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Abstract

The use of Gaussian processes can be an effective appropiddtotion in a supervised learning
environment. For large data sets, the standard Gaussiaegz@pproach requires solving very
large systems of linear equations and approximations greéresl for the calculations to be practi-
cal. We will focus on the subset of regressors approximagohnique. We will demonstrate that
there can be numerical instabilities in a well known impletagon of the technique. We discuss
alternate implementations that have better numericailgyatroperties and can lead to better pre-
dictions. Our results will be illustrated by looking at arpéigation involving prediction of galaxy
redshift from broadband spectrum data.

Keywords: Gaussian processes, low rank approximations, numerighilisf, photometric red-
shift, subset of regressors method

1. Introduction

The use of Gaussian processes can be an effective approachlitiprein a supervised learning
environment. For large data sets, the standard Gaussian processcdymeauires solving very large
systems of linear equations and approximations are required for the tloale be practical. We
will focus on the subset of regressors technique which involves lowapproximations. The goal
of the paper is to describe techniques that are fast—requdimgr?) operations whera is the
number of data points available for training amds the rank of a low rank approximation—and
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have good numerical stability properties in the sense that the growth of tengrithmetic errors
is limited.

The paper begins with a review of Gaussian processes and the stibsgtessors approach.
We then show that implementation of the subset of regressors method usmgl mguations can
be inaccurate due to computer arithmetic errors. A key contribution of ther pa@ discussion
of alternative implementations of the subset of regressors techniqueatiatrnproved numerical
stability. Another valuable contribution of the paper is a discussion of hgatipg can be incor-
porated in the subset of regressors approach to further enhamezioal stability. We discuss the
algorithm of Lucas (2004, pp. 4-5) for construction of a partial CHoldéactorization with pivoting
and emphasize that with this algorithm the flop count, including subset selectitre subset of
regressors calculations@(nn?).

In Section 2 we provide background about using Gaussian prodestedlitate prediction. In
Section 3 we discuss how low rank approximations lead to the subset eksegs approach. In
Section 4 we describe why a commonly used implementation of this technique nfey fsorm
numerical instabilities and in Section 5 we propose two alternative implementatairtsatre better
numerical stability properties. In Section 6 we address the subset selpotiolem and indicate
that a solution to this problem can enhance numerical stability. In Section 7 wesdisools that
aid in the choice of rank in the low rank approximation. In Section 8 we illustratehie numerical
stability issues addressed in Section 4 can lead to unacceptably large gf@ethputer arithmetic
errors in an important application involving prediction of galaxy redshiftrforoadband spectrum
data. Our alternative implementations of the subset of regressors metirodime these difficulties.
Also in Section 8 we discuss code, availablenti://dashlink.arc.nasa.gov/algorithm/
stableGP , that implements our ideas. Finally, in Section 9 we summarize our results.

2. Gaussian Processes

Supervised learning is the problem of learning input-output mappings asipgical data. We will
assume that a training data set is known consistingoft d matrix X of input measurements and a
n by 1 vectory of output or target values. The task is to use the training data set to deveiodel
that can be used to make prediction with new data. We will assume the newalkgd,the testing
data, is contained in am* x d matrix X* of inputs. Then* x 1 vectory* will represent the target
values corresponding %*. The goal is to predict the value gf givenX, y, andX*.

In the Gaussian process approach the predictigh imivolves selection of a covariance function
k(x,X'), wherex andx’ are vectors witld components. It is required that the covariance function be
positive semidefinite (Rasmussen and Williams, 2006, p. 80) which implies thaktheovariance
matrix K with entriesKi; = k(x;, xj) wherex; andx; are rows ofX is symmetric positive semidefinite
(SPS), so that' Kv > 0 for anyn x 1 real column vectov. The covariance function can be used to
constructk and also ther* by n cross covariance matrik* whereKj; = k(X’", xj) wherex' is the
it" row of X*. The predictiory* for y* is given by the Gaussian processes equation (Rasmussen and
Williams, 2006, p. 17):

7 =K (NI +K) 1y, 1)
The parametex in this equation represents the noise in the measurementaf, in practice, it is
often selected to improve the quality of the model (Rasmussen and Williams,. 2006)

It is often not clear how to choose the covariance funckionhere exist many different covari-
ance functions that apply broadly to many cases. Potential covariamciofu choices include the
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squared exponential (sometimes called the radial basis function), Meagamal quadratic, neural
network, polynomial or other covariance functions (Rasmussen and Wi|l20@6, pp. 79-102).
Most of these covariance functions contain free parameters that néedselected. Such param-
eters and\ in (1) are called hyperparameters. We will not focus on the choice ofvariemce
function or alternative methods for selection of hyperparameters in thes.playthe examples dis-
cussed in Section 8 we tried out a variety of covariance functions ancieglée one that provided
the best predictions. Hyperparameters were selected using the Matlizie rminimize (Rasmussen
and Williams, 2006, pp. 112-116, 221) which finds a (local) maximum of theyimairlikelihood
function calculated using the training set data.

We should mention that the choice of the hyperparametan affect the numerical stability of
the Gaussian process calculations. Generally larger valiekafl to reduced computer arithmetic
errors but a large value @f may be a poor theoretical choice—note tffat—~ 0 asA — «. One
needs to select a value afthat balances such competing errors. The choicg wf Gaussian
processes is closely related to the parameter choice in ridge regressiandtatistics literature
(Montgomery et al., 2006, pp. 344-355) and in the literature on regutemzéHansen, 1998, pp.
175-208). As mentioned above we select hyperparameters, incldirging the routine minimize
(Rasmussen and Williams, 2006, pp. 112-116, 221). This techniquesdiovkll for the practical
example presented in Section 8 when used with our algorithms with improved icahstability.

We should note that Gaussian process approach also leads to an efprafiche covariance
matrix for the predictions in (1). If the* x n* matrixK** has entrie; = k(xi*,x]-‘) then (Rasmussen
and Williams, 2006, pp. 79-102):

C=K"™ —K*(\l +K)"K*T, (2)

The superscript T indicates transpose. The pointwise variance of ¢décfions is diadl), the
diagonal of then* x n* matrixC.

3. Low Rank Approximation: The Subset of Regressors Method

In (1) the matrix(A?l 4 K) is ann by n matrix that, in general, is dense (that is has few zero entries).
Therefore for largen, for examplen > 10000, it is not practical to solve (1) since the memory
required to storé is O(n?) and the number of floating point operations required to solve (1) is
O(n). Therefore for larga it is useful to develop approximate solutions to (1).

To do this, for somen < n, we can partition the matricés andK* as follows:

_ (Kur K2\ (o s
K_(K21 K22>_(K1 Ka), K* = (Ki K3). @)

HereKiiis mxm, Kapis (n—m) xm, Kip = KZT1 ismx (n—m), Kxzis (n—m) x (n—m), Ky is
nxm, Kz isnx (n—m), Kf isn* x mandK; isn* x (n—m). Next we approximat& andK* using

K 22K = KKK 4)
and
K* = K* = K{K{'K{
and in (1) we replac& with K andK* with K*. Therefore

v 2y =K (A2 +K)ly=
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KK KT (V1 4+ KK KT ) "ty =
KiK (A + KKK H K]y, so that
Y = Ki (A2Kyg + KT Ky) K]y, (5)

Equation (5) is called the subset of regressors method (Rasmusserilbah$V2006, p. 176)
and was proposed, for example, in Wahba (1990, p. 98) and PoggiGiamsi (1990, p. 1489). As
we discuss in the next section the subscript N stands for normal equafienfer to use of (5) as
the SR-N approach.

If m<< nthen (5) is substantially more efficient than (1). For langde leading order term
in the operation count for the calculations in (5nist flops or floating point operations (where a
floating point operation is either an addition, subtraction, multiplication or dnjsiwhereas the
calculations in (1) require approximately®3 flops. Ifn= 180 000 andn= 500, as in an example
discussed later, the solution to (1) requires approximatetyl8'® flops which is five order of
magnitudes greater than the approximately¥0'° flops required to solve (5). Furthermore, to use
(1) one needs to calculate afl + nn* elements oK andK* whereas (5) requires that one calculate
only thenm-+ n*melements irk; andKj. This also improves the efficiency of the calculations and
will reduce the memory requirements dramatically.

We should add that if in Equation (2) we use the approximations (4), (3) and

K™ 2 K™ = KKK T

then, in (2) replacing with K, K* with K*, K** with K** and using algebra similar to that used in
deriving (5), it follows that

C 2 Cy = A2KF (N%Kyg + KT Ky) 71K T (6)

For an alternate derh/ation of (6) see Rasmussen and Williams (2006,6). A¥ko diagC) =
diagCy) so that diagCn) provides approximations for the variance of the predictions.

4. Numerical Instability

The sensitivity of a problem measures the growth of errors in the ansvibe tproblem relative
to perturbations in the initial data to the problem, assuming that that there aneans i@ the
solution other than the errors in the initial data. A particular algorithm implementswjugdion to
the problem is numerically stable if the error in the answer calculated by thethlgaising finite
precision arithmetic is closely related (a modest multiple of) the error predigtélaebsensitivity
of the problem. An algorithm is unstable if the error in the answer calculatateébglgorithm is
substantially greater than the error predicted by the sensitivity of the pnoble

A straightforward implementation for the subset of regressors approximadiag (5) has a po-
tential numerical instability. To see this note that siKcis SPS it follows that then x m submatrix
K1; is also. Therefore we can factor the matiy with a Cholesky factorization (Golub and Van
Loan, 1996, p. 148)

K1z = Vi1Vyy (7)
whereVy; is anm x mlower triangular matrix. Now let
_( Kt (Y
A_<)\V1T1> andb—<o>, (8)
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where 0 is amx 1 zero vectorA is an(n-+ m) x mmatrix andb is a(n+m) x 1 vector. Consider
the least square problem:
min||Ax—b| ©)

where the norm is the usual Euclidean norm. The normal equations solGidunaand Van Loan,
1996, p. 237) to this least squares problemis (ATA)~1ATb = (A2v;1V]]| + KT Ky) K]y and so
by (7)

XN = (A2Kq1+ K Kp) K] y. (10)
Therefore the solutiogiy, presented in (5) can also be written
YN = Kixn. (11)

The subscript N indicates the use of the normal equations solution to (8).

The potential difficulty with the above solution is that the intermediate reglik the solution
to a least squares problem using the normal equation. It is well knownhthatse of the normal
equation can, in some cases, introduce numerical instabilities and can bedasste than alterna-
tive approaches. As discussed in Golub and Van Loan (1996, p2236the sensitivity of the least
squares problem (9) is roughly proportional to cohict pscond(A), wherep, s = ||b— Ax|| and
condA) = ||Al|||(ATA)~1AT|| is the condition number oA. The problem with the normal equa-
tions solution to (9) is that the accuracy of the calculated solution is (almoaygjvproportional
to cond’(A), the square of the condition number Af whereas in the case thats is small the
sensitivity of the least squares problem is approximately candTo quote from Golub and Van
Loan (1996, p. 245):

We may conclude that ip_s is small and con@) is large, then the method of
normal equations.. will usually render a least squares solution that is less accurate
than a stable QR approach.

We will discuss use of the stable QR approach and another alternative tormal equations in
the next section.

5. Improving Numerical Stability

The calculation ofjy, as given by (5) is equivalent to the solution to (9) and (11) using the forma
Equations (10). We can reduce the computer arithmetic errors in the calowégig if we develop
algorithms that avoid the use of the normal equations in the solution to (9) Ahd\(Ee will present
two alternative algorithms for solving (9) and (11). We should add that adhehese algorithms
can have better numerical properties than use of (5), all the algorithresrteel in this section are
mathematically (in exact arithmetic) equivalent to (5).

5.1 The Subset of Regressors Using a QR Factorization

We first describe use of the QR factorization to solve (9). In this apprf@olub and Van Loan,
1996, p.239) one first factos= QRwhereQ is an(n+ m) x mmatrix with orthonormal columns
andRis anm x mright triangular matrix. Then

xo=R1Q"b=R!QT ( g ) (12)
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so that
Jo = Kixo = KiR Q" < g > . (13)

With the above algorithry* can still be solved quickly. Assuming that the element&pand
Ki have been calculated, and tmak < n, then the approximate number of operations for the QR
approach is @n¥ flops. Therefore both the QR and normal equations approach reQUime’)
flops.

We should also note that we can use the QR factorization to reduce comptiteresic errors
in the computation of the approximate covariance matrix in (6). If we let

Cor=N(KIR H(KIR YT

then mathematically (in exact arithmet@a andéQR are the same. However, for reasons similar to
those discussed in Section 4, the computer arithmetic err@kg;?dwill usually be smaller than those
in Cy, assuming, for example, th@, is computed using a Cholesky factorizatio\8Ky1 + KJ K;.

We will refer to the subset of regressors method using the QR factorizithe SR-Q method.
We should add that the use of a QR factorization in equations related toi@apsscess calcula-
tions is not new. For example Wahba (1990, p. 136) discusses usingfacf@iRzation for cross
validation calculations.

5.2 The V Method

If we assume th¥14 is nonsingular we can define thex m matrixV:
V =KV, (14)

where the superscriptT indicates inverse transpose. Note that by (7) it follows thas lower

trapezoidal and that = <x“> , whereVa; = K1V " . Substituting<; = V4], and (9) into (10) we
b1
get
xv =V VI +VTV) vTy (15)
so that
W = Kixy =KV " (A1 +VTV) Ty, (16)

We should note that this formulation of the subset of regressors methotingwolt is presented,
for example, in Seeger et al. (2003) and Wahba (1990, p. 136)msesdormula closely related to
(16). We will call the formula (16) foy* the V method. We should note, as will be seen in Section
6.2, that one can calculate V as part of a partial Cholesky factorizatibarrdnan using (14).

We will see in our numerical experiments and the theoretical analysis in Sextibat the
V method is intermediate in terms of growth of computer arithmetic errors betweemotheal
equations and QR approach. Often, but not always, the accuralog ¥fmethod is close to that of
the QR approach.

Assuming that the elements & and K; have been calculated, and tlrat<< n, then the
approximate number of operations for the V methodris® flops—approximatelynn? flops to
formV and anothenn? flops to solve forx, using (15). This is approximately the same as SR-Q
and approximately twice the flop count for the SR-N method.
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We can also compute the approximate covariance matrix with the V method approac
Cv = MKV, T (A2 +VTV) v iK; T

In exact arithmetiéN, CA:QR andév are identical but the computer arithmetic errors are often smaller
in Cy andCqr thanCy.

5.3 Examples lllustrating Stability Results

We present two sets of examples that illustrate some of the above remarks.

Example 1 Let the nx n matrices K be of the form K- UDUT where U is a random orthogo-
nal matrix (Stewart, 1980) and D is a diagonal matrix with diagonal entriez s, > ...s, > 0.
Therefore g, , ..., § are the singular values of K. We will choose a vectoe R", where R is
real n dimensional space, of the formw(é) where xe R™ is a random vector an@ indicates
a zero vector withiln — m) components. We let the target data be Kw. We will also assume for
simplicity thatA = 0.

Due to the structure of w each af;X10), % (12), and ¥ (15) will calculate x exactly in exact
arithmetic. Therefore in finite precision arithmetjg — x||, with X = Xy, Xg or xy will be a measure
of the computer arithmetic errors in the calculation.

We carried out an experiment=a100, m= 50,5 =10 (-V/5 i=1,2 ... .m, and = 1019,
i=m+1,m+2,...,n using a set of one hundred random matrices of this type. For this cfass o
matrices the singular values of K vary between 1 46d'°, condK) = 10*° and condK;) = 10'°.
The results are:

| x =1 w | v | x|
min |[x—x||/|[x]| | 93x 1071 | 51x 107 | 27x 1078
mean||x—x||/||X]| | 9.1x10° [ 3.6x10°® | 1.2x 1077
max |[x—X||/[|X]] | 9.6x101 | 9.9x10° | 45x 107’

Table 1: Min, mean and max erroiss— X||/||x||, for 100 matrices and various methods.

For this set of matricesxand x, have small errors. Howevegphas large errors due to its use
of normal equations.

Example 2 This example will illustrate that, although the V method often greatly improves upo

the stability of the SR-N method, this is not always the caseOFos < 1letC= <lsgs ;g;) let

. £C 10sC 1/3 X
the4d x 4 matrix K= (lOsC 20(I:>,Ietx_ (1/3),W— 8 ,A=0lety=Kw.

Due to the structure of w we again have each\@fx and x, will calculate x exactly in exact
arithmetic. However, in finite precision arithmetic the calculated values wilbeogxact. For this
example for small s the errors in botlyxand x, can be significantly larger than the errors igx
For example if s= 10~* we get the following results:
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| x =] xw | w | x |
| x=x]|/IX| [88x101[21x101[77x10° ]

Table 2: Errorg|x—x||/||x|| for a 4x 4 matrices and various methods.

In Section 6 and Appendix A we will discuss the reason that the V meth@amsrpoorly
in this example and show that the numerical instability illustrated in this exampiebeacured
by interchanging the columns and rows of K appropriately. Also we shoodd that although
difficulties like the one illustrated here are possible for the V method, expetsniige those in
Example 1 suggest that such difficulties are not likely. As we discussctinisé, the method
performed well when we applied it to real world applications.

6. Pivoting and Subset Selection

In Section 5 we discussed low rank approximation&tahich involved the firsim columns of
K. However one can select any subset of the columns to construct anavapproximation. The
choice of these columns or the “active” set is the subset selection problemproblem has been
addressed by, for example, Smola and Bartlett (2001), Seeger d0@3)(Zsato and Opper (2002)
and Fine and Scheinberg (2001). The technique that we will use is theasathat in Fine and
Scheinberg (2001). However we will focus on the effect of the resutthoice of the active set on
the numerical stability of the resulting algorithm. This is a different motivation thamotivations
in the above references.

6.1 The Singular Value Decomposition

To pursue this we will first discuss the singular value decomposition which, dartain sense,
produces an optimal low rank approximatiorkto The singular value decomposition (SVD) of the
symmetric semidefinite matrik produces the factorization

D1 0
K=UDUT = (U; u2)<01 D2> (U Uy’

whereU is ann x n orthogonal matrixD is ann x n diagonal matrix whose diagonal entrigs>

S > ... > s, >0 are the singular values &f, U; isnx m, Uz isn x (n—m), Dy is ann x n diagonal
matrix, andD5 is an(n—m) x (n—m) diagonal matrix. We then can construct the truncated singular
value decomposition (TSVD) low rank approximatiorkto

Ksvp=U1D1U; . (17)

The TSVD approximatiofiKsy p is the best low rank approximation (Golub and Van Loan, 1996, p.
72) toK in the sense that

min ||K - K] = ||K — Ksvpl| = Smi1. (18)
rank(K)=m

Given ann x g matrix A with rankm < min(n,q) we will define (Bprck, 1996, p. 28) the condition
number ofA to be condA) = s;/snw wheres; and sy, are singular values oA. This definition
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generalizes to singular matrices the definition of condition number that weuSedtion 4 (where
A hadmcolumns). It then follows from (17) that

condKsvp) = S1/Sm (19)

wheres; andsy, are singular values df (which are the same as the singular valuel?@fp). Thus
the singular value decomposition provides two desirable properties:

e Equation (18) indicates thatsy o will be close toK, if there exists a rankn approximation
that is close td, and

e Equation (19) limits the condition number K&y p which will limit the growth of computer
arithmetic errors in the use &y p.

However, for largey, it is not practical to calculate the SVD Kfsince the SVD require®(n®) oper-
ations and is much more expensive than the algorithms described in SectiorngeduaeO(nn?)
operations. We would like to construct an approximation that requires@imy?) operations and
that produces low rank approximations with properties related to (18)1&)d (

6.2 Cholesky Factorization with Pivoting

The algorithms describe in Sections 3 and 5 (which are mathematically but metrically identi-
cal) do not satisfy relations related to (18) and (19) as is apparenttfrefollowing example.

Example 3 For the matrix
l1+¢ 1-¢ O
K= 1-¢ 14+¢ O
0 0 1

if we let m= 2 then by (4) and (17) we have

R l+e 1-¢ O R 110
K= 1-¢ 1+¢ O andKsyp=1 1 1 O
0 0O O 0 0 1

so that, for smalg,
[|IK—Ksvpl| =28 << 1= ||K—K]|and
condKsyp) =2 << 1/ = condK).
For this example the low rank approximatidﬁwhas two problems: (1) it does not provide a good
approximation to K even though a good low rank approximation exists griiéZondition number

of K can be arbitrarily large which potentially could lead to a large growth of canep arithmetic
errors.

To overcome the difficulties illustrated in this example we can use a Cholestorifation,
with pivoting, to insure that linearly independent columns and rows apfysar The Cholesky
factorization with pivoting produces a decompostion

PTKP=LL"
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where P is am x n permutation matrix antl is ann x n lower triangular matrix. To produce our low
rank approximations to the Gaussian process equations we do not neetbtadl ofK, rather it is
sufficient to calculate a partial factorization that factors anlgolumns and rows d?"KP. This is

a partial Cholesky factorization with pivoting. If the pivoting is done usiomplete pivoting (that
is the pivoting in the Cholesky factorization is equivalent to using complew@tipty in Gaussian
elimination) then there are a variety of algorithms that determine the factorizétighgm, 2002,
p. 202; Golub and Van Loan, 1996, p. 149; Lucas, 2004, pp. 4d5-ame and Scheinberg, 2001,
p. 255). Here we will summarize the algorithm presented in Lucas (2004443 since it is not
as widely known as the algorithms in Higham (2002, p. 202) and Golub and_¥an (1996, p.
149) and is more efficient in our context. The algorithm below is also the sartgin Fine and
Scheinberg (2001, p. 255) except for the stopping criteria.

Algorithm 1: Algorithm for the partial Cholesky factorization
Data: ann x n symmetric positive semidefinite matri
a stopping tolerancml > 0
the maximum rankmaxrank < n, of the low rank approximation
Result m, the rank of the low rank approximation
ann x mpartial Cholesky factoy
a permutation vectopiv
Note: on completion the firsinrows and columns d?'KP —VVT are
zero, whereP is a permutation matrix witRy, i = 1,i =1,...,n
initialize:
d=Ki,i=1....n
Kmax=max—1,..n(d)
pivi=i,i=1,...,n
m= maxrank
for j = 1to maxrankdo
[dmax7 jmax] = MmaX=j,.n (di)
wherejmax is an index where the max is achieved
if dmax g_(toI)Kmax then

m=j—-1;

exit the algorithm ;
end
if jmax# j then

switch elementg and jmax Of pivandd
fori = j+1:nletu; = element of column jmax of PTKP
switch rowsj and jmax of the currenn x (j — 1) matrixV
end
ij =V dmax
fori=j+1ltondo
Vij = (Ui — Y01 VikVik) / Vi
di=d; —V”2
end
end
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There are two choices of the stopping tolerataighat have been suggested elsewhere. For the
choicetol = 0 the algorithm will continue as long as the factorization determinesthspositive
definite (numerically). This choice @bl is used in LINPACK’s routine xCHDC (Dongarra et al.,
1979) and also by Matlab’s Cholesky factorization chol (which implementscdeSky factorization
without pivoting). The choicéol = n x € wheree is machine precision is suggested in Lucas (2004,
p. 5) and in Higham (2002). The best choicaafwill depend on the application.

There are a number of attractive properties of the partial Choleskyrization.

e The number of floating point operations in the algorithm is approximaeRy— 2m?/3 flops.
The calculations to determine the pivoting require only@flops.

e The algorithm accesses only the diagonal entrig§ ahd elements fronrm columns ofK.

e The storage requirement for the algorithm is approximatéty-+ 2) floating point numbers
plus storage for the integer vectpiv and any storage needed to calculate entriés.in

e The accuracy and condition number of the low rank approximatiod fwoduced by the
algorithm is related to the accuracy and condition number of the low ranlozippation
produced by the singular value decomposition. In particular

Theorem 1 Let the nx m matrix V be the partial Cholesky factor produced by Algorithm 1

and let R
Ke =PVVTPT. (20)
Also letKsyp be the rank m approximation (17) produced by the singular value deasimp
tion. Then
||K—Kpl| < c1]|K—Ksypl| and (21)
condKp) < czcond Ksyp) Where (22)
c1 < (n—m)d™and ¢ < (n—m)4™. (23)

Proof The theorem follows from results in Gu and Eisenstat (1996) for the QR faationz
with pivoting. First we consider a Cholesky factorization, without pivotingk afo that
K = LLT where L is and rx n lower triangular matrix. Let;(A) represent the! singular
value of a matrix A. Then, making use of the singular value decompositfotipws easily
that o;(K) = 0?(L), i = 1,...,n. Consider a QR factorization of'Lwith standard column
pivoting (Golub and Van Loan, 1996, p. 249-250) so that=QR P;. The permutation matrix
P1 produced by this QR factorization will be identical, in exact arithmetic, to the ptation
matrix produced by the Cholesky factorization with pivoting applied to K (Doaget al.,
1979, p. 9.26). In addition, the Cholesky factorization, with pivoting, of KikR = RTR,
assuming the diagonal entries of R are chosen to be nonnegative (Baregal., 1979, p.
9.2). Now we partition the Cholesky factorization:

R, 0\/Ru R
PKP = ( & )( . 12). 24
S (RIz R,/ \ 0 Re )
It follows from Theorem 7.2 in Gu and Eisenstat (1996, p. 865) that
1
Ry) < ¢ L) and <c here @, ca < v/n—m2™M. 25
01(Ra2) < C30m;1(L) omRin) = o ¥ 8,c < (25)
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Now the first m steps of Cholesky factorization, with pivoting, of K will preddentical
results to the m steps of the partial Cholesky factorization described in Algofiti_et

vV RY
V= (V;D and R = (Ri1 Rp2) sothatR = (Rﬁ) . (26)

In the (complete) Cholesky factorization with pivoting of K, after the first msstéphe
algorithm additional pivoting will be restricted to the lastm rows and columns of K P.
Let B be a nx n permutation matrix representing the pivoting in the last m steps in the
algorithm. Then it follows that

PL=PP,Vi1=R{;andR =P V.

Therefore
Kp=PVV'P=PPJVVTPP| =PRIRP/. (27)

By (18), (24), (25), (26) and (27) we can conclude that
[[K — K| = [|RERe2|| = 0% (Re2) < &G 05.4(L) = 1 0mya(K) = c1[|K — Ksyol|-
Also, by (25), (27) and the interlace theoremdi8k, 1996, p. 15)
Om(Kp) = 054(R1) > 0%(Ru1) > 05(L)/ 6 = 0m(K)/ G5 (28)
Next by (27) and the interlace theorem
01(Kp) = 03 (Ry) < 0%(R) = 01(K). (29)
Finally, (19), (28) and (29) imply that

condKp) = 01(Kp) /om(Kp) < c301(K)/0m(K) = cocond Ksyp).

The bounds in (23) on; andc, grow exponentially irmand in principle can be large for larger
values ofm. In practice this appears to be very uncommon. For example the congiamdc, in
(25) are closely related tgwW/|| whereW = RIfRzz (Gu and Eisenstat, 1996, p. 865). Numerical
experiments indicate théV/|| is almost always small in practice (typically less than 10) (Higham,
2002, p. 207 and Higham, 1990). Therefaie= c% andc; = cﬁ will not be large in practice. We
should add that there are choices of the pivot matiites(20) which guarantee bounds opand
cp that are polynomials in andm rather than exponential mas in (23) (Gu and Miranian, 2004).
However algorithms that produce such pivot matrices are more expethsin Algorithm 1 and, in
practice, usually do not lead to an improvement in accuracy.

Prior to applying one of the methods—SR-N, SR-V and SR-Q—from Sec8aasd 5 one
can carry out a partial Cholesky factorization Kfto determine the permutation matix and
apply the algorithms of Sections 3 and 5 using the matticesPTKP, K* = K*P and the vector
y=PTy. If pivoting is used in this manner, we will call the algorithms SR-NP, SR-V& 3R-QP
corresponding, respectively, to the algorithms SR-N, SR-V and SR-Q wtiffieoting.
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Since the algorithms SR-N, SR-V and SR-Q are all mathematically (in exact aticheguiv-
alent, then by (4) in all these algorithms the low rank approximatidg IS)KlKll K1 whereKj is
the firstm columns ofK andKz is the firstm rows ofKy. Therefore the low rank approximation to
K = PKPT would be

Kp = PK1K11K] PT. (30)
We then have

Theorem 2 In exact arithmetic the matricep in (20) and (30) are the same.

Proof LetV be the factor produced by a partial Cholesky factorization, with pivotifl§. Then, as
mentioned in Algorithm 1, the first m columns and rows 9P —V VT are zero. Sinc& = PTKP

it follows thatKy;, = V11V1T1 andK; = VVlTl, where {1 is the mx m leading principle submatrix of
V. Therefore that VV = K;K;'K{ . We conclude PVVPT = PK K ;'K PT. ]

A key conclusion of Theorems 1 and 2 is that for the algorithms SR-NP, BRAd SR-QP which
use pivoting, the low rank approximaticﬁia to K has the desirable properties (21-23) which show
that the accuracy and condition numbeigfis comparable to the accuracy and condition number
of the low rank approximation produced by the singular value decomposifiberefore ifm is
small, difficulties such as those illustrated in Example 3 are not possible sinsenfdlm the
bound(n—m)4™ for ¢; andc; is not large. Furthermore, such difficulties are unlikely for lamge
since, as mentioned earlier, for langethe values ot; andc; are, apparently, not large in practice.

For the algorithm SR-VP one does not need to calcMatsing (14) since, as shown in the proof
of Theorem 2Y is calculated by the partial Cholesky factorization. Using this fact the floating
operation counts of the six algorithms that we have discussed are:

] method| no pivoting | pivoting |

SR-N/SR-NP v 2nn?
SR-V/SR-VP 2nn? 2nn?
SR-Q/SR-QP | 2nn? 3nn?

Table 3: Approximate flop counts, farandm large andh >> m, for various algorithms.

We should note that flop counts are only rough measures of actual rundiincesother factors,
such as the time for memory access or the degree to which code uses Matlalvgs, can be
significant factors. This is discussed further in Section 8.

Also we should note that all the algorithms listed in Table 3 require memo@(fmn) numbers.

Another advantage of the use of pivoting is that if pivoting is included in the Yhotkthen
for small examples such as Example 2 the potential numerical instability illustratexaimple 2
cannot occur. We illustrate this in the next example. In Appendix A we desthe reason that
the SR-VP method is guaranteed to be numerically stable for small problemshgnaumerical
instability is very unlikely for larger real world problems.

Example 4 This example illustrates that if one includes pivoting in the V method then theicame
instability illustrated in Example 2 does not occur in the V method. As in Examiple®< s< 1
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0
£ 10s . £C 10sC 1/3 Xo
letC= <105 200), let the4 x 4 matrix K = (10sC 20(1:)' Now let x= <1/3>, W= ol
X1
A=0lety=Kw.

Due to the structure of w (and since, in this example, a partial Choleskyriaation will move
column 4 of K to the first column &f = PTKP) we again have each of, Xop and x,p will cal-
culate x exactly in exact arithmetic. In finite precision arithmetic the calculasdaes will not be
exact. For this example for small s the errors in botlpand xqp are very small. For example if
s=10"% we get the results in Table 4.

% o[ e | v [ e ]
[ [x=xX[/[[X] |L17x101]26x10 T [9.7x10 |

Table 4: Errorg|x—x||/||x|| for a 4x 4 matrices and various methods.

Note that even with pivoting the error in the normal equations approach gelawith the nor-
mal equations approach the error in the calculated x includes a term ptiopal to concd?(Ky ).
Even with pivoting con%{Kl) can be large enough so the accuracy of the normal equations ap-
proach is poor.

7. Rank Selection

In using low rank approximation the choice of rank will affect the acouEche approximation.
It may be impractical to repeat the computations for a variety of differatksrand it is useful to
have techniques to facilitate determination of the accuracy of a variety olokvapproximations.

We first consider the case that the true target vajtiedrresponding to the testing data are
known. Then ifn* < nthe accuracy of the prediction fgt can be calculated efficiently for all low
rank approximations with rank less than a specified vaiue

To illustrate this we first consider the QR implementation, (12) and (13), ofuhses of re-
gressors method. For tlig+ m) x mmatrix Ain (8) letA = QRwhereQ is an(n+ m) x mmatrix
with orthonormal columns andis anmx mupper triangular matrix and let= RQTb, as in (12)
(where we omit the subscri@ onx to simplify our notation). Then by (13) the predicted values of
y* are

y'=Kix

whereK] is then* x m matrix defined in (3).

Now for somei, 1 <i < m, consider the construction of a prediction §drusing a rank low
rank approximation. LeA consist of the first columns ofA. It then follows from (9), (13) and the
fact that the lastn— i rows ofb andA are zero that the rarikprediction, which we calf®, for y* is
given by solving

miinH,&i— b|| and letting

V*:Ki‘(§> (31)
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whereX eNR‘ and the 0 in (31) indicates a vector wf— i zeros. SinceA = QR it follows that

A= Q( g ) where the 0 here indicat®@s— i rows of zeros. Therefore @ = (the firsti elements

of Q'b) it then follows (Golub and Van Loan, 1996, p. 239) that we can coaistrusing

x=Rlc. (32)

We can use (32) to construct predictions yorfor every low rank approximation of rank less
than or equal tan. To do this we le€ be am x mupper triangular matrix whos& column consists
of the firsti elements of)Tb and is zero otherwise. Lat be then* x m matrix whos&" columns
consists of the prediction fgr using a rank approximation. Then, for the reasons described in the
last paragraph,
Y =K;RIC. (33)

If y*is known (33) can be used to calculate, for example, the root mean suaref the prediction
for y* for all low rank approximations of rank less than or equatto

After the rankmlow rank prediction foy* is constructed, the above calculations req@itan +-
n*m?) floating point operations. Ii* is less tham, this is less than th@(nn?) operations required
to construct the initial rankn prediction. Although we will not present the details here similar
efficiencies are possible when using the normal equations approadh\émtiethod.

If the true valuey* for the test set are not known, one can use the subset of regreggopach
to estimate the knoww values in the training set (by replacikg with Ky in (11), (13) or (16)).
Again one can calculate the accuracies in estimafifgy every low rank approximation of rank
less than a given rark and this can be done relatively efficiently after the initial ramlow rank
approximation is constructed. These accuracies will give some indicatidre o€&lative difference
in using low rank approximations of different ranks.

Finally, we should note that our algorithms provide a limit on the largest rariicimabe used.
For example in SR-NP, SR-VP and SR-QP Algorithm 1 is used to determine lbisetsselection.
Algorithm 1 returns a rankn where the factorization is stopped amadtan be used as the maximum
possible rank. For the SR-V and SR-Q algorithms a Cholesky factorizatidf j0is required
in (7). If Matlab’s Cholesky routine chol is used for this factorization ¢hisran option to stop
the factorization when it is determined th&t; is not positive definite (numerically). The size
of the factor that successfully factors a positive definite portiolKaf sets a limit on the rank
that can be effectively used. Finally, SR-N and SR-NP require solvisygsem of Equations (5)
involving the symmetric semidefinite systevfK;; + K{ K;. A good way to solve this system is to
use Matlab’s chol, which again has an option that can be used to determine enlithi rank that
can be effectively used. As discussed in the next section if these rank éireitsxceeded then the
calculated answers are often dominated by computer arithmetic errorseandtaccurate.

8. Practical Example

In the Sloan Digital Sky Survey (York et al., 2000) broadband u, gzrphotometric measurements
will be made for 100s of million galaxies but only approximately 1 million galaxies veilldhcare-
ful spectroscopic measurements of redshifts. Therefore the estimatredsifift from broadband
photometric measurements is important since it can lead to much better consmahggamation
and evolution of large-scale structured element in cosmological modelsghdSrivastava, 2006).
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We illustrate our earlier remarks by using a training set of 180045 galag#d) with five
measured u, g, I, i, z broadband measurements. The training set consisi80045< 5 matrix
X of broadband measurements and the 180045/ectory with the corresponding redshifts. The
testing set will consist of a 202295 matrix X* of broadband measurements and the 20229

vectory* of redshifts. This data is from the SDSS GOOD data set discussed in \We§raastava
(2006).

To determine a good choice for a covariance function we calculated theezm square (RMS)
error for the predictiory* for y* using the Matern (with parameter= 3/2 and with parameter
v = 5/2), squared exponential, rational quadratic, quadratic and neuwabrkecovariance func-
tions from Rasmussen and Williams (2006, Chap. 4). As mentioned earliezlaaed the hyper-
parameters for each covariance function using the Matlab routine minimizeRasmussen and
Williams (2006, pp. 112-116, 221). The covariance function which peced the smallest RMS
error for the prediction of* was the neural network covariance function (Rasmussen and Williams,
2006, p. 91). For example, for low rank approximations of rank 500 wathtirap resampling runs
(described below) of size 100 the neural network median RMS error.Q28l. The next small-
est median RMS error was .0212 for the Matern covariance functionwwtt8/2 and the largest
median RMS error was .0248 for the quadratic covariance function.efdrerin the experiments
below we will use the neural network covariance function.

To compare, experimentally, the efficiency of our implementations of the sabsegressors
method we choose a training set size of 90023 (consistent with the boatssappling runs de-
scribe below) and low rank approximations of rank= 150 andn= 1500. On a computer with 2.2
GH Core Duo Intel processor we timed the SR-N, SR-V, SR-Q, SR-NR/BRnd SR-QP meth-
ods. On all the calculations in this section that use Algorithm 1 we set the stpgpémanceol to
0. We ran each of the methods with the additional calculations required tardegcthe “history”
of the accuracy of all low rank approximations less than the specified(edthler 150 or 1500) and
also without these extra calculations. The results are summarized in Figure 1.

Run times for rank = 150, n = 90023, n'=20229
10 : : : 30

I o history
8[| [ history

6 |

. |

a 'l | |

0 SR‘—N SI'«;—V ‘ 0 : :

SR-Q SR-NP SR-VP SR-QP

time (sec)
time (sec)
3

=
o

Run times for rank = 1500, n = 90023, n'=20229

5 150F 1 rg 1500
] &
~ 100} 1 ~ 1000
£ £
= 50t IH 1 = 500
o ] ; ] o ; ;
SR-N SR-V SR-Q SR-NP SR-VP SR-QP

Figure 1: Comparison of run times for implementations of the subset of smysesethod.
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As can be seen in Figure 1, without pivoting the normal equations agpie#ee fastest, the QR
factorization the slowest and the V method in between. With pivoting all the metlaéd similar
amounts of time (the V method is slightly faster). The reason that all the methgdiser@bout
the same time when using pivoting is that the code for SR-N, SR-V and SR-@tiswso that
the key calculations are done almost entirely with Matlab primitives whereasnplementation
of the partial Cholesky factorization contains loops written in Matlab code. Miatlab primitives
make use of BLAS-3 (Anderson et al., 1999) routines and will make tafeease of cache memory.
Therefore, even though the big-O operation counts are similar, the pah@ésky factorization
takes longer to run than SR-N, SR-V or SR-Q and the partial Choleskgrization dominates
the run times in the SR-NP, SR-VP and SR-QP code. We should add that thddimties partial
Cholesky factorization would be reduced if a partial Cholesky factorigatiith pivoting could be
implemented using BLAS-3 operations. We are not aware of such an impldmanteinally, we
should note that the calculations required to determine the accuracy of aktiev approximations
adds only a modest amount to the run times.

To determine the accuracy of the algorithms for different choices of tivértgaset we carried
out bootstrap resampling (Efron and Tibshirani, 1993). For each @&saénples we randomly se-
lected half or 90023 of the 180045 galaxies in the original training set sed thhis smaller training
set to predict the redshift for the 20229 galaxies in the testing set. Wedeoed such resam-
pling with replacement as well as without replacement. For SR-N, SR-V RAQ #/e selected the
indices in the active set randomly. Following this we selected the hyperptaenusing the mini-
mize routine in Rasmussen and Williams (2006, pp. 112-116, 221). ForiSBRIVP and SR-QP
the active set was determined by the partial Cholesky factorization withingvoTo illustrate the
variation in the calculated accuracies, after carrying out a bootstramptimg run we sorted the
100 RMS errors in increasing order and plotted these errors verssartiide number. The results
for low rank approximations of rank 1500, using resampling without reteant, are pictured in
Figure 2.

Note that mathematically (in exact arithmetic) SR-N, SR-V and SR-Q will prodimetical
results; as will SR-NP, SR-VP and SR-QP. Therefore the differefluesated in Figure 2 between
SR-N and SR-V or SR-Q and the differences between SR-NP and SR-$R-QP are due to com-
puter arithmetic and, in particular, the numerical instabilities in using a normatieqs approach
to solve the least squares problem (9). Also note that although pivotinggsdhe numerical
instability in using the normal equations approach, still in SR-NP the instabilityideetfor ap-
proximately half of the bootstrap resampling runs. Also we should remarkitb&t predictions
calculated using SR-V and SR-Q are essentially identical—they agree tsasé@n significant
digits in this example—as are th# predictions calculated using SR-VP and SR-QP. Finally we
should note that for this example the methods that avoid normal equation@pd/osng—SR-VP
and SR-QP—are a small amount better than their counterparts, SR-V a@ ®R&t do not use
pivoting.

As mentioned earlier, the paramedein the Gaussian process computations was selected while
optimizing the hyperparameters using the routine minimize from Rasmussen andn&/i(R@06,
pp. 112-116, 221). The values afvaried over a small rangeQ176< A < .0214, for the 100
samples illustrated in Figure 2. For our stable algorithms these valdewefe good values as can
be seen by the accuracy of the results of SR-V, SR-VP, SR-Q andBpigfured in Figures 2, 3
and 4. For SR-N and SR-NP we experimented with a variety of choicasbot did not reliably
achieve accurate predictions for any of our choices.

873



FOSTER WAAGEN, AIJAZ, HURLEY, LUIS, RINSKY, SATYAVOLU , WAY, GAZIS AND SRIVASTAVA

comparison of errors for rank = 1500, n = 90023, n'=20229

0

~ SR-N

%
‘O SR-NP : :

0.028(1 + SR-V and SR-Q s : b
% SR-VP and SR-QP o

0.026 : ; 1
0.024

0.022

RMS errors for testing data

0.02 ¢

0.018 1 1 L L L L L L
0 10 20 30 40 50 60 70 80 90 100

sample number

Figure 2: Bootstrap resampling: Comparison of RMS errors for implemensatibthe subset of
regressors method.

We might also add that we tried other types of resampling. We obtained results $othase
illustrated in Figure 2 when using bootstrap resampling with replacement ana/laésh we choose
a number of galaxies in the sample size other than 90023.

We can also illustrate the ability to efficiently calculate the accuracy of low rppkoximations
lower than a specified rank. For the same runs picture in Figure 2 we dalttitee mean RMS error
of the 100 samples for each rank less than 1500 for each of the six imple¢ioestaf the subset of
regressors method. This is pictured in Figure 3.

As one increases the rank of the low rank approximation the condition nuwhther matrixA in
(9) will tend to increase. This will increase the computer arithmetic errors inaloeilated results.
The ranks where significant computer arithmetic errors arise are illustrafégure 3 by the jumps
in the mean errors calculated for the SR-N and SR-NP methods. The réeks this occurs and
the magnitude of the jumps is dependent on the particular data chosen fots&réy resampling
run and will vary for different bootstrap resampling runs. For the SRw&thod the ranks where
numerical difficulties were first substantial varied between a rank of 46remk of 839. For the
SR-NP method the ranks where numerical difficulties were first substaatia between ranks of
325 and 1479. For the SR-V, SR-Q, SR-VP and SR-QP methods we dahootinter significant
numerical difficulties with these runs and the graphs for these methods dyndethease.

The SR-VP and SR-QP method, which use pivoting, are somewhat maneagethan the
corresponding methods without pivoting after a rank of approximatelyb2@@rior to this SR-V
and SR-Q are more accurate. Our motivation for subset selection usi@hthesky factorization
with pivoting is based on controlling the condition number and improving numesiahility. For
smaller ranks it appears that this choice of the active set is good buptimiad. Finally, we should
note that Figure 3 indicates for the stable methods the mean RMS errorasiecapidly for smaller
ranks but are only slowly decreasing for larger ranks.
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mean RMS errors vs. rank, 100 samples, n = 90023, n* = 20229
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Figure 3: Mean RMS errors versus rank for implementations of the sobsegressors method.

As we mentioned earlier all of our algorithms may limit the rank so that the eféeinvk can be
less than the desired rank. This did not occur on the above runs f&f SR-Q, SR-VP or SR-QP
but did occur for SR-N and SR-NP due to our use of the Cholesky faatan to solve the linear
system (5). It is possible to solve the linear system in (5) using Gaussian aiomninrather than
using a Cholesky factorization, for ranks up to 1500. However the Gkplfactorization in (5)
will fail only if the matrix A%Ky1 + KlT K1 is very ill conditioned. In this case solving the system of
equations in (5) by any method will be prone to large computer arithmetic etratsed, for these
runs, if we used Gaussian elimination to solve (5) for large ranks thesdremame larger than when
we limited the rank as we have described earlier. Also when the Choledkyifation failed in the
solution to (5) we tried perturbink;, a small amount following a suggestion in the code provided

with Rasmussen and Williams (2006). For our runs this did not improve thelatdduresults in a
significant manner.

In Way and Srivastava (2006) there is a comparison of a variety of mefoogredicting red-
shift with data from the SLOAN digital sky survey. The methods compareday sd Srivastava
(2006) include linear regression, quadratic regression, artificialah@etworks (label ANNz in
Figure 4), E-model and Gaussian processes using a quadratic ooeafimction (labeled GP in
Figure 4). In Figure 4 we have compared these methods with our predictsing the SR-VP
and SR-QP implementations of the subset of regressors Gaussianspsogsthod with a neural
network covariance function. Other than the SR-VP and SR-QP predidteresults in Figure 4
are from Way and Srivastava (2006). As seen in Figure 4, in this exasithler SR-VP or SR-QP
provides overall the best predictions. The E-model approach is aisogpod.

We should add that in addition to the data set which was used to generatsuhs ie Figures
1 to 4 we have also carried out experiments using other data sets desoriblagl and Srivastava
(2006) (for example redshift prediction using photometry propertiesditiad to broadband mea-
surements) and using the SARCOS robot arm inverse dynamics (Rasnansk#Yilliams, 2006;
Vijayakumar et al., 2002). For the other redshift data sets significant at@marithmetic errors in
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Figure 4: Bootstrap resampling: comparison of RMS errors for six methigui®dicting redshift.

the predictions were common for the SR-N and SR-NP algorithms. For someelajdor exam-
ple the SARCOS robot arm, computer arithmetic errors were not significaralathe algorithms
worked well. Also we might note that although prediction using Gaussiarepses was more ac-
curate than alternatives approaches in some cases, in other casemtuelEer artificial neural
network approaches provided better accuracy.

Finally, we should note that Matlab code which implements the SR-N, SR-NR/,SR-VP,
SR-Q and SR-QP methods and can produce graphs such as those @sRigund 3 is available at
http://dashlink.arc.nasa.gov/algorithm/stableGP . Our code makes use of the code from
Rasmussen and Williams (2006, p. 221) and the syntax is modeled on thatWedshould also
note that Foster et al. (2008) and Cayco et al. (2006) discuss adtitesdts related to redshift
prediction.

9. Conclusions

An important conclusion of our results is that with the subset of regresguproach to Gaussian
process calculations use of nhormal equations can be unstable and sh@adhe important prac-
tical examples, be avoided. We expect that this principle is also applicabtbaépapproaches to
Gaussian process calculations. For example when using approximatsstwsdrasparse Gaussian
processes with pseudo-inputs (Snelson and Ghahramani, 2006) witigheis the FITC approx-
imation in the framework of Quinonero-Candela and Rasmussen (2005yateted values are
calculated using

Verre = Ki (WPKua+ K] (A+1) 7Ky KT (A+1) 7ty

where
A = diag(K — KiK7'K{ ) /A2,

Our results suggest that it may be more accurate to carry out these tialwilasing a QR factor-

L DK,
ization of (7\VlT1

of )\2K11+ K;ll_— (/\ +1 )_1K1.

) whereD = (A +1 )‘1/2 rather than, for example, using a Cholesky factorization
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To summarize our results, we have presented different implementations stibset of re-
gressors method for solving, approximately, the Gaussian processoeguimr prediction. An
implementation of the subset of regressors method which uses the normatibegus the fastest
approach but also can have poor numerical stability and unacceptaipedeowth of computer
arithmetic errors. An implementation using orthogonal factorization is somesitzaer but in
principle has better numerical stability properties. A third approach, whilkall the V method,
is intermediate between these other two approaches in terms of accurasyahbitity. We can
use the partial Cholesky factorization to select the active set prior to imptatr@nof any of the
above methods. This also will tend to reduce the growth of computer arithmedrs @nd can, in
some cases, improve the accuracy of the predictions. All of these implemastagiguire Onn?)
operations where is the number of data points in the training set ands the size of the ac-
tive set or the rank of the low rank approximation used. In this sense sk tingplementations
are efficient and can be much faster than implementation of the full Gaussieesg equations.
Finally, we have illustrated these result with an important practical applicatiedshift predic-
tion from broadband spectral measurements. Code implementing our algorgtrawailable at
http://dashlink.arc.nasa.gov/algorithm/stableGP
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Appendix A. Numerical Stability of SR-VP

Here we explain why, even though there is a potential numerical instability ¥, 2R illustrated
in Example 2, this difficulty cannot occur with the SR-VP method for small probland is very
unlikely to occur for larger problems from real world applications.

Let P be then x n permutation matrix determined by the partial Cholesky factorization with
pivoting applied tK, let K = PTKP and letK; be the firstm columns ofK. In the SR-VP method
we apply Equations (14)-(16) # andK; rather thark andKj.

We will begin by considering the special case where 0 and later consider the more general
case. In the case that= 0 the least square problem (9), wikh replaced byK; since we are
incorporating pivoting, is equivalent to

mXinHIle—yH.

and, by (15), we have
x=V (VTV) VT (34)

whereK; :VVlTl. There is a potential concern in using (34) since to consitoe linear system
of equations
(VTV)z=VTy

must be solved. Forming™V squares the condition number\éfwhich, potentially could lead to
the introduction of undesirable computer arithmetic errors. However we rgilieathat the matrix
B =VTV is diagonally equivalent to a matrix that is guaranteed to be well conditiorreshiall
problems and, in practice, is almost always well conditioned for largdni@nus. This will limit the
growth of computer arithmetic errors. We should add that without pivotingcaneot prove such
results, as is illustrated by Example 2.

Now V is formed by a partial Cholesky factorization with pivoting of the symmetric passiti
semidefinite matriX<. Since pivoting is included in the partial Cholesky factorization of the SPS
matrix it follows, for each = 1, ..., m, that theit" diagonal entry oK is at least as large in magni-
tude as any off diagonal entry in rovor columni of K; (Trefethen and Bau Ill, 1997, p. 176) and
that the lower trapezoidal matrix has the property that, for eack: 1, ..., m, theit" diagonal entry
inV is at least as large in magnitude as any entry in colugitigham, 2002, p. 202). Therefore
we can writeV asV = LD whereD is anm x mdiagonal matrix andl. is ann x mlower trapezoidal
matrix with all entries one or less in magnitude and with ones on the diagonaédridis matrix.
is identical to the lower trapezoidal matrix produced if Gaussian elimination witiptzie pivoting
is applied toK; (Higham, 2002, p. 202). Also since the pivoting has already been applfedm-
ing Ky Gaussian elimination with complete pivoting will not pivot any entriejrand this implies
that Gaussian with partial pivoting will not pivot any entriesinand will produce the same lower
trapezoidal factot.. Now it follows from Higham (2002, p. 148) that

condL) < /nm2m-1

and therefore fon andm small, as in Example 2, is well conditioned. More generally, according
to Bjorck (1996, p. 73), if partial pivoting is used in the factorizatiorKefthenL is usually well
conditioned and, indeed, the discussion in Trefethen and Bau Ill (1297.69) indicates that,
for matrices from applications and for random matriégs the matrixL is almost always well
conditioned, in the sense, for example, that capd far from being exponentially large.

878



STABLE AND EFFICIENT GAUSSIAN PROCESSCALCULATIONS

ThusV is a diagonal rescaling of a matrixthat is well conditioned in practice. Now define
U = DV;. It then follows from (34) that

x=U"3LTL) L y. (35)

Equation (35) is precisely the Peters-Wilkinson method (Peters and Wilkih®G0, and Bjrck,
1996, p. 73) to the least square problem (34). Sinisausually well conditioned then the calculation
of (LTL) LTy can be computed without substantial loss of accuracy and the calculatiarsify
(35) is more stable than using the normal equation solution to (3&y¢Bj 1996, p. 73).

The SR-VP method uses (34) rather that (35). However, sirise diagonal rescaling af and
U is a diagonal rescaling MlTl the SR-VP method will also have good numerical stability properties
in practice. To demonstrate this we can wxite- LD, D, where the entries of the diagonal matiix
are between 1 and 2 and where entrieBjrare exact powers of 2. Sintewill be well conditioned
in practice then so '/ = LD; (since condLD;) < condL)condD;) < 2 condL)). Now, by (34),
we have

x= (DaVy1) T(WTW)~wTy,. (36)

SinceW is well conditioned in practice it follows, for the same reasons that (35ytad numerical
stability, that (36) will have good numerical stability properties.

To finish the analysis of numerical stability of the SR-VP method in the case\thad note
that sinceD, has entries that are exact powers of 2, it follows by the discussion inaHigR002,
p. 200) and Forsythe and Moler (1967, 37-39), for any computegusse 2 computer arithmetic,
that thex calculated by (36) will be precisely the same, even in floating point arithmetiogg as
there is no overflow or underflow), as thealculated by (34). Therefore we may conclude that in
practicex calculated when using the SR-VP method will have good numerical stabilityefrep
and the SR-VP method will usually have smaller computer arithmetic errors thatne/R-N or
SR-NP methods.

To consider the case thiatz 0 we note that in this case the condition numbeB ef (A2l +VTV)
will be important in solving

(A2 +VTV)z=VTy.

However we have
Theorem 3 For any\ > 0, condA?l +VTV) < condVTV).

Proof If VTV has eigenvalues; > 0, > ... > ap > 0 then the eigenvalues ¢k%l +VTV) are
(A2 +ai),i=1,...,m ThereforecondV'V) = a;/am andcondA?l +VTV) = (a1 +A?)/(am -+
A?). However it follows easily thatiy /am > (a1 +A?)/(am-+A2). [ |

Sincecond A2l +VTV) < condVTV) we expect that solving\?l +VTV)z=VTywith A # 0
will be more accurate than solving this equation wite- 0. Since we have argued that the error
growth in solving this equation fox = 0 should be limited we expect that this should also be true
whenA #£ 0.
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