News20 data sets. The left column of figures displays the unconstrained SVM objec-
tive (19) w.r.t. SVM training time. The middle column displays the training time as a
function of the number of examples. In both experimentsC was fixed to its optimal value
as determined in model selection. The right column shows the training time for different
Cs. See text for a discussion of the results.

The objective vs. time figure is consistent with the results obtained in Section 4.1for the two-class
variant, that is, the objective value of the standard CPAM significantly fluctuates while OCAM
decreases the objective monotonically and converges faster in all cases. The data size vs. time
figure shows that in both cases the runtime is approximately linear w.r.t. the number of examples,
though the curve of CPAM grows slightly faster compared to OCAM. The main difference shows
the figure depicting the runtime as a function ofC. It is seen that OCAM is considerably faster for
large values ofC, which is crucial for efficient model selection (see the experiment in Section 5.2) .
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5. Applications

In this section we attack two real-world applications. First, in Section 5.1, we apply OCAS to a
human acceptor splice site recognition problem. Second, in Section 5.2, we use OCAM for learning
a behavioral malware classifier.

5.1 Human Acceptor Splice Site Recognition

To demonstrate the effectiveness of our proposed method, OCAS, we apply it to the problem of
human acceptor splice site detection. Splice sites mark the boundaries betweenpotentially protein-
coding exons and (non-coding) introns. In the process of translating DNA to protein, introns are
excised from pre-mRNA after transcription (Figure 9). Most splice sites are so-calledcanonical
splice sitesthat are characterized by the presence of the dimersGTandAGat the donor and acceptor
sites, respectively.

Figure 9: The major steps in protein synthesis. In the process of converting DNA to messenger
RNA, the introns (green) are spliced out. Here we focus on detecting the so-called ac-
ceptor splice sites that employ theAG consensus and are found at the “left-hand side”
boundary of exons. Figure taken from (Sonnenburg, 2002).

However, the occurrence of the dimer alone is not sufficient to detect a splice site. The classifi-
cation task for splice site sensors, therefore, consists in discriminating truesplice sites from decoy
sites that also exhibit the consensus dimers. Assuming a uniform distribution of the four bases,
adenine (A), cytosine (C), guanine (G) and thymine (T), one would expect 1/16th of the dimers to
contain theAGacceptor splice site consensus. Considering the size of the human genome,which
consists of about 3 billion base pairs, this constitutes a large-scale learningproblem (the expected
number ofAGs is 180 million).

Many different methods to detect splice sites have been proposed. Theyall predict splice sites
based on the local context, that is, a short window around theAGdimer. Currently, support vec-
tor machines are the most accurate splice site detectors (Degroeve et al., 2005; Sonnenburg et al.,
2007b). Sonnenburg et al. (2007b) showed that prediction accuracy steadily increases with training
sample size. However, even though they already used thelinadd algorithm (Sonnenburg et al.,
2007a) to speed up string kernel-based SVMs on a quad-core system, they could not use all avail-
able 50 million training points (but “only” 8 million). The string kernel that performed best was the
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weighted degree (WD) string kernelwith shifts(Rätsch et al., 2005). It basically counts matching
k-mers for various k in a position-dependent way. Employing a giant stringkernel feature space,
Sonnenburg et al. (2007b) achieved 45.58%±0.38 aoPRC in a genome-wide study on human ac-
ceptor splice sites—also available as the DNA data set used in the large-scalelearning challenge.

On the other hand, Degroeve et al. (2005) trained a linear SVM based ona number of pre-
selected and explicitly computed string kernel feature spaces that are subsets from the spectrum
(Leslie et al., 2002) and WD kernel (Rätsch et al., 2005) feature spaces: Left and right of the splice
site spectrum kernels of order 3 up to order 6 were used (Leslie et al., 2002). Over the whole
window, a WD kernel of order 3 with weights equal to 1 was used (Rätsch and Sonnenburg, 2004).
Even though this approach scales well, they used< 100,000 data points (potentially, since they
relied on the unmodified SVMlight binary).

Here, we propose to train OCAS on all available 50 million strings of length 141 from Son-
nenburg et al. (2007b) using the features corresponding to two weighted spectrum kernels (one left
and one right of the splice site, that is, positions 1-59 and 62-141) and a WD kernel (applied to the
whole string). For the spectrum kernels of order 1 up to 8 and for the WD kernel of order 8 is used.
Thus, the spanned string kernel feature space has 12,495,340 dimensions.

As the raw string-based data set already has a size of 7.1·109 bytes and even a sparse represen-
tation of each string would increase the data set by a factor of more than 3,000 ((141+59+80) ·12
bytes per feature vector, assuming a 4 byte integer and an 8 byte float), wewill implicitly compute
features from the raw input strings on demand. The only required operations in OCAS for which we
will have to expand the features are the addition to a dense vectorw← w+ αΦ(x) and the output
computationw ·Φ(x).

We implemented a rather general framework that allows stacking of arbitraryfeatures that sup-
port such operations (dense and sparse real-valued, weighted spectrum and WD kernel features for
specified k-mer length). As we know from Section 4.1.1, most time is spent in computing outputs,
hence we parallelized this part of the code (based on shared memory parallelization, that is, posix
threads).

Before training on the 50 million examples, we perform model selection on only 1million
examples to determine the optimal k-mer length for the two spectrum kernels, the WD kernel and
its weighting and the SVM regularization constantC. The optimal parameter setting was found to
beC = 1, kwspec= 8, kwd = 8, where the WD kernel weights are taken from the first 8 weights
of the weights of a wd kernel of order 40.9 Parameters were selected fromC ∈ {0.5,1,3,5,10},
kwspec∈ {3,6,8}, kwd = {3,6,8} with the WD kernel-weighting from order 8, 25 or 40.

We then trained on 50 million examples on an 8-core AMD Opteron Linux-basedmachine,
obtaining a record area over the precision recall curve (aoPRC) of 42.23%. For comparison, the
previous best method achieved aoPRC of 45.58% (variance 0.38%). Note that this is the DNA data
set used in the large-scale learning challenge, for which the best participant obtained an aoPRC
of 80.89% (lower is better). OCAS converged in just 138 iterations, however, the total training
time was about 40 hours, of which almost 34 hours were spent on computing outputs (already in a
parallelized way; see Table 9 for the detailed timing statistics). Even though we observed that this
parallelization was quite effective, it suggests that we are measuring random memory access speed.
Due to the size of the normal vector (about 100MB since we are using double precision floats) we
see only cache misses. This suggests that even using just single precisionfloats would reduce the

9. In Sonnenburg (2008) it was suggested that the WD kernel-weightinginfluences the effect of mismatches of the WD
kernel score.
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training time by 17 hours. Even though modern DDR-SDRAM is capable of speeds of up to 8
GB/s (Wikipedia, 2009) when being accessed in a linear way, we observed a memory speed of only
1.4GB/s on this system. It turns out that only DDR-333 memory is installed with a peak transfer
rate of 2.7GB/s. Thus, additional speedups can be achieved by distributed memory parallelization
and by grouping the access of features inw to minimize cache misses. Alternatively, switching to
a many-core architecture like the NVIDIA Tesla s1070 computing system10 that employs 960 CPU
cores and a peak memory rate of 400GB/s could drastically reduce training times, potentially to
even under 1 minute. Finally, it should be noted that storing the 138 cutting planes required almost
13 GB of memory.

Iterations Output Line Search Add at Solver Total
138 34 hours 222s 7 hours 5min 41 hours

Table 9: Timing statistics for the human acceptor splice site experiment.

5.2 Malware Classification

Malware is malicious software that occurs in the form of Internet worms, computer viruses and
Trojan horses. Due to an enormous increase of new variants of malware, methods for its automatic
detection and categorization are becoming crucial in modern anti-malware products. Rieck et al.
(2008) propose a malware behavioral classifier trained from labeled examples. Malware binaries
are collected via honeypots and spam-traps, and malware family labels are generated by running an
anti-virus tool. This results in a corpus of more than 10,000 unique malware instances. The behavior
of each binary is monitored in a sand box environment and behavior-based analysis reports summa-
rizing operations, such as opening an outgoing IRC connection or stopping a network service, are
generated. The reports have a form of text files which are then embedded into a high-dimensional
vector space using the bag-of-words model. Finally, a discriminative multi-class SVM classifier is
trained.

Rieck et al. (2008) use the multi-class classifier based on one-against-alldecomposition, where
each binary classifier is trained by a kernel SVM. To increase classification performance, the scale
of the independently trained binary discriminant functions, forming the multi-class classifier, is
normalized by fitting a logistic function. Rieck et al. (2008) report promising results achieving 88%
classification accuracy, which is competitive with commercial anti-virus software tools handcrafted
manually by computer security experts. Apart from the classification accuracy, the ability to re-
train swiftly on new examples is a crucial feature for practical application ofthe system. While the
classification accuracy was the main focus in Rieck et al. (2008), the issueof fast training was not
addressed. The SVMlight that they used required approximately 13-14 hours to perform the whole
model selection on a high-end single CPU computer.11

To resolve the problem of fast training, we apply our proposed OCAM solver and compare its
performance with SVMmulti−class(Joachims et al., 2009). SVMmulti−classversion 2.2012 is a highly
optimized implementation of CPAM which uses numerous heuristic speedups like adaptive accu-

10. Found athttp://www.nvidia.com/object/product_tesla_s1070_us .html .
11. Personal communication with authors of Rieck et al. (2008).
12. Found athttp://www.cs.cornell.edu/People/tj/svm_light/svm_m ulticlass.html .
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racy management, caching or 1-slack reformulation (for more details see Joachims et al. 2009).
Note that OCAM is the plain implementation of the proposed Algorithm 2, hence there is still the
possibility to improve its performance by implementing the same heuristics. SVMmulti−class

optimizes a slightly modified riskR′(w) = 1
m ∑m

i=1maxy∈Y
(

100[[yi 6= y]]+ 〈wy−wyi ,xi〉
)

. To make
objectives of SVMmulti−classand OCAM equivalent we use the transform:xi = x′i/100 andC =
100C′ wherex′i andC′ denote inputs and the regularization constant used by SVMmulti−class. SVMmulti−class

stops optimization whenF(wt)−Ft(wt)≤Cε′, hence we applyε = Cε′ in OCAM to use equivalent
stopping conditions. In addition, we useε′ = 0.1, which is the default setting in SVMmulti−class.

solver error [%] training time

SVMmulti−classv2.20 11.45±0.72 25,330 sec ≈ 7 hours
OCAM 11.49±0.91 2,451 sec ≈ 40 minutes
Rieck et al. (2008) 12 ≈ 13-14 hours

Table 10: Comparison of SVMmulti−classv2.20 with the proposed OCAM on the malware classifi-
cation problem. The reported error is a 5-fold cross-validation estimate of the per-class
average classification error. The training time refers to the total time requiredby model
selection. We also compare with the previous results reported in Rieck et al. (2008).
OCAS achieves a speedup of factor 10 over SVMmulti−classand of factor 20 compared to
the one-against-all based classifier trained by kernel SVMlight used in Rieck et al. (2008).

We adopted the evaluation protocol from Rieck et al. (2008). The classification accuracy is
measured in terms of average per-class classification error, that is,E = 1

Y ∑y∈Y
1
mi

∑i|yi=y[[yi 6= h(xi)]],
wheremi is the number of examples in thei-th class. The malware corpus of 10,072 examples is
randomly split 5 times into training, validation and testing partitions of approximately equal size.
The training partition is used to train the multi-class SVM using a range of different regularization
constantsC∈ {100,101, . . . ,1010}. The bestC is selected based on classification accuracy measured
on the validation part. Finally, we report average and standard deviationsof the per-class average
classification error computed on testing data over the 5 random splits.

Due to the very high-dimensional feature space, the explicit representation of the input vectors
is inefficient. To apply the linear SVM solvers, we use the standard trick of representing the kernel
matrix by the whitened empirical kernel map (Schölkopf and Smola, 2002). This representation
reduces the number of features to the number of training examples. The runtime required by the
singular value decomposition (SVD) to compute the whitened matrix is approximately5 minutes,
which is negligible w.r.t. the runtime of the SVM solvers. Note that training linear SVMs on the
whitened kernel map is equivalent to training the kernel SVM classifier.

The experiments are performed on a laptop computer with an Intel CPU @ 1.8 GHz. Table 10
summarizes the results. The classification performance of SVMmulti−classand OCAM is almost
identical. The performance of both methods is slightly better than the results reported by Rieck et al.
(2008), who used a heuristic one-against-all decomposition combined with the logistic regression.
Comparison of the runtimes shows that the proposed OCAM is more than 10 times faster than the
competing SVMmulti−classand more than 20 times faster than the SVMlight solver used in Rieck et al.
(2008).
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6. Conclusions

We have developed a novel method for solving large-scale risk minimization problems. Our pro-
posed optimized cutting plane algorithm (OCA) extends the standard CPA algorithm of Teo et al.
(2007) by, first, optimizing directly the primal problem via a line-search and,second, developing
a new cutting plane selection strategy which significantly reduces the number of cutting planes
needed to achieve an accurate solution. We have shown that the number ofiterations OCA requires
to converge to aε-precise solution is approximately linear in the sample size. Applying OCA to two
important learning problems, we obtained very fast specialized solvers for linear binary SVM clas-
sification (OCAS), and linear multi-class SVM classification (OCAM). In an extensive empirical
evaluation on a large variety of problems comparing the proposed OCA with previous state-of-the-
art SVM solvers, we achieved (depending on the task) speedups of upto three orders of magnitude
obtaining the same precise SV solution. By parallelizing the subtasks of the algorithm, OCAS
gained additional speedups of factors of up to 4.6 on a multi-core multiprocessor machine. Ap-
plying OCAS to a real-world splice site detection problem, we were able to train ona 12-million
dimensional data set containing 50 million examples, achieving a new record performance for that
task. Finally, we could reduce the training time on a malware classification problem by a factor of
20 over the previous approach. It remains as future work to derive OCAS for general structured out-
put learning problems. Furthermore, we plan to extend OCAS to incorporatea bias term. Finally, it
will be future work to investigate how the kernel framework can be incorporated into OCAS.
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Appendix A. Convergence Analysis

In this section we prove the convergence of OCA (Theorem 2). The core of the proof is adopted
from Teo et al. (2007) who proved the Convergence Theorem 1 of thestandard CPA. The main idea
of the convergence theorem is based on deriving a lower bound on the improvement of the duality
gapF(wb

t )−Ft(wt) = εt and expressing this lower bound as a difference inequality (20), defined in
Theorem 3. Having the difference inequality, (20) the proof of the convergence Theorem 2 follows
easily.

The most laborious part is thus proving the auxiliary Theorem 3. The lowerbound on the
improvementεt − εt+1, which is the core inequality (20) in Theorem 3, is proven by showing that
the objective value of the reduced problem solved at iterationt +1 must increase, provided the new
added cutting plane violates the constraints of the reduced problem at iteration t. In the standard
CPA, it is trivial to show that the new added cutting plane violates these constraints by at leastεt .
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Due to the sophisticated cutting plane selection strategy used in OCA, the violationof constraints
is not obvious. Nevertheless, it can be proven, as we show in Lemma 1. Lemma 1 constitutes the
main difference in the proofs of the standard CPA and the proposed OCA.The same lemma also
explains why OCA converges faster than CPA. It will be shown that the minimal improvement of
the reduced problem objective is a function of the constraint violation. Whilein the standard CPA
the violation is guaranteed to beεt , the inequality (21) shows that the new cutting plane added in
OCA violates the constraints byεt +

C
2‖w

c
t −wt‖

2. Unfortunately, we do not know how to bound
the second term and thus the resulting lower bounds are the same for both algorithms.

The rest of this section is organized as follows. We first derive Lemmas 1,2 and then we prove
the auxiliary Theorem 3. Finally, we give the proof of the Convergence Theorem 2, which uses all
previous results.

Theorem 3 Assume that‖∂R(w)‖ ≤ G for all w ∈W , whereW is some domain of interest con-
taining all wt ′ for t ′ ≤ t, and that F(wb

t )−Ft(wt) = εt > 0. In this case

εt − εt+1≥
εt

2
min

{

1,
εt

4C2G2

}

. (20)

Lemma 1 Let F(wb
t ) − Ft(wt) = εt > 0. Then Algorithm 2 computes a new cutting plane

〈w,at+1〉+ bt+1 = 0 which violates the constraints of the reduced problem (5) solved in the t-th
iteration by at leastεt

C , that is, it holds that

C
(

bt+1 + 〈wt ,at+1〉−ξt
)

≥ εt +
C
2
‖wc

t −wt‖
2≥ εt . (21)

PROOF: We use the subgradientwc
t +Cat+1∈ ∂F(wc

t ) to put a lower bound on the master objective
F by means of a linear function at the pointwc

t , that is,

f (w) = F(wc
t )+ 〈wc

t +Cat+1,w−wc
t 〉 ≤ F(w) , ∀w ∈ℜn . (22)

In Step 4 of Algorithm 2, the new best-so-far solution,wb
t , is computed as the minimizer ofF

over the line connecting the old best-so-far solution,wb
t−1, and the solution of reduced problemwt .

In step 5, the new cutting plane〈w,at+1〉+ bt+1 = 0 is taken at the pointwc
t = wb

t (1−µ)+ wtµ,
µ ∈ (0,1]. Hence we conclude thatF(wb

t ) ≤ F(wc
t ). Using the latter inequality and the lower

bound (22), we obtain
f (wb

t )≤ F(wb
t )≤ F(wc

t ) = f (wc
t ) .

Sincewc
t lies on the line segment connectingwb

t with wt and becausef (wb
t )≤ f (wc

t ) we conclude
that

f (wc
t )≤ f (wt) . (23)

Note that the inequality (23) holds only forµ∈ (0,1]. Using (22) we can rewrite (23) as

F(wc
t )≤ F(wc

t )+ 〈wc
t +Cat+1,wt −wc

t 〉 . (24)

CombiningF(wb
t ) ≤ F(wc

t ) andF(wb
t )−Ft(wt) = εt we getF(wc

t )−Ft(wt) ≥ εt . Finally, substi-
tuting (24) to the latter inequality yields

F(wc
t )+ 〈wc

t +Cat+1,wt−wc
t 〉−Ft(wt)≥ εt ,

which can be further rearranged into (21).
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Lemma 2 (Teo et al., 2007) Let∆(τ) = lτ− h
2τ2 be a concave quadratic function such that∆′(0)≥

L > 0 and |∆′′(τ)|= h≤ H, ∀τ ∈ [0,1]. Then the maximal value of∆ attained for the interval[0,1]
has a lower bound defined by

max
τ∈[0,1]

∆(τ)≥
L
2

min

(

1,
L
H

)

.

PROOF: Using l ≥ L andh≤ H we obtain a lower bound∆(τ) by Lτ− H
2 τ2. The unconstrained

maximum of the lower bound is attained at pointL
H , which leads to the value ofL

2

2H . If L
H > 1 then

the constrained maximum of the lower bound is attained at 1, which yields the maximal value of
L− H

2 . Using L
H > 1, the value ofL− H

2 has a lower bound ofL2 . Taking the minimum over both
maxima proves the claim.

PROOF OFTHEOREM 3: We can put a lower bound on the differenceεt − εt+1 using the improve-
ment of the dual objective functionDt+1(αt+1)−Dt(αt) because

εt − εt+1 = F(wb
t )−Ft(wt)−F(wb

t+1)+Ft+1(wt+1)

≥ Ft+1(wt+1)−Ft(wt)

= Dt+1(αt+1)−Dt(αt) .

The inequality follows after excluding the termF(wb
t )−F(wb

t+1) ≥ 0 and the last equality is the
result of the fact that the primal and dual optimal values are equal.

The value ofDt+1(αt+1) is defined as the maximum ofDt+1 w.r.t. the convex feasible setAt+1.
Hence, by maximizingDt+1 w.r.t. a line segment lying entirely insideAt+1 we get a lower bound
onDt+1(αt+1), that is,

Dt+1(αt+1)−Dt(αt)≥ max
τ∈[0,1]

∆(τ) := Dt+1
(

β(1− τ)+ γτ
)

−Dt(αt) ,

whereβ andγ are arbitrary vectors fromAt+1. Specifically, we define the vectors as

β = (αt ;0) ∈ℜt+1 and γ = (0;C) ∈ℜt+1 . (25)

Now we show that∆(τ) is a function compliant with the assumptions of Lemma 2, which will
allow us to lower bound its value for the interval[0,1]. To this end, we need to derive the explicit
form of ∆(τ) and then compute∆′(0) and an upper bound on∆′′(τ), ∀τ ∈ [0,1]. Defining a vector
b = (b1; . . . ;bt+1) ∈ℜt+1 and a matrixA = (a1, . . . ,at+1) ∈ℜn×(t+1) we can write the objective of
the dual of the reduced problem asDt+1(α) = 〈α,b〉− 1

2‖Aα‖2. Using the latter definition ofDt+1

and (25), we can rewrite∆(τ) as

∆(τ) = τ
〈

γ−β,b−ATAβ
〉

−
1
2

τ2
∥

∥Aβ−Aγ
∥

∥

2
.

The value of the derivative∆′(0) can be written as

∆′(0) =
〈

γ−β,b−ATAβ
〉

= C
(

bt+1 + 〈wt ,at+1〉−ξt) . (26)

The second equality of (26) was derived by using (25),wt = −∑t
i=1ai [αt ]i andFt(wt) = Dt(αt).

Using Lemma 1, we get a lower bound of the right-hand side of (26), that is

∆′(0)≥ εt . (27)
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The absolute value of the second derivative|∆′′(τ)| can be upper bound by

|∆′′(τ)|= ‖Aβ−Aγ‖2≤ ‖Aβ‖2 +‖Aγ‖2≤ 4C2 max
i=1,...,t+1

‖ai‖
2≤ 4C2G2 , (28)

where we use the assumptionai = ‖∂F(w)‖ ≤G and the fact that the vector1
CAα equals the convex

combination of the columns ofA for anyα∈At+1, hence, its norm cannot be greater than maxi ‖ai‖.
Finally, using (27) and (28) in Lemma 2 yields the claim of Theorem 3.

PROOF OFTHEOREM 2: The proof is adopted from Teo et al. (2007). For anyεt > 4C2G2 it follows
from (20) thatεt+1 ≤

εt
2 . Moreover,ε0 ≤ F(0), sinceF is nonnegative. Hence, we need at most

log2
F(0)

4C2G2 iterations to achieve a level of precision better than 4C2G2. Subsequently, we need to
solve the following difference equation:

εt+1− εt =−
ε2

t

8C2G2 .

Since this is monotonically decreasing, we can upper bound this by solving thedifferential equation

ε′(t) = − ε2(t)
8C2G2 , with the boundary conditionε(0) = 4C2G2. This in turn yieldsε(t) = 8C2G2

t+2 , and

hencet ≤ 8C2G2

ε −2 to achieveε(t) ≤ ε. For a givenε we will need 8C2G2

ε −2 more iterations to
converge. This proves the claim.
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