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Abstract

We present a method for training support vector machine (SVM)-based classification systems for
combination with other classification systems designed forthe same task. Ideally, a new system
should be designed such that, when combined with existing systems, the resulting performance is
optimized. We present a simple model for this problem and usethe understanding gained from
this analysis to propose a method to achieve better combination performance when training SVM
systems. We include a regularization term in the SVM objective function that aims to reduce
the average class-conditional covariance between the resulting scores and the scores produced by
the existing systems, introducing a trade-off between suchcovariance and the system’s individual
performance. That is, the new system “takes one for the team”, falling somewhat short of its best
possible performance in order to increase the diversity of the ensemble. We report results on the
NIST 2005 and 2006 speaker recognition evaluations (SREs) for a variety of subsystems. We show
a gain of 19% on the equal error rate (EER) of a combination of four systems when applying
the proposed method with respect to the performance obtained when the four systems are trained
independently of each other.
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1. Introduction

The work presented in this paper is motivated by our work on the task of speaker verification. In the
last decade, many successful speaker verification systems have reliedon the combination of various
component systems to achieve superior performance. In many cases, asin Ferrer et al. (2006) and
Brummer et al. (2007), the combination leads to significant improvements. However, there are
cases in which combining several comparably good systems does not result in improvements over
the single best system (Reynolds et al., 2005). Most of these systems perform the combination of
information sources at the score level1 (Reynolds et al., 2003; Ferrer et al., 2006; Brummer et al.,
2007; Huenuṕan et al., 2007; Dehak et al., 2007): systems that model each type of feature using a
certain model are independently developed and their scores are combinedto produce the final score
and the decision. When training each individual system, all other systems available for combination
are usually ignored while, in fact, the ultimate goal of the systems is to perform well in combination
with all the other systems and not necessarily individually.

It is easy to see that system combination at the score level is not guaranteed to give strictly
better performance than those of the individual systems being combined. Inthe extreme case, if all
classifiers were generating exactly the same output for each sample, the combined classifier would
not have better performance than the individual ones, independently ofthe combination procedure
used. Intuitively, what we wish is to have enough diversity across systems such that classifiers
contribute complementary information leading to a better final decision when systems are combined.
System diversity has been the subject of a large amount of research in recent years, with two main
goals: defining a measure of diversity that can predict the performanceof the combination, and
designing procedures for achieving diversity in an ensemble of systems.With the goal of motivating
and placing our work in perspective, in the next section we present a discussion focused on existing
techniques for measuring and designing for system diversity.

The contributions of this paper are: (1) the development of a simple model for the combination
problem for a binary classification task under the assumption that the distribution of scores for each
of the classes is Gaussian, and (2) a procedure for improving diversityin an ensemble including
SVM classifiers. We find an upper bound on the EER of an ensemble combination and show that,
for a two-system combination, this upper bound is a function of the performance of the individ-
ual systems and the correlation coefficient obtained from the average class-conditional covariance
matrix of the scores from the two systems. Based on this result, we propose the inclusion of a
regularization term in the SVM objective function when training a new SVM system for combina-
tion with a set of preexisting systems, which introduces a trade-off betweenthe performance of the
resulting model and its average class-conditional covariance with the preexisting systems. Ferrer
et al. (2008b) presented empirical results using the proposed method. Here, we extend this previous
work by developing a framework under which to understand the method, considering the cases of
multiple preexisting systems and nonlinear kernels, and including new results on simulated and on
the NIST 2005 and 2006 speaker-verification evaluation data. Results show that a gain of 19% on
EER can be achieved when using the proposed method with respect to the results obtained when
systems are trained without knowledge of the others.

The paper is organized as follows. Section 2 gives a review of the relatedresearch. Section
3 describes a simple model for the system combination problem under consideration. Using the

1. The termscoreis commonly used in the speaker verification community to refer to the numerical output of a system,
which may or may not be a probability measure.
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conclusions obtained from this development, Section 4 proposes a method forachieving improved
combination performance. In Sections 5 and 6 we present results on simulated data and speaker
verification data, respectively. Section 7 presents our conclusions.

2. Multiple Classifier Systems

In this section we review the literature related to our work, motivating and puttingin perspective the
research presented in the rest of the paper.

2.1 Measuring Diversity

For regression problems, the measures of ensemble diversity are well developed. Krogh and Vedelsby
(1995) showed that the quadratic error for a certain input value of a convex combination of estima-
tors trained on a single data set is guaranteed to be less than or equal to the weighted average
quadratic error of the component estimators. The difference between thetwo is given by an am-
biguity term that measures the variability among ensemble members for the particular input. On a
related development, Ueda and Nakano (1996) give a decomposition of themean square error of an
ensemble classifier into three terms: average bias, variance and covariance of the ensemble mem-
bers. One would then wish to reduce the covariance term without affectingthe bias and variance
terms by reducing the correlation between the members. This term can, in fact,be negative.

Classification problems where ensemble members output an estimate of the posterior proba-
bilities of the classes (as opposed to just the estimated label) can also be considered regression
problems. Tumer and Ghosh (1996) and, later, Fumera and Roli (2005) present a framework for
studying this case. They consider the probability of error as the measure of performance. If the
actual posterior probabilities of the classes given the features were known, the probability of error
could be minimized by choosing, for each value of the input features, the class that has the high-
est posterior. This rule determines a boundary between the regions where each class is predicted
and results in a certain probability of error that is called theBayes error. In practice, the posterior
probabilities are not known. Tumer and Ghosh assume an additive error model where the individual
classifiers output, for each classwk, a function of the featuresx such thatfk(x) = P(wk|x)+ εk(x).
The predictions are now made based on the output of the classifier instead of the actual posterior
probabilities. Tumer and Ghosh consider the case in which the effect of using the predictions is
a shift in the boundary by a certain amountb. This results in the probability of error being larger
than the Bayes error by a certain amount they call theadded error. An expression for the expected
value of the added error is computed assuming that theεk are random variables with a certain mean
and variance independent of the value ofx, that they are uncorrelated across classes, that theb is
small such that first-order approximations can be used and that the posterior probabilities are mono-
tonic around the decision boundaries. Using the expression derived for the added error of a single
classifier, they derive the corresponding expression for a classifierformed by the average estimates
obtained from a set ofN individual classifiers. Their final expression depends monotonically on
the pairwise correlations between the error functions of the individual classifiers, supporting the
intuition that good combination performance can be achieved if the classifiersbeing combined have
complementary information such that when one classifier makes a mistake, some other classifier has
the right answer. Fumera and Roli generalize Tumer and Ghosh’s work by allowing the combination
to be a weighted average instead of simple average and arrive at an optimization problem for the
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combination weights. This problem is solved explicitly for the case of unbiasedand uncorrelated
estimation errors.

Two assumptions made by Tumer and Ghosh, as well as Fumera and Roli, are not well suited for
the problem of interest in this paper but can be easily replaced for other assumptions without much
consequence on the theory: the use of the classification error as measure of performance and the
uncorrelatedness of the estimation errors across classes. Classificationerror is usually considered
inappropriate for problems in which the prior probabilities of the classes arevery different (as
is the case in most speaker verification applications). For these cases, cost functions are usually
defined where each type of error is assigned a different cost and theexpected value of the cost
function is used as performance measure. Derivations in Tumer and Ghosh (1996) can be easily
modified to allow for cost functions. The Bayes classifier would now choose the class for which the
loss is minimized instead of the posterior probability maximized. As for the estimation errors, the
assumption of zero correlation can be easily relaxed when only two classesare considered. In fact,
in our case we can assume that only one of the posteriors is estimated and the other one is calculated
so that the sum is equal to one. In that case, the estimation errors would alsosum to one. Hence,
only one estimation error stays in the derivations and the zero correlation assumption is not needed.

Even though the results described above could be considered enough motivation for our devel-
opment of the anticorrelation method in Section 4, in the next section we propose a different de-
velopment that we believe presents an interesting alternative for the aboveframework. First, we do
not use the additive error model with fixed bias and variance for the posterior probability estimates.
In binary problems like speaker verification one can train classifiers that output a score instead of a
probability. This score can be, for example, the output of a support vector machine or the logarithm
of the ratio between the class likelihoods. These scores are assumed to be monotonically related to
the posterior probability of one of the two classes and, hence, could be easily converted into this
posterior. Nevertheless, in our speaker verification experiments we have found that combining the
scores directly leads to better results than combining the estimated posteriors when using a linear
combiner. In a combination experiment of all pairs of systems from a set of 13 systems, an average
relative gain of 7.6% was found when combining scores versus posteriorprobabilities (obtained by
learning a logit mapping of the scores) using linear logistic regression. Thebest performance across
all combinations including any number of systems is obtained when combining the scores of six
systems and this combination is 12% better than the best combination of posterior probabilities.
Considering these results, we eliminate the assumption that the output of the classifiers is a poste-
rior probability, allowing it to be a general continuous value (score). We then replace the additive
error assumption with an assumption that the distribution of the scores for each class is Gaussian,
which, as we will see, is a good approximation for most speaker verificationscores.2 Finally, we
focus on a different measure of performance, the equal error rate,which is widely used on binary
classification problems for its simplicity and for being independent of the classpriors. This mea-
sure of performance depends on the overall shape of the posterior probabilities and not just on the
difference between them, as is the case for the probability of error or the expected cost. Hence, no
simple extension of the Tumer and Ghosh derivations could be made for this measure even if we

2. We believe this is the reason for the scores combining better with a linear combiner than the mapped posterior
probabilities since when class distributions are Gaussian, the Bayes classifier is linear. Hence, the linear combiner
is a good choice when combining speaker verification scores. The Gaussian approximation, on the other hand, is
not good after the scores have been mapped to posterior probabilities making a linear combiner on the posterior
probabilities suboptimal.
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were willing to consider the system output to be a probability. Under these assumptions we arrive at
an explicit expression for an upper bound on the optimal EER of the combination that is a function
of the EER of the ensemble members and the pairwise class-conditional correlations.

2.2 Creating Diversity

The work described above, including the development we will show in Section 3, defines ways
of quantifying the diversity in the ensemble and how this diversity affects theperformance of the
combined classifier under different sets of assumptions, but does not describe ways of achieving
this diversity. Brown et al. (2005a) present a taxonomy of the methods for creating diversity found
in the literature as of 2005. They divide the methods into implicit and explicit, where implicit
methods are those that try to create diversity using randomization methods, while explicit methods
do the same by directly taking into account some measure of the diversity beingachieved. They
further divide the methods into three groups based on how they affect thelearners to create diversity:
(1) by modifying the starting point in the hypothesis space, (2) by changingthe set of accessible
hypotheses or, (3) by defining how the hypothesis space is traversed.Modifying the starting point in
the hypothesis space is applicable only for learners for whom the final hypothesis reached depends
on some random initialization component, as is the case for neural networks.SVMs, on the other
hand, do not fall into this category. Bagging (Breiman, 1996) and boosting (Freund and Schapire,
1997) are diversity creation methods of type 2, since each member of the ensemble is obtained
by changing the training data, resulting in a different set of accessible hypotheses. In the case of
bagging, the method is implicit since the training data for each ensemble is chosenrandomly from
the original set, while in the case of boosting, the training samples are weightedwhen training
a new member of the ensemble in a way that ensures diversity, making it an explicit method of
diversity creation. Allowing each member of the ensemble to use only a subsetof features falls into
the type 2 methods (Oza and Tumer, 2001). Finally, type 3 methods are those that directly aim at
improving diversity by including a term measuring diversity in the objective function of the learner.
The negative correlation (NC) learning algorithm is a notable example in this category (Liu, 1999;
Rosen, 1996).

The goal of NC Learning is to minimize the squared error of an ensemble output computed as
the average of the individual outputs in a regression context. This is doneby adding a penalty term
in the objective function of each individual neural network forming the ensemble. This penalty was
shown (Brown et al., 2005b) to directly control the covariance term in the bias-variance-covariance
trade-off. Zanda et al. (2007) extend the NC learning framework to classification problems by rein-
terpreting the Tumer and Ghosh model in a regression context. Our proposed anticorrelation method
follows the spirit of the NC learning technique of explicitly creating diversity through the modifica-
tion of the learner’s objective function when the learners are SVMs instead of neural networks.

Much of the work on diversity creation has focused on the generation oflarge ensembles, where
the number of classifiers is part of the design choices. The size of the ensemble is in fact another
variable to be optimized. In this paper, we constrain the ensemble to contain a relatively small num-
ber of systems. These systems are different in nature, using differentsets of features and different
modeling methods and can be quite complex. Each of them might have been developed over several
months or years of research. Hence, we do not take the size of the ensemble as a variable. The indi-
vidual systems are fixed before hand, and all we are allowed to do is (perhaps only slightly) modify
the training procedure of one or more of them in order to increase the diversity of the ensemble. The
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speaker verification system described in this paper can, in fact, be considered as a cascade of two
diversity creation methods. Given an enormous set of highly heterogeneous features coming from a
few different sources in the speech signal (for example, prosodic orspectral information), we train
separate classifiers for each type of feature, perhaps also varying the type of classifier used. This
can be seen as a type 2 diversity creation method. The second stage of diversity creation focuses
on making each new classifier added to the ensemble as new as possible. To achieve this we use
a type 3 diversity creation method, where we add a penalty term in the SVM objective function,
which explicitly aims at reducing the correlation between the new classifier andthe preexisting en-
semble. The proposed method is shown to be equivalent to defining a new kernel that we call the
anticorrelation kernel.

Kocsor et al. (2004) introduced a method calledmargin maximizing discriminant analysis
(MMDA) to obtain sucessive, mutually orthogonal, SVMs for a certain feature vector. In this
method, presented as a nonparametric extension of linear discriminant analysis, the SVM optimiza-
tion problem is modified by adding an orthogonality constraint with respect to the weight vectors
from previous SVMs. The MMDA method can be seen as a particular case of the one proposed in
this paper when the penalty coefficient is set to infinity. Furthermore, the constraints used here are
more general, reducing to the ones used in MMDA when all systems in the ensemble are SVMs, use
the same input features, and these features have identity within-class covariance matrices. Kernel-
based methods for ensemble systems have also been used, for example, in Pavlidis et al. (2002) and
Lanckriet et al. (2004). Pavlidis et al. compare three methods for combination of heterogeneous
information for gene function detection: early, intermediate and late integration. Early integration
(what we here callfeature-level combination) consists of concatenating the features from the two
different information sources into a single feature vector. Intermediate integration performs the
combination at the kernel level, and late integration performs the combination atthe last stage. This
is what we are callingscore-level combination. No explicit attempt at increasing diversity is made
in the paper. Lanckriet et al. (2004) propose a method for combining kernel classifiers by learning a
new kernel matrix that is a linear combination of the kernel matrices of the classifiers in the ensem-
ble. This method requires prior knowledge of the test data, since instead oflearning a function, they
learn the labels on the set of unlabeled samples. This particular scenario is not applicable to speaker
recognition where the speaker models are usually trained before any testsample is available.

2.3 System Combination

Once a diverse ensemble has been trained, the output of the individual classifiers must be combined
into a single decision or score. Linear combiners are the most widely used methods for fusion of
classifier outputs. In many cases the weights of the linear combination are determined based on the
classification performance of the classifiers. For a survey of these methods, see Kuncheva (2004),
Chapter 5. Obtaining the weights by training a “supra” classifier or combinerthat takes the output
of the individual classifiers as input is in many cases a better option. The mainproblem with this
approach is that using the output of the individual classifiers on the data used for training them as
training data for the combiner may result in suboptimal performance. The stacked generalization
method (Kuncheva, 2004, Chapter 3) can be used in these cases to generate the training data for the
combiner.

The focus in this paper is on diversity creation rather than on the methods used for combining the
ensemble. Hence, we choose a simple but effective combination method: a linear supra-classifier
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trained with data generated by the stacked generalization method using logistic regression. Linear
logistic regression was shown in our previous work (Ferrer et al., 2008a) to perform comparably
to or better than other linear and nonlinear classifiers for the combination of speaker verification
scores, and it is one of the most commonly used methods for combining speaker verification systems
(Brummer et al., 2007). Other common combination procedures used in speaker verification include
neural networks (Reynolds et al., 2003; Ferrer et al., 2006), support vector machines (SVM) (Ferrer
et al., 2006), and weighted summation using empirically determined weights (Dehak et al., 2007).

3. A Simple Model for System Combination

Consider a binary classification task with classesy ∈ {a,b} for which N separate classifiers are
available. In speaker verification, classa corresponds toimpostorandb to true-speaker. Classifier
i produces a score,fi , which can be thresholded to obtain the final decision. That is, the estimated
class ˆy is given by

ŷ =

{

a if fi < ti
b if fi ≥ ti ,

(1)

whereti is a tunable threshold.
Here, we consider a setup where the scores from the individual classifiers are combined into a

single scorefc = fc( f1, . . . , fN). This final score is the one that is later thresholded to obtain the es-
timated class for the sample. The goal is then to optimize the performance of the final combination,
not that of the individual systems.

In this section we develop a simple model for this problem, which will lead us to an intuitive
conclusion about what could be done to improve the final performance when training a new system
for combination with others.

3.1 Mahalanobis Distance as a Surrogate for EER

Consider for now a single scoref , corresponding to a random variable,F .3 A usual way of mea-
suring performance of a score when Equation (1) is used to estimate the class of the samples is
equal error rate (EER), the false acceptance rate when the false rejection and false acceptance rates
are equal. In speaker verification, a false acceptance (which we will call eb|a) is an impostor trial
accepted by the system as the target speaker, and a false rejection (ea|b) is a true-speaker trial con-
sidered an impostor trial by the system.

If we make the assumption that the conditional distribution of the scores for each class is Gaus-
sian, we can obtain an explicit bound for the EER as a function of the Mahalanobis distance between
the class-conditional means. Figure 1 shows how to calculate the EER for thiscase. We assume that
the class-conditional distribution of the scores is given by

F | Y = y∼N (µy,σ2
y), for y = a,b,

whereY is the random variable corresponding to the trial’s class. We further assume, without loss
of generality, thatµb ≥ µa, so that (1) is the best way of assigning the labels for a given threshold.

3. Throughout the paper we will adopt the notation of using lower case letters for the samples of the random variable
noted by the corresponding capital letter.
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Figure 1: EER calculation when the class-conditional distributions are Gaussian. The EER is equal
to ea|b whent is chosen such thatea|b = eb|a.

With these assumptions we can computeea|b andeb|a for a certain value of the thresholdt as

ea|b(t) = φ
(

t −µb

σb

)

, (2)

eb|a(t) = 1−φ
(

t −µa

σa

)

, (3)

whereφ is the cumulative distribution function of the standard normal distributionN (0,1).
The EER is given byeb|a(t

∗) whent∗ is chosen such thateb|a(t
∗) = ea|b(t

∗). In the appendix we
prove the following upper bound on the EER:

EER= eb|a(t
∗) = ea|b(t

∗) ≤ φ(−1
2

δµ
σ

), (4)

whereδµ = µb − µa, andσ is any value that satisfiesσ ≥ (σa + σb)/2. Equality is achieved for
σ = (σa +σb)/2, but this value ofσ does not result in a nice expression later on, when we want to
use it to optimize the combination performance. On the other hand,

σ =
√

(σ2
a +σ2

b)/2

also satisfies the inequality and does result in a nice expression that we canlater use. In the rest of
the paper we will use

M 2 =
2δµ2

σ2
a +σ2

b

(5)

as a surrogate for the EER of the system.M is the Mahalanobis distance between two Gaussian
distributions with distance between the meansδµ and variance(σ2

a +σ2
b)/2. Using (4), we get that

EER≤ φ(−M

2
).
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Figure 2: Actual EER for a set of 37 systems versus the upper bound and the exact value under
Gaussian assumptions.

Our strategy in the remainder of the paper will be to reduce the value of the upper bound, with
the hope that this will result in a reduction of the EER. Sinceφ is monotonically increasing in its
argument, decreasing the value of−M (or increasing the value ofM ) will decrease the value of the
upper bound.

Figure 2 shows a scatter plot of the actual EER for a set of 37 differentindividual systems us-
ing different features or different modeling techniques (some of these systems are described by
Ferrer et al. (2006)) versus the upper bound on the EER under Gaussian assumption given by

φ(−δµ/
√

2(σ2
a +σ2

b)) and the exact value of the EER, also under Gaussian assumption, given by

φ(−δµ/(σa +σb)). We can see that the upper bound is tight for high EER values. When the differ-
ence between the class-conditional covariance for both classes is large(which, in our experiments,
is the case for the better systems), the upper bound becomes looser. We see that the exact estimation
under the Gaussian assumption performs significantly better in this case. Theremainder of the error
is due to the inaccuracy of the Gaussian assumption. Figure 3 shows the actual distribution of two
of the systems used in this paper compared to their Gaussian approximation. Figure 3.a corresponds
to one of the low EER systems that drifts away from the diagonal in Figure 2, while 3.b corresponds
to a system with EER around 12%. We can clearly see that the Gaussian approximation in this
case is inaccurate, which in turn explains the inaccuracy of the upper bound and the exact formula
developed in this section. Interestingly, even when the Gaussian approximation is inaccurate, (4)
seems to still hold. Our procedure of trying to minimize this upper bound in the hope that the actual
EER will be pushed down would then still be valid.

3.2 Maximum Mahalanobis Distance Combination

Returning to the problem of combining the output of several subsystems into asingle score, we use
the results from the previous section and maximize (5) to find the optimal parameters of the com-
biner. This will result in a simple formula that can predict the performance of the combination of
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a. UBM−GMM system scores
−2 0 2 4 6 8 10 12

b. SNERF−SVM system scores

Figure 3: Distribution of scores for two individual systems compared to theirGaussian approxima-
tion.

several subsystems given their individual EERs (orM s) and the average class-conditional covari-
ance matrix for the vector of scores. To do this we further assume that the combination is performed
with a linear function of the individual scores. This is not a very restrictive assumption for speaker
verification since for this task we have repeatedly found that linear combination procedures perform
as well (or better) than nonlinear ones (Ferrer et al., 2008a). The form of the combined scores as a
function ofN individual scores is then

fc =
N

∑
i=1

αi fi = αt f ,

whereα = (α1 . . .αN)t is the vector of weights andf = ( f1 . . . fN)t the vector of individual scores.
We assume that the class-conditional distribution of thefi ’s is jointly Gaussian. Hence, each of the
individual scores and the combined score satisfy the assumptions made in theprevious section. The
class-conditional distributions ofFc, the random variable corresponding to the combined score, are
given by

Fc | Y = y∼N (αtµy,αtΣyα), for y = a,b,

whereµy = (µy1 . . .µyN) is the vector of means andΣy = E[(F −µy)(F −µy)
t |Y = y] the covariance

matrix for classy for random variableF corresponding to vectorf . We can now computeM 2

(Equation 5) for the combined score as a function of the parametersα:

M 2 =
2(αtµb−αtµa)

2

αtΣaα+αtΣbα
=

αt∆∆tα
αtΣα

, (6)

where∆ = µb−µa and
Σ = 1/2(Σa +Σb). (7)

We wish to find theα that maximizes this expression. Defineβ = Σ1/2α, whereΣ1/2 is a
symmetric matrix square root ofΣ (which can be computed from the eigendecomposition ofΣ,
which exists and can be chosen to be symmetric sinceΣ is symmetric). Replacing this in (6), and
using the Cauchy-Schwarz inequality,

M 2 =
βtΣ−1/2∆∆tΣ−1/2β

βtβ
=

‖∆tΣ−1/2β‖2

‖β‖2

≤ ‖∆tΣ−1/2‖2 = ∆tΣ−1∆,
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with equality whenβ ∝ Σ−1/2∆. Hence, the optimalα is a vector in the direction ofΣ−1∆.4

Note that we have arrived at the definition of the Mahalanobis distance in multiple dimensions
(∆tΣ−1∆), which is an intuitive result. We now know that the EER of the combination of theindi-
vidual systems will be at mostφ(−

√
∆tΣ−1∆/2). If we can devise a way of increasing∆tΣ−1∆, this

upper bound will decrease.
Anderson and Bahadur (1962) consider the problem of finding all the admissible linear pro-

cedures for classifying into two multivariate normal distributions. They showthat α = (taΣa +
tbΣb)

−1∆ corresponds to an admissible procedure for anyta andtb (that is, no other linear procedure
will have, simultaneously, strictly bettereb|a andea|b) as long astaΣa + tbΣb is positive definite.
Unfortunately, the values forta andtb that correspond to the EER have to be numerically obtained.
No explicit expression is available for the general case. Since our purpose here is to obtain a simple
explicit expression for the EER (as a function of the EERs of the individual systems and some other
parameters) that we can use to analyze the problem, we have settled for a bound on the EER instead
of using the implicit expression developed by Anderson and Bahadur.

3.3 Analysis for Combination of Two Systems

We now focus on the caseN = 2. In this case, we have that the optimalM 2 (∆tΣ−1∆) is given by

M 2 =
δ2

1σ22+δ2
2σ11−2δ1δ2σ12

σ11σ22−σ2
12

=
M 2

1 +M 2
2 −2ρM1M2

1−ρ2 , (8)

whereδi is componenti of vector∆, σi j is componenti j of matrix Σ, M1 = δ1/
√

σ11 andM2 =
δ2/

√
σ22 are the Mahalanobis distances for the individual systems, and

ρ = σ12/
√

σ11σ22. (9)

Note thatρ is not the correlation between the two systems in the usual sense, sinceΣ is not the
covariance matrix ofF , but the average class-conditional covariance.

Let us call the upper bound on the EER, ˆe, that is,ê= φ(−M /2). Figure 4 shows some curves
of êc, the upper bound on the performance of the combination for two systems, asa function ofρ. To
create these plots we take two actual systems (the MLLR-SVM and the SNERF-SVM, as described
in Section 6.2) and compute the upper bound on the EERs based on their Gaussian approximation.
We also compute matrixΣ and from there,ρ. This gives a single point in this graph (marked with a
star). We can now varyρ, keeping ˆe1 andê2 (the upper bound on the performance of the individual
systems) fixed, to obtain a curve. We can also obtain curves for different values ofê2. These curves
show us the relation between the performance of system 2, the value ofρ between the two systems,
and the performance of their combination. We can see that for this particularset of systems, we
could degrade the second system 100% (that is, from 15.6% to 31.3%) andstill get a gain in the

4. Note that this is the same direction one would obtain with linear discriminant analysis (LDA). As mentioned in the
introduction, for the experiments in this paper we will use linear logistic regression (LLR) to train the combination
weights. The reason for using LLR instead of LDA, despite the result obtained in this section, is that the results
in this section are obtained under the assumption of class-conditional Gaussianity. When Gaussianity is not closely
satisfied, LLR is believed to be a safer choice being more robust to outliers(Hastie et al., 2001, Section 4.4). In fact,
a set of initial experiments showed that LLR was significantly better than LDAon our speaker verification data.
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Figure 4: Left: Curves of ˆec (the upper bound on the EER of the combination) for two systems as a
function ofρ, for ê1 fixed and various values of ˆe2, whereêi denotes the upper bound on
the EER of systemi. Right: Simulated contour plots for the scores of two systems assum-
ing class-conditional distributions are Gaussian with equal covariance matrix. Marginal
distributions are kept fixed for all four figures, onlyρ is changed. These plots correspond
to four different points in the darker curve from the left plot.

performance of the combination (or at least in the upper bound) over what we get with the original
pair of systems if, at the same time, we were able to decrease theρ from 0.48 to 0 (this point is
denoted by a diamond in the graph).

At first sight, these curves may seem to go against intuition, since whenρ increases, after
reaching a peak (occurring at the minimum ofM1/M2 andM2/M1), they go down again. That is,
very high values ofρ result in extremely good combination performance. Similarly, whenρ turns
negative, the combination performance improves, reaching zero EER forρ = −1. All these cases
can be easily understood using contour plots of the scores from two systems for varying values of
ρ. The right plot of Figure 4 shows four different cases. Here we keep the marginal distributions
of the systems fixed and vary onlyρ, which implies that the performance of the two individual
systems stays fixed for the four different plots. That is, the four plots correspond to four different
points in a single curve like the ones in the left plot. Furthermore, we set the covariance matrix
between the two systems to be the same for both classes. In this way, the upperbound (4) is exact
andρ is the within-class correlation (assuming both classes have the same prior). We can see that
the separation between the two classes is highly dependent on the value ofρ. The first plot shows
a typical case, whereρ = 0.5. The second plot shows the case ofρ = 0. We can already see
that the overlap between the two classes has been significantly reduced, even though the marginal
distributions have not changed. The third plot shows the case of negative ρ. This implies that both
systems produce errors in a negatively correlated way, which makes the combination of those two
systems extremely effective at reducing the error rate. The fourth plot illustrates the case in which
ρ is larger than the value for which the ˆec curve peaks, showing good separation between the two
classes. Perfect classification withρ = 1 is possible only when both classes have exactly the same

2090



AN ANTICORRELATION KERNEL FORSUBSYSTEM TRAINING

covariance matrix except possibly for a scalar factor (so that the contour plots become parallel lines)
and the mean vectors for both systems are different. This case corresponds to a zero value in the
denominator of (8) and a nonzero at the numerator.

In practice, if we take pairs of all 37 systems plotted in Figure 2 and compute theactualρ and
the ρ at the peak (that is,ρpeak= min(M1/M2,M2/M1)) we find that, on average, the actualρ is
0.26 to the left ofρpeak. Considering this empirical fact it seems unreasonable to try to increaseρ
in order to improve the combination performance, since it would require a large increase in order
to go past the peak into an area where the combination performance is better than the original.
Furthermore, this would work only if the class-conditional covariance matrices were equal, which
is usually not the case. Hence, in this paper, our strategy will be to try to decrease the value ofρ. Of
course, we also require that the performance of each individual system stays reasonably close to its
original performance, which we hope will result in a new point (in a plot likethe one in the left of
Figure 4) located toward the left and lower than the original point. In the next section we introduce
our method for achieving this goal.

4. Anticorrelation Kernel

Suppose that two separate classifiersS and B are available, whereS is required to be an SVM,
but B can be any classifier that produces a score for each sample. We will consider B to be a
black box from which we have only the scores that it produces. As we have been assuming, the
final classification decision will be made based on a combination of the outputs generated by both
classifiers. Our strategy will be to train systemS using information about systemB in order to
improve the combination performance over the one obtained when systemS is designed with no
knowledge of systemB.

4.1 Support Vector Machines

Consider a labeled training set withmsamples,T = {(x j ,y j)∈R d×{−1,+1}; j = 1, ...,m}, where
x j is the feature andy j the class corresponding to samplej. The goal is to find a functionf (x) =
wtx+c, such that sign( f (x)) is the predicted class for feature vectorx. The standard (primal) SVM
formulation for classification is given by Vapnik (1999):

minimize J(w,ε) =
1
2

wtw+C
m

∑
j=1

ε j

subject to y j(wtx j +c) ≥ 1− ε j j = 1, ...,m
ε j ≥ 0 j = 1, ...,m.

(10)

Minimizing the norm of the weight vector is equivalent to maximizing the margin between the
samples and the hyperplane. Theslack variablesε j allow for some samples to be at a distance
smaller than the margin to the separating hyperplane or even on the wrong sideof the hyperplane.
The parameterC controls the trade-off between the size of the margin and the total amount of error.
By deriving the dual form of the optimization problem above we find that input vectors appear
only as inner products with each other. Hence, if we wish to transform the input features with a
certain functionφ(x) we only need to be able to compute the inner products between the transforms
for any pair of samples, that is, we only need to know the functionK(xk,xl ) = φ(xk)

tφ(xl ). This
fact is what allows for complex transforms of the input features to be used, as long as the kernel
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functionK(xk,xl ) can be easily computed. In the next section we will develop the proposed method
considering an inner product kernel. The general case will be treatedin Section 4.5.

The above setup corresponds to a classification problem. The regression problem can also be
posed as a convex optimization problem by choosing an appropriate distance measure (Vapnik,
1999; Smola and Schölkopf, 1998) with the objective function given by the sum of the square norm
of the weight vector and an error term, as in the classification case. The dual of this problem
again takes a form in which features appear only in inner products with other features, which again
allows for the kernel trick to be used. Hence, even though the derivations in this paper will be done
considering a classification problem for simplicity, the method described and the interpretations
given can be equally applied to SVM regression problems.

4.2 Modified Support Vector Machines

As we saw in Section 3.3, reducing theρ value between systemS and systemB could lead to an
improvement in combination performance as long as the performance of the individual systems does
not degrade too greatly. We propose to add a term in the SVM objective function (J(w,ε) in Equation
(10) that introduces a cost for a model that results in high value ofρ. Ideally, we would like this term
to be given byλρ so that low values ofρ are encouraged, including negative ones. Unfortunately,
this term would make the new objective function nonconvex, making the optimization problem
much more complex. To see this, let us derive an expression forρ as a function of the SVM weights.
Let S= wtX +c, wherew andc are the SVM parameters. We can computeσ12 = σSB (component
1,2 of Equation 7) as5

σSB =
1
2 ∑

y={a,b}
E[(B−µb,y)(S−µs,y)|Y = y] = wtK,

where we are using the notationµv,y = E[V|Y = y] for any random variableV (scalar or vectorial),
and where

K =
1
2 ∑

y={a,b}
E[(B−µb,y)(X−µx,y)|Y = y]. (11)

K is simply the vector of average class-conditional covariances between each input feature and the
scores from systemB. The value of vectorK can be estimated from the training setT as

K̃ =
1
2 ∑

y={a,b}

1
my

∑
j|y j=y

(b j − µ̃b,y)(x j − µ̃x,y), (12)

whereb j is the score generated by systemB for samplej, my is the number of samples inT from
classy, µ̃b,y = 1

my
∑ j|y j=yb j , andµ̃x,y = 1

my
∑ j|y j=yx j .

Similarly, we can computeσ11 = σSS(component 1,1 of Equation 7) aswtMw, whereM is the
average class-conditional covariance matrix for the feature vectorX; andσ22 = σBB (component
2,2 of Equation 7) as the average class-conditional variance for theB scores that we will callv. We
can now writeρ2 as

ρ2 =
σ2

SB

σSSσBB
=

wtKKtw
v wtMw

.

5. We useB andS to refer to the systems and the random variables corresponding to the scores produced by these
systems. The actual meaning should be clear from the context.
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This expression and its square root are nonconvex functions ofw. Hence, adding the termλρ to the
objective function of the SVM problem would make the optimization problem nonconvex. On the
other hand, the numerator ofρ2, σ2

SB is a convex function ofw and, using it as a regularization term
results in a new problem that is equivalent to a standard SVM problem with a new kernel function.
To see this, write

Jσ(w,ε) =
1
2

wtw+
λ
2

wtKKtw+C∑
i

εi

=
1
2

wtAw+C∑
i

εi ,

whereA = I + λKKt is a symmetric positive semidefinite matrix. We can now change variables
w̃ = Bw, with B symmetric andBtB = A (i.e., B is a matrix square root ofA and, since A is a
positive definite symmetric matrix, it always exists and can be chosen to be real and symmetric) and
write it as

minimize Jσ(w̃,ε) = 1
2w̃tw̃+C∑ j ε j

subject to y j(w̃tzj +c) ≥ 1− ε j j = 1, ...,m
ε j ≥ 0 j = 1, ...,m,

where
zj = B−1x j . (13)

We see that the appropriate choice of regularization term led us to a very simple new opti-
mization problem. The disadvantage of this choice is that it does notdirectly achieve our goal of
minimizing ρ. For example, negative values ofρ corresponding to negative values ofσSB will gen-
erally not be encouraged by the new objective function because the maximum margin (that is, the
minimum value ofwtw) corresponds, in most practical cases, to positive values ofσSB. Hence, in
practice, for each negative value ofσSB the corresponding positive one will result in a smaller value
of the objective function and will be preferred to the negative one. Furthermore, minimizingσSB

does not imply minimization ofρ, even for positive values, since the denominator is not being taken
into account. Nevertheless, we empirically find that the new optimization problemachieves its goal
of reducingρ. In particular, whenλ is large,σSB is pushed toward zero, forcingρ to become zero.

Directly finding the matrixB−1 in (13) is computationally expensive since in general the dimen-
sion d of the feature vectorsxi can be very large and the matrixB is a full matrix of sized× d.
Nevertheless, since matrixA has a very particular structure, we can find an expression for its inverse
using the matrix inversion lemma, by whichA−1 = I − λ

1+λKtK KKt . Hence, one way of imple-
menting the proposed method is to define a kernelK(xk,xl ) = xt

kB
−tB−1xl = xt

kA
−1xl to be used by

the SVM. This kernel satisfies the mercer conditions (i.e., it is a valid kernel) sinceA is a positive
semidefinite matrix. Using the expression forA−1 above we get

K(xk,xl ) = xt
kxl −

λ
1+λKtK

xt
kKxt

l K. (14)

We call this kernel theanticorrelation kernel. The computation ofK(xk,xl ) in Equation (14) requires
only the calculation of three inner products, which makes the method computationally feasible.
Another approach is to transform directly the features using (13). This isalso computationally
feasible because the inverse of the matrixB has a simple expression. To find this expression we first
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note that the matrixB−1 is a matrix square root ofA−1. Hence, we need to find a matrix that when
multiplied by its transpose results inA−1 = I − λ

1+λKtK KKt . It is easy to show that

B−1 = I − α
KtK

KKt

satisfies this condition whenα = 1± 1√
1+λKtK

. Hence, given a certain value forλ we can find the
correspondingα and transform each feature vector using (13). This means that we can implement
the proposed method by transforming the input features using the following expression:

zi = xi −α
Ktxi

KtK
K. (15)

In the case of speaker verification, a separateK vector is computed for each target model being
trained. Hence, doing the transformation in the feature domain is inefficient, since there is not a
single transformation for each feature vectorxi , but one for each target model. The kernel imple-
mentation might be preferable in this case. Furthermore, as we will see in Section 4.5, when the
original SVM problem uses a kernel other than the inner-product one,implementing the anticorre-
lation method as a kernel may be the only feasible option.

4.3 Interpretation of the Modified Problem

To give an interpretation of the new SVM problem, we first need to understand the meaning of the
direction given by the vectorK. The average class-conditional covariance between the scores from
systemB and the scores from systemS is given bywtK. For a fixed value of‖w‖ = c, thew that
maximizes the absolute value ofwtK is given byw = cK/‖K‖. Hence,K gives the direction for
the vectorw of SVM weights for which the average class-conditional covariance between the two
systems is maximum. Aw orthogonal toK would result in zero average class-conditional covariance
between the two systems. The term‖wtK‖2 that we have added to the objective function of the SVM
problem has the effect of penalizing anyw vector with a large component in the direction ofK. Our
goal is to find aw as orthogonal toK as possible without degrading the performance of the system
so much that the overall combination starts to degrade. This balance can be achieved by tuning the
parameterλ.

We can interpret the kernel given by (14) in a similar way. Whenλ is small this kernel is close
to the linear kernel. Whenλ grows to infinity the kernel subtracts the product of the projections of
the pointsxk andxl into the vectorK from the linear kernel. The resulting value of the kernel will be
small if xk andxl are both aligned withK. Since the SVM will make an effort to separate only points
from different classes that give a high kernel value (that is, that aremore “similar”), this means that
we consider vectors whose directions are close to that ofK to be unimportant and, consequently,
we emphasize the importance of the vectors whose directions are orthogonal from that ofK. This
results in a more effective usage of the features, ignoring those directions that would lead to high
average class-conditional covariance between the systems and taking advantage of the rest.

Finally, if we choose to implement the method as a feature transform instead of akernel function,
the resulting features have a very simple interpretation. Whenλ = ∞, Equation (15) becomeszj =

x j − Ktx j

KtK K, which is the expression for subtracting fromx j its component on directionK. If λ is not
∞ then only a part of the component is subtracted.
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4.4 Extension for Multiple Preexisting Scores

An extension to the presented method can be considered whereN previous systems are available,
B1,. . . , BN, and we wish to trainS to combine well with them. A generalization of the formulas
above can be derived for this setup. We rewrite the objective function as

Jσ(w,ε) =
1
2

wtw+
N

∑
k=1

λk

2
wtKkK

t
kw+C∑

i

εi

=
1
2

wtAw+C∑
i

εi ,

where nowA is given byI + ∑N
k=1 λkKkKt

k and it is still positive definite and symmetric. The same
approach used above can be used here to simplify the problem to a standard SVM problem. We can
still use the inversion lemma by considering matrices

K = [K1 . . .KN],

Λ = diag(λ1 . . .λN),

so thatI + ∑N
k=1 λkKkKt

k = I + KΛKt . We can then use the lemma to getA−1 = I − K(Λ−1 +
KtK)−1Kt . When λk = ∞ for all k, A−1 = I − K(KtK)−1Kt . This matrix is idempotent (and
symmetric), henceB−1 = A−1. The transformed featureszi for this case are then given byzi =
xi −K(KtK)−1Ktxi , which is the projection ofxi on the complementary space to that spanned by
vectorsK1 throughKN.

4.5 Extension for General Kernels

The development on Section 4.2 was done using inner-product kernel SVMs as the starting point.
In this section we show that the method can be implemented for any kernel function.

Consider a problem for whichK0(x,y) = φ0(x)tφ0(y) has been found to perform better than the
inner-product kernel. One way of implementing the anticorrelation method in this case is to simply
transform the features usingφ0(x) and then treat the transformed features as the feature vectorsx
in Section 4.2. This is conceptually simple, but could be extremely costly computationally if the
dimension ofφ0(x) is large compared to the dimension ofx, or impossible if the transformationφ0

is infinite dimensional (as in the case of the Gaussian kernel). Luckily, thereis a way of implement-
ing the anticorrelation method without ever computing the transform but only thekernel function
between pairs of features.

In Section 4.2 we found that one way of implementing the proposed method is by the use of the
anticorrelationkernel, defined by Equation (14). In practice, vectorK in that equation is computed
from data. We call this empirical value forK, K̃ (Equation 12). We can writẽK as a linear function
of the featuresx j used to compute it. That is,̃K = ∑ j c jx j , where thec j depend on themy’s and all
thebi ’s. If we now replace everyx in Equation (14) byφ0(x) andK by ∑ j c jφ0(x j), we get

K(xk,xl ) = φ0(xk)
tφ0(xl )−

λ∑ j c jφ0(x j)
tφ0(xk)∑ j c jφ0(x j)

tφ0(xl )

1+λ∑ j ∑i c jc jφ0(xi)tφ0(x j)

= K0(xk,xl )−
λ∑ j c jK0(x j ,xk)∑ j c jK0(x j ,xl )

1+λ∑ j ∑i c jc jK0(xi ,x j)
.
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The anticorrelation kernel can then be computed exclusively as a functionof the original kernel
K0. The processing time is now significantly increased, though, since two sums over the samples
used to obtainK are needed every time the kernel is computed (the denominator in the second term
can be precomputed and reused, since it does not involvexk or xl ). The extension for multiple
preexisting scores follows the same steps as above. In this paper, the inner-product kernel is used
for all experiments.

4.6 Other Approaches

Our goal is to obtain the best possible combination performance given the available systems. The
approach presented above is one path toward this goal. Two other ways of approaching this problem
are considered here.

4.6.1 FEATURE-LEVEL COMBINATION

When systemB is also an SVM system and the features corresponding to the samples used for
training systemS are also available for systemB, an SVM using the features from both systems
concatenated into a single vector can be trained. The resulting SVM is in itself acombination
procedure, which, ideally, should make optimal use of the features from both systems. This may
not be true in practice, though, since a larger feature vector increasesthe complexity of the system,
making it more prone to overfitting the training data. A further refinement of thisapproach consists
of weighting the vector components, assigning weightα to the features from one of the original
systems and weight 1−α to the other features. This is done by multiplying the components of the
square-norm ofw in the SVM objective function by the inverse of the corresponding featureweight.
That is, we replace‖w‖2 = ∑i w

2
i with ∑i w

2
i /βi , whereβi = α for the features from one set and 1−α

for the features from the other set. This allows us to compensate for different lengths in the original
vectors or to bias the training procedure to make more use of the features from the better-performing
system. Feature-level combination is usually costly and sometimes even infeasible, given the large
size of the original feature vectors, and can be considered only if both systems being combined are
SVM systems.

4.6.2 FEATURE+SCORECOMBINATION

Another method can be considered in which we present the scores generated by systemB as input
features to the SVM, along with all the features from systemS. Again, a larger weight can be given
to the component corresponding to the score from systemB than to the features fromS.

5. Experiments on Artificial Data

To test the proposed kernel on a simple task, we generated data for two classes with model

Z = CZ̃+mY,

whereZ̃ is a vector of sized where the components are generated independently with normal distri-
bution with zero mean and unit variance.C is a square random matrix intended to create correlation
between the features. Its components are drawn from a uniform distribution, and a scaling factor is
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applied to force the maximum variance ofZ to be 1. The class-dependent mean vector is given by

mY =

{

(0. . .0)t if Y = a
(m. . .m)t if Y = b.

We take half of the features and train a linear SVM (inner-product kernel), which serves as
systemB. The remaining features are used to train systemSstarting with an inner-product kernel.
The anticorrelation kernel is implemented for varying values ofλ. We create two separate sets, one
for training, with 900 examples of classa andN examples of classb, and one for testing, with 10
times more data than in the training set.

The combination is performed using a linear logistic regression model, trained onthe training
set with the scores from the two SVM systems,B andS, for each value ofλ. Since the scores
obtained on the training set are overly optimistic, we use 10-fold cross-validation on the training
set to create theB andS scores used to train the combiner (Kuncheva, 2004, Section 3.2.2). The
scores from cross-validation for systemB are also used to estimate the vectorK̃ as in (12). When
only a few samples from one of the classes are available, the estimation ofK̃ can be noisy. In our
simulation we vary the number of samples available for classb, keeping the number fora fixed;
hence, in order to keep the variance of the estimator stable across experiments, we use only samples
from classa to estimateK̃.

Figure 5 shows the error rates for the test data for systemS, systemB, and the score-level
combination as a function of the value ofλ, for m= 3.0,N = 900 andd = 250. The figure also shows
results for the feature-level and the feature+score combination procedures, explained in Section 4.6.
The weightα for these two systems was tuned using 10-fold cross-validation on the training set.
For these two cases and for systemB, the error does not depend onλ. On the other hand, the value
of ρ betweenS andB decreases withλ (reaching a value close to zero). We see that, in practice,
ρ is effectively reduced asλ increases, even though we useλσ2

SB as regularization term instead of
λρ2. The error for systemSalso varies withλ. The degradation in performance is expected since
we are trading off poorer performance in exchange for a lower value of ρ. The small improvement
at moderate values ofλ, though, is not too surprising. If the directionK corresponded to one that is
especially noisy, reducing the importance of that direction can lead to improved performance. We
will see more on this in Section 6.5.

The feature-level and feature+score combination methods perform approximately equal at around
1% EER, while, forλ = 0, the score-level combination has a significantly worse performance of
1.58%. Nevertheless, asλ grows, the performance of the score-level combination using the anticor-
relation kernel improves significantly (from 1.58% to 0.56% whenλ goes from 0 to 104), making it
the best-performing system. Overall, we see a reduction in EER of around 50%, relative to the EER
of the best combined system when the anticorrelation kernel is not used.

Figure 6 shows the scatter plot of scores (on the training data) for both systems corresponding
to λ = 0 andλ = 10000. We can see that for the large value ofλ, the within-class covariances have
been largely reduced. We can also see that the separation of the two classes is better for the larger
λ, which explains the performance improvement observed in Figure 5.

Figure 7 shows the results for the score-level combination of systemsB andSwith λ = 0 (that
is, without using the proposed method), the score-level combination withλ = ∞, the feature-level
combination, and the feature+score combination, for several settings of the simulation parameters
N, m, andd. For the score-level combination withλ = ∞ we also present the results obtained when
computingK using our knowledge of the model that generated the data. Since we are creating
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Figure 5: Error of individual systems and their combination, and value of the ρ coefficient as a
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Figure 6: Scores from system B versus scores from system S for two values ofλ.

the data ourselves according to a model, we can computeK exactly using (11) instead of (12).
It can be shown that, for our setup,K = 1

2 ∑y={a,b}(C12Ct
11 +C22Ct

12)wB, wherewB is the SVM
weight vector for systemB andCi j is block i j of size d/2× d/2 of matrix C. For each set of
parameters, 10 different random seeds were used to generate the data, keeping matrixC equal for
all 10 experiments. Each bar shows the first quartile, the median, and the third quartile of the set of
EERs obtained from the 10 simulations.

The figure shows that feature+score combination is significantly better thanscore-level or feature-
level combinations only when the task is easier (m= 3.0) and many samples are available for train-
ing (N = 900). Feature-level combination is optimal when the task is harder (m = 1.8) and the
number of features is small (d = 250) particularly when enough samples are available for training
(N ≥ 300). Plain score-level combination (without anticorrelation) performs comparably to feature-
level combination when the number of training samples is small and the number of features is large,
in which case the feature-level combination suffers from the additional complexity. In all cases,
though, the anticorrelation method (last two bars) is either comparable or significantly better than
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Figure 7: Comparison of EER on simulated data for the score-level combination of systemB with
S with λ = 0 (calledScorein the legend), the score-level combination withλ = ∞ (An-
tic) using the estimated value forK (est) or the value obtained from the model (real),
the feature-level combination (Feat), and the feature+score combination (Feat+score) for
several values of the simulation parameters. For each pair ofm (distance between means)
andd (feature vector dimension), three values ofN (number of samples from classb) are
explored.

plain score-level, feature+score and feature-level combinations. Form = 3.0, the anticorrelation
method significantly outperforms all other combination methods for both values of d and the three
values ofN. Gains are smaller or disappear when the task becomes harder (m= 1.8).

The difference between the fourth and the fifth bars in each set is due only to the difference in
the K vector used. TheK is estimated using the data (Equation 12) for the fourth bar and using
the model (Equation 11) for the fifth bar. We can see that when the dimension of the feature vector
Z2 is large, the difference between the fourth and the fifth bars becomes larger, indicating that in
these situations the estimation ofK is noisier. This is also evident from looking at the reduction
in ρ achieved for the different values ofd when using the data to estimateK. For d = 250, the
reduction is around 90%, while ford = 1000 the reduction is only around 60%. In most experiments
with d = 1000 the value ofρ when using the estimated value ofK does not go under 0.30. This
means that for higher-dimensional vectors, the estimation ofK is harder than for lower-dimensional
ones. Nevertheless, even in those cases, the combination using the anticorrelated system with the
estimatedK is, in most cases, better than the original score-level combination.
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6. Experiments on Speaker Verification

Speaker verification is the task of deciding whether or not a speech samplewas produced by a
certain target speaker. It is a binary classification task where the two classes aretrue-speakerand
impostor. To test the proposed method we use a standard UBM-GMM system, a cepstral supervector
SVM system, an MLLR-based system, and a prosodic system. We show results using the proposed
kernel on all possible combinations involving two systems (two-way combinations) and a variety of
combinations involving three and four systems (three-way and four-way combinations).

6.1 Databases and Error Measures

Experiments were conducted using data from the NIST speaker recognition evaluations (SRE) from
2005 and 2006. Each speaker verification trial consists of a test sample and a speaker model. The
samples are one side of a telephone conversation with approximately 2.5 minutesof speech. We
consider the 1-side training conditions in which we are given 1 conversation side to train the speaker
model. This conversation corresponds to a positive example when training the SVM model for the
speaker. The data used as negative examples for the SVM training and to estimate theK vectors
is taken from 2003 and 2004 NIST evaluations along with some FISHER data,resulting in a total
of 4355 samples. The tasks contain 26,270 trials for SRE05, and 21,343 for SRE06. In both cases
around 1/10th of the trials are target trials. Trials are created by reusing the conversations from a few
hundred speakers as train and test samples, sometimes as target speakers, sometimes as impostors. A
total of 598 distinct models for SRE05 and 584 for SRE06 are created, some of them corresponding
to different conversations from the same speaker.

The performance measures used in this section are the EER and NIST’s detection cost function
(DCF). The DCF is defined as the Bayesian risk with probability of target equal to 0.01, cost of
false alarm equal to 1, and cost of miss equal to 10. The DCF is affected both by the discrimination
power of the system and its calibration, given by the choice of threshold that is believed to minimize
it (Brummer and du Preez, 2006). In this paper, we will not explore the calibration issue, which is,
in itself, a large field of study in the biometrics community. We will present results interms of
the DCF achieved when choosing the threshold that minimizes it on the test data.This measure is
commonly calledminimumDCF and it measureshow much information the detector could have
delivered to the user, if the calibration had been perfect(Brummer and du Preez, 2006).

The EER and the DCF are two points in the receiver operating characteristic(ROC) curve of a
system and they give a more complete picture of the behavior of the system for different operating
points than the EER alone. Even though the theory in Section 3 was developedfor EER, we will
see that improvements are obtained for both performance measures.

6.2 Individual System Descriptions

The systems chosen to run the experiments in this paper are representativeof the systems being
used in most state-of-the-art speaker recognition systems. Somewhat simplified versions of the
best-performing systems were used, in order to facilitate the large amount ofcomputationally costly
experiments that were run. A brief description for each of the systems follows.
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6.2.1 UBM-GMM SYSTEM (G)

This is probably the most widely used paradigm for speaker verification. AGaussian mixture model
(GMM) is trained using data from many different speakers and recording conditions to create auni-
versalbackground model (UBM). The target speaker models are trained by maximum a posteriori
adaptation of the background model to the training data. For a given test sample the logarithm of the
ratio of the likelihoods for the target model and the background model is used as a score. The system
used here is based on 13 mel frequency cepstral coefficients (MFCCs) without the zeroth-order co-
efficient, and first-, second-, and third-order difference features, resulting in 52-dimensional feature
vectors. The features are modeled by 2048 mixture component GMMs. Onlythe GMM means are
adapted to the observed data, leaving variances and weights untouched.For implementation details
on this system see Shriberg et al. (2005).

6.2.2 SUPERVECTOR-SVM SYSTEM (V)

This system (Campbell et al., 2006) is a variation of the UBM-GMM system, where SVMs are
used to obtain scores. For each sample, the means of the UBM-GMM are adapted to the sample’s
data and stacked together in a single high-dimensional feature vector. A set of held-out samples
(generally the same samples used to create the UBM-GMM) is used as negative examples when
training the SVM, while the target sample is used as the positive example. Thesefeatures are used
to train a model using support vector regression with an inner-product kernel. The signed distance
to the hyperplane is then used as the output of the system. For this system we use a 512-component
background model. Since the dimension of the original space is 52, the finaldimension of the
feature vectors is given by 512×52= 26,624. Larger background models have been found to give
slightly better performance but increase the computational cost of the experiments. We found 512
components to give a good balance between performance and computational cost of the system.

6.2.3 MLLR-SVM SYSTEM (M)

The MLLR-SVM system (Stolcke et al., 2007, 2006) uses the speaker adaptation transforms used in
the speech recognition system as features for speaker verification. A total of four affine 39x40 trans-
forms is used to map the Gaussian mean vectors from speaker-independent to speaker-dependent
speech models; two transforms each are estimated relative to male and female recognition models,
respectively. The transforms are estimated using maximum-likelihood linear regression (MLLR)
and can be viewed as a text-invariant encapsulation of the speaker’s acoustic properties. The trans-
form coefficients form a 6,240-dimensional feature space. Each feature dimension is rank normal-
ized by replacing the value with its rank in the background data, and scaling ranks to lie in the
interval [0, 1]. The resulting normalized feature vectors are then modeledusing the same procedure
as for the supervector-SVM system. The system described in this paragraph is a simplified version
of our best performing MLLR-SVM system which uses a total of 16 transforms and has approxi-
mately 25% lower EER than the 4-transform system (Stolcke et al., 2007). Initial experiments (not
shown here) indicate that improvements from the anticorrelation method are stillobtained when the
more complex MLLR system is used, with similar relative gains as the ones shownhere.
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6.2.4 SNERF-SVM SYSTEM (S)

This system models syllable-based prosodic NERFs (nonuniform extraction region features) (Shriberg
et al., 2005). Features are based on estimatedF0, energy, and duration information extracted
over syllables inferred via automatic syllabification based on automatic speechrecognition output.
Prosodic feature sequences are transformed into fixed-length vectorsby a particular implementa-
tion of the Fisher score (Ferrer et al., 2007). In this paper, only features modeling sequences of two
syllables are used. In previous work we have found that these features by themselves yield a per-
formance almost as good as using features extracted for sequences of1, 2, and 3 syllables together.
The resulting feature vector, of dimension 13,343, is first rank-normalized (as in the MLLR system)
and modeled using the same procedure as for the supervector-SVM system.

6.3 Application of the Proposed Method to the Speaker Verification Problem

Most speaker verification systems that use SVMs as models consider eachtrain or test utterance as
a single sample. If necessary, as in the case of the SNERF features and many other cases presented
in the literature (Ferrer et al., 2006; Brummer et al., 2007; Reynolds et al., 2005), a transform is
applied to the input features prior to SVM modeling in order to convert them intoa single fixed-
length vector. In other cases, such as the MLLR system, the features aredirectly generated as a
single fixed-length vector. In our experiments, since we are presenting results on the 1-side training
condition from NIST evaluations, this implies that only one positive sample is available during
training for each speaker model. This means that the estimation ofK in (12) will be given only by
impostor samples. These impostor samples are extracted from a held-out set.For each target model
in the task definition we require a separate vectorK. This results in significant overhead during
training since each model from systemB must be tested against the held-out set used to computeK.
Nevertheless, this has no effect at test time. Once the vectorK for each target model is computed,
obtaining the score for a new test is almost as fast as for a linear kernel SVM.

6.4 Results

Table 1 shows the results on SRE05 and SRE06 data for the individual systems. Each system is
represented by a single letter:G for the GMM-UBM,V for the Supervector-SVM,M for the MLLR-
SVM, andS for the SNERF-SVM. For the SVM systems (Supervector, MLLR, and SNERFs), we
show the baseline results (training the SVM with an inner product kernel) and the results obtained by
training the target SVMs using the kernel in (14) withK computed using the scores corresponding
to each of the other three systems. This is indicated by the use of a subindex corresponding to the
system with respect to which the anticorrelation is performed. For example, MG corresponds to
a system that uses the MLLR features and anticorrelation kernel with respect to the GMM-UBM
system (that is, withK given by the vector of average class-conditional covariances between the
MLLR features and the scores from the GMM-UBM system). A list of subindices corresponds
to performing anticorrelation with respect to more than one system as described in Section 4.4.
Hence, system SM,VM corresponds to system S anticorrelated with respect to systems M and VM .
In all cases the anticorrelation results shown correspond toλ = ∞, which implies that the resulting
weight vector will not have a component in the direction ofK. This was shown to be optimal in the
simulated experiments and in several preliminary experiments with the systems from this table.
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System
SRE05 SRE06

DCF EER% DCF EER%

G 0.303 7.259 0.306 5.639

M 0.266 7.096 0.221 4.979
MG 0.297 8.564 0.243 5.879
MV 0.289 8.768 0.254 6.119
MS 0.271 7.586 0.229 4.979

V 0.205 5.465 0.174 3.419
VG 0.223 6.525 0.179 4.019
VM 0.196 5.465 0.168 3.179
VS 0.203 5.506 0.168 3.359

S 0.545 14.233 0.548 12.777
SG 0.560 15.008 0.562 13.077
SM 0.577 15.824 0.579 13.497
SV 0.569 15.253 0.573 13.137
SM,VM 0.588 16.150 0.592 14.157

Table 1: Results for individual systems (G: GMM-UBM, V: Supervector-SVM, M: MLLR-SVM,
S: SNERF-SVM) with inner product kernel and anticorrelation kernel. When the anticor-
relation kernel is used, a subindex indicates the name of the system or systems with respect
to which the anticorrelation is performed.

It can be seen that in most cases, using the anticorrelation kernel resultsin a degradation in
performance in the system. A notable exception is the result for system VM (Supervector features
using anticorrelation kernel with respect to the MLLR-SVM system). In this case, preventing the
use of the direction given byK results in a significant gain in performance. This could happen if
vectorK corresponded to some noisy direction that, when ignored, allowed for other more robust
directions to be used. This effect was also observed in the simulations and will be discussed in more
detail in Section 6.5.

Table 2 shows results for all the possible two-way combinations of the four individual systems.
For the score-level combinations (indicated with “+”) we used a linear model trained on SRE05
data using logistic regression. Feature-level and feature+score combinations are indicated with
“∪”. The symbol indicates feature concatenation. In the case of feature-level combination, features
from both systems are directly concatenated. In the case of feature+score combination, the features
from one system are concatenated with the scores from the other (this is indicated with the subscript
“scores”). Whenever feature concatenation is performed, a weight isused (as described in Section
4.6) to emphasize the features from one set versus the other. This weightis tuned on SRE05. Since
tuning this weight is extremely demanding computationally (it requires running a full classification
experiment for each value of the weight), only feature+score combinationexperiments involving
the MLLR systems are run. All possible feature-level combinations are shown, since there are only
three of them.
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We can see that every time a score-level combination (+) is done between systems X and YX ,6

the performance is better than that for the combination of X and Y (with the singleexception of
SRE05’s EER for V+SV). That is, applying the anticorrelation kernel to systemY always gives a
gain in the combination performance, even though in most cases system YX has worse individual
performance than system Y. Feature-level combinations, X∪Y, do not show any advantage over
the much simpler score-level combination X+ Y. This simply indicates that the increased model
complexity of the feature-level combination cannot be properly handled withthe available amount of
training samples. Similarly, the feature+score combinations, X∪Yscores, do not give any consistent
improvement over the score-level combinations X+Y.

The most notable gain from using the anticorrelation kernel is found for thecombination M+
VM . The relative gain in EER with respect to system M+V is 16%. As mentioned above, system
VM is in fact better performing than system V. That is, anticorrelating with respect to M does not
degrade its performance but improves it. This fact, together with a reducedimpostor correlation
between the systems, explains the observed large gain.

The last column in Table 2 shows the class-conditional correlation between the two systems
being combined for the impostor and the target samples in SRE06 data. As we can see, the impostor
correlation is significantly reduced when the proposed method is used, even though it does not reach
a zero value. (This problem was also observed in the simulated experiments for large values of the
feature vector dimensiond.) This could mean that the amount of data used for the computation
of K (4355 samples) is not enough to obtain a robust estimation of the statistics in the test data or
that the statistics in the test data are not the same as those in the held-out set used to computeK.
Furthermore, we can see that the target correlation remains almost unchanged by the application
of the anticorrelation kernel. This is reasonable, since the vectorK is computed without the use of
any target data. The fact that the target correlation is not reduced when K is computed only over
impostor samples suggests that the correlations in both populations are not equal and one cannot
be predicted from the other. Nevertheless, a reduction in either of the class-conditional correlation
coefficients can result in a reduction ofρ as given by (9).

Finally, Table 3 shows some three-way and four-way combination results. The first four results
correspond to the combination of the three SVM systems. The three combinations shown that use
the anticorrelation kernel on the V and S systems perform very similarly, resulting in a performance
improvement of 18.9% on the SRE06 EER with respect to the baseline combination. We can see
that using multiple anticorrelation on the S system with respect to the other two systems already in
the combination (M and VM) does not lead to further improvements (line M+VM +SM,VM ). This
is, in fact, good news, since doing the multiple anticorrelation involves a significant amount of extra
computation to obtain theK vector of system S with respect to the scores from VM .

The last three lines in Table 3 show the results on some four-way score-level combinations. We
see a large improvement of 19.2% when a successive anticorrelation procedure is used, where each
new model is anticorrelated with the one previously added to the combination. The best three- and
four-way combinations all include the VM system. This was expected since the two-way gain from
using anticorrelation on that system was the largest among all two-way combinations.

An overall observation from this table is that the proposed method performsbetter on SRE06
data than on SRE05 data, even though the combiner is trained on SRE05 data,making the SRE05
results slightly optimistic. We believe that this might be a consequence of a better statistical match

6. Letters X and Y are used in this section to indicate any two systems. Hence,X,Y ∈ {G,M,V,S}.
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System
SRE05 SRE06

DCF EER% DCF EER% CorI / CorT

Gscores∪M 0.219 5.710 0.189 4.079 -
G+M 0.226 5.750 0.201 4.019 0.51/0.79
G+MG 0.210 5.465 0.188 3.779 0.26/0.76

G+V 0.203 5.383 0.191 3.419 0.74/0.88
G+VG 0.194 5.261 0.182 3.239 0.35/0.86

G+S 0.219 5.587 0.232 4.499 0.16/0.45
G+SG 0.216 5.465 0.224 4.259 0.11/0.44

M ∪V 0.188 5.383 0.164 3.239 -
M ∪Vscores 0.176 5.098 0.148 3.119 -
M +V 0.180 5.139 0.160 3.299 0.58/0.87
M +VM 0.161 4.812 0.140 2.759 0.37/0.84
MV +V 0.171 4.976 0.142 3.179 0.31/0.83

M ∪S 0.245 6.403 0.200 4.379 -
M ∪Sscores 0.225 5.913 0.190 4.439 -
M +S 0.224 6.158 0.194 4.319 0.22/0.55
M +SM 0.221 5.995 0.191 4.079 0.14/0.52
MS+S 0.215 5.995 0.191 4.079 0.15/0.53

V∪S 0.183 5.057 0.152 3.179 -
V +S 0.163 4.609 0.146 3.239 0.19/0.50
V +SV 0.161 4.812 0.145 3.119 0.13/0.49
VS+S 0.159 4.527 0.137 2.999 0.15/0.49

Table 2: Results for two-way combinations of the systems in Table 1. Symbol “∪” indicates feature
concatenation. Hence, M∪S corresponds to feature-level combination, while M∪Sscores

corresponds to feature+score combination of systems M and S. Symbol “+” indicates
score-level combination. The last column shows the correlations between the pair of sys-
tems being combined, for the impostor (CorI) and the target (CorT) samples.

between SRE04 data (used to compute theK vectors) and SRE06 data than between SRE04 and
SRE05 data.

Evidently, the behavior found in these experiments cannot be expected to generalize to all pos-
sible sets of features and tasks. For example, if much smaller sets of features were used and enough
training data was available for both classes, feature-level combination mightresult in better per-
formance than score-level combination (as seen in the simulated experiments). Nevertheless, the
systems used here are representative of the kinds of systems used for speaker recognition on state-
of-the-art systems, where very large feature vectors have been found to outperform smaller ones.
Furthermore, the small amount of positive training examples is an inherent characteristic of the
speaker recognition task. Finally, these characteristics are found in manyother modern machine
learning tasks, a notable example being classification of microarray expression data, where the
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System
SRE05 SRE06

DCF EER% DCF EER%

M +V +S 0.149 4.690 0.134 3.179
M +VM +SM 0.133 4.364 0.117 2.579
M +VM +SV 0.132 4.445 0.115 2.579
M +VM +SM,VM 0.133 4.405 0.116 2.579

G+M +V +S 0.149 4.649 0.141 3.119
G+MG +VG +SG 0.147 4.323 0.132 2.700
G+MG +VM +SV 0.137 4.160 0.120 2.519

Table 3: Results for three-way and four-way combinations of the systems inTable 1.

number of features is in tens of thousands, and the number of samples for most studies is limited to
tens or at most hundreds.

6.5 Interaction with Intersession Variability Compensation

The variability found across different recordings of the same speakeris commonly calledinterses-
sion variability (ISV). This effect can be caused by a mismatch in channel conditions, emotional
state, phonetic content, and so on, and it is one of the biggest sources oferrors in speaker verifica-
tion. Several methods have been developed to reduce the effect of intersession variability.

In the realm of SVMs, the most widely used ISV compensation (ISVC) method isnuisance
attribute projection (NAP) (Solomonoff et al., 2004; Campbell, 2006). NAP consists of estimating
the directions in the feature space that vary with the sessions and then projecting the samples on
the complement of the space determined by those directions. Thenoisydirections are calculated as
the first few eigenvectors of the within-speaker covariance matrix. This matrix is in turn estimated
from held-out data for which several samples of each speaker are available. All speakers are pulled
together and a single within-speaker covariance matrix is estimated. The number of directions to
be eliminated from the feature vectors is determined empirically. Both NAP and theanticorrelation
method presented here transform the features by eliminating certain directions. In the case of NAP
these directions are the ones estimated to have information superfluous to the task of speaker verifi-
cation. In the anticorrelation procedure, a single direction is eliminated: the one that maximizes the
average class-conditional covariance between the two systems being combined.

In the case of UBM-GMM systems and systems like the supervector-SVM, which are based
on the UBM-GMM models, a different type of ISVC based on the factor analysis method can be
applied (Kenny and Dumouchel, 2004; Kenny et al., 2007). The method is based on the assumption
that a supervectormcorresponding to a certain sample can be decomposed into a speaker-dependent
and a channel-dependent component. That is,m= s+ c, wheres is a speaker supervector andc a
channel supervector. Furthermore,c is assumed to be given byux, whereu is a low-rank matrix
andx is a normally distributed random vector. The components of vectorx are called thechannel
factorsand the columns of matrixu theeigenchannels. In order to estimate the matrixu, a database
with several samples for each speaker (as the one required for NAP) isneeded. In some models,s
is further decomposed into different terms. Many different methods havebeen used to estimate and
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System
SRE05 SRE06 SRE06

DCF EER% DCF EER % CorI / CorT

M 0.230 6.525 0.195 4.139 -
MV 0.257 7.667 0.217 4.919 -

V 0.171 4.935 0.145 2.819 -
VM 0.177 5.302 0.144 2.879 -

M +V 0.144 4.568 0.120 2.639 0.47/0.87
M +VM 0.144 4.690 0.117 2.579 0.40/0.86
MV +V 0.142 4.649 0.119 2.639 0.36/0.85

Table 4: Results for individual systems and their combinations after ISVC.

compensate for the channel factors. The method used in this paper for thesupervector system is
described by Matrouf et al. (2007).

Table 4 shows a subset of results for two of the systems described in Section 6.2 when ISVC is
applied. Factor analysis is used for the Supervector-SVM system, and NAP is used for the MLLR-
SVM system. We can see that, for these systems, the anticorrelation kernel does not reduce the
class-dependent correlations between pairs of systems enough to result in a gain in the combination
performance. The fact that applying the anticorrelation kernel does not result in a significant reduc-
tion of the class-dependent correlations between the systems indicates thattheK vectors computed
from the held-out data are not a good estimation of theK vectors in the test data. If we compare the
impostor correlation between the same pair of systems when no ISVC is applied (Table 2) versus
the impostor correlation when ISVC is applied (Table 4) we see that ISVC’edsystems are much less
correlated. Furthermore, the correlation when the anticorrelation method is applied results in similar
values for ISVC’ed and non-ISVC’ed systems. This suggests that muchof the correlation between
the non-ISVC’ed systems is due to intersession variability effects. This intuition is confirmed by
computing the projection of theK direction on the NAP directions, which shows thatK is mostly in
the direction of the first few NAP directions (when they are sorted by the size of the corresponding
eigenvalue). Hence, when ISVC is applied to a system, the ISV effects areeliminated (or reduced),
resulting on less-correlated systems that combine better with each other. Forexample, the perfor-
mance for combination M+V for non-ISVC’ed systems (3.299% from Table 2) is only 3.5% better
than the best of the two individual performances (3.419% from Table 1),while the performance for
that same combination but using ISVC’ed systems (2.639% from Table 4) is 6.4% better than the
best of the two individual performances (2.819% from Table 4).

These observations explain the reduction in class-conditional correlationbetween pairs of sys-
tems when ISVC is applied to them, since a large part of the class-conditional correlation is due
to the intersession variability. On the other hand, it does not explain why the correlation cannot be
further reduced after the intersession variability noise has been eliminated.The reason for this is
simply that the vectorK estimated for each target model does not predict the direction of maximum
impostor covariance on the test data. On the training data, we know that the covariance for the
impostor cloud is necessarily pushed to zero whenλ = ∞, but we do not observe the same behavior
on the test data. This is because, as we saw in the simulations, the estimation of thedirectionK
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gets noisier for larger feature vectors. Hence, only a very noticeable effect (like the intersession
variability one) can be robustly estimated.

We believe that the observations presented in this section do not invalidate theusefulness of the
method for the speaker verification task. As mentioned in Kenny et al. (2007), for ISVC to work,
a well-balanced database is required where samples from several different recording conditions for
each speaker are available. This kind of database is not easy to obtain. When such a database is
not available, ISVC cannot be applied to the systems. In these cases, the anticorrelation method
proposed here would be able to bring back some of the gain that ISVC wouldresult in if the right
database was available.

7. Conclusions

While speaker verification systems have seen large gains in performance from ad hoccombination
of several component systems, a unified framework for joint development of a combined system that
ensures system diversity has been lacking. The component systems aretrained in isolation to max-
imize individual performance rather than the overall system being trained tomaximize combined
performance. In this work, we presented a simple model for the system combination problem and
found the performance of the combined system to be a function of the performance of the individual
systems being combined and a “correlation coefficient” obtained from the average class-condition
covariance of the vector of scores. Based on this result we presenteda technique for taking into ac-
count the characteristics of the scores from a set of fixed existing systems during the development of
a new SVM system in order to improve the combined system performance. Thisis realized through a
modification of the SVM optimization problem via the introduction of a regularizationterm involv-
ing the covariance between the scores of the previously existing systems and the input features to
the SVM, explicitly encouraging diversity of the resulting system ensemble. The trade-off between
the individual performance of the SVM system and the inter-system average class-conditional co-
variance is reflected in the optimization through the introduction of the Lagrange multiplierλ. The
technique can be implemented cheaply through the use of a simple kernel function, which we call
anticorrelationkernel.

We show the effectiveness of the anticorrelation technique in a series of simulated experiments
and in speaker verification experiments on the 2005 and 2006 NIST SRE tasks using four com-
ponent systems: a standard UBM-GMM system, a cepstral supervector system, an MLLR-based
system, and a prosodic system. We show results using the proposed kernel on all possible combi-
nations involving two systems (two-way combinations) and on some combinations involving three
and four systems. We demonstrate a performance gain of around 19% fora four-way combination
using the anticorrelation kernel with respect to the performance of the combination obtained without
anticorrelation. When the same four speaker verification systems are compensated for intersession
variability, the gains from the anticorrelation method disappear. Our analysisindicates that the rea-
son for this is that much of the correlation between the systems is, in fact, due tothe intersession
variability. Once systems are compensated for this variability, the remaining correlation is too hard
to estimate robustly. The anticorrelation method can then be seen as a replacement for intersession
variability compensation methods when the right databases are not available for the estimation of
the matrices needed for those methods.

The fact that, in our experiments, the combination performance improves monotonically asλ
grows andρ decreases indicates that the optimal trade-off between the performance of the individual
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system and the value ofρ probably occurs at a negative value ofρ. Since we are usingλσ2
SB as our

regularization term,σSB and, with it,ρ are forced toward zero and negative values will be unlikely
to occur in our setup. Using a linear termλρ in the objective function would allowρ to become
negative, perhaps leading to better combination results. Solving this optimizationproblem, though,
requires the use of general-purpose convex optimization software, which would be too slow for our
purposes, or the development of a solver specifically designed for it. This is a direction we plan to
explore.

We note that the anticorrelation technique is general in that it can be applied toany binary clas-
sification task for which more than one system can be trained and at least one of them is an SVM.
Many modern machine learning problems have these characteristics, among them microarray gene
expression classification problems (Brown et al., 2000), biometric tasks (Roy and Bhattacharya,
2005; Heisele et al., 2003), and a variety of other classification tasks (Sebastiani, 2002). The pro-
posed method has the potential to lead to significant gains on some of those tasks and many others
depending on the nature of the features used, their dimension, the number of samples available for
training, the absolute performance of the systems, and so on. Finally, sincethe implementation of
the proposed method simply reduces to the use of a specific kernel function, any statistical proce-
dure that can be kernelized (of which SVMs are simply one example) could potentially benefit from
it.
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Appendix A. Proof of Upper Bound on EER (Equation 4)

We wish to prove that if a set of scoresF is distributed such thatF | Y = y ∼ N (µy,σ2
y), for

y = a,b (that is, the class-conditional distributions are Gaussian), the EER obtained when the class
is estimated as in (1) is upper bounded byφ(−1

2
δµ
σ ), whereδµ= µb−µa, andσ satisfiesσ ≥ (σa +

σb)/2.

For the case in whichσa = σb = σ, the thresholdt∗ corresponding to EER is given byt∗s =
(µa + µb)/2 (s here stands forsamevariance) since this is the value that results in the rate of false
acceptances (eb|a) being equal to the rate of false rejections (ea|b). Replacing this threshold in (2) or

(3), we get that EERs = φ(−1
2

δµ
σ ). The upper plot in Figure 8 illustrates this case.

2109
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When variances are not equal, the EER threshold is no longer at half the distance between the
two means. Nevertheless, we can find the approximate location of the threshold by mapping the
value oft∗s to two new locations,tdb andtda (d stands fordifferentvariance) such that in one case the
rate of false rejections is equal to EERs and in the other case the rate of false acceptances is equal to
EERs. The EER threshold for the unequal variance case,t∗d, will then be somewhere between these
two points, since being to the left or to the right of both of them would result in the rates of false
rejections and false acceptances being different from each other.

The valuestda andtdb are determined such thateb|a(tda) = EERs andea|b(tdb) = EERs, respec-
tively (with ea|b andeb|a defined in (2) and (3)), and they are given by

tdb = σb/σ(t∗s −µb)+µb

tda = σa/σ(t∗s −µa)+µa.

If tda ≤ tdb then there will be a thresholdt∗d betweentda and tdb for which ea|b(t
∗
d) = eb|a(t

∗
d) =

EERd ≤ EERs. This is the case illustrated in Figure 8. So, if we can find someσ such thattda≤ tdb,
we can replace this value in EERs = φ(−1

2
δµ
σ ) to get the desired upper bound. Now,

tda− tdb =
σa

σ
(t∗s −µa)+µa−

σb

σ
(t∗s −µb)−µb = δµ

(

σb +σa

2σ
−1

)

.

Since we are assuming thatδµ > 0, we see thattda ≤ tdb if and only if σ ≥ (σa +σb)/2. When
σ = (σa+σb)/2 we gettda = tdb, which implies that EERd = EERs. Hence, we can always compute

EERd asφ(− δµ
σa+σb

). It is easy to prove thatσ =
√

(σ2
a +σ2

b)/2 (the square root of the average

variance instead of the average of the standard deviations) also satisfiesσ ≥ (σa +σb)/2.
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