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We present a method for training support vector machine (pWaded classification systems for
combination with other classification systems designedHersame task. Ideally, a new system
should be designed such that, when combined with exististesys, the resulting performance is
optimized. We present a simple model for this problem andthisaunderstanding gained from
this analysis to propose a method to achieve better coniinperformance when training SVM
systems. We include a regularization term in the SVM obyecfiinction that aims to reduce
the average class-conditional covariance between thétirgsacores and the scores produced by
the existing systems, introducing a trade-off between sestariance and the system’s individual
performance. That is, the new system “takes one for the tetatlihg somewhat short of its best
possible performance in order to increase the diversithefansemble. We report results on the
NIST 2005 and 2006 speaker recognition evaluations (SRIES) ¥ariety of subsystems. We show
a gain of 19% on the equal error rate (EER) of a combinationoaf systems when applying
the proposed method with respect to the performance olotauhen the four systems are trained
independently of each other.
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1. Introduction

The work presented in this paper is motivated by our work on the task akspeerification. In the
last decade, many successful speaker verification systems haveoretteslcombination of various
component systems to achieve superior performance. In many cages;eaeer et al. (2006) and
Brummer et al. (2007), the combination leads to significant improvements. \ldowhere are
cases in which combining several comparably good systems does nibimésyprovements over
the single best system (Reynolds et al., 2005). Most of these systefompéne combination of
information sources at the score lév@Reynolds et al., 2003; Ferrer et al., 2006; Brummer et al.,
2007; Huenupn et al., 2007; Dehak et al., 2007): systems that model each type afefesing a
certain model are independently developed and their scores are cormibpreduce the final score
and the decision. When training each individual system, all other systeaitalde for combination
are usually ignored while, in fact, the ultimate goal of the systems is to perfe@lhinccombination
with all the other systems and not necessarily individually.

It is easy to see that system combination at the score level is not guatdatgere strictly
better performance than those of the individual systems being combintte éxtreme case, if all
classifiers were generating exactly the same output for each samplentb@aed classifier would
not have better performance than the individual ones, independeritig @bmbination procedure
used. Intuitively, what we wish is to have enough diversity across mysgich that classifiers
contribute complementary information leading to a better final decision whémsgsire combined.
System diversity has been the subject of a large amount of reseamteint years, with two main
goals: defining a measure of diversity that can predict the performainttee combination, and
designing procedures for achieving diversity in an ensemble of sysWitisthe goal of motivating
and placing our work in perspective, in the next section we presentasdi®n focused on existing
techniques for measuring and designing for system diversity.

The contributions of this paper are: (1) the development of a simple maditlé@ombination
problem for a binary classification task under the assumption that the diginimi scores for each
of the classes is Gaussian, and (2) a procedure for improving divansily ensemble including
SVM classifiers. We find an upper bound on the EER of an ensemble caiobiaad show that,
for a two-system combination, this upper bound is a function of the perfurenaf the individ-
ual systems and the correlation coefficient obtained from the averagge adaditional covariance
matrix of the scores from the two systems. Based on this result, we propmsectasion of a
regularization term in the SVM objective function when training a new SVMesysor combina-
tion with a set of preexisting systems, which introduces a trade-off betthegrerformance of the
resulting model and its average class-conditional covariance with thgigtieg systems. Ferrer
et al. (2008b) presented empirical results using the proposed methaa] wéeextend this previous
work by developing a framework under which to understand the methogjd=ring the cases of
multiple preexisting systems and nonlinear kernels, and including new resuimalated and on
the NIST 2005 and 2006 speaker-verification evaluation data. Resalistbat a gain of 19% on
EER can be achieved when using the proposed method with respect tetits obtained when
systems are trained without knowledge of the others.

The paper is organized as follows. Section 2 gives a review of the ralesedrch. Section
3 describes a simple model for the system combination problem under c@atigide Using the

1. The termscoreis commonly used in the speaker verification community to refer to the naaheutput of a system,
which may or may not be a probability measure.
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conclusions obtained from this development, Section 4 proposes a methaxchfeving improved
combination performance. In Sections 5 and 6 we present results on sichditeand speaker
verification data, respectively. Section 7 presents our conclusions.

2. Multiple Classifier Systems

In this section we review the literature related to our work, motivating and puittipgrspective the
research presented in the rest of the paper.

2.1 Measuring Diversity

For regression problems, the measures of ensemble diversity are watged. Krogh and Vedelsby
(1995) showed that the quadratic error for a certain input value ofgexoccombination of estima-
tors trained on a single data set is guaranteed to be less than or equal teigined average
quadratic error of the component estimators. The difference betwedwahis given by an am-
biguity term that measures the variability among ensemble members for the paitipuia On a
related development, Ueda and Nakano (1996) give a decompositionroktresquare error of an
ensemble classifier into three terms: average bias, variance and cogavfahe ensemble mem-
bers. One would then wish to reduce the covariance term without affettingias and variance
terms by reducing the correlation between the members. This term can, indametgative.

Classification problems where ensemble members output an estimate of théopqstdra-
bilities of the classes (as opposed to just the estimated label) can also beeocedsiegression
problems. Tumer and Ghosh (1996) and, later, Fumera and Roli (2085 a framework for
studying this case. They consider the probability of error as the meatperformance. If the
actual posterior probabilities of the classes given the features wevenkitioe probability of error
could be minimized by choosing, for each value of the input features, tee that has the high-
est posterior. This rule determines a boundary between the regione wéaehn class is predicted
and results in a certain probability of error that is calledBages error In practice, the posterior
probabilities are not known. Tumer and Ghosh assume an additive erdal mbere the individual
classifiers output, for each clasg, a function of the featuressuch thatf(x) = P(wi|x) 4 &x(X).
The predictions are now made based on the output of the classifier indtdealaxtual posterior
probabilities. Tumer and Ghosh consider the case in which the effecirgf thee predictions is
a shift in the boundary by a certain amoilmtThis results in the probability of error being larger
than the Bayes error by a certain amount they calktthded error An expression for the expected
value of the added error is computed assuming thatitlaee random variables with a certain mean
and variance independent of the valuexpthat they are uncorrelated across classes, thdi the
small such that first-order approximations can be used and that theipogtebabilities are mono-
tonic around the decision boundaries. Using the expression derivéitefadded error of a single
classifier, they derive the corresponding expression for a cladsifieed by the average estimates
obtained from a set dN individual classifiers. Their final expression depends monotonically on
the pairwise correlations between the error functions of the individuakifiars, supporting the
intuition that good combination performance can be achieved if the clasifierg combined have
complementary information such that when one classifier makes a mistake, gmnelassifier has
the right answer. Fumera and Roli generalize Tumer and Ghosh'’s wadkdwing the combination
to be a weighted average instead of simple average and arrive at an optimi@ablem for the
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combination weights. This problem is solved explicitly for the case of unbiasdduncorrelated
estimation errors.

Two assumptions made by Tumer and Ghosh, as well as Fumera and Rotit evedIrsuited for
the problem of interest in this paper but can be easily replaced for atkemgtions without much
consequence on the theory: the use of the classification error as medqearformance and the
uncorrelatedness of the estimation errors across classes. Classifezatiors usually considered
inappropriate for problems in which the prior probabilities of the classeveng different (as
is the case in most speaker verification applications). For these casés$yumttions are usually
defined where each type of error is assigned a different cost anexpiexted value of the cost
function is used as performance measure. Derivations in Tumer anchGh@86) can be easily
modified to allow for cost functions. The Bayes classifier would now chdlos class for which the
loss is minimized instead of the posterior probability maximized. As for the estimatiorsgthe
assumption of zero correlation can be easily relaxed when only two classesnsidered. In fact,
in our case we can assume that only one of the posteriors is estimated atitethene is calculated
so that the sum is equal to one. In that case, the estimation errors wouklaisto one. Hence,
only one estimation error stays in the derivations and the zero correlasamasion is not needed.

Even though the results described above could be considered enotigatimo for our devel-
opment of the anticorrelation method in Section 4, in the next section we gr@pdiferent de-
velopment that we believe presents an interesting alternative for the thovework. First, we do
not use the additive error model with fixed bias and variance for the fmrspeobability estimates.
In binary problems like speaker verification one can train classifiers thptiba score instead of a
probability. This score can be, for example, the output of a suppotbvvetachine or the logarithm
of the ratio between the class likelihoods. These scores are assumed todtemcally related to
the posterior probability of one of the two classes and, hence, couldsilg eanverted into this
posterior. Nevertheless, in our speaker verification experiments wefband that combining the
scores directly leads to better results than combining the estimated posterarsusihg a linear
combiner. In a combination experiment of all pairs of systems from a s& sydtems, an average
relative gain of 7.6% was found when combining scores versus pospeoibabilities (obtained by
learning a logit mapping of the scores) using linear logistic regressionb@steerformance across
all combinations including any number of systems is obtained when combiningdhessof six
systems and this combination is 12% better than the best combination of postebabiities.
Considering these results, we eliminate the assumption that the output of thifieiass a poste-
rior probability, allowing it to be a general continuous value (score). \Wa tieplace the additive
error assumption with an assumption that the distribution of the scores forckss is Gaussian,
which, as we will see, is a good approximation for most speaker verificatiores’ Finally, we
focus on a different measure of performance, the equal errorwéieh is widely used on binary
classification problems for its simplicity and for being independent of the pliasss. This mea-
sure of performance depends on the overall shape of the postestmalplities and not just on the
difference between them, as is the case for the probability of error oxpiexted cost. Hence, no
simple extension of the Tumer and Ghosh derivations could be made for th&siraesven if we

2. We believe this is the reason for the scores combining better with a lineavimer than the mapped posterior
probabilities since when class distributions are Gaussian, the Bayes elassliiear. Hence, the linear combiner
is a good choice when combining speaker verification scores. Thestaawspproximation, on the other hand, is
not good after the scores have been mapped to posterior probabilitiésgnraalinear combiner on the posterior
probabilities suboptimal.
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were willing to consider the system output to be a probability. Under thesengsions we arrive at
an explicit expression for an upper bound on the optimal EER of the cotignirthat is a function
of the EER of the ensemble members and the pairwise class-conditiondhtions

2.2 Creating Diversity

The work described above, including the development we will show in Se&tialefines ways
of quantifying the diversity in the ensemble and how this diversity affectpénmormance of the
combined classifier under different sets of assumptions, but doesrctiloe ways of achieving
this diversity. Brown et al. (2005a) present a taxonomy of the methodsdating diversity found
in the literature as of 2005. They divide the methods into implicit and explicit, sviraplicit
methods are those that try to create diversity using randomization methabsewplicit methods
do the same by directly taking into account some measure of the diversity befigyed. They
further divide the methods into three groups based on how they affdettimeers to create diversity:
(1) by modifying the starting point in the hypothesis space, (2) by chanbgmget of accessible
hypotheses or, (3) by defining how the hypothesis space is travévieelifying the starting pointin
the hypothesis space is applicable only for learners for whom the fipaithgsis reached depends
on some random initialization component, as is the case for neural netwgvids, on the other
hand, do not fall into this category. Bagging (Breiman, 1996) and bapgfireund and Schapire,
1997) are diversity creation methods of type 2, since each member of skenble is obtained
by changing the training data, resulting in a different set of accessilplethgses. In the case of
bagging, the method is implicit since the training data for each ensemble is ataoskmly from
the original set, while in the case of boosting, the training samples are weighieal training
a new member of the ensemble in a way that ensures diversity, making it Acitexgthod of
diversity creation. Allowing each member of the ensemble to use only a svitfsetures falls into
the type 2 methods (Oza and Tumer, 2001). Finally, type 3 methods are tlavsiréetly aim at
improving diversity by including a term measuring diversity in the objectivefion of the learner.
The negative correlation (NC) learning algorithm is a notable example in ttegag (Liu, 1999;
Rosen, 1996).

The goal of NC Learning is to minimize the squared error of an ensembletagmputed as
the average of the individual outputs in a regression context. This isljoadding a penalty term
in the objective function of each individual neural network forming theeenble. This penalty was
shown (Brown et al., 2005b) to directly control the covariance term in idsgVariance-covariance
trade-off. Zanda et al. (2007) extend the NC learning framework taiieastion problems by rein-
terpreting the Tumer and Ghosh model in a regression context. Our gapnscorrelation method
follows the spirit of the NC learning technique of explicitly creating diversitptigh the modifica-
tion of the learner’s objective function when the learners are SVMs idstEaeural networks.

Much of the work on diversity creation has focused on the generatitangd ensembles, where
the number of classifiers is part of the design choices. The size of teenbiesis in fact another
variable to be optimized. In this paper, we constrain the ensemble to contdaivgetg small num-
ber of systems. These systems are different in nature, using differenbf features and different
modeling methods and can be quite complex. Each of them might have bedopaeMever several
months or years of research. Hence, we do not take the size of thaldesss a variable. The indi-
vidual systems are fixed before hand, and all we are allowed to do safpepnly slightly) modify
the training procedure of one or more of them in order to increase thesijvef the ensemble. The
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speaker verification system described in this paper can, in fact, bedeced as a cascade of two
diversity creation methods. Given an enormous set of highly heterogsrfieatures coming from a
few different sources in the speech signal (for example, prosodipextral information), we train
separate classifiers for each type of feature, perhaps also vargrgpth of classifier used. This
can be seen as a type 2 diversity creation method. The second stagersitglicreation focuses
on making each new classifier added to the ensemble as new as possibtehiele déhis we use
a type 3 diversity creation method, where we add a penalty term in the SVMtivgjdéunction,
which explicitly aims at reducing the correlation between the new classifiethenareexisting en-
semble. The proposed method is shown to be equivalent to defining a negl ket we call the
anticorrelation kernel

Kocsor et al. (2004) introduced a method call®drgin maximizing discriminant analysis
(MMDA) to obtain sucessive, mutually orthogonal, SVMs for a certain feattector. In this
method, presented as a nonparametric extension of linear discriminargiantdg SVM optimiza-
tion problem is modified by adding an orthogonality constraint with respectetovikight vectors
from previous SVMs. The MMDA method can be seen as a particular ddbe one proposed in
this paper when the penalty coefficient is set to infinity. Furthermore, theti@nts used here are
more general, reducing to the ones used in MMDA when all systems in thmblesare SVMs, use
the same input features, and these features have identity within-claggooceamatrices. Kernel-
based methods for ensemble systems have also been used, for examglédia €t al. (2002) and
Lanckriet et al. (2004). Pavlidis et al. compare three methods for comdninaf heterogeneous
information for gene function detection: early, intermediate and late integrdtarly integration
(what we here calfeature-level combinatigrconsists of concatenating the features from the two
different information sources into a single feature vector. Intermediatgratien performs the
combination at the kernel level, and late integration performs the combinatioe kaist stage. This
is what we are callingcore-level combinatiorNo explicit attempt at increasing diversity is made
in the paper. Lanckriet et al. (2004) propose a method for combinimgkelassifiers by learning a
new kernel matrix that is a linear combination of the kernel matrices of thefedassn the ensem-
ble. This method requires prior knowledge of the test data, since instéaatning a function, they
learn the labels on the set of unlabeled samples. This particular scenast@jgticable to speaker
recognition where the speaker models are usually trained before aisaagke is available.

2.3 System Combination

Once a diverse ensemble has been trained, the output of the indivdssifiers must be combined
into a single decision or score. Linear combiners are the most widely useddsdtr fusion of
classifier outputs. In many cases the weights of the linear combination armatestd based on the
classification performance of the classifiers. For a survey of these nsetbeel Kuncheva (2004),
Chapter 5. Obtaining the weights by training a “supra” classifier or comliira¢itakes the output
of the individual classifiers as input is in many cases a better option. Thepraem with this
approach is that using the output of the individual classifiers on the dathfor training them as
training data for the combiner may result in suboptimal performance. Thiestaeneralization
method (Kuncheva, 2004, Chapter 3) can be used in these cases tatgédne training data for the
combiner.

The focus in this paper is on diversity creation rather than on the methadifouse®mbining the
ensemble. Hence, we choose a simple but effective combination methodardupra-classifier
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trained with data generated by the stacked generalization method using logggésgion. Linear
logistic regression was shown in our previous work (Ferrer et al., @0@Bperform comparably
to or better than other linear and nonlinear classifiers for the combinatiopeaksr verification

scores, and it is one of the most commonly used methods for combining spedkeation systems

(Brummer et al., 2007). Other common combination procedures used irespeaification include

neural networks (Reynolds et al., 2003; Ferrer et al., 2006), stuppctor machines (SVM) (Ferrer
et al., 2006), and weighted summation using empirically determined weightsK@ehh, 2007).

3. A Simple Model for System Combination

Consider a binary classification task with clasges {a,b} for which N separate classifiers are
available. In speaker verification, classorresponds tanpostorandb to true-speaker Classifier
i produces a scord;, which can be thresholded to obtain the final decision. That is, the estimated
classy’is given by
. oa if fi <t
_{ b if fi >t, @)

wheret; is a tunable threshold.

Here, we consider a setup where the scores from the individual otassifie combined into a
single scoref; = f¢(f1,..., fn). This final score is the one that is later thresholded to obtain the es-
timated class for the sample. The goal is then to optimize the performance ofehedimbination,
not that of the individual systems.

In this section we develop a simple model for this problem, which will lead us totaitive
conclusion about what could be done to improve the final performanea waining a new system
for combination with others.

3.1 Mahalanobis Distance as a Surrogate for EER

Consider for now a single scoffe corresponding to a random variabke? A usual way of mea-
suring performance of a score when Equation (1) is used to estimate teotltee samples is
equal error rate (EER), the false acceptance rate when the falskoej@ed false acceptance rates
are equal. In speaker verification, a false acceptance (which we Wikkgg is an impostor trial
accepted by the system as the target speaker, and a false rejegtjpis @ true-speaker trial con-
sidered an impostor trial by the system.

If we make the assumption that the conditional distribution of the scoresdbratass is Gaus-
sian, we can obtain an explicit bound for the EER as a function of the Madlaidistance between
the class-conditional means. Figure 1 shows how to calculate the EER foafieisWe assume that
the class-conditional distribution of the scores is given by

F|Y=y~nN(1y,07), fory=ab,

whereY is the random variable corresponding to the trial’'s class. We furthemessuithout loss
of generality, thafy, > s, so that (1) is the best way of assigning the labels for a given threshold.

3. Throughout the paper we will adopt the notation of using lower caseddtethe samples of the random variable
noted by the corresponding capital letter.
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Ha t Mo score f

Figure 1: EER calculation when the class-conditional distributions aresizenshe EER is equal
to e Whent is chosen such thag, = eya.

With these assumptions we can compeyg andey , for a certain value of the threshdics

eaplt) = cp(tos‘b) @
) = 1-0('oH). ©

where@is the cumulative distribution function of the standard normal distribufig(©, 1).
The EER is given by,5(t*) whent* is chosen such thats(t*) = eqp(t*). In the appendix we
prove the following upper bound on the EER:
1o

EER= eya(t") = €ap(t) < @(—5), (4)

wheredu = W, — W, ando is any value that satisfies > (04 + 0p)/2. Equality is achieved for
0 = (04 + 0p)/2, but this value obr does not result in a nice expression later on, when we want to
use it to optimize the combination performance. On the other hand,

0=,/(0%+02)/2

also satisfies the inequality and does result in a nice expression that Waeramse. In the rest of

the paper we will use
af? — 252
0%+ o}

(5)

as a surrogate for the EER of the systef. is the Mahalanobis distance between two Gaussian
distributions with distance between the me&psnd variancgo? + 0%)/2. Using (4), we get that

EER< (p(—mz/[).
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Figure 2: Actual EER for a set of 37 systems versus the upper bouhthanexact value under
Gaussian assumptions.

Our strategy in the remainder of the paper will be to reduce the value of ffer bpund, with
the hope that this will result in a reduction of the EER. Sipde monotonically increasing in its
argument, decreasing the value-ef/ (or increasing the value of/) will decrease the value of the
upper bound.

Figure 2 shows a scatter plot of the actual EER for a set of 37 diffémdiMidual systems us-
ing different features or different modeling techniques (some of thesteras are described by
Ferrer et al. (2006)) versus the upper bound on the EER understaauassumption given by

®(—du//2(02+0?)) and the exact value of the EER, also under Gaussian assumption, given b

@(—0p/(0a+0p)). We can see that the upper bound is tight for high EER values. When tae dif
ence between the class-conditional covariance for both classes igdnigh, in our experiments,
is the case for the better systems), the upper bound becomes looser ivatdbe exact estimation
under the Gaussian assumption performs significantly better in this caseerfiimder of the error
is due to the inaccuracy of the Gaussian assumption. Figure 3 shows thedastiibution of two
of the systems used in this paper compared to their Gaussian approximatiare ¥.ig corresponds
to one of the low EER systems that drifts away from the diagonal in Figuréik &.b corresponds
to a system with EER around 12%. We can clearly see that the Gaussiaxiapgion in this
case is inaccurate, which in turn explains the inaccuracy of the uppediand the exact formula
developed in this section. Interestingly, even when the Gaussian apptmxiriginaccurate, (4)
seems to still hold. Our procedure of trying to minimize this upper bound in the thap the actual
EER will be pushed down would then still be valid.

3.2 Maximum Mahalanobis Distance Combination

Returning to the problem of combining the output of several subsystems sngla score, we use
the results from the previous section and maximize (5) to find the optimal parsnoétde com-
biner. This will result in a simple formula that can predict the performanceet@mbination of
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A ";\\\\,,(, J _ N
-2 0 2 4 6 8 10 12 -2 0 2 4 6 8 10 12
a. UBM-GMM system scores b. SNERF-SVM system scores

Figure 3: Distribution of scores for two individual systems compared to (airssian approxima-
tion.

several subsystems given their individual EERs%6s) and the average class-conditional covari-
ance matrix for the vector of scores. To do this we further assume thaithigigation is performed
with a linear function of the individual scores. This is not a very restiécigsumption for speaker
verification since for this task we have repeatedly found that linear cotntnnarocedures perform
as well (or better) than nonlinear ones (Ferrer et al., 2008a). Thedbthe combined scores as a
function ofN individual scores is then

N

fo= Gifi:th,
2

wherea = (az...ay)! is the vector of weights antl= (f; ... fy)! the vector of individual scores.
We assume that the class-conditional distribution offtkeeis jointly Gaussian. Hence, each of the
individual scores and the combined score satisfy the assumptions madgie\lmis section. The
class-conditional distributions &%, the random variable corresponding to the combined score, are
given by

Fe|Y =y~ Aoy, a'Zya), fory=a,b,
wherepy, = (W1 ... Wyn) is the vector of means arl, = E[(F — ) (F — 1y)'|Y = y] the covariance
matrix for classy for random variablé= corresponding to vectof. We can now computé?
(Equation 5) for the combined score as a function of the parameters

2_ 2(a'pp—a'pa)®  a'AA'a
at> 0 +atZpa at>a

; (6)
whereA = W, — gy and
S =1/2(Za+3p). (7)

We wish to find thea that maximizes this expression. Defife= =¥/2a, wherez/? is a
symmetric matrix square root & (which can be computed from the eigendecompositiolx,of
which exists and can be chosen to be symmetric sthisesymmetric). Replacing this in (6), and
using the Cauchy-Schwarz inequality,
Btzfl/ZMtzfl/ZB ||Atzfl/28||2

BB ~BlP

HAtzfl/ZHZ — AtzflA’

M2 =

IN
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with equality whery 0 =~/2A. Hence, the optimal is a vector in the direction o ~1A.4

Note that we have arrived at the definition of the Mahalanobis distance in teutiipensions
(A'=~1A), which is an intuitive result. We now know that the EER of the combination ofrttie
vidual systems will be at mogt{ —vAt>-1A/2). If we can devise a way of increasiagz 1A, this
upper bound will decrease.

Anderson and Bahadur (1962) consider the problem of finding all dn@issible linear pro-
cedures for classifying into two multivariate normal distributions. They stmta = (t;25 +
tpp) A corresponds to an admissible procedure fortamydty, (that is, no other linear procedure
will have, simultaneously, strictly bettey,, ande,,) as long aga2, + 2y is positive definite.
Unfortunately, the values fdg andt, that correspond to the EER have to be numerically obtained.
No explicit expression is available for the general case. Since ouogeitmere is to obtain a simple
explicit expression for the EER (as a function of the EERs of the indiVvisiggiems and some other
parameters) that we can use to analyze the problem, we have settled tordadrothe EER instead
of using the implicit expression developed by Anderson and Bahadur.

3.3 Analysis for Combination of Two Systems

We now focus on the cagé = 2. In this case, we have that the optintdP (A'>~1A) is given by

2022+ 85011 — 28182012
011022 — 0%2
M2+ MZ — 2p M Mo

= el ®)

M? =

wheregd; is component of vectorA, gjj is componentj of matrix Z, My = 81/,/011 and Mo =
02/+/022 are the Mahalanobis distances for the individual systems, and

P = 012/1/01102. 9

Note thatp is not the correlation between the two systems in the usual sense, Siisceot the
covariance matrix oF, but the average class-conditional covariance.

Let us call the upper bound on the EER{Hat is,e'= @(— M /2). Figure 4 shows some curves
of &, the upper bound on the performance of the combination for two system$jastion ofp. To
create these plots we take two actual systems (the MLLR-SVM and the SISRF-as described
in Section 6.2) and compute the upper bound on the EERs based on thesiadbaagproximation.
We also compute matrix and from therep. This gives a single point in this graph (marked with a
star). We can now varg, keepinge; andé; (the upper bound on the performance of the individual
systems) fixed, to obtain a curve. We can also obtain curves for diffeafires ofe>. These curves
show us the relation between the performance of system 2, the vatugediveen the two systems,
and the performance of their combination. We can see that for this partaetlaf systems, we
could degrade the second system 100% (that is, from 15.6% to 31.3%}ilmebt a gain in the

4. Note that this is the same direction one would obtain with linear discriminatysis (LDA). As mentioned in the
introduction, for the experiments in this paper we will use linear logistic esjpa (LLR) to train the combination
weights. The reason for using LLR instead of LDA, despite the resulirmdan this section, is that the results
in this section are obtained under the assumption of class-conditionasi@aitis \WWhen Gaussianity is not closely
satisfied, LLR is believed to be a safer choice being more robust to oytiestie et al., 2001, Section 4.4). In fact,
a set of initial experiments showed that LLR was significantly better than BAur speaker verification data.
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Figure 4: Left: Curves o&;"(the upper bound on the EER of the combination) for two systems as a
function ofp, for & fixed and various values &,"whereeg denotes the upper bound on
the EER of system Right: Simulated contour plots for the scores of two systems assum-
ing class-conditional distributions are Gaussian with equal covariancéxmisitarginal
distributions are kept fixed for all four figures, orgyis changed. These plots correspond
to four different points in the darker curve from the left plot.

performance of the combination (or at least in the upper bound) overwenget with the original
pair of systems if, at the same time, we were able to decreage ftioen 0.48 to O (this point is
denoted by a diamond in the graph).

At first sight, these curves may seem to go against intuition, since \whieoreases, after
reaching a peak (occurring at the minimumJdi / M, and M,/ M), they go down again. That is,
very high values op result in extremely good combination performance. Similarly, wheuarns
negative, the combination performance improves, reaching zero EER-for 1. All these cases
can be easily understood using contour plots of the scores from twarssy/&be varying values of
p. The right plot of Figure 4 shows four different cases. Here we khe marginal distributions
of the systems fixed and vary onfy which implies that the performance of the two individual
systems stays fixed for the four different plots. That is, the four platsespond to four different
points in a single curve like the ones in the left plot. Furthermore, we set tregiance matrix
between the two systems to be the same for both classes. In this way, théappdr(4) is exact
andp is the within-class correlation (assuming both classes have the same priogan/¢ee that
the separation between the two classes is highly dependent on the valu&lof first plot shows
a typical case, wherp = 0.5. The second plot shows the casepct 0. We can already see
that the overlap between the two classes has been significantly redueadheugh the marginal
distributions have not changed. The third plot shows the case of negatithis implies that both
systems produce errors in a negatively correlated way, which makesitiigr@tion of those two
systems extremely effective at reducing the error rate. The fourth plstréies the case in which
p is larger than the value for which tleg Curve peaks, showing good separation between the two
classes. Perfect classification wigh= 1 is possible only when both classes have exactly the same
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covariance matrix except possibly for a scalar factor (so that the aopitats become parallel lines)
and the mean vectors for both systems are different. This case cardssfma zero value in the
denominator of (8) and a honzero at the numerator.

In practice, if we take pairs of all 37 systems plotted in Figure 2 and computecthalp and
the p at the peak (that ifpeak= Min(M1/ Mo, M>/M1)) we find that, on average, the actyeais
0.26 to the left ofppear. Considering this empirical fact it seems unreasonable to try to incpease
in order to improve the combination performance, since it would require a lamyease in order
to go past the peak into an area where the combination performance is battehéhoriginal.
Furthermore, this would work only if the class-conditional covariance negtneere equal, which
is usually not the case. Hence, in this paper, our strategy will be to try tealsethe value gf. Of
course, we also require that the performance of each individualhsysttg/s reasonably close to its
original performance, which we hope will result in a new point (in a plot the one in the left of
Figure 4) located toward the left and lower than the original point. In thégemtion we introduce
our method for achieving this goal.

4. Anticorrelation Kernel

Suppose that two separate classifisrand B are available, wher& is required to be an SVM,
but B can be any classifier that produces a score for each sample. We wsideoB to be a
black box from which we have only the scores that it produces. As we haen assuming, the
final classification decision will be made based on a combination of the outpo&saed by both
classifiers. Our strategy will be to train syste&nsing information about systel in order to
improve the combination performance over the one obtained when syiemiesigned with no
knowledge of systerB.

4.1 Support Vector Machines

Consider a labeled training set withsamplesT = {(x;,yj) € R9 x {~1,+1};j =1,...,m}, where
X;j is the feature ang; the class corresponding to sampleThe goal is to find a functior(x) =
wix+ ¢, such that sig(f (x)) is the predicted class for feature vectoiThe standard (primal) SVM
formulation for classification is given by Vapnik (1999):

S 1 m
minimize J(w,g) = Evvtw+C > €
: = (10)
subjectto yj(Wxj+c¢)>1—¢; j=1,...m
€j>0 ji=1..m

Minimizing the norm of the weight vector is equivalent to maximizing the margin batvtiee
samples and the hyperplane. Tslack variablese; allow for some samples to be at a distance
smaller than the margin to the separating hyperplane or even on the wroraf igehyperplane.

The parameteC controls the trade-off between the size of the margin and the total amoumbof e

By deriving the dual form of the optimization problem above we find that tiry@etors appear

only as inner products with each other. Hence, if we wish to transform the fieatures with a
certain functionp(x) we only need to be able to compute the inner products between the transforms
for any pair of samples, that is, we only need to know the fundkor,x ) = @(x«)'@(x). This

fact is what allows for complex transforms of the input features to be, Esetbng as the kernel
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functionK (x,X ) can be easily computed. In the next section we will develop the proposedaneth
considering an inner product kernel. The general case will be treatekction 4.5.

The above setup corresponds to a classification problem. The regresstdem can also be
posed as a convex optimization problem by choosing an appropriate déistaemsure (Vapnik,
1999; Smola and Sdikopf, 1998) with the objective function given by the sum of the squarenn
of the weight vector and an error term, as in the classification case. Tdleofithis problem
again takes a form in which features appear only in inner products with fetiires, which again
allows for the kernel trick to be used. Hence, even though the derigatidhis paper will be done
considering a classification problem for simplicity, the method described anahtibrpretations
given can be equally applied to SVM regression problems.

4.2 Modified Support Vector Machines

As we saw in Section 3.3, reducing tpevalue between syste®and systenB could lead to an
improvement in combination performance as long as the performance of thielirad systems does
not degrade too greatly. We propose to add a term in the SVM objectiggdar{J(w, €) in Equation
(10) that introduces a cost for a model that results in high valge lafeally, we would like this term

to be given byAp so that low values op are encouraged, including negative ones. Unfortunately,
this term would make the new objective function nonconvex, making the optinmzptiablem
much more complex. To see this, let us derive an expressigndsia function of the SVM weights.
Let S=w'X + ¢, wherew andc are the SVM parameters. We can compaitg = osg (component
1,2 of Equation 7) a&

[EEN

Ose = 5 » ElB—lby)(S—hsy)lY =y = WK,
y={ab}

where we are using the notatippy, = E[V|Y =y] for any random variabl¥ (scalar or vectorial),
and where

K = 5 3 ElB— o) (X~ b)Y =¥ 1y
y={ab}

K is simply the vector of average class-conditional covariances betwehrirgaut feature and the
scores from systerB. The value of vectoK can be estimated from the training Jeas

- 1 1
K=2

> (B — Ploy) (Xj — Fixy) (12)

y=fanr M jiyy

whereb; is the score generated by syst&nor samplej, m, is the number of samples ih from
classy, fipy = % Y jlyj—yPi» andiiy = % 2 ilyj=yXi-

Similarly, we can compute;; = oss(component 11 of Equation 7) as*Mw, whereM is the
average class-conditional covariance matrix for the feature véGtand o,, = ogg (Component
2,2 of Equation 7) as the average class-conditional variance fd Hveres that we will cal. We
can now writep? as
» 0%  WKK'w

"~ OsPes  VWMw’

p

5. We useB and Sto refer to the systems and the random variables corresponding to ttes sroduced by these
systems. The actual meaning should be clear from the context.
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This expression and its square root are nonconvex functiows dence, adding the terixp to the
objective function of the SVM problem would make the optimization problem aoviex. On the
other hand, the numerator pf, 025 is a convex function ofv and, using it as a regularization term
results in a new problem that is equivalent to a standard SVM problem wiglvé&arnel function.
To see this, write

1 A
Jo(w,g) = é\NtW—i—EWtKKtW—G—CZEi
I
~ Liawrcye
= 3 W+ Ze.,

whereA = | +AKK! is a symmetric positive semidefinite matrix. We can now change variables
W = Bw, with B symmetric andB'B = A (i.e., B is a matrix square root oA and, since A is a
positive definite symmetric matrix, it always exists and can be chosen to laneaymmetric) and

write it as
minimize Jy(W,€) = 3WW+CY

subjectto yj(Wz+c) > 1—¢; j=1,..m
€j>0 j=1..m

g eeey y

where
zj= B_lXj. (13)

We see that the appropriate choice of regularization term led us to a verjesieywy opti-
mization problem. The disadvantage of this choice is that it doesliredtly achieve our goal of
minimizing p. For example, negative values@torresponding to negative valuesag will gen-
erally not be encouraged by the new objective function because the maxinaugin (that is, the
minimum value ofw!w) corresponds, in most practical cases, to positive valuesgfHence, in
practice, for each negative valueafg the corresponding positive one will result in a smaller value
of the objective function and will be preferred to the negative one. Fumihie2, minimizingosg
does not imply minimization gb, even for positive values, since the denominator is not being taken
into account. Nevertheless, we empirically find that the new optimization pradtbieves its goal
of reducingp. In particular, wher is large,osgis pushed toward zero, forcimgto become zero.

Directly finding the matrix8~! in (13) is computationally expensive since in general the dimen-
siond of the feature vectors; can be very large and the matifikis a full matrix of sized x d.
Nevertheless, since matixhas a very particular structure, we can find an expression for its iwvers
using the matrix inversion lemma, by whigkr® = | — HTAK?KKF Hence, one way of imple-
menting the proposed method is to define a kel@k,x ) = XB'B~1x = X A~1x to be used by
the SVM. This kernel satisfies the mercer conditions (i.e., it is a valid kermal¢ 8\ is a positive
semidefinite matrix. Using the expression for! above we get

A

We call this kernel thanticorrelation kernel The computation dk (x, X ) in Equation (14) requires
only the calculation of three inner products, which makes the method compuaiéatiéeasible.
Another approach is to transform directly the features using (13). Thass@es computationally
feasible because the inverse of the malrixas a simple expression. To find this expression we first
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note that the matri8—! is a matrix square root ok X. Hence, we need to find a matrix that when

multiplied by its transpose results ATt = | — M%KKK It is easy to show that

a
Bl=|-_— KK
KK

satisfies this condition whem = 1+ \/ﬁ Hence, given a certain value farwe can find the
correspondingt and transform each feature vector using (13). This means that we cénient

the proposed method by transforming the input features using the followprgssion:

Ktx;

oK (15)

Z =X —
In the case of speaker verification, a sepakatector is computed for each target model being
trained. Hence, doing the transformation in the feature domain is inefficieng there is not a
single transformation for each feature vectgrbut one for each target model. The kernel imple-
mentation might be preferable in this case. Furthermore, as we will see inisédiiowhen the
original SVM problem uses a kernel other than the inner-productior@ementing the anticorre-
lation method as a kernel may be the only feasible option.

4.3 Interpretation of the Modified Problem

To give an interpretation of the new SVM problem, we first need to undetdtee meaning of the
direction given by the vectdf. The average class-conditional covariance between the scores from
systemB and the scores from syste&is given byw'K. For a fixed value ofw|| = c, thew that
maximizes the absolute value wiK is given byw = cK/||K||. Hence K gives the direction for
the vectorw of SVM weights for which the average class-conditional covariance deivthe two
systems is maximum. ¥ orthogonal td&K would result in zero average class-conditional covariance
between the two systems. The tefntK ||? that we have added to the objective function of the SVM
problem has the effect of penalizing amyector with a large component in the directionkaf Our
goal is to find av as orthogonal t& as possible without degrading the performance of the system
so much that the overall combination starts to degrade. This balance cahiéeea by tuning the
parameteh.

We can interpret the kernel given by (14) in a similar way. Whes small this kernel is close
to the linear kernel. Wheh grows to infinity the kernel subtracts the product of the projections of
the points¢ andy; into the vectoK from the linear kernel. The resulting value of the kernel will be
small if xx andx, are both aligned witkK. Since the SVM will make an effort to separate only points
from different classes that give a high kernel value (that is, thatnare “similar”), this means that
we consider vectors whose directions are close to th#t tf be unimportant and, consequently,
we emphasize the importance of the vectors whose directions are orthérgomahat of K. This
results in a more effective usage of the features, ignoring those diredliabwould lead to high
average class-conditional covariance between the systems and takamgea of the rest.

Finally, if we choose to implement the method as a feature transform inste&ewfed function,
the resulting features have a very simple interpretation. Whernwo, Equation (15) becomes =
Xj — %K, which is the expression for subtracting frognits component on directiol. If A is not
oo then only a part of the component is subtracted.
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4.4 Extension for Multiple Preexisting Scores

An extension to the presented method can be considered Wherevious systems are available,
Bi1,..., Bn, and we wish to trairs to combine well with them. A generalization of the formulas
above can be derived for this setup. We rewrite the objective function as

1 NN
Jo(we) = évv‘w+ijvvthKf(w—kCZai
k=1 1
1
= évvtAerCZei,

where nowA is given byl + zﬁzl)\kKkK}( and it is still positive definite and symmetric. The same
approach used above can be used here to simplify the problem to a st&wmproblem. We can
still use the inversion lemma by considering matrices

K = [Ki...Kn],
N = diag()\l...)\N),

so thatl + SR ; AKkKE = I + KAK!. We can then use the lemma to get! = | — K(A™1 +
K!K)~1K!. When)\y = o for all k, At = | — K(K'K)~!K!. This matrix is idempotent (and
symmetric), henc®~! = A~1. The transformed features for this case are then given ky =

x — K(K'K)~1K!x;, which is the projection ok on the complementary space to that spanned by
vectorsK; throughKy.

4.5 Extension for General Kernels

The development on Section 4.2 was done using inner-product kevind$ &s the starting point.
In this section we show that the method can be implemented for any kernébfunc

Consider a problem for whicKo(x,y) = @ (X)'@o(y) has been found to perform better than the
inner-product kernel. One way of implementing the anticorrelation method indabesis to simply
transform the features using(x) and then treat the transformed features as the feature vectors
in Section 4.2. This is conceptually simple, but could be extremely costly commabyiaf the
dimension ofgy(x) is large compared to the dimensionxpfor impossible if the transformatiap
is infinite dimensional (as in the case of the Gaussian kernel). Luckily, ihareay of implement-
ing the anticorrelation method without ever computing the transform but onligehree| function
between pairs of features.

In Section 4.2 we found that one way of implementing the proposed method ie géof the
anticorrelationkernel, defined by Equation (14). In practice, vedfan that equation is computed
from data. We call this empirical value fér, K (Equation 12). We can writ€ as a linear function
of the feature; used to compute it. That i& = Y CjXj, where thec; depend on then,’s and all
thebi's. If we now replace everyin Equation (14) byp(x) andK by 5 ; ¢j@o(X;), we get

CATcigo(%) o(4) 3 Ci%o(X)) Po(X)
1+A3; 3icicigo(X) go(x;))

A3 i CiKo(Xj, %) ¥ CjKo(Xj, X))

1+AijiCjCjKo(Xi,Xj) ’

KX,x) = (PO(Xk)t(pO(Xl)

= Ko(X,X)—
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The anticorrelation kernel can then be computed exclusively as a furagtibe original kernel
Ko. The processing time is now significantly increased, though, since two signshe samples
used to obtaiK are needed every time the kernel is computed (the denominator in the seaond te
can be precomputed and reused, since it does not invQleg x). The extension for multiple
preexisting scores follows the same steps as above. In this paper, thiodect kernel is used
for all experiments.

4.6 Other Approaches

Our goal is to obtain the best possible combination performance given dilatde systems. The
approach presented above is one path toward this goal. Two other figgysroaching this problem
are considered here.

4.6.1 FEATURE-LEVEL COMBINATION

When systenB is also an SVM system and the features corresponding to the samplesoused f
training systent are also available for systeBy an SVM using the features from both systems
concatenated into a single vector can be trained. The resulting SVM is in itselfnhination
procedure, which, ideally, should make optimal use of the features faimdystems. This may
not be true in practice, though, since a larger feature vector incréasesmplexity of the system,
making it more prone to overfitting the training data. A further refinement ofghsoach consists

of weighting the vector components, assigning weigtb the features from one of the original
systems and weight-1 a to the other features. This is done by multiplying the components of the
square-norm olvin the SVM objective function by the inverse of the corresponding featerght.
Thatis, we replacéw||? = 5; w? with ; w?/B;, whereB; = a for the features from one set and-Ix

for the features from the other set. This allows us to compensate foregiffeemgths in the original
vectors or to bias the training procedure to make more use of the featomethie better-performing
system. Feature-level combination is usually costly and sometimes even itdegsibn the large
size of the original feature vectors, and can be considered only if lpsthras being combined are
SVM systems.

4.6.2 FEATURE+SCORE COMBINATION

Another method can be considered in which we present the scoreagzhby systenB as input
features to the SVM, along with all the features from sys&mgain, a larger weight can be given
to the component corresponding to the score from sy&dinan to the features froi®

5. Experiments on Artificial Data

To test the proposed kernel on a simple task, we generated data for sgse<laith model
Z=CZ+nmy,

whereZ is a vector of sizel where the components are generated independently with normal distri-
bution with zero mean and unit varian€2is a square random matrix intended to create correlation
between the features. Its components are drawn from a uniform distribatid a scaling factor is
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applied to force the maximum variance®fto be 1. The class-dependent mean vector is given by

[ (0.0 ifY=a
mY_{(m...m)t if Y = b.

We take half of the features and train a linear SVM (inner-product Kermich serves as
systemB. The remaining features are used to train sys&starting with an inner-product kernel.
The anticorrelation kernel is implemented for varying values.dlVe create two separate sets, one
for training, with 900 examples of classandN examples of clasbk, and one for testing, with 10
times more data than in the training set.

The combination is performed using a linear logistic regression model, traindtedraining
set with the scores from the two SVM systersand S, for each value of. Since the scores
obtained on the training set are overly optimistic, we use 10-fold crossatialidon the training
set to create th& and S scores used to train the combiner (Kuncheva, 2004, Section 3.2.2). The
scores from cross-validation for systdrare also used to estimate the vedfoas in (12). When
only a few samples from one of the classes are available, the estimatfocaf be noisy. In our
simulation we vary the number of samples available for cladseeping the number faa fixed;
hence, in order to keep the variance of the estimator stable across exmtsrime use only samples
from classa to estimateK.

Figure 5 shows the error rates for the test data for syssesystemB, and the score-level
combination as a function of the valueXaffor m= 3.0, N = 900 andd = 250. The figure also shows
results for the feature-level and the feature+score combination proedexplained in Section 4.6.
The weighta for these two systems was tuned using 10-fold cross-validation on the gaiatn
For these two cases and for systBpthe error does not depend anOn the other hand, the value
of p betweenS andB decreases with (reaching a value close to zero). We see that, in practice,
p is effectively reduced ak increases, even though we Us&%g as regularization term instead of
Ap2. The error for systen$ also varies with\. The degradation in performance is expected since
we are trading off poorer performance in exchange for a lower vélpe ©he small improvement
at moderate values @f, though, is not too surprising. If the directidhcorresponded to one that is
especially noisy, reducing the importance of that direction can lead to ingmaformance. We
will see more on this in Section 6.5.

The feature-level and feature+score combination methods perfonamately equal at around
1% EER, while, forA = 0, the score-level combination has a significantly worse performance of
1.58%. Nevertheless, agyrows, the performance of the score-level combination using the anticor-
relation kernel improves significantly (from 1.58% to 0.56% wheagoes from 0 to 1), making it
the best-performing system. Overall, we see a reduction in EER of ar@%agdrglative to the EER
of the best combined system when the anticorrelation kernel is not used.

Figure 6 shows the scatter plot of scores (on the training data) for bstbreg corresponding
toA = 0 andA = 10000. We can see that for the large valua ahe within-class covariances have
been largely reduced. We can also see that the separation of the twesdkabstter for the larger
A, which explains the performance improvement observed in Figure 5.

Figure 7 shows the results for the score-level combination of sydBeamslSwith A = 0 (that
is, without using the proposed method), the score-level combination\witheo, the feature-level
combination, and the feature+score combination, for several settings sifrttulation parameters
N, m, andd. For the score-level combination wid= o we also present the results obtained when
computingK using our knowledge of the model that generated the data. Since weeatengr
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Figure 5: Error of individual systems and their combination, and value @pthoefficient as a
function of A for an artificial problem. The EER of the combination is reduced from
1.58% to 0.56% ak increases.
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Figure 6: Scores from system B versus scores from system S foratines/ofA.

the data ourselves according to a model, we can comiutgactly using (11) instead of (12).
It can be shown that, for our setufd, = %Zy:{a.,b} (C12Ct11+szCt12)wB, wherewg is the SVM
weight vector for systenB andC;; is blockij of sized/2 x d/2 of matrixC. For each set of
parameters, 10 different random seeds were used to generate thkedgtiag matrixC equal for
all 10 experiments. Each bar shows the first quartile, the median, and tthetiairtile of the set of
EERs obtained from the 10 simulations.

The figure shows that feature+score combination is significantly bettestioa@-level or feature-
level combinations only when the task is easiae=f 3.0) and many samples are available for train-
ing (N = 900). Feature-level combination is optimal when the task is harder (.8) and the
number of features is smalll & 250) particularly when enough samples are available for training
(N > 300). Plain score-level combination (without anticorrelation) perfornnsparably to feature-
level combination when the number of training samples is small and the numieatofds is large,
in which case the feature-level combination suffers from the additiomaptaxity. In all cases,
though, the anticorrelation method (last two bars) is either comparable dglicagily better than
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Figure 7: Comparison of EER on simulated data for the score-level combiratgystemB with
Swith A = 0 (calledScorein the legend), the score-level combination with= c (An-
tic) using the estimated value fét (es) or the value obtained from the modeédl),
the feature-level combinatiofréal), and the feature+score combinatidieét+score for
several values of the simulation parameters. For each paifdistance between means)
andd (feature vector dimension), three values\ofnumber of samples from clab}are
explored.

plain score-level, feature+score and feature-level combinationsmko13.0, the anticorrelation
method significantly outperforms all other combination methods for both vafugsiod the three
values ofN. Gains are smaller or disappear when the task becomes hardet.8).

The difference between the fourth and the fifth bars in each set is dy¢ooie difference in
the K vector used. Th& is estimated using the data (Equation 12) for the fourth bar and using
the model (Equation 11) for the fifth bar. We can see that when the dimerfsiba feature vector
Z; is large, the difference between the fourth and the fifth bars becomes, lardicating that in
these situations the estimation &fis noisier. This is also evident from looking at the reduction
in p achieved for the different values dfwhen using the data to estimaite Ford = 250, the
reduction is around 90%, while for= 1000 the reduction is only around 60%. In most experiments
with d = 1000 the value op when using the estimated value Kfdoes not go under 0.30. This
means that for higher-dimensional vectors, the estimatidhistharder than for lower-dimensional
ones. Nevertheless, even in those cases, the combination using theralaiedrsystem with the
estimate is, in most cases, better than the original score-level combination.
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6. Experiments on Speaker Verification

Speaker verification is the task of deciding whether or not a speech savapl@roduced by a
certain target speaker. It is a binary classification task where the twseslasdrue-speakerand
impostor To test the proposed method we use a standard UBM-GMM system, aatspgiervector
SVM system, an MLLR-based system, and a prosodic system. We shdig nesing the proposed
kernel on all possible combinations involving two systems (two-way combirgteomd a variety of
combinations involving three and four systems (three-way and four-aapmations).

6.1 Databases and Error Measures

Experiments were conducted using data from the NIST speaker recogaitiduations (SRE) from
2005 and 2006. Each speaker verification trial consists of a test santpke speaker model. The
samples are one side of a telephone conversation with approximately 2.5 nohsfg=ech. We
consider the 1-side training conditions in which we are given 1 convenssitie to train the speaker
model. This conversation corresponds to a positive example when trai@rgvil model for the
speaker. The data used as negative examples for the SVM training astintate theK vectors
is taken from 2003 and 2004 NIST evaluations along with some FISHER m@stalting in a total
of 4355 samples. The tasks contain 26,270 trials for SREO5, and 21,88R&06. In both cases
around 1/10th of the trials are target trials. Trials are created by reusngtversations from a few
hundred speakers as train and test samples, sometimes as targetssjgeaketimes as impostors. A
total of 598 distinct models for SREQ5 and 584 for SREQ6 are createtk ebthem corresponding
to different conversations from the same speaker.

The performance measures used in this section are the EER and NI&tatecost function
(DCF). The DCF is defined as the Bayesian risk with probability of targealetp 0.01, cost of
false alarm equal to 1, and cost of miss equal to 10. The DCF is affeothdi the discrimination
power of the system and its calibration, given by the choice of threshdlithalieved to minimize
it (Brummer and du Preez, 2006). In this paper, we will not explore thibration issue, which is,
in itself, a large field of study in the biometrics community. We will present resulterims of
the DCF achieved when choosing the threshold that minimizes it on the tesfltiidameasure is
commonly calledninimumDCF and it measurelsow much information the detector could have
delivered to the user, if the calibration had been per{@tummer and du Preez, 2006).

The EER and the DCF are two points in the receiver operating charact@R&C) curve of a
system and they give a more complete picture of the behavior of the systelifféoent operating
points than the EER alone. Even though the theory in Section 3 was devétwdeaR, we will
see that improvements are obtained for both performance measures.

6.2 Individual System Descriptions

The systems chosen to run the experiments in this paper are represeoitdkieesystems being
used in most state-of-the-art speaker recognition systems. Somewhéfisimersions of the
best-performing systems were used, in order to facilitate the large amozornpiutationally costly
experiments that were run. A brief description for each of the systemsvillo
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6.2.1 UBM-GMM SysTEM (G)

This is probably the most widely used paradigm for speaker verificatidbadssian mixture model
(GMM) is trained using data from many different speakers and recgpinditions to create ani-
versalbackground model (UBM). The target speaker models are trained byrmaxa posteriori
adaptation of the background model to the training data. For a given ieptesthe logarithm of the
ratio of the likelihoods for the target model and the background model tkassa score. The system
used here is based on 13 mel frequency cepstral coefficients (MRGBsut the zeroth-order co-
efficient, and first-, second-, and third-order difference featuessilting in 52-dimensional feature
vectors. The features are modeled by 2048 mixture component GMMs.t@nyMM means are
adapted to the observed data, leaving variances and weights untoEoh@uplementation details
on this system see Shriberg et al. (2005).

6.2.2 SIPERVECTORSVM SYSTEM (V)

This system (Campbell et al., 2006) is a variation of the UBM-GMM system revB&Ms are
used to obtain scores. For each sample, the means of the UBM-GMM greedda the sample’s
data and stacked together in a single high-dimensional feature vectort oA Iseld-out samples
(generally the same samples used to create the UBM-GMM) is used as pegeaimples when
training the SVM, while the target sample is used as the positive example. fHadgees are used
to train a model using support vector regression with an inner-produnek The signed distance
to the hyperplane is then used as the output of the system. For this systese w®&12-component
background model. Since the dimension of the original space is 52, thedfimahsion of the
feature vectors is given by 52252 = 26,624. Larger background models have been found to give
slightly better performance but increase the computational cost of theimgues. We found 512
components to give a good balance between performance and compuietstrat the system.

6.2.3 MLLR-SVM SrsSTEM (M)

The MLLR-SVM system (Stolcke et al., 2007, 2006) uses the speak@tatibn transforms used in
the speech recognition system as features for speaker verificatiotal Aftéour affine 39x40 trans-
forms is used to map the Gaussian mean vectors from speaker-indepgndpeaker-dependent
speech models; two transforms each are estimated relative to male and feroglatren models,
respectively. The transforms are estimated using maximume-likelihood linesassegn (MLLR)
and can be viewed as a text-invariant encapsulation of the speakmu'st@oproperties. The trans-
form coefficients form a 6,240-dimensional feature space. Eachréeditmension is rank normal-
ized by replacing the value with its rank in the background data, and scalitk ito lie in the
interval [0, 1]. The resulting normalized feature vectors are then modsled the same procedure
as for the supervector-SVM system. The system described in this pplraigra simplified version
of our best performing MLLR-SVM system which uses a total of 16 trams$ and has approxi-
mately 25% lower EER than the 4-transform system (Stolcke et al., 200@3 #xperiments (not
shown here) indicate that improvements from the anticorrelation method ambstithed when the
more complex MLLR system is used, with similar relative gains as the ones dtenen
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6.2.4 SNERF-SVM 8STEM (S)

This system models syllable-based prosodic NERFs (nonuniform extraetioon features) (Shriberg
et al.,, 2005). Features are based on estim&tgdenergy, and duration information extracted
over syllables inferred via automatic syllabification based on automatic speeotnition output.
Prosodic feature sequences are transformed into fixed-length vegtarparticular implementa-
tion of the Fisher score (Ferrer et al., 2007). In this paper, only featmodeling sequences of two
syllables are used. In previous work we have found that these fediyrdhemselves yield a per-
formance almost as good as using features extracted for sequerices ahd 3 syllables together.
The resulting feature vector, of dimension 13,343, is first rank-nornth{eein the MLLR system)
and modeled using the same procedure as for the supervector-SVivhsyste

6.3 Application of the Proposed Method to the Speaker Verification Foblem

Most speaker verification systems that use SVMs as models consideirgaabr test utterance as
a single sample. If necessary, as in the case of the SNERF features aydtmer cases presented
in the literature (Ferrer et al., 2006; Brummer et al., 2007; Reynolds et(fl5)2a transform is
applied to the input features prior to SVM modeling in order to convert themargimgle fixed-
length vector. In other cases, such as the MLLR system, the featurerectly generated as a
single fixed-length vector. In our experiments, since we are preseesnis on the 1-side training
condition from NIST evaluations, this implies that only one positive sample igaé@ during
training for each speaker model. This means that the estimatiknm{12) will be given only by
impostor samples. These impostor samples are extracted from a held-didrsedch target model
in the task definition we require a separate ve#torThis results in significant overhead during
training since each model from syst@&must be tested against the held-out set used to conpute
Nevertheless, this has no effect at test time. Once the vEctor each target model is computed,
obtaining the score for a new test is almost as fast as for a linear kevivel S

6.4 Results

Table 1 shows the results on SREO5 and SRE06 data for the individuahs/sEach system is
represented by a single lett&s:for the GMM-UBM, V for the Supervector-SVMJ for the MLLR-
SVM, andS for the SNERF-SVM. For the SVM systems (Supervector, MLLR, and BRg), we
show the baseline results (training the SVM with an inner product kernelfherresults obtained by
training the target SVMs using the kernel in (14) wikhcomputed using the scores corresponding
to each of the other three systems. This is indicated by the use of a subirrdespomding to the
system with respect to which the anticorrelation is performed. For exampie;dvtesponds to

a system that uses the MLLR features and anticorrelation kernel witeecegpthe GMM-UBM
system (that is, withK given by the vector of average class-conditional covariances betthee
MLLR features and the scores from the GMM-UBM system). A list of sulgiesl corresponds
to performing anticorrelation with respect to more than one system as dsénitSection 4.4.
Hence, systempy,, corresponds to system S anticorrelated with respect to systems Myand V
In all cases the anticorrelation results shown correspoid=tao, which implies that the resulting
weight vector will not have a component in the directiorkofThis was shown to be optimal in the
simulated experiments and in several preliminary experiments with the systamthfsatable.
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System SREO5 SRE06

DCF [ EER% | DCF | EER%
(G [0.303] 7.259] 0.306] 5.639]
M 0.266] 7.096] 0.221] 4.979
Mg 0.297| 8564 0.243| 5.879
My 0.289| 8.768| 0.254| 6.119
Ms 0.271| 7.586] 0.229] 4.979
Vv 0.205] 5.465] 0.174] 3.419
Vs 0.223] 6.525| 0.179] 4.019
Vi 0.196 5.465| 0.168] 3.179
Vs 0.203] 5.506 0.168] 3.359
S 0.545] 14.233] 0.548] 12.777
Se 0.560| 15.008| 0.562 | 13.077
Sv 0.577| 15.824] 0.579 13.497
Sv 0.569| 15.253| 0.573| 13.137
Swvy 0.588] 16.150| 0.592| 14.157

Table 1: Results for individual systems (G: GMM-UBM, V: Superve&dM, M: MLLR-SVM,
S: SNERF-SVM) with inner product kernel and anticorrelation kerneheWthe anticor-
relation kernel is used, a subindex indicates the name of the system onsysith respect
to which the anticorrelation is performed.

It can be seen that in most cases, using the anticorrelation kernel resalidegradation in
performance in the system. A notable exception is the result for sysigrfBupervector features
using anticorrelation kernel with respect to the MLLR-SVM system). In thise¢ preventing the
use of the direction given bl results in a significant gain in performance. This could happen if
vectorK corresponded to some noisy direction that, when ignored, allowed for witie robust
directions to be used. This effect was also observed in the simulationsilhbd discussed in more
detail in Section 6.5.

Table 2 shows results for all the possible two-way combinations of the fdiuidual systems.
For the score-level combinations (indicated with”y we used a linear model trained on SREQ05
data using logistic regression. Feature-level and feature+score catmbm are indicated with
“U”. The symbol indicates feature concatenation. In the case of featurkbelembination, features
from both systems are directly concatenated. In the case of feature-«srabination, the features
from one system are concatenated with the scores from the other (thigcet@ubwith the subscript
“scores”). Whenever feature concatenation is performed, a weigised (as described in Section
4.6) to emphasize the features from one set versus the other. This veetighéd on SREO5. Since
tuning this weight is extremely demanding computationally (it requires running eldssification
experiment for each value of the weight), only feature+score combinatipariments involving
the MLLR systems are run. All possible feature-level combinations ansrsheince there are only
three of them.
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We can see that every time a score-level combinationg done between systems X ang,¥
the performance is better than that for the combination of X and Y (with the sexgleption of
SREO5’s EER for A+ Sy). That is, applying the anticorrelation kernel to systéralways gives a
gain in the combination performance, even though in most cases systdmasvworse individual
performance than system Y. Feature-level combinations,YXdo not show any advantage over
the much simpler score-level combinationtXY. This simply indicates that the increased model
complexity of the feature-level combination cannot be properly handledingtavailable amount of
training samples. Similarly, the feature+score combinationsYX.ores do not give any consistent
improvement over the score-level combinations X.

The most notable gain from using the anticorrelation kernel is found focahgbination M+
Vm. The relative gain in EER with respect to systemHW is 16%. As mentioned above, system
Vv is in fact better performing than system V. That is, anticorrelating with dpeM does not
degrade its performance but improves it. This fact, together with a redogemktor correlation
between the systems, explains the observed large gain.

The last column in Table 2 shows the class-conditional correlation betweemvthsystems
being combined for the impostor and the target samples in SREO6 data. Aswes;dhe impostor
correlation is significantly reduced when the proposed method is usedthexggh it does not reach
a zero value. (This problem was also observed in the simulated experiroefasye values of the
feature vector dimensiod.) This could mean that the amount of data used for the computation
of K (4355 samples) is not enough to obtain a robust estimation of the statistics irstidatz or
that the statistics in the test data are not the same as those in the held-o@dstet cempute<.
Furthermore, we can see that the target correlation remains almost gechlay the application
of the anticorrelation kernel. This is reasonable, since the véctercomputed without the use of
any target data. The fact that the target correlation is not reduced Ml computed only over
impostor samples suggests that the correlations in both populations areuabtad one cannot
be predicted from the other. Nevertheless, a reduction in either of the abaslitional correlation
coefficients can result in a reductionfs given by (9).

Finally, Table 3 shows some three-way and four-way combination resuiesfirst four results
correspond to the combination of the three SVM systems. The three combmaltiown that use
the anticorrelation kernel on the V and S systems perform very similarlyltireg in a performance
improvement of 18.9% on the SRE06 EER with respect to the baseline combinéf®oan see
that using multiple anticorrelation on the S system with respect to the other tveorsy/already in
the combination (M and M) does not lead to further improvements (linetWy + Su.v,,). This
is, in fact, good news, since doing the multiple anticorrelation involves a signifaamount of extra
computation to obtain thi& vector of system S with respect to the scores frogn V

The last three lines in Table 3 show the results on some four-way sc@&leztanbinations. We
see a large improvement of 19.2% when a successive anticorrelatie@dpreds used, where each
new model is anticorrelated with the one previously added to the combinatienbést three- and
four-way combinations all include theyWsystem. This was expected since the two-way gain from
using anticorrelation on that system was the largest among all two-way caticipis.

An overall observation from this table is that the proposed method perfoettsr on SRE06
data than on SREQ5 data, even though the combiner is trained on SREOBdkitag the SRE05
results slightly optimistic. We believe that this might be a consequence of a Katistical match

6. Letters X and Y are used in this section to indicate any two systems. Héntes {G,M,V,S}.
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System SREOQ5 SREO06

DCF \ EER% | DCF \ EER%\ Corl/ CorT
Gscored M 0.219| 5.710| 0.189| 4.079 -
G+M 0.226| 5.750| 0.201| 4.019| 0.51/0.79
G+ Mg 0.210| 5.465| 0.188| 3.779| 0.26/0.76
G+V 0.203| 5.383| 0.191| 3.419| 0.74/0.88
G+Ve 0.194| 5.261| 0.182| 3.239| 0.35/0.86
G+S 0.219| 5.587| 0.232| 4.499| 0.16/0.45
G+ S 0.216| 5.465| 0.224| 4.259| 0.11/0.44
MUV 0.188| 5.383| 0.164| 3.239 -
MUVscores | 0.176| 5.098| 0.148| 3.119 -
M+V 0.180| 5.139| 0.160| 3.299| 0.58/0.87
M+Vpm 0.161| 4.812| 0.140| 2.759| 0.37/0.84
My +V 0.171| 4.976| 0.142| 3.179| 0.31/0.83
MUS 0.245| 6.403| 0.200| 4.379 -
MU Sscores | 0.225| 5.913| 0.190| 4.439 -
M+S 0.224| 6.158| 0.194| 4.319| 0.22/0.55
M + Su 0.221| 5.995| 0.191| 4.079| 0.14/0.52
Ms+S 0.215| 5.995| 0.191| 4.079| 0.15/0.53
VUS 0.183| 5.057| 0.152| 3.179 -
V+S 0.163| 4.609| 0.146| 3.239| 0.19/0.50
V+Sy 0.161| 4.812| 0.145| 3.119| 0.13/0.49
Vs+S 0.159| 4.527| 0.137| 2.999| 0.15/0.49

Table 2: Results for two-way combinations of the systems in Table 1. Syrabatdicates feature
concatenation. Hence, MS corresponds to feature-level combination, whil&)8icores
corresponds to feature+score combination of systems M and S. Synabahdicates
score-level combination. The last column shows the correlations betwegmithof sys-
tems being combined, for the impostor (Corl) and the target (CorT) samples.

between SRE04 data (used to computeKheectors) and SREO06 data than between SRE04 and
SREO5 data.

Evidently, the behavior found in these experiments cannot be expecteddoaljze to all pos-
sible sets of features and tasks. For example, if much smaller sets of fearnmeused and enough
training data was available for both classes, feature-level combination neigjit in better per-
formance than score-level combination (as seen in the simulated experimdet@rtheless, the
systems used here are representative of the kinds of systems uspddkeisrecognition on state-
of-the-art systems, where very large feature vectors have bead fowutperform smaller ones.
Furthermore, the small amount of positive training examples is an inheramaathristic of the
speaker recognition task. Finally, these characteristics are found in othey modern machine
learning tasks, a notable example being classification of microarray esipmesgata, where the
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System SREO5 SRE06
DCF [ EER%| DCF | EER%
M+V+S 0.149] 4.690] 0.134] 3.179
M +Vu +Su 0.133| 4.364] 0.117| 2.579
M+ Vu + Sy 0.132| 4.445] 0.115| 2.579
M+ Vum+Swvy, | 0.133] 4.405] 0.116] 2579
G+M+V+S 0.149] 4.649] 0.141] 3.119
G+Mg+Vo+Ss | 0.147] 4.323]0.132] 2.700
G+Mg+Vu+Sy | 0.137] 4.160| 0.120] 2.519

Table 3: Results for three-way and four-way combinations of the systefabie 1.

number of features is in tens of thousands, and the number of samplesdostundies is limited to
tens or at most hundreds.

6.5 Interaction with Intersession Variability Compensation

The variability found across different recordings of the same spéskemmonly callednterses-
sion variability (ISV). This effect can be caused by a mismatch in channel conditiongjarab
state, phonetic content, and so on, and it is one of the biggest souregsiafin speaker verifica-
tion. Several methods have been developed to reduce the effect sEggam variability.

In the realm of SVMs, the most widely used ISV compensation (ISVC) methodigsance
attribute projection (NAP) (Solomonoff et al., 2004; Campbell, 2006). NARSssts of estimating
the directions in the feature space that vary with the sessions and thectipgpjine samples on
the complement of the space determined by those directionsndibgdirections are calculated as
the first few eigenvectors of the within-speaker covariance matrix. Thigxmsin turn estimated
from held-out data for which several samples of each speaker ailalae. All speakers are pulled
together and a single within-speaker covariance matrix is estimated. The nafieections to
be eliminated from the feature vectors is determined empirically. Both NAP arahtfe®rrelation
method presented here transform the features by eliminating certain dieedtidhe case of NAP
these directions are the ones estimated to have information superfluous ktb&speaker verifi-
cation. In the anticorrelation procedure, a single direction is eliminated: #héhahmaximizes the
average class-conditional covariance between the two systems beinghedmb

In the case of UBM-GMM systems and systems like the supervector-SVithvare based
on the UBM-GMM models, a different type of ISVC based on the factoty@mmmmethod can be
applied (Kenny and Dumouchel, 2004; Kenny et al., 2007). The methabedon the assumption
that a supervectan corresponding to a certain sample can be decomposed into a speakrdeiap
and a channel-dependent component. Thanis; s+ ¢, wheres is a speaker supervector aoé
channel supervector. Furthermoreis assumed to be given hy, whereu is a low-rank matrix
andx is a normally distributed random vector. The components of vectwe called thehannel
factorsand the columns of matrix theeigenchanneldn order to estimate the matnx a database
with several samples for each speaker (as the one required for NAB¢ied. In some models,
is further decomposed into different terms. Many different methods baee used to estimate and
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System SREO05 SREO06 SREO06
DCF \ EER% | DCF \ EER % | Corl/CorT

M 0.230| 6.525] 0.195| 4.139 -

My 0.257| 7.667| 0.217| 4.919 -

\Y, 0.171| 4.935| 0.145| 2.819 -

Vm 0.177| 5.302| 0.144| 2.879 -

M+V 0.144| 4.568| 0.120| 2.639| 0.47/0.87

M+Vwm 0.144| 4.690| 0.117| 2.579| 0.40/0.86

My +V 0.142| 4.649| 0.119| 2.639| 0.36/0.85

Table 4: Results for individual systems and their combinations after ISVC.

compensate for the channel factors. The method used in this paper feughe/ector system is
described by Matrouf et al. (2007).

Table 4 shows a subset of results for two of the systems described inrsé@iwhen ISVC is
applied. Factor analysis is used for the Supervector-SVM system, aRddNdsed for the MLLR-
SVM system. We can see that, for these systems, the anticorrelation kegasehdt reduce the
class-dependent correlations between pairs of systems enoughltarasgyain in the combination
performance. The fact that applying the anticorrelation kernel doe®solt in a significant reduc-
tion of the class-dependent correlations between the systems indicatéstkatectors computed
from the held-out data are not a good estimation otheectors in the test data. If we compare the
impostor correlation between the same pair of systems when no ISVC is apfdielé ¢) versus
the impostor correlation when ISVC is applied (Table 4) we see that ISV&/si@ms are much less
correlated. Furthermore, the correlation when the anticorrelation methpgliecresults in similar
values for ISVC’ed and non-ISVC’ed systems. This suggests that wilttte correlation between
the non-ISVC’ed systems is due to intersession variability effects. This imugiconfirmed by
computing the projection of thi€ direction on the NAP directions, which shows tiKais mostly in
the direction of the first few NAP directions (when they are sorted by treedfithe corresponding
eigenvalue). Hence, when ISVC is applied to a system, the ISV effectdiari@ated (or reduced),
resulting on less-correlated systems that combine better with each othexxdfople, the perfor-
mance for combination M-V for non-ISVC’ed systems (3.299% from Table 2) is only 3.5% better
than the best of the two individual performances (3.419% from TableHi)e the performance for
that same combination but using ISVC’ed systems (2.639% from Table 4)%6 leefter than the
best of the two individual performances (2.819% from Table 4).

These observations explain the reduction in class-conditional correlziareen pairs of sys-
tems when ISVC is applied to them, since a large part of the class-conditiomalation is due
to the intersession variability. On the other hand, it does not explain whyotinelation cannot be
further reduced after the intersession variability noise has been eliminghedreason for this is
simply that the vectoK estimated for each target model does not predict the direction of maximum
impostor covariance on the test data. On the training data, we know thatvuhgacwe for the
impostor cloud is necessarily pushed to zero whenco, but we do not observe the same behavior
on the test data. This is because, as we saw in the simulations, the estimatiordinéttien K
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gets noisier for larger feature vectors. Hence, only a very noticedfiglet €like the intersession
variability one) can be robustly estimated.

We believe that the observations presented in this section do not invalidaisettuéness of the
method for the speaker verification task. As mentioned in Kenny et al. [2@871SVC to work,
a well-balanced database is required where samples from severegliffecording conditions for
each speaker are available. This kind of database is not easy to obtham 8Aich a database is
not available, ISVC cannot be applied to the systems. In these casesititt@ralation method
proposed here would be able to bring back some of the gain that ISVC wesld in if the right
database was available.

7. Conclusions

While speaker verification systems have seen large gains in perfornrancad hoccombination
of several component systems, a unified framework for joint developofi@rcombined system that
ensures system diversity has been lacking. The component systetrairagd in isolation to max-
imize individual performance rather than the overall system being trainethiimize combined
performance. In this work, we presented a simple model for the systemicatob problem and
found the performance of the combined system to be a function of thepenfice of the individual
systems being combined and a “correlation coefficient” obtained from thrge class-condition
covariance of the vector of scores. Based on this result we pressteetnique for taking into ac-
count the characteristics of the scores from a set of fixed existingsystering the development of
anew SVM system in order to improve the combined system performancedsTéadized through a
modification of the SVM optimization problem via the introduction of a regulariza&om involv-
ing the covariance between the scores of the previously existing systehtkeaimput features to
the SVM, explicitly encouraging diversity of the resulting system ensemlbie.tfade-off between
the individual performance of the SVM system and the inter-system geelass-conditional co-
variance is reflected in the optimization through the introduction of the LagrandtiplierA. The
technique can be implemented cheaply through the use of a simple kerngbmumehich we call
anticorrelationkernel.

We show the effectiveness of the anticorrelation technique in a serignwbsed experiments
and in speaker verification experiments on the 2005 and 2006 NIST SR& uasg four com-
ponent systems: a standard UBM-GMM system, a cepstral supervgstens an MLLR-based
system, and a prosodic system. We show results using the proposetidteailepossible combi-
nations involving two systems (two-way combinations) and on some combinatwsiging three
and four systems. We demonstrate a performance gain of around 1@24dior-way combination
using the anticorrelation kernel with respect to the performance of theinatidn obtained without
anticorrelation. When the same four speaker verification systems are osatpe for intersession
variability, the gains from the anticorrelation method disappear. Our anahgiiates that the rea-
son for this is that much of the correlation between the systems is, in fact, die totersession
variability. Once systems are compensated for this variability, the remaininglaioon is too hard
to estimate robustly. The anticorrelation method can then be seen as a repibfmrirdersession
variability compensation methods when the right databases are not avadafte festimation of
the matrices needed for those methods.

The fact that, in our experiments, the combination performance improvestomcelly ashi
grows an decreases indicates that the optimal trade-off between the perfornfaheeralividual
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system and the value pfprobably occurs at a negative valuegfSince we are usinjo3g as our
regularization termgsg and, with it,p are forced toward zero and negative values will be unlikely
to occur in our setup. Using a linear teixp in the objective function would alloyp to become
negative, perhaps leading to better combination results. Solving this optimipatiblem, though,
requires the use of general-purpose convex optimization softwareh wioicld be too slow for our
purposes, or the development of a solver specifically designed forig.ig k direction we plan to
explore.

We note that the anticorrelation technigue is general in that it can be appbeg tuinary clas-
sification task for which more than one system can be trained and at leaesf tmem is an SVM.
Many modern machine learning problems have these characteristics, areangiibroarray gene
expression classification problems (Brown et al., 2000), biometric tasig &@Rd Bhattacharya,
2005; Heisele et al., 2003), and a variety of other classification taska¢8ani, 2002). The pro-
posed method has the potential to lead to significant gains on some of thasandskany others
depending on the nature of the features used, their dimension, the nuhsiaenges available for
training, the absolute performance of the systems, and so on. Finally,teaaaplementation of
the proposed method simply reduces to the use of a specific kernel furentipistatistical proce-
dure that can be kernelized (of which SVMs are simply one example) cotéahipally benefit from
it.
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Appendix A. Proof of Upper Bound on EER (Equation 4)

We wish to prove that if a set of scor€sis distributed such that | Y =y ~ N(uy,o)z,), for
y = a,b (that is, the class-conditional distributions are Gaussian), the EER othtatmen the class
is estimated as in (1) is upper bounded(mjy%%“), wheredu = p, — Y, ando satisfieso > (05 +
Op)/2.

For the case in whiclo, = op = g, the threshold* corresponding to EER is given iy =
(Ma+ M) /2 (s here stands fosamevariance) since this is the value that results in the rate of false
acceptancesya) being equal to the rate of false rejectiosgy). Replacing this threshold in (2) or

(3), we get that EER= —%%“). The upper plot in Figure 8 illustrates this case.

2109



FERRER SONMEZ AND SHRIBERG

When variances are not equal, the EER threshold is no longer at halistaaak between the
two means. Nevertheless, we can find the approximate location of the tlirdghmapping the
value oft$ to two new locationgy, andty, (d stands fodifferentvariance) such that in one case the
rate of false rejections is equal to EE&hd in the other case the rate of false acceptances is equal to
EERs. The EER threshold for the unequal variance ctsayill then be somewhere between these
two points, since being to the left or to the right of both of them would resulterraibes of false
rejections and false acceptances being different from each other.

The valuegqa andtyy, are determined such theia(tsa) = EERs andegyp(tan) = EER, respec-
tively (with ey, andey 5 defined in (2) and (3)), and they are given by

tab = Op/0(ts — o) + 1o

If tya < tgp then there will be a thresholf betweentya andtyn for which ey (ty) = eya(ty) =
EERy < EER.. This is the case illustrated in Figure 8. So, if we can find soreach thaty, < tqp,
10

we can replace this value in EER ¢(—35 ) to get the desired upper bound. Now,

Oa .. Ob ., Op+0
tia—tap = ;(ts—ua)Jrua—(f(ts—ub)—ub:éu(bZGa—l)-

Since we are assuming that > 0, we see thattj, < tgp if and only if 0 > (04 + 0p) /2. When
0 = (0a-+0p)/2 we gettga = tgp, Which implies that EER= EERs. Hence, we can always compute

Oa+0p
variance instead of the average of the standard deviations) also satisfies, + 0p)/2.

EERy as@(—=2). Itis easy to prove that = \/ (02+02)/2 (the square root of the average
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