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Abstract
The growth of information available to learning systems andthe increasing complexity of learn-
ing tasks determine the need for devising algorithms that scale well with respect to all learning
parameters. In the context of supervised sequential learning, the Viterbi algorithm plays a funda-
mental role, by allowing the evaluation of the best (most probable) sequence of labels with a time
complexity linear in the number of time events, and quadratic in the number of labels.

In this paper we proposeCarpeDiem , a novel algorithm allowing the evaluation of the best
possible sequence of labels with a sub-quadratic time complexity.1 We provide theoretical ground-
ing together with solid empirical results supporting two chief facts. CarpeDiem always finds the
optimal solution requiring, in most cases, only a small fraction of the time taken by the Viterbi
algorithm; meantime,CarpeDiem is never asymptotically worse than the Viterbi algorithm, thus
confirming it as a sound replacement.
Keywords: Viterbi algorithm, sequence labeling, conditional models, classifiers optimization,
exact inference

1. Introduction

In supervised learning systems, classifiers are learnt from sets of labeled examples and then used
to predict the “correct” labeling for new objects. According to how relations between objects are
exploited to build and evaluate the classifier, different categories of learning systems can be individ-
uated. When the learning system deals with examples as isolated individuals, thus disregarding any
relation among them, the system is said to work in apropositionalsetting. In this case classifiers
can optimize the assignment of labels individually. Instead, in the setting of supervised sequential
learning (SSL) the objects are assumed to be arranged in a sequence: relationships between previous
and subsequent objects exist, and are used to improve the classification accuracy. SSL classifiers are
then required to find the globally optimum sequence of labels, rather than the sequence of locally
optimal labels. For instance, in the optical character recognition task, the labelling “learning” is
probably better than “learn1ng”, even though the description of the sixth character taken in isola-
tion might suggest otherwise. A SSL classifier may deal with such ambiguities byexploiting the

1. The implementation ofCarpeDiem and of several sequence learning algorithms can be downloaded at:
http://www.di.unito.it/ ˜ esposito/Software/seqlearning.tar.gz
a working GUI (Mac OS X only) for experimenting with the software can be downloaded at:
http://www.di.unito.it/ ˜ esposito/Software/SequenceLearningExperimenterBinar ies.zip .
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higher sequential correlation, in the English language, of the bigramin with respect to1n. Concep-
tually, given a sequence ofT observations andK possible labels,KT possible combinations of labels
are to be considered by SSL classifiers. Most systems deal with such complexity by assuming that
relations may span only over nearby objects and use the Viterbi algorithm (Viterbi, 1967) to find the
globally optimal sequence of labels inΘ(TK2) time.

In the last few years it has become increasingly important for supervisedsequential learning
algorithms to handle problems with large state spaces (Dietterich et al., 2008). Unfortunately, even
the drastic reduction in complexity achieved by the Viterbi algorithm may be not sufficient in such
domains. For instance, this is the case of web-logs related tasks (Felzenszwalb et al., 2003), music
analysis (Radicioni and Esposito, 2007), and activity monitoring through body sensors (Siddiqi and
Moore, 2005), where the number of possible labels is so large that the classification time can grow
prohibitively high.

Some recent works propose techniques that under precise assumptionsallow faster execution
time of classifiers based on hidden Markov models (HMMs) (Rabiner, 1989). One feature shared
by these approaches is the assumption that the transition matrix has a specific form allowing one
to rule out most transitions. Such approaches are highly valuable when theproblem naturally fits
the assumption;vice versathey either lose the optimal solution or cannot be applied at all, when
it does not. Moreover, they assume the transition matrix to be known beforehand and fixed over
time. While this is a natural assumption in HMMs, recent algorithms based on the boolean features
framework (McCallum et al., 2000) allow for more general settings where the transition matrix is
itself a function of the observations around the object to be labelled. In such cases it is hard to figure
out how the aforementioned approaches apply.

In this paper we introduceCarpeDiem . It is a parameter-free algorithm, sporting best case
sub-quadratic complexity, devised as a replacement for the Viterbi algorithm. CarpeDiem avoids
considering a transition whenever local observations make it impossible forthe transition to be part
of the optimal path.CarpeDiem preserves the optimality of the result, never being asymptotically
worse than the Viterbi algorithm. Moreover,CarpeDiem automatically adapts to the sequence being
evaluated, so that its complexity degrades to the Viterbi algorithm complexity in case the underlying
assumption is not met. Interestingly, in contrast with alternative approaches, the assumption made
by CarpeDiem needs not be “always” valid. On the contrary, the algorithm is able to take advantage
of the assumption even when it holds for small portions of the sequence. This implies that the worst
case complexity is hit only in the very unlikely situation where the assumption doesnot hold for
the entire sequence. Finally,CarpeDiem can be directly applied in any sequential learning system
based on the Viterbi algorithm, even in those where the transition matrix changes over time.

The present work is structured as follows: we briefly recall the Viterbi algorithm and state the
problem (Section 2). After surveying related work (Section 3), we illustrate CarpeDiem in full
detail, and an execution example on a toy problem is provided (Section 4). Wethen show how
CarpeDiem can be embodied in the voted perceptron algorithm (Section 5) and, in Section6, we
report the experimental results and discuss the results as well as several related algorithms, and
elaborate on future directions of research. The soundness of the algorithm as well as its complexity
are formally proved in Appendices A and B, respectively.
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2. Preliminaries

The problem of finding the best sequence of labels is often representedas a search for the optimal
path in a layered and weighted graph (Figure 1).

Definition 1 Layered graph. A layered graph is a connected graph where vertices are partitioned
into a set of “layers” such that:i) edges connect only vertices in adjacent layers;ii ) any vertex in
a given layer is connected to all vertices of the successive layer.

We adopt the convention of indicating the layer to which a vertex belongs as asubscript to the
vertex name, so thatyt denotes a vertex in layert. We associate to each vertexyt a weightS0

yt
, and

to each edge(yt−1,yt) a weightS1
yt ,yt−1

(Figure 1). In the following we use the term “vertical” in
referring to “per node” properties. For instance, we will use the expressions “vertical weight” of
yt and “vertical information” to refer toS0

yt
and to the information provided by evidence related to

vertices, respectively. Similarly, we use the term “horizontal” in referringto “per edge” properties.
For instance, we will use the expression “horizontal weight” in referringto the weight associated to
a given transition. The distinction between vertical and horizontal information is important in the
present work, the key idea inCarpeDiem is to exploit vertical information to avoid considering the
horizontal one.

Given a layered and weighted graph withT layers andK vertices per layer, apath is a sequence
of verticesy1,y2, . . . ,yt (1≤ t ≤ T). The reward for a path is the sum of the vertical and horizontal
weights associated to the path:

reward(y1,y2, . . . ,yt) =

(
t−1

∑
u=1

S0
yu

+S1
yu+1,yu

)

+S0
yt
.

We defineγ(yt) as the maximal reward associated to any path from any node in layer 1 toyt :

γ(yt) = max
y1,y2,...,yt−1

reward(y1,y2, . . . ,yt−1,yt).

We consider the problem of picking the maximal path from the leftmost layer to therightmost
layer. Thenaivesolution considers all theKT possible paths, and returns the maximal one. The
Viterbi algorithm (Viterbi, 1967) solves the problem inΘ(TK2) time by exploiting a dynamic pro-
gramming strategy. The main idea stems from noticing that the reward of the bestpath to nodeyt

can be recursively computed as:i) the reward of the best path to the predecessorπ(yt) on the optimal
path toyt ; ii) plus the reward for transitionS1

yt ,π(yt)
; iii) plus the weight of nodeyt . In formulae:

γ(yt) =

{

S0
yt

if t = 1

γ(π(yt))+S1
yt ,π(yt)

+S0
yt

otherwise.
(1)

We will also make use of the equivalent formulation obtained by noticing thatπ(yt) is the best
predecessor foryt . That is,π(yt) is the vertexyt−1 (in layer t − 1) that maximizes the quantity
γ(yt−1)+S1

yt ,yt−1
. Then:

γ(yt) =

{

S0
yt

if t = 1

maxyt−1

(
γ(yt−1)+S1

yt ,yt−1
+S0

yt

)
otherwise.

(2)
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Figure 1: S0
yt

andS0
yt−1

denote per vertex (vertical) weights.S1
yt ,yt−1

denotes per edge (horizontal)
weights.

The Viterbi algorithm proceeds from left to right storing the values ofγ into an arrayG as soon as
such values are computed. Assuming that∀yt−1 : G(yt−1) = γ(yt−1), thenG(yt) is computed as:

G(yt) = max
yt−1

(
G(yt−1)+S1

yt ,yt−1
+S0

yt

)
.

The pseudo code for the algorithm is reported in Algorithm 1. Since the maximization at the line
marked with label number 1 (henceforth simply “line 1 ”) requiresΘ(K) time, the time needed for
processing each layer is in the order ofΘ(K2). The total time required by Viterbi is thenΘ(K2T).
The standard formulation of the Viterbi algorithm would also store the optimal path information
as it becomes available. Since this can be done using standard techniques (Cormen et al., 1990,
page 520) without affecting the complexity of the algorithm, we do not explicitly report that in the
pseudo-code.

Let us now consider how the above definitions instantiate in the context of a learning environ-
ment. The symbolS0

yt
conveys information about labelyt provided by observing the data at timet.

In hidden Markov models terminology,S0
yt

corresponds to probabilitybyt (xt) of observing symbol
xt in stateyt (Rabiner, 1989, definition ofb j(k) pag. 261, Eq. 8). More generally,S0

yt
is a quantity

that depends on both the labelyt predicted for time (layer)t and the observations at andaroundtime
t. Likewise, in HMMs terminology,S1

y′,y corresponds to the probabilityayy′ of transiting from state

y to statey′ (Rabiner, 1989, definition ofai j pag. 260, Eq. 7). More in general,S1
y′,y may depend

on both the labels(y′,y) andon the observations at and around the current layer. We note that since
S1

y′,y may vary over time (which motivates the notationS1
yt ,yt−1

), the setup considered here is more
general than the one of HMMs, where the transition matrix does not dependon the time instant.
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begin
forall y1 do

G(y1)← S0
y1

;

end
for t = 2 to T do

forall yt do
1 G(yt)←maxyt−1

(
G(yt−1)+S1

yt ,yt−1
+S0

yt

)
;

end
end
y∗T ← argmaxyT G(yT);
return y∗T ;

end

Algorithm 1 : The Viterbi algorithm.

3. Related Work

As we illustrated in Section 1, in cases where hundreds or thousands of labels are to be handled, the
quadratic dependence on the number of labels is still a high burden that limits theapplicability of
sequential learning techniques.

In other fields (e.g., telecommunications) there existad hocsolutions that allow one to tame the
complexity of the Viterbi algorithm by means of hardware implementations (Austin et al., 1990) or
methods for approximating the optimum path (Fano, 1963). For instance, in theresearch field of
speech recognition, the Viterbi algorithm is routinely applied to huge problems. This is a typical
case where approximate solutions really pay off: suboptimal paths could betolerated (to some ex-
tent) and tight time constraints prevent exhaustive search. A popular approach in this field is the
Viterbi beam search(VBS) (Lowerre and Reddy, 1980; Spohrer et al., 1980; Bridle et al.,1982):
essentially, VBS performs a breadth-first suboptimal search in which onlythe most promising solu-
tions are retained at each step. Many improvements over this basic strategy have been proposed to
refine either the computational performance or the accuracy of the solution(e.g., Ney et al., 1992).
In most cases domain-based knowledge (such as language constraints)is used to restrict the search
efforts to some relevant regions of the search space (Ney et al., 1987). Also, in recent years, several
algorithms have been proposed that overcome the difficulties inherent in heuristic ranking strategies
by learning ranking functions specifically optimized for the problem at hand(Xu and Fern, 2007).

Although promising, the VBS approach does not come without difficulties. For instance, Collins
and Roark (2004) propose Viterbi beam search to improve the performances of the perceptron algo-
rithm on the particular problem of natural language parsing. Interestingly, the authors note how the
sub-optimality of the beam search can negatively affect the learning performances. The problem
arises when a sub-optimal sequence is used instead of the optimal one to update the weights of the
features (please refer to Section 5). In order to alleviate this issue, the authors stop the search—
during learning—as soon as the beam does not contain the optimal solution. In such case only the
partial sequence, up to when the stopping occurred, is used to update theweights. This prevents
from training the perceptron using “bad” predictions, but it still has the drawback of exploiting only
partially the training sequences. In such system, then, the sub-optimality of Viterbi beam search
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hastwo drawbacks: at learning time, it hinders the process of finding better classifiers (or at least it
slows the process down); at testing time, it yields sub-optimal classifications.

In recent years, despite a widespread usage of the Viterbi algorithm within the sequential learn-
ing field, only few works addressed the problem of reducing its time complexityand at the same
time retaining the optimal result. In Felzenszwalb et al. (2003), linear (and near linear) algorithms
are proposed to compute the optimal labels sequence. Their algorithms work under the assumption
that the reward for the transition between states numberi and j is a “simple” function of|i− j|.2

In Siddiqi and Moore (2005) it is assumed that the transition matrix is well approximated by a
particular one where, for each vertex, the probability mass is concentrated on thek highest transi-
tions leaving it. Then, the weights associated to the other transitions are approximated by a constant,
and the optimal path is evaluated withΘ(kKT) time complexity. Clearly, the smallerk, the faster
the algorithm.

Both techniques provide significant time savings with respect to the Viterbi algorithm. However,
they are both based on assumptions about the entries in the transition matrix thatare not guaranteed
to hold in practice. More in particular, the assumption by Felzenszwalb et al. (2003) does not seem
to easily fit general cases. Also, the investigation needed to devise the correct parameter space may
require knowledge and efforts that are not always at disposal of theaverage practitioner. The as-
sumption underlying the work of Siddiqi and Moore (2005) is, in our opinion, simpler to be fulfilled
in practice. However, the extent to which it holds (which determines the magnitude of k) cannot
be easily forecasted. Again, the extra efforts needed to assess the applicability of the approach
may be detrimental to its application. Moreover, both approaches requirehomogeneoustransition
matrices: that is, transition matrices that do not vary over time. This is a common assumption,
but unfortunately it cannot be guaranteed in some recently developed approaches, as those based
on the boolean feature framework (McCallum et al., 2000).CarpeDiem can be safely applied even
in this more complex scenario. In the experimentation, we successfully applyCarpeDiem in both
settings, the one where the transition matrix is not constant (Section 6.1), as well as the one where
it is (Sections 6.2 and 6.3).

In a recent paper Mozes et al. (2007) propose anexactcompression-based technique to speed up
the Viterbi algorithm. The authors propose to use three well known compression schemes achiev-
ing significant speed-ups whose magnitude depends on which compression algorithm is adopted.
Interestingly the cited approach is not a search scheme, rather it is a preprocessing step. As such,
it qualifies as an orthogonal technique amenable to be used together withCarpeDiem obtaining the
advantages of both techniques.

In facts, to the best of our knowledge, the algorithmsCarpeDiem and (Mozes et al., 2007) are
the only exact ones, capable of speeding up the Viterbi algorithm when theassumption of homo-
geneous matrices is dropped. We would also argue that the other approaches presented above are
not easily adapted to work in this, more complex, scenario. In Siddiqi and Moore (2005) the tran-
sition matrix needs to be traversed in advance in order to obtain the highest ranking frequencies. If
those frequencies change over time, this operation needs to be repeated for eacht, and the algorithm
would requireO(TK2) only to compute this preprocessing step. In Felzenszwalb et al. (2003) it is
necessary to express the weights of the transition from labeli to label j in terms of a function of
|i− j|. The effectiveness of the approach depends on particular properties of this function. It could
be argued that, in very particular situations, those properties could be shown to hold even when

2. One whose maximum can be calculated in (nearly) constant time.
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Vertical weights S0
i1 100 S0

j1 50 S0
i2 5 S0

j2 100

Horizontal weights S1
i1,i2 20 S1

i1, j2 20 S1
j1,i2 30 S1

j1, j2 40

Figure 2: Sometimes horizontal weights can be disregarded without loosing the optimal path.

the transition matrix varies witht. However, it is hard to figure out a general way to enforce this
property without inspecting the whole transition matrix at each time step.

CarpeDiem enjoys the desirable property of smoothly scaling to the Viterbi algorithm complex-
ity when the underlying assumptions soften (as argued in Section 4.5). This has two consequences:
1) the algorithm adapts to the problemand to the sequence at hand, and 2) the algorithm can be uni-
versally applied (even when one is unsure about whether the problem fitsCarpeDiem assumptions
or not). In contrast with other state-of-the-art algorithms, no domain knowledge is to be given, nor
any parameter needs to be set. This makesCarpeDiem well suited to be used on a regular basis as a
drop-in replacement of the Viterbi algorithm: in the worst case, with no time saving.

4. TheCarpeDiem Algorithm

In the general case, in order to determine the end point of the best path to agiven layer, one can
avoid inspecting all vertices in that layer. In particular, after sorting the vertices in layert according
to their vertical weight, the search can be stopped when the difference in vertical weight of the best
node so far and the next vertex in the ordering is big enough to counterbalance any advantage that
can be possibly derived from exploiting a better transition and/or a better ancestor.

To clarify this point, it is interesting to consider the minimal example reported in Figure 2. Let
us assume that the reward for the maximal weight for any transition is 60. Ourobjective is to find the
endpoint of the best path to each layer. For layer 1 we have no incoming paths, the best endpoint is
simply the vertex with the maximal vertical weight: in the example,i1. In our approach, we consider
vertices with highest vertical weight first. Hence we start by calculating thereward of the optimal
path to nodej2: in the example, the pathi1, j2 (with scoreS0

i1 +S1
j2,i1 +S0

j2 = 100+20+100= 220).
We notice that the reward attainable by reachingi2 cannot be higher than 165, computed as the sum
of the reward for the best path to layer 1 (i.e., 100), plus the maximal weight for any transition
(i.e., 60), plus the vertical weight ofi2 (i.e., 5). Therefore the endpoint of the best path to layer
2 must bej2 and it is not necessary to calculate the reward for reachingi2. In the course of the
algorithm (hopefully) many vertices will be left unexplored by means of the above strategy. We note,
however, that this does not prevent from the need of exploring those vertices in the following steps.
When necessity arisesCarpeDiem goes back through the previous layers gathering the required
information. This is whyCarpeDiem makes use of two procedures: one that finds the best vertex in
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each layer (Algorithm 3), and one that finds the reward for reaching a given node by traversing the
graph from right to left (Algorithm 4).

We say that a vertex isopenif the reward of its best incoming path has been computed; otherwise
the vertex is said to beclosed. CarpeDiem finds the best vertex for each layer by calling Algorithm 3
(also referred to asforward search strategy), which leaves closed as many vertices as possible. The
backward search strategyis called to open vertices whenever necessary.

The main procedure ofCarpeDiem is presented in Algorithm 2; the forward and the backward
search strategies are presented in Algorithms 3 and 4, respectively. Before detailing the algorithm,
we need to introduce several definitions.

Definition 2 Let us define:

S1∗ : an upper bound to the maximal transition weight in the current graph

S1∗ ≥ max
yt ,yt−1

S1
yt ,yt−1

; (3)

γ∗t : the reward of the best path to any vertex in layer t (including the vertical weight of the ending
vertex)

γ∗t = max
yt

γ(yt);

βt : an upper bound to the reward that can be obtained in reaching layer t (2≤ t ≤ T)

βt = γ∗t−1 +S1∗; (4)

⊒t : a total ordering—based on vertical weights—of vertices at layer t.

⊒t≡ {(yt ,y
′
t)|S

0
yt

> S0
y′t
}. (5)

Also, we say that vertex yt is more promisingthan vertex y′t iff yt ⊒t y′t .

During execution,CarpeDiem calculates several values that are strictly connected to the def-
initions above. In particularG is a vector ofK×T elements.G(yt) contains the value ofγ(yt)
as calculated byCarpeDiem . Also, B is a vector ofT elements.Bt contains the value ofβt as
calculated byCarpeDiem . To a good extent, provingCarpeDiem correct will involve proving that,
indeed,G(yt) = γ(yt) andBt = βt .

4.1 Algorithm 2 – Main Procedure

Algorithm 2 initializesG(y1) andB2 values and calls Algorithm 3 on all layers 2. . .T. More specif-
ically, G(y1) is set toS0

1 (as required by Equation 1). AlsoB2 is set to the maximal vertical weight
found plusS1∗ (as required by Equation 4).

4.2 Algorithm 3 – Forward search strategy

The forward strategy searches for the best vertex for layert stopping as soon as this vertex can be
determined unambiguously.

At the beginning of the analysis of each layer all vertices in the layer areclosed. The algorithm
scans vertices in the order given by⊒t . As mentioned at the beginning of Section 4, in the general
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begin
foreachy1 { Initialization Step} do

2 G(y1)← S0
y1

; { Opens vertexy1 }

end

3 y∗1← argmaxy1(G(y1));
B2←G(y∗1)+S1∗;

foreach layer t∈ 2. . .T do
y∗t ← result of Algorithm 3 on layert;

end
return path toy∗T ;

end

Algorithm 2 : CarpeDiem .

begin
y∗t ←most promising vertex;
y′t ← next vertex in the⊒t ordering;
Open vertexy∗t {call Algorithm 4};
while G(y∗t ) < Bt +S0

y′t
do

4 Open vertexy′t {call Algorithm 4};
5 y∗t ← argmaxy′′∈{y∗t ,y′t} [G(y′′)];

y′t ← next vertex in the⊒t ordering;

end
6 Bt+1←G(y∗t )+S1∗;

return y∗t ;

end

Algorithm 3 : Forward search strategy.

case, the algorithm can avoid opening all vertices in every layer. The search is stopped when the
difference in vertical weight ofy∗t andy′t is big enough to counterbalance any advantage that can be
possibly derived from exploiting a better transition and/or a better ancestor. In formulae, letπ(y∗t )
be the best predecessor fory∗t , the (forward) search is stopped when the currently best vertexy∗t and
the next vertexy′t in the⊒t ordering satisfy:

accounts for a better vertical
weight ofy∗t w.r.t. yt

︷ ︸︸ ︷

S0
y∗t
−S0

y′t
≥

accounts for a possibly bet-
ter predecessor ofy′t w.r.t. y∗t
︷ ︸︸ ︷(
γ∗t−1− γ(π(y∗t )

)
+

accounts for a possibly bet-
ter transition fromy′t prede-
cessor
︷ ︸︸ ︷(

S1∗−S1
y∗t ,π(y∗t )

)

. (6)

The above formula is a direct consequence of the exit condition of thewhile loop of Algorithm 3,
and it can be obtained by substituting3

B andG with β andγ, and then expandingβ andγ using their
definitions (we repeat the relevant definitions in Table 1-a andb).

3. The soundness of the substitution is guaranteed by Theorems 1 and 2.
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a) Definition of β βt = γ∗t−1 +S1∗

b) Definition of γ (see Eq. 1) γ(y∗t ) = γ(π(y∗t ))+S1
y∗t ,π(y∗t )

+S0
y∗t

Table 1: Summary of few useful quantities

In case the stop criterion is not met, the algorithm calls Algorithm 4 (also referred to as the
backward strategy) which setsG(y′t) = γ(y′t). If necessary, the “maximal” vertexy∗t (the vertex that,
so far, has associated maximal reward) is updated. Before exiting,Bt+1 is readied for later use, and
the best vertex is returned.

4.3 Algorithm 4 – Backward search strategy

The backward search strategy opens a vertexyt by finding its best ancestor and settingG(yt) accord-
ingly. In much the same spirit as in the forward strategy, the algorithm saves some computationi)
by exploiting⊒t−1 in order to inspect first the most promising vertices, andii ) by taking advantage
of βt−1 in order to stop the search as soon as possible.

Data: A vertexyt to be opened
begin

y∗t−1←most promising vertex;
y′t−1← next vertex in the⊒t−1 ordering;
while y′t−1 is opendo

y∗t−1← argmaxy′′∈{y′t−1,y
∗
t−1}

[

G(y′′)+S1
yt ,y′′

]

;

y′t−1← next vertex in the⊒t−1 ordering;

end
while

(

G(y∗t−1)+S1
yt ,y∗t−1

< Bt−1 +S0
y′t−1

+S1∗
)

do

Openy′t−1 {call Algorithm 4};

y∗t−1← argmaxy′′∈{y′t−1,y
∗
t−1}

[

G(y′′)+S1
yt ,y′′

]

;

y′t−1← next vertex in the⊒t−1 ordering;

end
7 G(yt)←G(y∗t−1)+S1

yt ,y∗t−1
+S0

yt
;

end

Algorithm 4 : Backward search strategy to openyt .

The first loop finds the best predecessor among the open vertices of layer t−1. In the second
loop, we exploit the same idea behind the forward strategy. Let us inspectthe exit condition of the
second loop:

G(y∗t−1)+S1
yt ,y∗t−1

< Bt−1 +S0
y′t−1

+S1∗.

With the exception of the symbols in bold font, the formula is the same as the one in theexit
condition of the while loop in Algorithm 3. The bold symbols take into account the transition to the
target vertex. Namely,S1

yt ,y∗t−1
takes into account the transition from the current best vertex (y∗t−1)
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to the target vertexyt andS1∗ accounts for the maximal reward that a transition fromy′t−1 to yt can
possibly obtain.

Also the internal working of the second loop is very similar to the one in the forward strategy.
After opening (through a recursive call)y′t−1, the current best vertex is set to the best ofy′t−1 and
y∗t−1.

4.4 Example

In the following we provide a description of an execution ofCarpeDiem over a toy problem. The
problem consists of labeling a sequence containing four events and two labels (namedi and j). The
example is reported in Figure 3. The weight shown on the edge between labels yt−1 andyt corre-
sponds toS1

yt ,yt−1
. The boundS1∗ on the maximum horizontal reward is 60. Two further quantities

are reported in the figure, and shown graphically by means of boxes placed on vertices: within
rectangular boxes, we report the vertical weight of the vertex. Within rounded boxes, we report:

• G(yt), if yt is open;

• Bt +S0
yt

, if yt is closed andBt has already been computed;

• 0, otherwise.

Here we give a detailed description of the algorithm execution over the given graph.

step (a) At the beginning of the execution, all vertices are closed. The initialization steps in Algo-
rithm 2 open all vertices in layer 1. Clearly, there is no reward for arriving at vertices in layer
0 and no incoming transitions to be taken into account. The best vertex in layer1 is thus the
vertex having the maximum vertical weight.

step (b) The analysis of layer 2 starts by opening the most promising vertex in that layer (vertex j).
Since all vertices at layer 1 are open, the backward strategy already has complete information
at disposal, and it does not need to enter the second loop to openj2. OnceG( j2) has been
computed, the algorithm compares this value to the bound on the weight of the best path to
i2. SinceS0

i2 +B2 = 165 cannot outperformG( j2) = 220, there is no need to open vertexi2.

step (c) To openi3, the backward strategy goes back to layer 2 and searches for the bestpath to
that vertex. Again, vertexi2 can be left closed, since there is no chance that the best path toi3
traverses it. In fact,

B2 +S0
i2 +S1∗ = (100+60)+5+60= 225

cannot outperform the reward

G( j2)+S1
i3, j2 = 220+15= 235

obtained by passing throughj2. ThenG(i3) is set to 235+100= 335.

Unfortunately, this does not allow to make a definitive decision about whether this is the best
vertex of layer 3, sinceB3 + S0

j3 is (220+ 60)+ 70= 350. Next step will thereby settle the
question by opening vertexj3.
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Figure 3:CarpeDiem in action on a toy problem.

step (d) The goal is, at this point, to find the best path toj3. Even thoughj2 has a clear advantage
over i2, this does not suffice to exclude that the latter one is on the optimal path toj3 (since
G( j2)+S1

j3, j2 6< B2 +S0
i2 +S1∗): the backward strategy is then forced to recursively call itself

to openi2.

step (e) By openingi2, the algorithm setsG(i2) to 125 (the best path beingi1→ i2), thus ruling it
out as a candidate for being on the optimal path toj3.

step (f) In returning to consider layer 3, we are back to the pathi1→ j2→ i3. To open verticesi2
and j3 has been wasteful, though unavoidable.
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step (g) The first vertex to be opened in its layer isj4. Interestingly, the best path toj4 is not
through the best vertex in layer 3. In fact, while the highest reward for athree steps walk is
on vertexi3, it is more convenient to go through vertexj3 to reach vertexj4.

step (h) SinceG( j4) = 485 is larger thanB4 +S0
i4, the algorithm terminates leavingi4 closed.

In Section 6 real world problems are considered, and much larger optimizations obtained.

4.5 Algorithm Properties

An intuitive way of characterizing the algorithm complexity is to consider Formula6, where the
exit condition of Algorithm 3 is rewritten in order to point out why in some casesit is safe to stop
inspecting the current layer. Clearly, the sooner the loop exit condition is satisfied, the faster the
algorithm.

Arguably, the worst case happens when vertical rewards, being equal for each label, do not
provide any discriminative power. In such a case, the left term in Formula 6is zero, the inequality
is never satisfied, and Algorithm 3 calls Algorithm 4 over allK vertices in every layer. In this case,
for each one of thek vertices to be opened in a new layer, the first loop of Algorithm 4 iterates over
all K predecessors. However, no recursive call takes place. Overall, inthe worst case hypothesis,
CarpeDiem has order ofO(TKK + TK log(K)) = O(TK2) time complexity.4 CarpeDiem is never
asymptotically worse than the Viterbi algorithm.

The best case happens when horizontal rewards, being equal for each transition, do not provide
any discriminative power. In such a case the right hand side of the inequality in Formula 6 is zero
and the inequality is guaranteed to be satisfied immediately. Moreover, being thebackward strategy
based on a bound similar to the one that leads to Formula 6, it will never open any other vertex. Then,
a single vertex per layer is opened andCarpeDiem has order ofO(T +TK log(K)) = O(TK log(K))
time complexity. A more formal argument aboutCarpeDiem complexity is stated by Theorem 3
and proved in Appendix B.

Theorem 3 CarpeDiem has O(TK2) worst case time complexity and O(TK logK) best case time
complexity.

CarpeDiem finds the optimal sequence of labels. By using standard book-keeping techniques,
the optimal sequence of labels can be tracked back by starting from the optimal end point. Then, the
optimality ofCarpeDiem can be proved by showing that the vertex returned by the forward strategy
at the end of the algorithm is the end-point of the optimal path through the graph. This property,
stated by Theorem 1, is formally proved in Appendix A.

Theorem 1 Let us consider a sequence of calls to Algorithm 3 on layers2,3, . . . , t (t ≤ T). When
Algorithm 3 terminates on layer t, the returned vertex y∗

t is the endpoint of the optimal path to layer
t. Formally,

∀yt : γ(y∗t )≥ γ(yt).

Beside the theoretical properties of the algorithm, it is important for the practitioner to consider
its actual performances over real world problems. In the general casethe algorithm will open some,
but not all vertices: the exact number of the vertices that will be inspecteddepends on the particular

4. TheO(TK log(K)) term in the formula accounts for the time needed to sort vertices accordingto⊒t .
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application and on how the features have been engineered. Empirical evidence (Section 6) suggests
that many problems are closer to the best case than to the worst. Before introducing the experi-
mentation, we show howCarpeDiem can be instantiated in the context of a supervised sequential
learning system and, more in particular, in a system based on the voted perceptron algorithm.

5. Grounding the Voted Perceptron Algorithm onCarpeDiem

The supervised sequential learning problem can be formulated as follows(Dietterich, 2002).

Let {(~xi ,~yi)}
N
i=1 be a set ofN training examples. Each example is a pair of sequences

(~xi ,~yi), where~xi = 〈xi,1,xi,2, . . . ,xi,Ti 〉 and~yi = 〈yi,1,yi,2, . . . ,yi,Ti 〉. The goal is to con-
struct a classifierH that can correctly predict a new label sequence~y = H(~x) given an
input sequence~x.

The SSL problem has been approached with many different techniques.Among others, we recall
Sliding Windows (Dietterich, 2002), hidden Markov models (Rabiner, 1989), Maximum Entropy
Markov Models (McCallum et al., 2000), Conditional Random Fields (Lafferty et al., 2001), Dy-
namic Conditional Random Fields (Sutton et al., 2007), and the voted perceptron algorithm (Collins,
2002).

The voted perceptron uses the Viterbi algorithm at both learning and classification time. It is
then particularly appropriate for the application of our technique. Moreover, it relies on theboolean
features framework(McCallum et al., 2000) which is more general than the HMMs model with
respect to representing the graph. In this framework, depending on how features are implemented,
both static (homogeneous) anddynamictransition matrices can be modeled. We use the termdy-
namictransition matrix to indicate that weights associated to edges may change from time point to
time point, depending on the observations.

In the boolean features framework the learnt classifier is built in terms of a set of boolean
features. Each featureφ reports about a salient aspect of the sequence to be labelled in a given
time instant. More formally, given a time pointt, a boolean feature is a 1/0-valued function of the
whole sequence of feature vectors~x, and of a restricted neighborhood ofyt . The function is meant
to return 1 if the characteristics of the sequence~x around time stept support the classifications given
at and aroundyt . Under a first order Markov assumption, eachφ depends only onyt andyt−1. Let
us denote withwφ the weight associated to featureφ. The classifier learnt by the voted perceptron
algorithm has the form

H(~x) = argmax
~y

T

∑
t=1

∑
φ

wφ ·φ(~x,yt ,yt−1, t)

and is suitable to be evaluated using the Viterbi algorithm.
In practice, not all boolean features depend on bothyt andyt−1. Let us distinguish features

depending on bothyt andyt−1 from those depending only onyt . We denote withΦ0 the set of
features that depends only onyt and thus models per vertex (vertical) information. Analogously,
we denote withΦ1 the set of features that depend on bothyt andyt−1 modeling, thus, per edge
(horizontal) information. The vertical and horizontal weights can be then calculated as:

S0
yt

= ∑
φ∈Φ0

wφφ(~x,yt , t)
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and

S1
yt ,yt−1

= ∑
φ∈Φ1

wφφ(~x,yt ,yt−1, t).

In general, the bound on the maximal transition weightS1∗ can be set to the sum of all positive
horizontal weights:

S1∗ = ∑
φ∈Φ1

J(wφ)

whereJ(x) is x if x> 0, and 0 otherwise. It is noteworthy that this quantity can be computed without
any extra—domain specific—knowledge.

Often, however, better bounds can be given based on specific domain knowledge. An example
of such improvements (one that we exploit throughout our experimentation)consists in partitioning
the horizontal features into sets of mutually exclusive features. Then the bound can be computed
as the sum of the maximal weight of each partition. In case the partitions degenerate to a single set
(i.e., all horizontal features are mutually exclusive), the maximal horizontalweight can be used. For
instance, in many domains where HMMs are routinely applied, horizontal features are used only
to check the last two predicted labels. In such domains, if a horizontal feature is asserted, no other
feature can and we can appropriately set

S1∗ = max
φ∈Φ1

J(wφ). (7)

6. Experimentation

To figure out whether and howCarpeDiem can be applied to actual tasks, we tested it on three
different problems: the problem of music harmony analysis (Radicioni andEsposito, 2007), the fre-
quently asked questions (FAQs) segmentation problem (McCallum et al., 2000), and a text recog-
nition problem built starting from the “letter recognition” data set from the UCImachine learning
repository (Frey and Slate, 1991).

The running time of an execution ofCarpeDiem depends on how the weights of vertical and
horizontal features compare: the more discriminative are vertical features with respect to horizontal
features, the larger is the edgeCarpeDiem has over the Viterbi algorithm.

Overall the three experiments cover three situations that are likely to occur inpractice. The
music analys problem represents a situation whereS1∗ has been selected by exploiting detailed
domain knowledge: horizontal features have been divided into sets of non trivial partitions and
the bound has been set accordingly (see end of Section 5). Features of the FAQs segmentation
problem have been developed by McCallum et al. (2000) on a differentsystem, and then imported
into ours without modifications. Features used in the text recognition task didn’t go through a real
engineering process; on the contrary, they can be seen as a first, to some extentnaive, attempt to
tackle the problem. In these last two cases, we have setS1∗ using Formula 7.

6.1 Tonal Harmony Analysis

Given a musical flow, the task of music harmony analysis consists in associating a label to each time
point (Temperley, 2001; Pardo and Birmingham, 2002). Such labels reveal the underlying harmony
by indicating a fundamental note (root) and amode, using chord names such as ‘C minor’.
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Music analysis task can be naturally represented as a supervised sequential learning problem.
In fact, by considering only the “vertical” aspects of musical structure, one would hardly produce
reasonable analyses. Experimental evidences about human cognition reveal that in order to dis-
ambiguate unclear cases, composers and listeners refer to “horizontal” features of music as well:
in these cases, context plays a fundamental role, and contextual cues can be useful to the analysis
system.

The system relies on 39 features. They have been engineered so that they take into account the
prescriptions from music harmony theory, a field where vertical and horizontal features naturally
arise. Vertical features report about simultaneous sounds and their correlation with the currently
predicted chord.Horizontal features capture metric patterns and chordal successions. This is a
case where not all horizontal features are mutually exclusive (i.e.,S1∗ is not the maximal of pos-
itive horizontal weights) and where horizontal weights may change over time. For instance, the
same transition between two chords can receive different weights according to whether it falls on
accented/unaccented beats.

The training set is composed of 30 chorales (3,020 events) by J.S. Bach (1675-1750). The
classifiers have been tested on 42 separate chorales (3,487 events) from the same author.

6.2 FAQs Segmentation

We experimented on the FAQs segmentation problem as introduced by McCallumet al. (2000).
It basically consists of segmenting Usenet FAQs into four distinct sections:‘head’, ‘question’,
‘answer’, and ‘tail’.

In this data set, events correspond to text lines and sequences correspond to FAQs. McCallum
et al. define 24 boolean features. Each one is coupled with each possible label for a total of 96
features. Additionally, 16 features are used to take into account the possible transitions between
labels.

The data set consists of a learning set containing 26 sequences (29,406events) and a test set
containing 22 sequences (33,091 events).

6.3 Text Recognition

Our third experiment deals with the problem of recognizing printed text. We trained the classifiers
on the “The Frog King” tale (122 sequences, 6,931 events) by Grimm brothers, and tested over
the “Cinderella” tale (240 sequences, 13,354 events) by the same authors. The classifier is called
to recognize each letter composing the tale. The data set has been built as follows. Each letter
(corresponding to an individual event) in the tales has been encoded bypicking at random one of its
possible descriptions as provided by thelettersUCI data set5 (Frey and Slate, 1991). Each sentence
corresponds to a distinct sequence.

We briefly recall here the characteristics of the letters data set as originallyproposed by the
authors. The data set contains 20,000 letters described using 16 integer valued features. Such
attributes capture highly heterogeneous facets of the scanned raw image such as: horizontal and
vertical position, the width and height, the mean number of edges per pixel row. The images have
been obtained by randomly distorting 16 fonts taken from the US National Bureau of Standards.
The features used by the learning system are:

5. It can be found atftp://ftp.ics.uci.edu/pub/machine-learning-database s/letter-recognition .
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Experiment Viterbi CarpeDiem Time Saved (%)
music Analysis 13,582 1,507 88.90%
FAQs segmentation 537 144 73.15%
letter recognition 961,969 34,244 96.44%

Table 2: CPU Time (expressed in seconds) and percentage of time saved by CarpeDiem .

1. 26× (16×16) = 6,656 vertical features, obtained by the original attributes devised by Frey
and Slate (1991). The reported figure is explained as follows. We consider each of the 16
values of the 16 attributes in the original data set, thus resulting in 256 possiblecombinations.
Each such combination is still to be coupled with the 26 letters of the English alphabet.

2. the 27×27= 729 horizontal features, obtained by consideringA×A , whereA is the set of
letters in the english alphabet, plus a sign for blanks.

6.4 Procedure

We compare the performances ofCarpeDiem against those provided by the Viterbi algorithm. To
this aim, we embeddedCarpeDiem in a SSL system implementing the voted perceptron learning
algorithm (Collins, 2002). The learnt weights have been then used to build two classifiers: one
based on the Viterbi algorithm, the other one based onCarpeDiem .

For each one of the three problems we divided the data into a learning set and a test set. Each
learning set has been further divided into ten data sets of increasing sizes (the first one contains 10%
of the data, the second one 20% of the data, and so forth). Also, each experiment has been repeated
by varying the number of learning iterations from 1 to 10, for a grand total of 100 classifiers per
problem. We tested each learnt classifier on the appropriate test set recording the classification time
obtained by using firstCarpeDiem and then Viterbi.

In the following we will indicate each one of the 100 classifiers by using two numbers separated
by a colon: the former number corresponds to the size of the training set (1standing for 10%, 2 for
20%, . . . , 10 for 100%), the latter one indicates the number of iterations. For instance, the classifier
8:1 has been acquired by iterating once on 80% of the learning set.

6.5 Results

As earlier mentioned (and implied by Theorem 1),CarpeDiem performs exact inference: classifiers
built on CarpeDiem provide the same answers as those built on the Viterbi algorithm.

We measured the total classification time spent by the algorithms as well as the average time
savedby CarpeDiem with respect to the Viterbi algorithm. They are provided in Table 2: average
time savings range from about 73% (FAQs segmentation) to over 96% (letter recognition). Fig-
ures 4, 5 and 6 graphically report a detailed account of each experiment. Classification times for
each problem were obtained using a fixed size test set. By observing the profiles reported in the fig-
ures, it is apparent that, while the Viterbi algorithm runs in approximately constant time,CarpeDiem
performances depend on the particular classifier used.

In all trials of all experimentsCarpeDiem runs in a small fraction of the time needed by Viterbi.
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Figure 4: Results on the music analysis problem. We report on the abscissasthe learnt classifiers
indicating i: j for classifier acquired using(10· i)% of the training set andj iterations.
Labels on the abscissas refer only to the first classifier for each block of experiments;
the following nine bars refer to the remaining ones. For instance, label 3:1 ispositioned
below the bar corresponding to the classifier trained on the 30% of the training set and
using 1 iteration. The following nine bars refer to classifiers 3:2, 3:3,. . . , 3:10. We report
on the ordinates the CPU seconds needed for the classification of the test set. Vertical
bars refer to the time spent byCarpeDiem . Triangles refer to the time spent by Viterbi.

One interesting fact is unveiled by the profile of the classification time. Since—ineach one
of the three experiments—classification is performed on a data set of fixed size, one would expect
roughly constant classification time. By converse, at least in the first two experiments (Figures 4
and 5), the emerging patterns are similar to those usually observed at learning time. We remark that
the hundred runs of each experiment differ only in the set of weights used by the classifier. Then
it is apparent that, as the voted perceptron learns, it somehow modifies the weights in a way that
proves to be detrimental to the work ofCarpeDiem .

To explain the observed patterns, let us consider an informative verticalfeatureφ• and examine
the first iteration of the voted perceptron on a sequence of lengthT = 100. Also, we assume that
φ• is asserted 60 times, and that it votes for the correct label 50 times out of 60. Even though
this example may seem unrealistic, it is not.6 The first iteration on the first sequence the voted
perceptron chooses labels at random. Then, the vast majority of them will be incorrectly assigned,
thus implying a large number of feature weights updates. If all the labels for which φ• is asserted
are actually mislabelled, due to the way the update rule acts, the weight associated toφ• will be
increased7 by 40. This large increase occurs all at once at the end of the first iteration on the first
sequence, and it is likely to overestimate the weight ofφ•. The voted perceptron will spend the
rest of learning trying to compensate for this overestimation. However, subsequent updates will be

6. For instance, in the music analysis problem, this could be the case for thefeature that votes for the chord that has
exactly 3 notes asserted in the current event.

7. That is, 50− (60−50) = 40.
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Figure 5: Results on the FAQs Segmentation problem. The conventions adopted are the same as for
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Figure 6: Results on the letter recognition problem. In the inner frame we detailthe time spent by
CarpeDiem using the first fifty classifiers. The conventions adopted are the same as for
Figure 4.

of smaller magnitude. In fact, the following predicted labeling will not be randomly guessed, thus
implying a reduced number of updates.

By summarizing, highly predictive features have their weights initially set to very large values;
such weights slowly decrease in the following. The behavior described clearly emerges in Figure 7,
where the individual weights of vertical features (for the music analysis problem) are plotted as
the updates occur. Then, sinceCarpeDiem is efficient when vertical features are discriminative
compared to horizontal ones, the algorithm is particularly well-suited to be used during the early
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Figure 7: Evolution of vertical weights throughout learning. Each line corresponds to an individual
vertical feature; vertical lines correspond to the beginning of new iterations. The plot
refers to the music analysis data set.

learning steps of the voted perceptron where the time saved byCarpeDiem reaches peaks of 99.47%
(music analysis, classifier 1:1) and 78.60% (FAQs segmentation, classifier 1:1).

Lastly, one might wonder why the observed pattern wasn’t seen in the textrecognition problem.
Notwithstanding that the problem itself is a sequential one, to model only bigramsprobabilities
proved—against our expectations—to be not enough to provide sufficient discrimination power to
horizontal features. In other words, the horizontal features we devised contribute to the correct
classification only in a marginal way. This is a setting whereCarpeDiem can, and actually does,
attain exceptional time savings (Figure 6).

Prompted by such time savings, we re-ran the same experiments using no horizontal features:
the accuracy does not drop down as significantly as in the other two problems. This fact explains
why the pattern observed in Figures 4 and 5 is not observed in Figure 6: since vertical features re-
main predictive with respect to horizontal ones throughout the learning process the performances of
CarpeDiem do not change over time. Here we note one important property ofCarpeDiem : Carpe-
Diem time performances reflect the degree of sequentiality inherent to the problem at hand. Actu-
ally, by tracking the number of vertices opened in each layer, one can even measure how important
sequential information is in different parts of the same sequence.

6.6 Comparison with Related Algorithms

In the following we present a brief discussion about two technologies that,if not directly com-
parable withCarpeDiem , are much related to the algorithm. We start by reporting the results of
implementing theCarpeDiem heuristic for theA∗ algorithm. Then, we report about a performance
comparison with non-optimal search algorithms based on the Viterbi beam search approach.
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6.6.1 RELATIONS WITH A∗

It could be argued that theCarpeDiem algorithm looks interestingly similar to theA∗ algorithm (Hart
et al., 1968). In order to investigate this similarity let us consider the following heuristic, based on
the same ideas underlyingCarpeDiem :

h(yt) = ∑
t ′>t

[

max
yt′

(

S0
yt′

)

+S1∗
]

= (T− t)S1∗+ ∑
t ′>t

[

max
yt′

(

S0
yt′

)]

.

The heuristic estimates the distance to the goal by summing the best vertical weight in each layer
and the best possible transition between any two layers.

Even though the heuristic is intuitively connected to the strategy implemented inCarpeDiem , the
differences are indeed remarkable. A first important difference is in thechoice criteria implemented
in Algorithms 3 and 4 (we will focus only on Algorithm 3 for the sake of exposition). The criterion
in Algorithm 3 states:do not consider any further node in this layer if

G(y∗t ) >= Bt +S0
y′t
.

SinceBt = G(y∗t−1)+S1∗, the above criterion approximates the reward of the optimal path by means
of S1∗ only once rather than theT− t times taken byh(yt). Hence,A∗ incurs an high risk of opening
vertices in layers far from the goal only because of the cumulation of theseapproximations.

Another important difference between the two algorithms is in the fact thatCarpeDiem imple-
ments two different heuristics: one is used by Algorithm 3 and one is used byAlgorithm 4. On the
contraryA∗ uses the same criterion throughout the computation. Finally, the data structures needed
by CarpeDiem are simpler (and faster) than those needed to implementA∗.

In order to empirically assess whetherA∗ could be competitive with respect toCarpeDiem , we
implemented the above heuristic and paid particular attention to tuning the data structures. The
resulting algorithm turned out to be even less efficient than the Viterbi algorithm.

Of course, this does not mean that the same principles implemented byCarpeDiem could not be
plugged intoA∗ by means of a carefully chosen heuristic. Rather, it shows that the problem is not
trivial, and deservesad-hocresearch efforts.

6.6.2 VITERBI BEAM SEARCH

To compareCarpeDiem with algorithms based on the Viterbi beam search (VBS) strategy presents
several difficulties. On the one hand, we have an algorithm that guarantees optimality, but not com-
putational performances; on the other hand, we have VBS approachesthat guarantee computational
performances abdicating optimality.

In VBS approaches the width of the beam (hereafterb) is particularly important in that it affects
the tradeoff between computational gain and result optimality. For very smallb, VBS would most
probably lead to crude approximations; in this case VBS is likely to run faster than CarpeDiem just
because it disregards most of the possibly-optimal paths. By converse,if we were to choose the
beam size almost equal to the number of possible labelsK (i.e., b≃ K), then VBS would run in
almost the same time as the Viterbi algorithm. In between there are all other options. Also, the
quality of the solution found by VBS approaches highly depends on the heuristic adopted. In the
following we will disregard any accuracy concern, so that the two approaches could be compared in
terms of execution times solely.
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Let ξ be the ratio between the time spent byCarpeDiem and the time spent by the Viterbi
algorithm for solving a given problem: that is, the time savings reported in Table 2 are computed as
[(1− ξ)×100]%. Given that the time spent by a Viterbi beam search algorithm is in the orderof
b2T, the time saved by a VBS algorithm w.r.t. the Viterbi algorithm is in the order of:

(K2−b2)T
K2T

= 1−
b2

K2 .

By equating the time saved byCarpeDiem (i.e., 1−ξ) and the time saved via the VBS approach, we
have that by setting:

b =
√

ξK2 (8)

an algorithm based on the VBS approach will run in about the same time asCarpeDiem .
We implemented a basic VBS algorithm and measured its running time over the data set de-

scribed in Section 6 and experimented with different settings ofb. The results show that to obtain
the same running times asCarpeDiem , the beam size needs to be set as follows:

• b= 25 for the Tonal Harmony Analysis data set. BeingK = 78, this amounts to consider 32%
of the possible labels;

• b = 2 for the FAQ Segmentation data set. BeingK = 4, this amounts to consider 50% of the
possible labels;

• b = 5 for the text recognition data set. BeingK = 27, this amounts to consider 18.5% of the
possible labels;

Two aspects are remarkable in the above results:i) the reported figures have been observed empir-
ically rather than determined using the above formula. It is immediate to verify thatthey are very
close to the ones returned by using Formula 8;ii) we omitted to implement a heuristic to guide the
VBS search. Since computing the heuristic would require additional efforts, the timings used to
derive such numbers are optimistic approximations of the actual time needed bya full fledged VBS
algorithm.

In summary,CarpeDiem runs at least as fast as a VBS approach when a small to medium beam
size is used while providing some additional benefits. Again, investigating the conditions that make
appropriate one approach over the other one, deserves further deepening the research.

7. Conclusions

In this paper we have proposedCarpeDiem , a replacement of the Viterbi algorithm. On average,
CarpeDiem allows evaluating the best path in a layered and weighted graph in a fraction of the
time needed by the Viterbi algorithm.CarpeDiem is based on a property exhibited by most tasks
commonly tackled by means of sequential learning techniques: the observations at and around a
time instantt are very relevant for determining thet-th label, while information about the succession
of labels is mainly useful in order to disambiguate unclear cases. The extentto which the property
holds determines the performances of the algorithm. We formally proved thatCarpeDiem finds the
best possible sequence of labelsand that the algorithm complexity ranges betweenO(TK logK) in
the best case, andO(TK2) in the worst case. The fact that the worst case complexity is the same as
the Viterbi algorithm complexity suggests that, by and large,CarpeDiem is suitable for substituting
the Viterbi algorithm.
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In Section 3, we reviewed recently proposed alternatives and pointed out the following advan-
tages ofCarpeDiem with respect to the competitors:

• it is parameter free;

• it does not require any prior knowledge or tuning;

• it never compromises on optimality.

At the present time, the main strength of other approaches with respect to ours is that they have
been devised to improve the forward-backward algorithm as well. We defer the extension of our
approach in that direction to future work.

In addition to the theoretical grounding ofCarpeDiem complexity, we provided an experimen-
tation on three real world problems, and compared its execution time with that of the Viterbi algo-
rithm. The experiments show that large time savings can be obtained. The reported figures show
time savings ranging from 73% to 96% with respect to the Viterbi algorithm.

A further interesting facet ofCarpeDiem is that its execution trace provides clues about the prob-
lems at hand. It can then be used to understand how salient sequential information is. Also, within
the same sequence, it is often interesting to investigate the time steps where sequential information
gets crucial thus implying higher classification time. For instance, in Radicioni and Esposito (2007)
we used this fact to find where musical excerpts get more difficult.

In a world where the quantity of information as well as its complexity is ever increasing, there
is the need for sophisticated tools to analyse it in reasonable time. Our perception is that, in most
problems, long chains of dependencies are useful to reach top results,but their influence on the
correct labelling decreases with the length of the chain. In a probabilistic setting, the length of the
chain of dependencies would be called the ‘order of the Markov assumption’. In such a context, it
would be appropriate to say that what we call ‘vertical’ features are actually features making a zero
order Markov assumption (no dependency at all), while horizontal features are features making a
first order Markov assumption. The higher the order of the Markov assumption we want to plug into
the model, the slower the algorithm that evaluates the sequential classifier. Ifour guess is correct,
however, the higher the Markov assumption, the less informative are the features that use it. Should
this be the case,CarpeDiem strategy could be extended to efficiently handle higher order Markov
assumptions, thereby allowing to use sequential classifiers to tackle a largerset of problems.
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Appendix A. Soundness

A proof of soundness forCarpeDiem consists in showing thaty∗T is the endpoint of the optimal
path through the graph of interest. Although the whole algorithm is concerned with finding out
the optimal path, we presently restrict ourselves to find the optimal endpoint, since standard book
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symbol description
S0

yt
vertical weight of vertexyt

S1
yt ,yt−1

horizontal weight for transition fromyt−1 andyt

S1∗ maximal transition reward (fixed for the whole graph)
γ(yt) the weight of the best path toyt

γ∗t the weight of the best path to the best vertex in levelt
βt γ∗t−1 +S1∗

G(yt) γ(yt) as calculated byCarpeDiem
Bt βt as calculated byCarpeDiem

Table 3: Summary of the notation adopted.

keeping techniques can be used during the search to store path information. The path can be then
be retrieved inO(T) time.

The proof consists in two Theorems and one Lemma; in particular, Theorem 1directly im-
plies the soundness ofCarpeDiem , while Theorem 2 and Lemma 1 are necessary in the proof of
Theorem 1.

Before entering the core of the proof, let us summarize the notation adopted. We distinguish
between values that are calculated byCarpeDiem , and those representing properties of the graph.
We will use blackboard characters (G andB) to denote the former ones and greek letters (γ andβ)
for the latter ones. A summary of important definitions is reported in Table 3.

We start by stating and proving Lemma 1, which ensures the soundness of the main bound used
by CarpeDiem .

Lemma 1 If Bt = βt then the bound exploited by CarpeDiem does not underestimate the rewardof
the optimal path to any vertex. Formally,

Bt = βt ⇒ Bt +S0
yt
≥ γ(yt).

Proof Let us consider the optimal path toyt and denote withπ(yt) the predecessor ofyt . Then, by
definition we have:γ∗t−1≥ γ(π(yt)), andS1∗ ≥ S1

yt ,π(yt)
. It immediately follows that:

γ∗t−1 +S1∗+S0
yt
≥ γ(π(yt))+S1

yt ,π(yt)
+S0

yt
.

By definitionβt = γ∗t−1 +S1∗ andγ(yt) = γ(π(yt))+S1
yt ,π(yt)

+S0
yt

, which yields:

βt +S0
yt
≥ γ(yt)

and by assumption, this implies:
Bt +S0

yt
≥ γ(yt).

Theorem 1 Let us consider a sequence of calls to Algorithm 3 on layers2,3, . . . , t (t ≤ T). When
Algorithm 3 terminates on layer t, the returned vertex y∗

t is the endpoint of the optimal path to layer
t. Formally,

∀yt : γ(y∗t )≥ γ(yt).
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Proof We prove the stronger fact

Bt = βt ∧∀yt : γ(y∗t )≥ γ(yt).

The proof is by induction ont. The base case for the induction is guaranteed by the initialization
step in Algorithm 2 whereB2 andγ(y∗1) are set. We start by showing that

∀y1 : γ(y∗1)≥ γ(y1) (9)

as follows:

γ(y∗1) = γ(argmaxy1 G(y1)) → by line 3 ( Algorithm 2)

= γ
(
argmaxy1 S0

y1

)
→ by line 2 (Algorithm 2)

= γ(argmaxy1 γ(y1)) → by Equation 2

= maxy1 γ(y1)

⇓

∀y1 : γ(y∗1)≥ γ(y1).

In order to proveB2 = β2, we note that Algorithm 2 setsB2 to G(y∗1)+S1∗:

B2 = G(y∗1)+S1∗

= S0
y∗1

+S1∗ → by line 2 (Algorithm 2)

= γ(y∗1)+S1∗ → by Equation 2

= γ∗1 +S1∗ → by definition ofγ∗1 (Table 3) and Equation 9

= β2 → by definition ofβ2 (Table 3).

Let us now assume that for allt̂, 1≤ t̂ < t:8

Bt̂ = βt̂

∀yt̂ : γ(y∗t̂ )≥ γ(yt̂)

then we proveBt = βt as follows:

Bt = G(y∗t−1)+S1∗ → by instruction 6 (Algorithm 3)

= γ(y∗t−1)+S1∗ → by Theorem 2

= γ∗t−1 +S1∗ → by Equation 10 and definition ofγ∗t−1

= βt → by definition ofβt (Table 3).

In order to prove∀yt : γ(y∗t ) ≥ γ(yt) we start by noting that at the end of the main loop of
Algorithm 3 it holdsG(y∗t )≥ Bt +S0

y′t
. Also, for anyyt ⊑t y′t we have (by Definition 2–Equation 5):

Bt +S0
yt
≤ Bt +S0

y′t
. It follows thatyt ⊑t y′t ⇒G(y∗t )≥ Bt +S0

yt
. Using Lemma 1 we have

yt ⊑t y′t ⇒G(y∗t )≥ γ(yt). (10)

8. We note that our definitions give no meaning toB1 andβ1. We define them to be equal regardless their value: this
simplifies the discussion allowing an easier formulation of the properties being stated and proved. They are not used
in the algorithm nor in the argument anyway; the definition is thus safe.
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Moreover, since the algorithm scans the vertices in the order given by⊒t , all verticesyt , yt ⊒t y′t
have been considered by the main loop. Then by line 4 (Algorithm 3), by ourinductive hypothesis
(∀t̂ < t : Bt̂ = βt̂) and Theorem 2, we have that for each such vertexG(yt) = γ(yt). Moreover, due
to line 5 (Algorithm 3),G(y∗t )≥G(yt). Putting together the two statements, we conclude that

yt ⊒t y′t ⇒G(y∗t )≥ γ(yt). (11)

Equation 10, Equation 11, and the fact that⊒t is a total order, yield

∀yt : G(y∗t )≥ γ(yt).

By noting thaty∗t is open (and exploiting again Theorem 2), we have:

∀yt : γ(y∗t )≥ γ(yt).

Theorem 2 Let us assume∀t̂ < t : Bt̂ = βt̂ , then after opening vertex yt , G(yt) = γ(yt).

Proof By line 7 (Algorithm 4),G(yt) = G(y∗t−1)+S1
yt ,y∗t−1

+S0
yt

. Then, our main goal is to prove

G(y∗t−1)+S1
yt ,y∗t−1

+S0
yt

= γ(yt).

Replacingγ(yt) with its definition (Equation 2) yields:

G(y∗t−1)+S1
yt ,y∗t−1

+S0
yt

= max
yt−1

(
γ(yt−1)+S1

yt ,yt−1
+S0

yt

)
.

The above equality is satisfied if the following two properties hold:

y∗t−1 = argmax
yt−1

(
γ(yt−1)+S1

yt ,yt−1

)
(12)

G(y∗t−1) = γ(y∗t−1). (13)

The proof, by induction ont, proves that the Equations 12 and 13 are satisfied at the moment (and
after)G(yt) is set.CarpeDiem starts by opening the most promising vertex in layer 2, this is the first
time Algorithm 4 is called and hence the base case of the induction. Let us consider what happens
when a nodey2 is opened. Since all vertices in layer 1 have been opened by the initialization step,
the first loop in Algorithm 4 iterates on all of them and the second loop is neverentered. Then, just
before line 7, it holds

y∗1 = argmax
y1

(
G(y1)+S1

y2,y1

)
.

Since the initialization step guarantees∀y1 : G(y1) = γ(y1), then properties 12 and 13 are satisfied.
Let us now assume by induction that after opening a vertexyt−1 in layer t−1 (t > 2) it holds

G(yt−1) = γ(yt−1). We focus on the execution of Algorithm 4 on a vertexyt in layert. Let us denote
with Ot−1 the set of vertices presently open in layert − 1, and withCt−1 the set of closed ones.
When the first loop ends, it holds:

y∗t−1 = arg max
yt−1∈Ot−1

(
G(yt−1)+S1

yt ,yt−1

)
.
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Also, since all vertices for which we have taken the argmax are in layert−1 and open, we apply
the inductive hypothesis and conclude that:

y∗t−1 = arg max
yt−1∈Ot−1

(
γ(yt−1)+S1

yt ,yt−1

)
. (14)

The second loop moves some vertices fromCt−1 to Ot−1. At the same time, however, it updatesy∗t−1
so that the above equality is preserved. Then, on exit we can conclude (14) and (for the particular
y′t−1 that caused the loop to exit):

G(y∗t−1)+S1
yt ,y∗t−1

≥ Bt−1 +S0
y′t−1

+S1∗. (15)

Also, by definition of⊒t−1 (Definition 2–Equation 5),∀yt−1 : y′t−1⊒t−1 yt−1 implies:

Bt−1 +S0
y′t−1

+S1∗ ≥ Bt−1 +S0
yt−1

+S1∗. (16)

Since vertices are considered in⊒t−1 order and sincey′t−1 is the first vertex that has not been opened,
it follows that all closed vertices followy′t−1 in the⊒t−1 order. Using this fact along with (15) and
(16), it follows:

∀yt−1 ∈ Ct−1 : G(y∗t−1)+S1
yt ,y∗t−1

≥ Bt−1 +S0
yt−1

+S1∗.

By induction,G(y∗t−1) = γ(y∗t−1). Moreover, Lemma 1 impliesBt−1 +S0
yt−1
≥ γ(yt−1). Using these

facts, along with∀yt ,yt−1 : S1∗ ≥ S1
yt ,yt−1

(Definition 2–Equation 3) we obtain:

∀yt−1 ∈ Ct−1 : γ(y∗t−1)+S1
yt ,y∗t−1

≥ γ(yt−1)+S1
yt ,yt−1

Which yields:
γ(y∗t−1)+S1

yt ,y∗t−1
≥ max

yt−1∈Ct−1

(
γ(yt−1)+S1

yt ,yt−1

)
.

This and (14) yield:
y∗t−1 = argmax

yt−1

(
γ(yt−1)+S1

yt ,yt−1

)
.

Also, the fact thaty∗t−1 is open and the inductive hypothesis, yieldG(y∗t−1) = γ(y∗t−1).

Appendix B. Complexity

Theorem 3 CarpeDiem has O(TK2) worst case time complexity and O(TK logK) best case time
complexity.

Proof Let us consider the final step of an execution ofCarpeDiem , and assume that for each layer
t, exactlykt vertices have been opened. In our proof we separately consider the timespent to
process each layer of the graph. We define the quantityT (t) to represent the overall time spent by
Algorithms 3 and 4 to process layert. Let us define:

a(yt): the number of steps needed by Algorithm 3 to process vertexyt ;
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b(yt): the number of steps needed by Algorithm 4 to find the best parent for nodeyt .

We note thata(yt) does not include the time spent by Algorithm 4 since such time is accounted for
by b(yt). Similarly,b(yt) does not include neither the time spent by Algorithm 3, nor the time spent
by recursive calls to Algorithm 4. In fact, the time spent in recursive calls istaken into account by
b values of vertices in previous layers. Then we can computeT (t) as:

T (t) = ∑
yt

a(yt)+b(yt)

The total complexity ofCarpeDiem is then:

T (CarpeDiem ) = time for initialization+
T

∑
t=2

(O(1)+T (t))

where the “time for initialization” includes theO(K) time spent in the first loop of Algorithm 2 plus
theO(TK logK) time needed to sort each layer according to⊒t . It follows:

T (CarpeDiem ) = O(TK logK)+
T

∑
t=2

(O(1)+T (t)) . (17)

Let us now note thata(yt) is at worstO(kt). In fact, since onlykt vertices have been opened at
the end of the algorithm, it follows that the steps needed to analyse a vertexyt by (the loop in)
Algorithm 3 is at mostkt . We notice that we are overestimating the cost to analyze each node since
kt is theoverallnumber of iterations performed by the mentioned loop. However this overestimation
simplifies the following argument without hindering the result.

b(yt) is, at worst,O(kt−1). In fact, since onlykt−1 vertices have been opened at the end of
the algorithm, it follows that the two loops in Algorithm 4 iterate altogether at mostkt−1 times.
Moreover, since the steps performed by recursive calls are not to be included inb(yt), it follows
that all operations areO(1), and the complexity accounted for byb(yt) is O(kt−1). In both cases no
computational effort is spent to process closed nodes.

From the above discussion it follows that:

T (t) = ∑
yt

a(yt)+b(yt)

= ∑
yt in open vertices

O(kt)+O(kt−1)

= kt · (O(kt)+O(kt−1))

= O(k2
t +ktkt−1).

Putting together the above equation and Equation 17 we have:

T (CarpeDiem ) = O(TK logK)+
T

∑
t=2

(
O(1)+O(k2

t +ktkt−1)
)

= O(TK logK)+
T

∑
t=2

O(k2
t +ktkt−1).

The worst case occurs whenCarpeDiem opens every node in every layer. In such case:kt = K for
eacht and the above formula reduces toO(TK2). In the best caseCarpeDiem opens only one node
per layer,kt = 1 for eacht and the complexity isO(TK logK).
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