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Abstract

The use of Gaussian processes can be an effective approach toprediction in a supervised learning
environment. For large data sets, the standard Gaussian process approach requires solving very
large systems of linear equations and approximations are required for the calculations to be practi-
cal. We will focus on the subset of regressors approximationtechnique. We will demonstrate that
there can be numerical instabilities in a well known implementation of the technique. We discuss
alternate implementations that have better numerical stability properties and can lead to better pre-
dictions. Our results will be illustrated by looking at an application involving prediction of galaxy
redshift from broadband spectrum data.

Keywords: Gaussian processes, low rank approximations, numerical stability, photometric red-
shift, subset of regressors method

1. Introduction

The use of Gaussian processes can be an effective approach to prediction in a supervised learning
environment. For large data sets, the standard Gaussian process approach requires solving very large
systems of linear equations and approximations are required for the calculations to be practical. We
will focus on the subset of regressors technique which involves low rank approximations. The goal
of the paper is to describe techniques that are fast—requiringO(nm2) operations wheren is the
number of data points available for training andm is the rank of a low rank approximation—and
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have good numerical stability properties in the sense that the growth of computer arithmetic errors
is limited.

The paper begins with a review of Gaussian processes and the subset of regressors approach.
We then show that implementation of the subset of regressors method using normal equations can
be inaccurate due to computer arithmetic errors. A key contribution of the paper is a discussion
of alternative implementations of the subset of regressors technique that have improved numerical
stability. Another valuable contribution of the paper is a discussion of how pivoting can be incor-
porated in the subset of regressors approach to further enhance numerical stability. We discuss the
algorithm of Lucas (2004, pp. 4-5) for construction of a partial Cholesky factorization with pivoting
and emphasize that with this algorithm the flop count, including subset selection, of the subset of
regressors calculations isO(nm2).

In Section 2 we provide background about using Gaussian processesto facilitate prediction. In
Section 3 we discuss how low rank approximations lead to the subset of regressors approach. In
Section 4 we describe why a commonly used implementation of this technique may suffer from
numerical instabilities and in Section 5 we propose two alternative implementations that have better
numerical stability properties. In Section 6 we address the subset selectionproblem and indicate
that a solution to this problem can enhance numerical stability. In Section 7 we discuss tools that
aid in the choice of rank in the low rank approximation. In Section 8 we illustrate that the numerical
stability issues addressed in Section 4 can lead to unacceptably large growthof computer arithmetic
errors in an important application involving prediction of galaxy redshift from broadband spectrum
data. Our alternative implementations of the subset of regressors method overcome these difficulties.
Also in Section 8 we discuss code, available athttp://dashlink.arc.nasa.gov/algorithm/
stableGP , that implements our ideas. Finally, in Section 9 we summarize our results.

2. Gaussian Processes

Supervised learning is the problem of learning input-output mappings usingempirical data. We will
assume that a training data set is known consisting of an×d matrixX of input measurements and a
n by 1 vectory of output or target values. The task is to use the training data set to developa model
that can be used to make prediction with new data. We will assume the new data, called the testing
data, is contained in ann∗×d matrix X∗ of inputs. Then∗×1 vectory∗ will represent the target
values corresponding toX∗. The goal is to predict the value ofy∗ givenX, y, andX∗.

In the Gaussian process approach the prediction ofy∗ involves selection of a covariance function
k(x,x′), wherex andx′ are vectors withd components. It is required that the covariance function be
positive semidefinite (Rasmussen and Williams, 2006, p. 80) which implies that then×n covariance
matrixK with entriesKi j = k(xi ,x j) wherexi andx j are rows ofX is symmetric positive semidefinite
(SPS), so thatvTKv≥ 0 for anyn×1 real column vectorv. The covariance function can be used to
constructK and also then∗ by n cross covariance matrixK∗ whereK∗

i j = k(x∗i ,x j) wherex∗i is the
ith row of X∗. The prediction̂y∗ for y∗ is given by the Gaussian processes equation (Rasmussen and
Williams, 2006, p. 17):

ŷ∗ = K∗(λ2I +K)−1y. (1)

The parameterλ in this equation represents the noise in the measurements ofy and, in practice, it is
often selected to improve the quality of the model (Rasmussen and Williams, 2006).

It is often not clear how to choose the covariance functionk. There exist many different covari-
ance functions that apply broadly to many cases. Potential covariance function choices include the
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squared exponential (sometimes called the radial basis function), Matern,rational quadratic, neural
network, polynomial or other covariance functions (Rasmussen and Williams, 2006, pp. 79-102).
Most of these covariance functions contain free parameters that need tobe selected. Such param-
eters andλ in (1) are called hyperparameters. We will not focus on the choice of a covariance
function or alternative methods for selection of hyperparameters in this paper. In the examples dis-
cussed in Section 8 we tried out a variety of covariance functions and selected the one that provided
the best predictions. Hyperparameters were selected using the Matlab routine minimize (Rasmussen
and Williams, 2006, pp. 112-116, 221) which finds a (local) maximum of the marginal likelihood
function calculated using the training set data.

We should mention that the choice of the hyperparameterλ can affect the numerical stability of
the Gaussian process calculations. Generally larger values ofλ lead to reduced computer arithmetic
errors but a large value ofλ may be a poor theoretical choice—note thatŷ∗ → 0 asλ → ∞. One
needs to select a value ofλ that balances such competing errors. The choice ofλ in Gaussian
processes is closely related to the parameter choice in ridge regression in the statistics literature
(Montgomery et al., 2006, pp. 344-355) and in the literature on regularization (Hansen, 1998, pp.
175-208). As mentioned above we select hyperparameters, includingλ, using the routine minimize
(Rasmussen and Williams, 2006, pp. 112-116, 221). This technique worked well for the practical
example presented in Section 8 when used with our algorithms with improved numerical stability.

We should note that Gaussian process approach also leads to an equationfor C the covariance
matrix for the predictions in (1). If then∗×n∗ matrixK∗∗ has entriesK∗

i j = k(x∗i ,x
∗
j ) then (Rasmussen

and Williams, 2006, pp. 79-102):

C = K∗∗−K∗(λI +K)−1K∗T . (2)

The superscript T indicates transpose. The pointwise variance of the predictions is diag(C), the
diagonal of then∗×n∗ matrixC.

3. Low Rank Approximation: The Subset of Regressors Method

In (1) the matrix(λ2I +K) is ann by n matrix that, in general, is dense (that is has few zero entries).
Therefore for largen, for examplen ≥ 10000, it is not practical to solve (1) since the memory
required to storeK is O(n2) and the number of floating point operations required to solve (1) is
O(n3). Therefore for largen it is useful to develop approximate solutions to (1).

To do this, for somem< n, we can partition the matricesK andK∗ as follows:

K =

(
K11 K12

K21 K22

)
=

(
K1 K2

)
, K∗ =

(
K∗

1 K∗
2

)
. (3)

HereK11 is m×m, K21 is (n−m)×m, K12 = KT
21 is m× (n−m), K22 is (n−m)× (n−m), K1 is

n×m, K2 is n× (n−m), K∗
1 is n∗×mandK∗

2 is n∗× (n−m). Next we approximateK andK∗ using

K ∼= K̂ ≡ K1K−1
11 KT

1 (4)

and
K∗ ∼= K̂∗ ≡ K∗

1K−1
11 KT

1

and in (1) we replaceK with K̂ andK∗ with K̂∗. Therefore

ŷ∗ ∼= ŷ∗N ≡ K̂∗(λ2I + K̂)−1y =
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K∗
1K−1

11 KT
1 (λ2I +K1K−1

11 KT
1 )−1y =

K∗
1K−1

11 (λ2I +KT
1 K1K−1

11 )−1KT
1 y, so that

ŷ∗N = K∗
1(λ2K11+KT

1 K1)
−1KT

1 y. (5)

Equation (5) is called the subset of regressors method (Rasmussen and Williams, 2006, p. 176)
and was proposed, for example, in Wahba (1990, p. 98) and Poggio and Girosi (1990, p. 1489). As
we discuss in the next section the subscript N stands for normal equations. We refer to use of (5) as
the SR-N approach.

If m<< n then (5) is substantially more efficient than (1). For largen the leading order term
in the operation count for the calculations in (5) isnm2 flops or floating point operations (where a
floating point operation is either an addition, subtraction, multiplication or division), whereas the
calculations in (1) require approximately 2n3/3 flops. Ifn= 180,000 andm= 500, as in an example
discussed later, the solution to (1) requires approximately 4× 1015 flops which is five order of
magnitudes greater than the approximately 4×1010 flops required to solve (5). Furthermore, to use
(1) one needs to calculate alln2 +nn∗ elements ofK andK∗ whereas (5) requires that one calculate
only thenm+n∗melements inK1 andK∗

1 . This also improves the efficiency of the calculations and
will reduce the memory requirements dramatically.

We should add that if in Equation (2) we use the approximations (4), (3) and

K∗∗ ∼= K̂∗∗ ≡ K∗
1K−1

11 K∗T
1

then, in (2) replacingK with K̂, K∗ with K̂∗, K∗∗ with K̂∗∗ and using algebra similar to that used in
deriving (5), it follows that

C∼= ĈN ≡ λ2K∗
1(λ2K11+KT

1 K1)
−1K∗T

1 . (6)

For an alternate derivation of (6) see Rasmussen and Williams (2006, p. 176). Also diag(C) ∼=
diag(ĈN) so that diag(̂CN) provides approximations for the variance of the predictions.

4. Numerical Instability

The sensitivity of a problem measures the growth of errors in the answer tothe problem relative
to perturbations in the initial data to the problem, assuming that that there are no errors in the
solution other than the errors in the initial data. A particular algorithm implementing asolution to
the problem is numerically stable if the error in the answer calculated by the algorithm using finite
precision arithmetic is closely related (a modest multiple of) the error predicted by the sensitivity
of the problem. An algorithm is unstable if the error in the answer calculated bythe algorithm is
substantially greater than the error predicted by the sensitivity of the problem.

A straightforward implementation for the subset of regressors approximation using (5) has a po-
tential numerical instability. To see this note that sinceK is SPS it follows that them×msubmatrix
K11 is also. Therefore we can factor the matrixK11 with a Cholesky factorization (Golub and Van
Loan, 1996, p. 148)

K11 = V11V
T
11 (7)

whereV11 is anm×m lower triangular matrix. Now let

A =

(
K1

λVT
11

)
andb =

(
y
0

)
, (8)
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where 0 is anm×1 zero vector,A is an(n+m)×m matrix andb is a(n+m)×1 vector. Consider
the least square problem:

min
x

||Ax−b|| (9)

where the norm is the usual Euclidean norm. The normal equations solution (Golub and Van Loan,
1996, p. 237) to this least squares problem isx = (ATA)−1ATb = (λ2V11VT

11+KT
1 K1)

−1KT
1 y and so

by (7)
xN = (λ2K11+KT

1 K1)
−1KT

1 y. (10)

Therefore the solution̂y∗N presented in (5) can also be written

ŷ∗N = K∗
1xN. (11)

The subscript N indicates the use of the normal equations solution to (8).
The potential difficulty with the above solution is that the intermediate resultxN is the solution

to a least squares problem using the normal equation. It is well known thatthe use of the normal
equation can, in some cases, introduce numerical instabilities and can be lessaccurate than alterna-
tive approaches. As discussed in Golub and Van Loan (1996, p. 236-245) the sensitivity of the least
squares problem (9) is roughly proportional to cond(A)+ρLScond2(A), whereρLS = ||b−Ax|| and
cond(A) = ||A||||(ATA)−1AT || is the condition number ofA. The problem with the normal equa-
tions solution to (9) is that the accuracy of the calculated solution is (almost always) proportional
to cond2(A), the square of the condition number ofA, whereas in the case thatρLS is small the
sensitivity of the least squares problem is approximately cond(A). To quote from Golub and Van
Loan (1996, p. 245):

We may conclude that ifρLS is small and cond(A) is large, then the method of
normal equations. . . will usually render a least squares solution that is less accurate
than a stable QR approach.

We will discuss use of the stable QR approach and another alternative to thenormal equations in
the next section.

5. Improving Numerical Stability

The calculation of̂y∗N as given by (5) is equivalent to the solution to (9) and (11) using the normal
Equations (10). We can reduce the computer arithmetic errors in the calculation of ŷ∗N if we develop
algorithms that avoid the use of the normal equations in the solution to (9) and (11) . We will present
two alternative algorithms for solving (9) and (11). We should add that although these algorithms
can have better numerical properties than use of (5), all the algorithms presented in this section are
mathematically (in exact arithmetic) equivalent to (5).

5.1 The Subset of Regressors Using a QR Factorization

We first describe use of the QR factorization to solve (9). In this approach (Golub and Van Loan,
1996, p.239) one first factorsA = QRwhereQ is an(n+m)×m matrix with orthonormal columns
andR is anm×m right triangular matrix. Then

xQ = R−1QTb = R−1QT
(

y
0

)
(12)
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so that

ŷ∗Q = K∗
1xQ = K∗

1R−1QT
(

y
0

)
. (13)

With the above algorithm̂y∗ can still be solved quickly. Assuming that the elements ofK1 and
K∗

1 have been calculated, and thatm<< n, then the approximate number of operations for the QR
approach is 2nm2 flops. Therefore both the QR and normal equations approach requireO(nm2)
flops.

We should also note that we can use the QR factorization to reduce computer arithmetic errors
in the computation of the approximate covariance matrix in (6). If we let

ĈQR≡ λ2(K∗
1R−1)(K∗

1R−1)T

then mathematically (in exact arithmetic)ĈN andĈQR are the same. However, for reasons similar to
those discussed in Section 4, the computer arithmetic errors inĈQR will usually be smaller than those
in ĈN, assuming, for example, that̂CN is computed using a Cholesky factorization ofλ2K11+KT

1 K1.
We will refer to the subset of regressors method using the QR factorizationas the SR-Q method.

We should add that the use of a QR factorization in equations related to Gaussian process calcula-
tions is not new. For example Wahba (1990, p. 136) discusses using a QRfactorization for cross
validation calculations.

5.2 The V Method

If we assume theV11 is nonsingular we can define then×mmatrixV:

V = K1V
−T
11 (14)

where the superscript−T indicates inverse transpose. Note that by (7) it follows thatV is lower

trapezoidal and thatV =

(
V11

V21

)
, whereV21 = K21V

−T
11 . SubstitutingK1 = VVT

11 and (9) into (10) we

get
xV = V−T

11 (λ2I +VTV)−1VTy (15)

so that
ŷ∗V = K∗

1xV = K∗
1 V−T

11 (λ2I +VTV)−1VTy. (16)

We should note that this formulation of the subset of regressors method is not new. It is presented,
for example, in Seeger et al. (2003) and Wahba (1990, p. 136) presents a formula closely related to
(16). We will call the formula (16) for̂y∗ the V method. We should note, as will be seen in Section
6.2, that one can calculate V as part of a partial Cholesky factorization rather than using (14).

We will see in our numerical experiments and the theoretical analysis in Section6 that the
V method is intermediate in terms of growth of computer arithmetic errors between thenormal
equations and QR approach. Often, but not always, the accuracy ofthe V method is close to that of
the QR approach.

Assuming that the elements ofK1 and K∗
1 have been calculated, and thatm << n, then the

approximate number of operations for the V method is 2nm2 flops—approximatelynm2 flops to
form V and anothernm2 flops to solve forxV using (15). This is approximately the same as SR-Q
and approximately twice the flop count for the SR-N method.
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We can also compute the approximate covariance matrix with the V method approach:

ĈV ≡ λ2K∗
1V−T

11 (λ2I +VTV)−1V−1
11 K∗T

1 .

In exact arithmetiĉCN, ĈQR andĈV are identical but the computer arithmetic errors are often smaller
in ĈV andĈQR thanĈN.

5.3 Examples Illustrating Stability Results

We present two sets of examples that illustrate some of the above remarks.

Example 1 Let the n× n matrices K be of the form K= UDUT where U is a random orthogo-
nal matrix (Stewart, 1980) and D is a diagonal matrix with diagonal entries s1 ≥ s2 ≥ . . .sn ≥ 0.
Therefore s1, s2, . . ., sn are the singular values of K. We will choose a vector w∈ Rn, where Rn is

real n dimensional space, of the form w=

(
x
0

)
where x∈ Rm is a random vector and0 indicates

a zero vector with(n−m) components. We let the target data be y= Kw. We will also assume for
simplicity thatλ = 0.

Due to the structure of w each of xN (10), xQ (12), and xV (15) will calculate x exactly in exact
arithmetic. Therefore in finite precision arithmetic||x− ẋ||, with ẋ = xN, xQ or xV will be a measure
of the computer arithmetic errors in the calculation.

We carried out an experiment n= 100, m= 50, si = 10−(i−1)/5, i = 1,2, . . . ,m, and si = 10−10,
i = m+ 1,m+ 2, . . . ,n using a set of one hundred random matrices of this type. For this class of
matrices the singular values of K vary between 1 and10−10, cond(K) = 1010 and cond(K1)∼= 1010.
The results are:

ẋ = xN xV xQ

min ||x− ẋ||/||x|| 9.3×10−1 5.1×10−7 2.7×10−8

mean||x− ẋ||/||x|| 9.1×10 0 3.6×10−6 1.2×10−7

max ||x− ẋ||/||x|| 9.6×10 1 9.9×10−6 4.5×10−7

Table 1: Min, mean and max errors,||x− ẋ||/||x||, for 100 matrices and various methods.

For this set of matrices xQ and xV have small errors. However xN has large errors due to its use
of normal equations.

Example 2 This example will illustrate that, although the V method often greatly improves upon

the stability of the SR-N method, this is not always the case. For0 < s≤ 1 let C=

(
s2 10s

10s 200

)
, let

the4×4 matrix K =

(
s2C 10sC

10sC 200C

)
, let x=

(
1/3
1/3

)
, w=




x
0
0


, λ = 0 let y= Kw.

Due to the structure of w we again have each of xN, xQ and xV will calculate x exactly in exact
arithmetic. However, in finite precision arithmetic the calculated values will notbe exact. For this
example for small s the errors in both xN and xV can be significantly larger than the errors in xQ.
For example if s= 10−4 we get the following results:
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ẋ = xN xV xQ

||x− ẋ||/||x|| 8.8×10−1 2.1×10−1 7.7×10−11

Table 2: Errors||x− ẋ||/||x|| for a 4×4 matrices and various methods.

In Section 6 and Appendix A we will discuss the reason that the V method performs poorly
in this example and show that the numerical instability illustrated in this example can be cured
by interchanging the columns and rows of K appropriately. Also we shouldnote that although
difficulties like the one illustrated here are possible for the V method, experiments like those in
Example 1 suggest that such difficulties are not likely. As we discuss in Section 6, the method
performed well when we applied it to real world applications.

6. Pivoting and Subset Selection

In Section 5 we discussed low rank approximations toK which involved the firstm columns of
K. However one can select any subset of the columns to construct a low rank approximation. The
choice of these columns or the “active” set is the subset selection problem.This problem has been
addressed by, for example, Smola and Bartlett (2001), Seeger et al. (2003), Csato and Opper (2002)
and Fine and Scheinberg (2001). The technique that we will use is the sameas that in Fine and
Scheinberg (2001). However we will focus on the effect of the resulting choice of the active set on
the numerical stability of the resulting algorithm. This is a different motivation thanthe motivations
in the above references.

6.1 The Singular Value Decomposition

To pursue this we will first discuss the singular value decomposition which, ina certain sense,
produces an optimal low rank approximation toK. The singular value decomposition (SVD) of the
symmetric semidefinite matrixK produces the factorization

K = UDUT =
(
U1 U2

)(
D1 0
0 D2

)(
U1 U2

)T

whereU is ann×n orthogonal matrix,D is ann×n diagonal matrix whose diagonal entriess1 ≥
s2 ≥ . . .≥ sn ≥ 0 are the singular values ofK, U1 is n×m, U2 is n× (n−m), D1 is ann×n diagonal
matrix, andD2 is an(n−m)×(n−m) diagonal matrix. We then can construct the truncated singular
value decomposition (TSVD) low rank approximation toK:

K̂SVD= U1D1U
T
1 . (17)

The TSVD approximation̂KSVD is the best low rank approximation (Golub and Van Loan, 1996, p.
72) toK in the sense that

min
rank(K̂)=m

||K− K̂|| = ||K− K̂SVD|| = sm+1. (18)

Given ann×q matrixA with rankm≤ min(n,q) we will define (Bj̈orck, 1996, p. 28) the condition
number ofA to be cond(A) = s1/sm wheres1 and sm are singular values ofA. This definition
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generalizes to singular matrices the definition of condition number that we usedin Section 4 (where
A hadmcolumns). It then follows from (17) that

cond(K̂SVD) = s1/sm (19)

wheres1 andsm are singular values ofK (which are the same as the singular values ofK̂SVD). Thus
the singular value decomposition provides two desirable properties:

• Equation (18) indicates that̂KSVD will be close toK, if there exists a rankm approximation
that is close toK, and

• Equation (19) limits the condition number of̂KSVD which will limit the growth of computer
arithmetic errors in the use of̂KSVD.

However, for largen, it is not practical to calculate the SVD ofK since the SVD requiresO(n3) oper-
ations and is much more expensive than the algorithms described in Section 5 which requireO(nm2)
operations. We would like to construct an approximation that requires onlyO(nm2) operations and
that produces low rank approximations with properties related to (18) and (19).

6.2 Cholesky Factorization with Pivoting

The algorithms describe in Sections 3 and 5 (which are mathematically but not numerically identi-
cal) do not satisfy relations related to (18) and (19) as is apparent fromthe following example.

Example 3 For the matrix

K =




1+ ε 1− ε 0
1− ε 1+ ε 0

0 0 1




if we let m= 2 then by (4) and (17) we have

K̂ =




1+ ε 1− ε 0
1− ε 1+ ε 0

0 0 0


 andK̂SVD=




1 1 0
1 1 0
0 0 1




so that, for smallε,
||K− K̂SVD|| = 2ε << 1 = ||K− K̂|| and

cond(K̂SVD) = 2 << 1/ε = cond(K̂).

For this example the low rank approximation̂K has two problems: (1) it does not provide a good
approximation to K even though a good low rank approximation exists and (2) the condition number
of K̂ can be arbitrarily large which potentially could lead to a large growth of computer arithmetic
errors.

To overcome the difficulties illustrated in this example we can use a Cholesky factorization,
with pivoting, to insure that linearly independent columns and rows appearfirst. The Cholesky
factorization with pivoting produces a decompostion

PTKP = LLT
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where P is ann×n permutation matrix andL is ann×n lower triangular matrix. To produce our low
rank approximations to the Gaussian process equations we do not need to factor all ofK, rather it is
sufficient to calculate a partial factorization that factors onlymcolumns and rows ofPTKP. This is
a partial Cholesky factorization with pivoting. If the pivoting is done using complete pivoting (that
is the pivoting in the Cholesky factorization is equivalent to using complete pivoting in Gaussian
elimination) then there are a variety of algorithms that determine the factorization (Higham, 2002,
p. 202; Golub and Van Loan, 1996, p. 149; Lucas, 2004, pp. 4-5 and Fine and Scheinberg, 2001,
p. 255). Here we will summarize the algorithm presented in Lucas (2004, pp. 4-5) since it is not
as widely known as the algorithms in Higham (2002, p. 202) and Golub and Van Loan (1996, p.
149) and is more efficient in our context. The algorithm below is also the same as that in Fine and
Scheinberg (2001, p. 255) except for the stopping criteria.

Algorithm 1 : Algorithm for the partial Cholesky factorization
Data: ann×n symmetric positive semidefinite matrixK

a stopping tolerancetol ≥ 0
the maximum rank,max rank≤ n, of the low rank approximation

Result: m, the rank of the low rank approximation
ann×mpartial Cholesky factorV
a permutation vectorpiv
Note: on completion the firstm rows and columns ofPTKP−VVT are
zero, whereP is a permutation matrix withPpivi , i = 1, i = 1, . . . ,n

initialize:
di = Kii , i = 1, . . . ,n
Kmax = maxi=1,...,n(di)
pivi = i, i = 1, . . . ,n
m= max rank

for j = 1 to maxrank do
[dmax, jmax] = maxi= j,...,n(di)
where jmax is an index where the max is achieved
if dmax≤ (tol)Kmax then

m= j −1 ;
exit the algorithm ;

end
if jmax 6= j then

switch elementsj and jmax of piv andd
for i = j +1 : n let ui = elementi of column jmax of PTKP
switch rowsj and jmax of the currentn× ( j −1) matrixV

end
Vj j =

√
dmax

for i = j +1 to ndo
Vi j = (ui −∑ j−1

k=1VikVjk)/Vj j

di = di −V 2
i j

end
end
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There are two choices of the stopping tolerancetol that have been suggested elsewhere. For the
choicetol = 0 the algorithm will continue as long as the factorization determines thatK is positive
definite (numerically). This choice oftol is used in LINPACK’s routine xCHDC (Dongarra et al.,
1979) and also by Matlab’s Cholesky factorization chol (which implements a Cholesky factorization
without pivoting). The choicetol = n×ε whereε is machine precision is suggested in Lucas (2004,
p. 5) and in Higham (2002). The best choice oftol will depend on the application.

There are a number of attractive properties of the partial Cholesky factorization.

• The number of floating point operations in the algorithm is approximatelynm2−2m3/3 flops.
The calculations to determine the pivoting require only O(nm) flops.

• The algorithm accesses only the diagonal entries ofK and elements fromm columns ofK.

• The storage requirement for the algorithm is approximatelyn(m+2) floating point numbers
plus storage for the integer vectorpiv and any storage needed to calculate entries inK.

• The accuracy and condition number of the low rank approximation toK produced by the
algorithm is related to the accuracy and condition number of the low rank approximation
produced by the singular value decomposition. In particular

Theorem 1 Let the n×m matrix V be the partial Cholesky factor produced by Algorithm 1
and let

K̂P = PVVTPT . (20)

Also letK̂SVD be the rank m approximation (17) produced by the singular value decomposi-
tion. Then

||K− K̂P|| ≤ c1 ||K− K̂SVD|| and (21)

cond(K̂P) ≤ c2cond(K̂SVD) where (22)

c1 ≤ (n−m)4m and c2 ≤ (n−m)4m. (23)

Proof The theorem follows from results in Gu and Eisenstat (1996) for the QR factorization
with pivoting. First we consider a Cholesky factorization, without pivoting, ofK so that
K = LLT where L is and n×n lower triangular matrix. Letσi(A) represent the ith singular
value of a matrix A. Then, making use of the singular value decomposition,it follows easily
that σi(K) = σ2

i (L), i = 1, . . . ,n. Consider a QR factorization of LT with standard column
pivoting (Golub and Van Loan, 1996, p. 249-250) so that QR= LTP1. The permutation matrix
P1 produced by this QR factorization will be identical, in exact arithmetic, to the permutation
matrix produced by the Cholesky factorization with pivoting applied to K (Dongarra et al.,
1979, p. 9.26). In addition, the Cholesky factorization, with pivoting, of K is PT

1 KP1 = RTR,
assuming the diagonal entries of R are chosen to be nonnegative (Dongarra et al., 1979, p.
9.2). Now we partition the Cholesky factorization:

PT
1 KP1 =

(
RT

11 0
RT

12 RT
22

)(
R11 R12

0 R22

)
. (24)

It follows from Theorem 7.2 in Gu and Eisenstat (1996, p. 865) that

σ1(R22) ≤ c3 σm+1(L) and
1

σm(R11)
≤ c4

1
σm(L)

where c3, c4 ≤
√

n−m 2m. (25)
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Now the first m steps of Cholesky factorization, with pivoting, of K will produce identical
results to the m steps of the partial Cholesky factorization described in Algorithm 1. Let

V =

(
V11

V21

)
and R1 =

(
R11 R12

)
so that RT

1 =

(
RT

11
RT

12

)
. (26)

In the (complete) Cholesky factorization with pivoting of K, after the first m steps of the
algorithm additional pivoting will be restricted to the last n−m rows and columns of PTKP.
Let P2 be a n×n permutation matrix representing the pivoting in the last n−m steps in the
algorithm. Then it follows that

P1 = PP2, V11 = RT
11 and RT

1 = PT
2 V.

Therefore
K̂P = PVVTP = P1PT

2 VVTP2PT
1 = P1RT

1 R1PT
1 . (27)

By (18), (24), (25), (26) and (27) we can conclude that

||K− K̂P|| = ||RT
22R22|| = σ2

1(R22) ≤ c2
3 σ2

m+1(L) = c1 σm+1(K) = c1 ||K− K̂SVD||.

Also, by (25), (27) and the interlace theorem (Björck, 1996, p. 15)

σm(K̂P) = σ2
m(R1) ≥ σ2

m(R11) ≥ σ2
m(L)/c2

4 = σm(K)/c2
4. (28)

Next by (27) and the interlace theorem

σ1(K̂P) = σ2
1(R1) ≤ σ2

1(R) = σ1(K). (29)

Finally, (19), (28) and (29) imply that

cond(K̂P) = σ1(K̂P)/σm(K̂P) ≤ c2
4 σ1(K)/σm(K) = c2cond(K̂SVD).

The bounds in (23) onc1 andc2 grow exponentially inmand in principle can be large for larger
values ofm. In practice this appears to be very uncommon. For example the constantsc3 andc4 in
(25) are closely related to||W|| whereW = R−1

11 R22 (Gu and Eisenstat, 1996, p. 865). Numerical
experiments indicate the||W|| is almost always small in practice (typically less than 10) (Higham,
2002, p. 207 and Higham, 1990). Thereforec1 = c2

3 andc2 = c2
4 will not be large in practice. We

should add that there are choices of the pivot matricesP in (20) which guarantee bounds onc1 and
c2 that are polynomials inn andm rather than exponential inmas in (23) (Gu and Miranian, 2004).
However algorithms that produce such pivot matrices are more expensive than Algorithm 1 and, in
practice, usually do not lead to an improvement in accuracy.

Prior to applying one of the methods—SR-N, SR-V and SR-Q—from Sections3 and 5 one
can carry out a partial Cholesky factorization ofK to determine the permutation matrixP, and
apply the algorithms of Sections 3 and 5 using the matricesK̃ ≡ PTKP, K̃∗ = K∗P and the vector
ỹ = PTy. If pivoting is used in this manner, we will call the algorithms SR-NP, SR-VP and SR-QP
corresponding, respectively, to the algorithms SR-N, SR-V and SR-Q without pivoting.

868



STABLE AND EFFICIENT GAUSSIAN PROCESSCALCULATIONS

Since the algorithms SR-N, SR-V and SR-Q are all mathematically (in exact arithmetic) equiv-
alent, then by (4) in all these algorithms the low rank approximation toK̃ is K̃1K̃−1

11 K̃T
1 whereK̃1 is

the firstmcolumns ofK̃ andK̃11 is the firstm rows ofK̃1. Therefore the low rank approximation to
K = PK̃PT would be

K̂P = PK̃1K̃11K̃
T
1 PT . (30)

We then have

Theorem 2 In exact arithmetic the matriceŝKP in (20) and (30) are the same.
Proof Let V be the factor produced by a partial Cholesky factorization, with pivoting, of K. Then, as
mentioned in Algorithm 1, the first m columns and rows of PTKP−VVT are zero. SincẽK = PTKP
it follows thatK̃11 = V11VT

11 andK̃1 = VVT
11, where V11 is the m×m leading principle submatrix of

V . Therefore that VVT = K̃1K̃−1
11 K̃T

1 . We conclude PVVTPT = PK̃1K̃−1
11 K̃T

1 PT .

A key conclusion of Theorems 1 and 2 is that for the algorithms SR-NP, SR-VP and SR-QP which
use pivoting, the low rank approximation̂KP to K has the desirable properties (21-23) which show
that the accuracy and condition number ofK̂P is comparable to the accuracy and condition number
of the low rank approximation produced by the singular value decomposition.Therefore ifm is
small, difficulties such as those illustrated in Example 3 are not possible since forsmall m the
bound(n−m)4m for c1 andc2 is not large. Furthermore, such difficulties are unlikely for largem
since, as mentioned earlier, for largem, the values ofc1 andc2 are, apparently, not large in practice.

For the algorithm SR-VP one does not need to calculateV using (14) since, as shown in the proof
of Theorem 2,V is calculated by the partial Cholesky factorization. Using this fact the floatingpoint
operation counts of the six algorithms that we have discussed are:

method no pivoting pivoting

SR-N / SR-NP nm2 2nm2

SR-V / SR-VP 2nm2 2nm2

SR-Q / SR-QP 2nm2 3nm2

Table 3: Approximate flop counts, forn andm large andn >> m, for various algorithms.

We should note that flop counts are only rough measures of actual run timessince other factors,
such as the time for memory access or the degree to which code uses Matlab primitives, can be
significant factors. This is discussed further in Section 8.

Also we should note that all the algorithms listed in Table 3 require memory forO(mn) numbers.
Another advantage of the use of pivoting is that if pivoting is included in the V method then

for small examples such as Example 2 the potential numerical instability illustrated inExample 2
cannot occur. We illustrate this in the next example. In Appendix A we describe the reason that
the SR-VP method is guaranteed to be numerically stable for small problems and why numerical
instability is very unlikely for larger real world problems.

Example 4 This example illustrates that if one includes pivoting in the V method then the numerical
instability illustrated in Example 2 does not occur in the V method. As in Example 2for 0 < s≤ 1
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let C=

(
s2 10s

10s 200

)
, let the4×4 matrix K =

(
s2C 10sC

10sC 200C

)
. Now let x=

(
1/3
1/3

)
, w =




0
x2

0
x1


,

λ = 0 let y= Kw.
Due to the structure of w (and since, in this example, a partial Cholesky factorization will move

column 4 of K to the first column of̃K = PTKP) we again have each of xNP, xQP and xVP will cal-
culate x exactly in exact arithmetic. In finite precision arithmetic the calculated values will not be
exact. For this example for small s the errors in both xVP and xQP are very small. For example if
s= 10−4 we get the results in Table 4.

ẋ = xNP xVP xQP

||x− ẋ||/||x|| 1.7×10−1 2.6×10−11 9.7×10−12

Table 4: Errors||x− ẋ||/||x|| for a 4×4 matrices and various methods.

Note that even with pivoting the error in the normal equations approach is large. With the nor-
mal equations approach the error in the calculated x includes a term proportional to cond2(K1).
Even with pivoting cond2(K1) can be large enough so the accuracy of the normal equations ap-
proach is poor.

7. Rank Selection

In using low rank approximation the choice of rank will affect the accuracy of the approximation.
It may be impractical to repeat the computations for a variety of different ranks and it is useful to
have techniques to facilitate determination of the accuracy of a variety of low rank approximations.

We first consider the case that the true target valuesy∗ corresponding to the testing dataX∗ are
known. Then ifn∗ < n the accuracy of the prediction fory∗ can be calculated efficiently for all low
rank approximations with rank less than a specified valuem.

To illustrate this we first consider the QR implementation, (12) and (13), of the subset of re-
gressors method. For the(n+m)×mmatrix A in (8) let A = QRwhereQ is an(n+m)×mmatrix
with orthonormal columns andR is anm×mupper triangular matrix and letx= R−1QTb, as in (12)
(where we omit the subscriptQ onx to simplify our notation). Then by (13) the predicted values of
y∗ are

ŷ∗ = K∗
1x

whereK∗
1 is then∗×mmatrix defined in (3).

Now for somei, 1≤ i ≤ m, consider the construction of a prediction fory∗ using a ranki low
rank approximation. Let̃A consist of the firsti columns ofA. It then follows from (9), (13) and the
fact that the lastm− i rows ofb andÃ are zero that the ranki prediction, which we call̃y∗, for y∗ is
given by solving

min
x̃

||Ã x̃−b|| and letting

ỹ∗ = K∗
1

(
x̃
0

)
(31)
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where x̃ ∈ Ri and the 0 in (31) indicates a vector ofm− i zeros. SinceA = QR it follows that

Ã = Q

(
R̃
0

)
where the 0 here indicatesm− i rows of zeros. Therefore ifc = (the firsti elements

of QTb) it then follows (Golub and Van Loan, 1996, p. 239) that we can construct x̃ using

x̃ = R̃−1c. (32)

We can use (32) to construct predictions fory∗ for every low rank approximation of rank less
than or equal tom. To do this we letC be am×mupper triangular matrix whoseith column consists
of the firsti elements ofQTb and is zero otherwise. Let̃Y be then∗×m matrix whoseith columns
consists of the prediction fory∗ using a ranki approximation. Then, for the reasons described in the
last paragraph,

Ỹ = K∗
1R−1C. (33)

If y∗ is known (33) can be used to calculate, for example, the root mean squareerror of the prediction
for y∗ for all low rank approximations of rank less than or equal tom.

After the rankm low rank prediction fory∗ is constructed, the above calculations requireO(m3+
n∗m2) floating point operations. Ifn∗ is less thann, this is less than theO(nm2) operations required
to construct the initial rankm prediction. Although we will not present the details here similar
efficiencies are possible when using the normal equations approach or the V method.

If the true valuey∗ for the test set are not known, one can use the subset of regressors approach
to estimate the knowny values in the training set (by replacingK∗

1 with K1 in (11), (13) or (16)).
Again one can calculate the accuracies in estimatingy for every low rank approximation of rank
less than a given rankm and this can be done relatively efficiently after the initial rankm low rank
approximation is constructed. These accuracies will give some indication ofthe relative difference
in using low rank approximations of different ranks.

Finally, we should note that our algorithms provide a limit on the largest rank that can be used.
For example in SR-NP, SR-VP and SR-QP Algorithm 1 is used to determine the subset selection.
Algorithm 1 returns a rankmwhere the factorization is stopped andmcan be used as the maximum
possible rank. For the SR-V and SR-Q algorithms a Cholesky factorization of K11 is required
in (7). If Matlab’s Cholesky routine chol is used for this factorization there is an option to stop
the factorization when it is determined thatK11 is not positive definite (numerically). The size
of the factor that successfully factors a positive definite portion ofK11 sets a limit on the rank
that can be effectively used. Finally, SR-N and SR-NP require solving asystem of Equations (5)
involving the symmetric semidefinite systemλ2K11+KT

1 K1. A good way to solve this system is to
use Matlab’s chol, which again has an option that can be used to determine a limiton the rank that
can be effectively used. As discussed in the next section if these rank limitsare exceeded then the
calculated answers are often dominated by computer arithmetic errors and are not accurate.

8. Practical Example

In the Sloan Digital Sky Survey (York et al., 2000) broadband u, g, r, i,z photometric measurements
will be made for 100s of million galaxies but only approximately 1 million galaxies will have care-
ful spectroscopic measurements of redshifts. Therefore the estimation ofredshift from broadband
photometric measurements is important since it can lead to much better constraints on the formation
and evolution of large-scale structured element in cosmological models (Wayand Srivastava, 2006).
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We illustrate our earlier remarks by using a training set of 180045 galaxies,each with five
measured u, g, r, i, z broadband measurements. The training set consistsof a 180045×5 matrix
X of broadband measurements and the 180045×1 vectory with the corresponding redshifts. The
testing set will consist of a 20229× 5 matrix X∗ of broadband measurements and the 20229× 1
vectory∗ of redshifts. This data is from the SDSS GOOD data set discussed in Way and Srivastava
(2006).

To determine a good choice for a covariance function we calculated the root mean square (RMS)
error for the prediction̂y∗ for y∗ using the Matern (with parameterν = 3/2 and with parameter
ν = 5/2), squared exponential, rational quadratic, quadratic and neural network covariance func-
tions from Rasmussen and Williams (2006, Chap. 4). As mentioned earlier we selected the hyper-
parameters for each covariance function using the Matlab routine minimize from Rasmussen and
Williams (2006, pp. 112-116, 221). The covariance function which produced the smallest RMS
error for the prediction ofy∗ was the neural network covariance function (Rasmussen and Williams,
2006, p. 91). For example, for low rank approximations of rank 500 with bootstrap resampling runs
(described below) of size 100 the neural network median RMS error was.0204. The next small-
est median RMS error was .0212 for the Matern covariance function withν = 3/2 and the largest
median RMS error was .0248 for the quadratic covariance function. Therefore in the experiments
below we will use the neural network covariance function.

To compare, experimentally, the efficiency of our implementations of the subset of regressors
method we choose a training set size of 90023 (consistent with the bootstrapresampling runs de-
scribe below) and low rank approximations of rankm= 150 andm= 1500. On a computer with 2.2
GH Core Duo Intel processor we timed the SR-N, SR-V, SR-Q, SR-NP, SR-VP and SR-QP meth-
ods. On all the calculations in this section that use Algorithm 1 we set the stopping tolerancetol to
0. We ran each of the methods with the additional calculations required to determine the “history”
of the accuracy of all low rank approximations less than the specified rank(either 150 or 1500) and
also without these extra calculations. The results are summarized in Figure 1.
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Figure 1: Comparison of run times for implementations of the subset of regressors method.
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As can be seen in Figure 1, without pivoting the normal equations approach is the fastest, the QR
factorization the slowest and the V method in between. With pivoting all the methods take similar
amounts of time (the V method is slightly faster). The reason that all the methods require about
the same time when using pivoting is that the code for SR-N, SR-V and SR-Q is written so that
the key calculations are done almost entirely with Matlab primitives whereas ourimplementation
of the partial Cholesky factorization contains loops written in Matlab code. The Matlab primitives
make use of BLAS-3 (Anderson et al., 1999) routines and will make effective use of cache memory.
Therefore, even though the big-O operation counts are similar, the partialCholesky factorization
takes longer to run than SR-N, SR-V or SR-Q and the partial Cholesky factorization dominates
the run times in the SR-NP, SR-VP and SR-QP code. We should add that the timesfor the partial
Cholesky factorization would be reduced if a partial Cholesky factorization with pivoting could be
implemented using BLAS-3 operations. We are not aware of such an implementation. Finally, we
should note that the calculations required to determine the accuracy of all low-order approximations
adds only a modest amount to the run times.

To determine the accuracy of the algorithms for different choices of the training set we carried
out bootstrap resampling (Efron and Tibshirani, 1993). For each of 100 samples we randomly se-
lected half or 90023 of the 180045 galaxies in the original training set and used this smaller training
set to predict the redshift for the 20229 galaxies in the testing set. We considered such resam-
pling with replacement as well as without replacement. For SR-N, SR-V and SR-Q we selected the
indices in the active set randomly. Following this we selected the hyperparameters using the mini-
mize routine in Rasmussen and Williams (2006, pp. 112-116, 221). For SR-NP, SR-VP and SR-QP
the active set was determined by the partial Cholesky factorization with pivoting. To illustrate the
variation in the calculated accuracies, after carrying out a bootstrap resampling run we sorted the
100 RMS errors in increasing order and plotted these errors versus thesample number. The results
for low rank approximations of rank 1500, using resampling without replacement, are pictured in
Figure 2.

Note that mathematically (in exact arithmetic) SR-N, SR-V and SR-Q will produceidentical
results; as will SR-NP, SR-VP and SR-QP. Therefore the differencesillustrated in Figure 2 between
SR-N and SR-V or SR-Q and the differences between SR-NP and SR-VPor SR-QP are due to com-
puter arithmetic and, in particular, the numerical instabilities in using a normal equations approach
to solve the least squares problem (9). Also note that although pivoting reduces the numerical
instability in using the normal equations approach, still in SR-NP the instability is evident for ap-
proximately half of the bootstrap resampling runs. Also we should remark thatthe ŷ∗ predictions
calculated using SR-V and SR-Q are essentially identical—they agree to at least seven significant
digits in this example—as are thêy∗ predictions calculated using SR-VP and SR-QP. Finally we
should note that for this example the methods that avoid normal equation and use pivoting—SR-VP
and SR-QP—are a small amount better than their counterparts, SR-V and SR-Q, that do not use
pivoting.

As mentioned earlier, the parameterλ in the Gaussian process computations was selected while
optimizing the hyperparameters using the routine minimize from Rasmussen and Williams (2006,
pp. 112-116, 221). The values ofλ varied over a small range,.0176≤ λ ≤ .0214, for the 100
samples illustrated in Figure 2. For our stable algorithms these values ofλ were good values as can
be seen by the accuracy of the results of SR-V, SR-VP, SR-Q and SR-QP pictured in Figures 2, 3
and 4. For SR-N and SR-NP we experimented with a variety of choices ofλ but did not reliably
achieve accurate predictions for any of our choices.
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Figure 2: Bootstrap resampling: Comparison of RMS errors for implementations of the subset of
regressors method.

We might also add that we tried other types of resampling. We obtained results similar to those
illustrated in Figure 2 when using bootstrap resampling with replacement and also when we choose
a number of galaxies in the sample size other than 90023.

We can also illustrate the ability to efficiently calculate the accuracy of low rank approximations
lower than a specified rank. For the same runs picture in Figure 2 we calculated the mean RMS error
of the 100 samples for each rank less than 1500 for each of the six implementations of the subset of
regressors method. This is pictured in Figure 3.

As one increases the rank of the low rank approximation the condition numberof the matrixA in
(9) will tend to increase. This will increase the computer arithmetic errors in thecalculated results.
The ranks where significant computer arithmetic errors arise are illustratedin Figure 3 by the jumps
in the mean errors calculated for the SR-N and SR-NP methods. The ranks where this occurs and
the magnitude of the jumps is dependent on the particular data chosen for a bootstrap resampling
run and will vary for different bootstrap resampling runs. For the SR-Nmethod the ranks where
numerical difficulties were first substantial varied between a rank of 46 toa rank of 839. For the
SR-NP method the ranks where numerical difficulties were first substantialvaried between ranks of
325 and 1479. For the SR-V, SR-Q, SR-VP and SR-QP methods we did notencounter significant
numerical difficulties with these runs and the graphs for these methods smoothly decrease.

The SR-VP and SR-QP method, which use pivoting, are somewhat more accurate than the
corresponding methods without pivoting after a rank of approximately 200but prior to this SR-V
and SR-Q are more accurate. Our motivation for subset selection using theCholesky factorization
with pivoting is based on controlling the condition number and improving numerical stability. For
smaller ranks it appears that this choice of the active set is good but not optimal. Finally, we should
note that Figure 3 indicates for the stable methods the mean RMS errors decrease rapidly for smaller
ranks but are only slowly decreasing for larger ranks.
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Figure 3: Mean RMS errors versus rank for implementations of the subsetof regressors method.

As we mentioned earlier all of our algorithms may limit the rank so that the effective rank can be
less than the desired rank. This did not occur on the above runs for SR-V, SR-Q, SR-VP or SR-QP
but did occur for SR-N and SR-NP due to our use of the Cholesky factorization to solve the linear
system (5). It is possible to solve the linear system in (5) using Gaussian elimination, rather than
using a Cholesky factorization, for ranks up to 1500. However the Cholesky factorization in (5)
will fail only if the matrix λ2K11+KT

1 K1 is very ill conditioned. In this case solving the system of
equations in (5) by any method will be prone to large computer arithmetic errors. Indeed, for these
runs, if we used Gaussian elimination to solve (5) for large ranks the errors became larger than when
we limited the rank as we have described earlier. Also when the Cholesky factorization failed in the
solution to (5) we tried perturbingK11 a small amount following a suggestion in the code provided
with Rasmussen and Williams (2006). For our runs this did not improve the calculated results in a
significant manner.

In Way and Srivastava (2006) there is a comparison of a variety of methods for predicting red-
shift with data from the SLOAN digital sky survey. The methods compared in Way and Srivastava
(2006) include linear regression, quadratic regression, artificial neural networks (label ANNz in
Figure 4), E-model and Gaussian processes using a quadratic covariance function (labeled GP in
Figure 4). In Figure 4 we have compared these methods with our predictionsusing the SR-VP
and SR-QP implementations of the subset of regressors Gaussian processes method with a neural
network covariance function. Other than the SR-VP and SR-QP predictions the results in Figure 4
are from Way and Srivastava (2006). As seen in Figure 4, in this exampleeither SR-VP or SR-QP
provides overall the best predictions. The E-model approach is also quite good.

We should add that in addition to the data set which was used to generate the results in Figures
1 to 4 we have also carried out experiments using other data sets describedin Way and Srivastava
(2006) (for example redshift prediction using photometry properties in addition to broadband mea-
surements) and using the SARCOS robot arm inverse dynamics (Rasmussenand Williams, 2006;
Vijayakumar et al., 2002). For the other redshift data sets significant computer arithmetic errors in
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Figure 4: Bootstrap resampling: comparison of RMS errors for six methods of predicting redshift.

the predictions were common for the SR-N and SR-NP algorithms. For some datasets, for exam-
ple the SARCOS robot arm, computer arithmetic errors were not significant and all the algorithms
worked well. Also we might note that although prediction using Gaussian processes was more ac-
curate than alternatives approaches in some cases, in other cases the E-model or artificial neural
network approaches provided better accuracy.

Finally, we should note that Matlab code which implements the SR-N, SR-NP, SR-V,SR-VP,
SR-Q and SR-QP methods and can produce graphs such as those in Figures 2 and 3 is available at
http://dashlink.arc.nasa.gov/algorithm/stableGP . Our code makes use of the code from
Rasmussen and Williams (2006, p. 221) and the syntax is modeled on that code. We should also
note that Foster et al. (2008) and Cayco et al. (2006) discuss additional results related to redshift
prediction.

9. Conclusions

An important conclusion of our results is that with the subset of regressors approach to Gaussian
process calculations use of normal equations can be unstable and should,in some important prac-
tical examples, be avoided. We expect that this principle is also applicable to other approaches to
Gaussian process calculations. For example when using approximations based on sparse Gaussian
processes with pseudo-inputs (Snelson and Ghahramani, 2006) which iscalled the FITC approx-
imation in the framework of Quinonero-Candela and Rasmussen (2005) the predicted values are
calculated using

ŷ∗FITC = K∗
1(λ2K11+KT

1 (Λ+ I)−1K1)
−1KT

1 (Λ+ I)−1y.

where

Λ = diag(K−K1K−1
11 KT

1 )/λ2.

Our results suggest that it may be more accurate to carry out these calculations using a QR factor-

ization of

(
DK1

λVT
11

)
whereD = (Λ+ I)−1/2 rather than, for example, using a Cholesky factorization

of λ2K11+KT
1 (Λ+ I)−1K1.
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To summarize our results, we have presented different implementations of thesubset of re-
gressors method for solving, approximately, the Gaussian process equations for prediction. An
implementation of the subset of regressors method which uses the normal equations is the fastest
approach but also can have poor numerical stability and unacceptable large growth of computer
arithmetic errors. An implementation using orthogonal factorization is somewhatslower but in
principle has better numerical stability properties. A third approach, which we call the V method,
is intermediate between these other two approaches in terms of accuracy andstability. We can
use the partial Cholesky factorization to select the active set prior to implementation of any of the
above methods. This also will tend to reduce the growth of computer arithmetic errors and can, in
some cases, improve the accuracy of the predictions. All of these implementations require 0(nm2)
operations wheren is the number of data points in the training set andm is the size of the ac-
tive set or the rank of the low rank approximation used. In this sense all these implementations
are efficient and can be much faster than implementation of the full Gaussian process equations.
Finally, we have illustrated these result with an important practical application—redshift predic-
tion from broadband spectral measurements. Code implementing our algorithmsis available at
http://dashlink.arc.nasa.gov/algorithm/stableGP .
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Appendix A. Numerical Stability of SR-VP

Here we explain why, even though there is a potential numerical instability in SR-V, as illustrated
in Example 2, this difficulty cannot occur with the SR-VP method for small problems and is very
unlikely to occur for larger problems from real world applications.

Let P be then× n permutation matrix determined by the partial Cholesky factorization with
pivoting applied toK, let K̃ = PTKP and letK̃1 be the firstm columns ofK̃. In the SR-VP method
we apply Equations (14)-(16) tõK andK̃1 rather thanK andK1.

We will begin by considering the special case whereλ = 0 and later consider the more general
case. In the case thatλ = 0 the least square problem (9), withK1 replaced byK̃1 since we are
incorporating pivoting, is equivalent to

min
x

||K̃1x−y||.

and, by (15), we have
x = V−T

11 (VTV)−1VTy. (34)

whereK̃1 = VVT
11. There is a potential concern in using (34) since to constructx the linear system

of equations
(VTV)z= VTy

must be solved. FormingVTV squares the condition number ofV which, potentially could lead to
the introduction of undesirable computer arithmetic errors. However we will argue that the matrix
B = VTV is diagonally equivalent to a matrix that is guaranteed to be well conditioned for small
problems and, in practice, is almost always well conditioned for larger problems. This will limit the
growth of computer arithmetic errors. We should add that without pivoting onecannot prove such
results, as is illustrated by Example 2.

Now V is formed by a partial Cholesky factorization with pivoting of the symmetric positive
semidefinite matrixK. Since pivoting is included in the partial Cholesky factorization of the SPS
matrix it follows, for eachi = 1, . . . ,m, that theith diagonal entry of̃K1 is at least as large in magni-
tude as any off diagonal entry in rowi or columni of K̃1 (Trefethen and Bau III, 1997, p. 176) and
that the lower trapezoidal matrixV has the property that, for eachi = 1, . . . ,m, theith diagonal entry
in V is at least as large in magnitude as any entry in columni (Higham, 2002, p. 202). Therefore
we can writeV asV = LD whereD is anm×mdiagonal matrix andL is ann×m lower trapezoidal
matrix with all entries one or less in magnitude and with ones on the diagonal. Indeed this matrixL
is identical to the lower trapezoidal matrix produced if Gaussian elimination with complete pivoting
is applied toK̃1 (Higham, 2002, p. 202). Also since the pivoting has already been appliedin form-
ing K̃1 Gaussian elimination with complete pivoting will not pivot any entries inK̃1 and this implies
that Gaussian with partial pivoting will not pivot any entries inK̃1 and will produce the same lower
trapezoidal factorL. Now it follows from Higham (2002, p. 148) that

cond(L) ≤
√

nm2m−1

and therefore forn andm small, as in Example 2,L is well conditioned. More generally, according
to Björck (1996, p. 73), if partial pivoting is used in the factorization ofK̃1 thenL is usually well
conditioned and, indeed, the discussion in Trefethen and Bau III (1997, p. 169) indicates that,
for matrices from applications and for random matricesK̃1, the matrixL is almost always well
conditioned, in the sense, for example, that cond(L) is far from being exponentially large.
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ThusV is a diagonal rescaling of a matrixL that is well conditioned in practice. Now define
U = DVT

11. It then follows from (34) that

x = U−1(LTL)−1LTy. (35)

Equation (35) is precisely the Peters-Wilkinson method (Peters and Wilkinson,1970 and Bj̈orck,
1996, p. 73) to the least square problem (34). SinceL is usually well conditioned then the calculation
of (LTL)−1LTy can be computed without substantial loss of accuracy and the calculation ofx using
(35) is more stable than using the normal equation solution to (34) (Björck, 1996, p. 73).

The SR-VP method uses (34) rather that (35). However, sinceV is a diagonal rescaling ofL and
U is a diagonal rescaling ofVT

11 the SR-VP method will also have good numerical stability properties
in practice. To demonstrate this we can writeV = LD1D2 where the entries of the diagonal matrixD1

are between 1 and 2 and where entries inD2 are exact powers of 2. SinceL will be well conditioned
in practice then so isW = LD1 (since cond(LD1) ≤ cond(L)cond(D1) ≤ 2 cond(L)). Now, by (34),
we have

x = (D2V11)
−T(WTW)−1WTy. (36)

SinceW is well conditioned in practice it follows, for the same reasons that (35) hasgood numerical
stability, that (36) will have good numerical stability properties.

To finish the analysis of numerical stability of the SR-VP method in the case thatλ = 0 note
that sinceD2 has entries that are exact powers of 2, it follows by the discussion in Higham (2002,
p. 200) and Forsythe and Moler (1967, 37-39), for any computer using base 2 computer arithmetic,
that thex calculated by (36) will be precisely the same, even in floating point arithmetic (as long as
there is no overflow or underflow), as thex calculated by (34). Therefore we may conclude that in
practicex calculated when using the SR-VP method will have good numerical stability properties
and the SR-VP method will usually have smaller computer arithmetic errors than willthe SR-N or
SR-NP methods.

To consider the case thatλ 6= 0 we note that in this case the condition number ofB= (λ2I +VTV)
will be important in solving

(λ2I +VTV)z= VTy.

However we have

Theorem 3 For anyλ ≥ 0, cond(λ2I +VTV) ≤ cond(VTV).

Proof If VTV has eigenvaluesα1 ≥ α2 ≥ . . . ≥ αm ≥ 0 then the eigenvalues of(λ2I +VTV) are
(λ2 + αi), i = 1, . . . ,m. Thereforecond(VTV) = α1/αm andcond(λ2I +VTV) = (α1 + λ2)/(αm+
λ2). However it follows easily thatα1/αm ≥ (α1 +λ2)/(αm+λ2).

Sincecond(λ2I +VTV) ≤ cond(VTV) we expect that solving(λ2I +VTV)z= VTy with λ 6= 0
will be more accurate than solving this equation withλ = 0. Since we have argued that the error
growth in solving this equation forλ = 0 should be limited we expect that this should also be true
whenλ 6= 0.
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