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Abstract
The growth of information available to learning systems #malincreasing complexity of learn-
ing tasks determine the need for devising algorithms thaleseell with respect to all learning
parameters. In the context of supervised sequential legythe Viterbi algorithm plays a funda-
mental role, by allowing the evaluation of the best (mosbpize) sequence of labels with a time
complexity linear in the number of time events, and quadiatthe number of labels.

In this paper we propos@arpeDiem , a novel algorithm allowing the evaluation of the best
possible sequence of labels with a sub-quadratic time aaxitp! We provide theoretical ground-
ing together with solid empirical results supporting twae¢Hacts. CarpeDiem always finds the
optimal solution requiring, in most cases, only a small tirat of the time taken by the Viterbi
algorithm; meantimeCarpeDiem is never asymptotically worse than the Viterbi algorithim)g
confirming it as a sound replacement.

Keywords: Viterbi algorithm, sequence labeling, conditional mogdelassifiers optimization,
exact inference

1. Introduction

In supervised learning systems, classifiers are learnt from sets ¢d¢dageamples and then used
to predict the “correct” labeling for new objects. According to how relaibetween objects are
exploited to build and evaluate the classifier, different categories ofitepsgstems can be individ-
uated. When the learning system deals with examples as isolated individualdjdtegarding any
relation among them, the system is said to work pr@positionalsetting. In this case classifiers
can optimize the assignment of labels individually. Instead, in the setting ef\dapd sequential
learning (SSL) the objects are assumed to be arranged in a sequéatienships between previous
and subsequent objects exist, and are used to improve the classificatioacyc SSL classifiers are
then required to find the globally optimum sequence of labels, rather thaedersce of locally
optimal labels. For instance, in the optical character recognition task, thlingb“learning’ is
probably better thanléarnlng, even though the description of the sixth character taken in isola-
tion might suggest otherwise. A SSL classifier may deal with such ambiguitiexgigiting the

1. The implementation d®arpeDiem and of several sequence learning algorithms can be downloaded at:

http:/www.di.unito.it/ ~ esposito/Software/seglearning.tar.gz
a working GUI (Mac OS X only) for experimenting with the software can bemoaded at:
http:/fwww.di.unito.it/ ~ esposito/Software/SequenceLearningExperimenterBinar ies.zip
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higher sequential correlation, in the English language, of the bignamith respect td.n. Concep-
tually, given a sequence dfobservations anil possible labelK™ possible combinations of labels
are to be considered by SSL classifiers. Most systems deal with suchestmpy assuming that
relations may span only over nearby objects and use the Viterbi algorithent{ly 1967) to find the
globally optimal sequence of labels®(T K?) time.

In the last few years it has become increasingly important for supergesgaential learning
algorithms to handle problems with large state spaces (Dietterich et al., 200@)tlhately, even
the drastic reduction in complexity achieved by the Viterbi algorithm may beuifitient in such
domains. For instance, this is the case of web-logs related tasks (Feladéimst al., 2003), music
analysis (Radicioni and Esposito, 2007), and activity monitoring throegly bensors (Siddigi and
Moore, 2005), where the number of possible labels is so large that thsificiatson time can grow
prohibitively high.

Some recent works propose techniques that under precise assunghibenfaster execution
time of classifiers based on hidden Markov models (HMMs) (Rabiner,)1988e feature shared
by these approaches is the assumption that the transition matrix has a spegifillbwing one
to rule out most transitions. Such approaches are highly valuable whemablem naturally fits
the assumptionyice versathey either lose the optimal solution or cannot be applied at all, when
it does not. Moreover, they assume the transition matrix to be known befwlednd fixed over
time. While this is a natural assumption in HMMs, recent algorithms based on tthedondfeatures
framework (McCallum et al., 2000) allow for more general settings whezdrtnsition matrix is
itself a function of the observations around the object to be labelled. meases it is hard to figure
out how the aforementioned approaches apply.

In this paper we introduc€arpeDiem . It is a parameter-free algorithm, sporting best case
sub-quadratic complexity, devised as a replacement for the Viterbi algoriflarpeDiem avoids
considering a transition whenever local observations make it impossilieeforansition to be part
of the optimal path CarpeDiem preserves the optimality of the result, never being asymptotically
worse than the Viterbi algorithm. Moreov€@arpeDiem automatically adapts to the sequence being
evaluated, so that its complexity degrades to the Viterbi algorithm complexitgetba underlying
assumption is not met. Interestingly, in contrast with alternative approattieeassumption made
by CarpeDiem needs not be “always” valid. On the contrary, the algorithm is able to thkaaage
of the assumption even when it holds for small portions of the sequentzinplies that the worst
case complexity is hit only in the very unlikely situation where the assumption matesold for
the entire sequence. FinallyarpeDiem can be directly applied in any sequential learning system
based on the Viterbi algorithm, even in those where the transition matrix chamgetime.

The present work is structured as follows: we briefly recall the Viteldorthm and state the
problem (Section 2). After surveying related work (Section 3), we illtst€arpeDiem in full
detail, and an execution example on a toy problem is provided (Section 4)th&ieshow how
CarpeDiem can be embodied in the voted perceptron algorithm (Section 5) and, in Séctioa
report the experimental results and discuss the results as well aslgelated algorithms, and
elaborate on future directions of research. The soundness of thiélalgas well as its complexity
are formally proved in Appendices A and B, respectively.
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2. Preliminaries

The problem of finding the best sequence of labels is often represesitedearch for the optimal
path in a layered and weighted graph (Figure 1).

Definition 1 Layered graphA layered graph is a connected graph where vertices are partitioned
into a set of “layers” such thati) edges connect only vertices in adjacent layédifsany vertex in
a given layer is connected to all vertices of the successive layer.

We adopt the convention of indicating the layer to which a vertex belongssabscript to the
vertex name, so that denotes a vertex in layér We associate to each vertgxa WeightS)t, and
to each edgéy:_1,y;) a weightg%hyH (Figure 1). In the following we use the term “vertical” in
referring to “per node” properties. For instance, we will use the esgioas “vertical weight” of
y; and “vertical information” to refer tdi/)t and to the information provided by evidence related to
vertices, respectively. Similarly, we use the term “horizontal” in refertontper edge” properties.
For instance, we will use the expression “horizontal weight” in refertiniipe weight associated to
a given transition. The distinction between vertical and horizontal informagiaomportant in the
present work, the key idea ParpeDiem is to exploit vertical information to avoid considering the
horizontal one.

Given a layered and weighted graph withayers and vertices per layer, pathis a sequence
of verticesy1,¥z,...,% (L <t < T). The reward for a path is the sum of the vertical and horizontal
weights associated to the path:

t—1
rewardylay27 e 7yt) = ( z $u + S}w—l,)’u) + %
u=1

We definey(y;) as the maximal reward associated to any path from any node in laysk:1 to

y(yi) = max rewardys,Yo,...,Yt—1,%).
Y1,¥2;.-5¥t-1

We consider the problem of picking the maximal path from the leftmost layer taghemost
layer. Thenaivesolution considers all th&™ possible paths, and returns the maximal one. The
Viterbi algorithm (Viterbi, 1967) solves the problem®\(T K?) time by exploiting a dynamic pro-
gramming strategy. The main idea stems from noticing that the reward of thpdibsb nodey
can be recursively computed asthe reward of the best path to the predecessgn on the optimal
path toy;; ii) plus the reward for transitio&}t.n(yl); i) plus the weight of nodg. In formulae:

NE ift=1
yn) = {V(TE(Yt)) +S}t,n(yt) _1_%1 otherwise .

We will also make use of the equivalent formulation obtained by noticing 1ify\) is the best
predecessor foy;,. That is, T(y;) is the vertexy;_1 (in layert — 1) that maximizes the quantity

YOt-1)+ Sy ,- Then:

BE ift=1
¥Yv) = {maxﬁl (Y1) +Shy, , +S0)  otherwise (2)
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Figure 1: §) andS), | denote per vertex (vertical) weights, , | denotes per edge (horizontal)
weights.

The Viterbi algorithm proceeds from left to right storing the valueg wito an arrayG as soon as
such values are computed. Assuming that 1 : G(yi—1) = Y(Yi-1), thenG(y;) is computed as:

G(yt) = r;,?ix(@()/t—l) + %]’-tayt—l + ﬂ) :

The pseudo code for the algorithm is reported in Algorithm 1. Since the mavtionizat the line
marked with label number 1 (henceforth simply “line 1 ”) requi&¥) time, the time needed for
processing each layer is in the order@(K?). The total time required by Viterbi is the®(K?T).
The standard formulation of the Viterbi algorithm would also store the optimtl ipformation
as it becomes available. Since this can be done using standard techniqueeriCt al., 1990,

page 520) without affecting the complexity of the algorithm, we do not explioihort that in the
pseudo-code.

Let us now consider how the above definitions instantiate in the context afrirlg environ-
ment. The symbogi conveys information about labgl provided by observing the data at tirne
In hidden Markov models terminologﬁ{}t corresponds to probability, () of observing symbol
X% in statey; (Rabiner, 1989, definition df;(k) pag. 261, Eq. 8). More generallﬁ}t is a quantity
that depends on both the lalyepredicted for time (layerf) and the observations at aatbundtime
t. Likewise, in HMMs terminology,%l,,y corresponds to the probabiliy, of transiting from state
y to statey’ (Rabiner, 1989, definition ddj; pag. 260, Eq. 7). More in gener&,’y may depend
on both the label§y,y) and on the observations at and around the current layer. We note that since
y may vary over time (which motivates the notatlajnyt ,), the setup considered here is more
general than the one of HMMSs, where the transition matrix does not depetick time instant.
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begin

forall y; do

G(y1) — §;;

end

fort=2to T do
forall y; do

1 ‘ G(yt) — max,_, (G(ytfl) + S}taYt—l + %)’
end

end

yr < argmay, G(yr);
return yg;

end

Algorithm 1: The Viterbi algorithm.

3. Related Work

As we illustrated in Section 1, in cases where hundreds or thousand®tsf éab to be handled, the
guadratic dependence on the number of labels is still a high burden that limagphieability of
sequential learning techniques.

In other fields (e.g., telecommunications) there exéshocsolutions that allow one to tame the
complexity of the Viterbi algorithm by means of hardware implementations (Austih,e1990) or
methods for approximating the optimum path (Fano, 1963). For instance, negbarch field of
speech recognition, the Viterbi algorithm is routinely applied to huge probldms is a typical
case where approximate solutions really pay off: suboptimal paths coutddrated (to some ex-
tent) and tight time constraints prevent exhaustive search. A populasagtpin this field is the
Viterbi beam searclfVBS) (Lowerre and Reddy, 1980; Spohrer et al., 1980; Bridle etlaB?):
essentially, VBS performs a breadth-first suboptimal search in whichtibalgnost promising solu-
tions are retained at each step. Many improvements over this basic strategden proposed to
refine either the computational performance or the accuracy of the so{at@pnNey et al., 1992).
In most cases domain-based knowledge (such as language constsaise) to restrict the search
efforts to some relevant regions of the search space (Ney et al.,.1®I8@) in recent years, several
algorithms have been proposed that overcome the difficulties inherentiiistieranking strategies
by learning ranking functions specifically optimized for the problem at l{Xiadand Fern, 2007).

Although promising, the VBS approach does not come without difficultiesinstance, Collins
and Roark (2004) propose Viterbi beam search to improve the penficesaf the perceptron algo-
rithm on the particular problem of natural language parsing. Interestitihgdyauthors note how the
sub-optimality of the beam search can negatively affect the learningrpsfices. The problem
arises when a sub-optimal sequence is used instead of the optimal onete tipglweights of the
features (please refer to Section 5). In order to alleviate this issue, thersustop the search—
during learning—as soon as the beam does not contain the optimal solutisnch case only the
partial sequence, up to when the stopping occurred, is used to updateititds. This prevents
from training the perceptron using “bad” predictions, but it still has tlewtback of exploiting only
partially the training sequences. In such system, then, the sub-optimality dbiViiieam search
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hastwo drawbacks: at learning time, it hinders the process of finding betteiif@asgor at least it
slows the process down); at testing time, it yields sub-optimal classifications.

In recent years, despite a widespread usage of the Viterbi algorithrmwh#hsequential learn-
ing field, only few works addressed the problem of reducing its time complaxityat the same
time retaining the optimal result. In Felzenszwalb et al. (2003), linear (aadlinear) algorithms
are proposed to compute the optimal labels sequence. Their algorithms mekthe assumption
that the reward for the transition between states nurnaed | is a “simple” function offi — j|.2

In Siddigi and Moore (2005) it is assumed that the transition matrix is welleqpated by a
particular one where, for each vertex, the probability mass is concahtratthek highest transi-
tions leaving it. Then, the weights associated to the other transitions areapated by a constant,
and the optimal path is evaluated witikKT) time complexity. Clearly, the smallég the faster
the algorithm.

Both techniques provide significant time savings with respect to the Viterdiitigh. However,
they are both based on assumptions about the entries in the transition mataisethat guaranteed
to hold in practice. More in particular, the assumption by Felzenszwalb @13} does not seem
to easily fit general cases. Also, the investigation needed to devise tieetquarameter space may
require knowledge and efforts that are not always at disposal cdvbeage practitioner. The as-
sumption underlying the work of Siddigi and Moore (2005) is, in our opingsmpler to be fulfilled
in practice. However, the extent to which it holds (which determines the malgnatk) cannot
be easily forecasted. Again, the extra efforts needed to assess ti@lbifity of the approach
may be detrimental to its application. Moreover, both approaches reguinegeneousansition
matrices: that is, transition matrices that do not vary over time. This is a comnsompson,
but unfortunately it cannot be guaranteed in some recently developedaahes, as those based
on the boolean feature framework (McCallum et al., 20@3ypeDiem can be safely applied even
in this more complex scenario. In the experimentation, we successfully @paglgDiem in both
settings, the one where the transition matrix is not constant (Section 6.1/lesswhe one where
itis (Sections 6.2 and 6.3).

In a recent paper Mozes et al. (2007) proposexattcompression-based technique to speed up
the Viterbi algorithm. The authors propose to use three well known cosipreschemes achiev-
ing significant speed-ups whose magnitude depends on which comprasgisithm is adopted.
Interestingly the cited approach is not a search scheme, rather it is@@sping step. As such,
it qualifies as an orthogonal technique amenable to be used togethéanigdiem obtaining the
advantages of both techniques.

In facts, to the best of our knowledge, the algorith@agpeDiem and (Mozes et al., 2007) are
the only exact ones, capable of speeding up the Viterbi algorithm wheasthenption of homo-
geneous matrices is dropped. We would also argue that the other apgpsqaresented above are
not easily adapted to work in this, more complex, scenario. In Siddigi anaréA@005) the tran-
sition matrix needs to be traversed in advance in order to obtain the highkstgdrequencies. If
those frequencies change over time, this operation needs to be remgaadt, and the algorithm
would requireO(T K?) only to compute this preprocessing step. In Felzenszwalb et al. (2003) it is
necessary to express the weights of the transition from fatzelabel j in terms of a function of
|l — j|. The effectiveness of the approach depends on particular prapeftieis function. It could
be argued that, in very particular situations, those properties could engioohold even when

2. One whose maximum can be calculated in (nearly) constant time.
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Figure 2: Sometimes horizontal weights can be disregarded without loogrgptimal path.

the transition matrix varies with However, it is hard to figure out a general way to enforce this
property without inspecting the whole transition matrix at each time step.

CarpeDiem enjoys the desirable property of smoothly scaling to the Viterbi algorithm comple
ity when the underlying assumptions soften (as argued in Section 4.5). 8htsb consequences:
1) the algorithm adapts to the problemdto the sequence at hand, and 2) the algorithm can be uni-
versally applied (even when one is unsure about whether the proble@aiiesDiem assumptions
or not). In contrast with other state-of-the-art algorithms, no domain ledye is to be given, nor
any parameter needs to be set. This mdlageDiem well suited to be used on a regular basis as a
drop-inreplacement of the Viterbi algorithm: in the worst case, with no time saving.

4. TheCar peDi emAlgorithm

In the general case, in order to determine the end point of the best patifiveralayer, one can
avoid inspecting all vertices in that layer. In particular, after sorting theéces in layett according
to their vertical weight, the search can be stopped when the differenegtical weight of the best
node so far and the next vertex in the ordering is big enough to coulaedaaany advantage that
can be possibly derived from exploiting a better transition and/or a bettestor.

To clarify this point, it is interesting to consider the minimal example reported inr€igulLet
us assume that the reward for the maximal weight for any transition is 6(lprctive is to find the
endpoint of the best path to each layer. For layer 1 we have no incoming, plae best endpoint is
simply the vertex with the maximal vertical weight: in the exampleln our approach, we consider
vertices with highest vertical weight first. Hence we start by calculatingeivard of the optimal
path to nodg»: in the example, the path, j2 (with scoreS) + S}, ; +S), = 100+ 20+ 100= 220).
We notice that the reward attainable by reachingannot be higher than 165, computed as the sum
of the reward for the best path to layer 1 (i.e., 100), plus the maximal wedgharfy transition
(i.e., 60), plus the vertical weight @$ (i.e., 5). Therefore the endpoint of the best path to layer
2 must bej, and it is not necessary to calculate the reward for reachingn the course of the
algorithm (hopefully) many vertices will be left unexplored by means of buva strategy. We note,
however, that this does not prevent from the need of exploring thersiees in the following steps.
When necessity arisé3arpeDiem goes back through the previous layers gathering the required
information. This is whyCarpeDiem makes use of two procedures: one that finds the best vertex in
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each layer (Algorithm 3), and one that finds the reward for reachirigesm giode by traversing the
graph from right to left (Algorithm 4).

We say that a vertex igpenif the reward of its best incoming path has been computed; otherwise
the vertex is said to belosed CarpeDiem finds the best vertex for each layer by calling Algorithm 3
(also referred to aforward search strategywhich leaves closed as many vertices as possible. The
backward search strategg called to open vertices whenever necessatry.

The main procedure d@arpeDiem is presented in Algorithm 2; the forward and the backward
search strategies are presented in Algorithms 3 and 4, respectivetreRigftailing the algorithm,
we need to introduce several definitions.

Definition 2 Let us define:

St : an upper bound to the maximal transition weight in the current graph

S¥ > maxst, 3
~ VeV %/layt—l ( )

Yi : the reward of the best path to any vertex in layer t (including the vertieagtit of the ending
vertex)

¥ = maxy(y:);
Bt : an upper bound to the reward that can be obtained in reaching lay2rt (< T)
Br=V_1+S" (@)

¢ : atotal ordering—based on vertical weights—of vertices at layer t.

O= {1 > - 5)
Also, we say that vertex is more promisinghan vertex yiff y; J; ;.

During executionCarpeDiem calculates several values that are strictly connected to the def-
initions above. In particulat is a vector ofK x T elements.G(y;) contains the value of(y;)
as calculated byarpeDiem . Also, B is a vector ofT elements.B; contains the value of; as
calculated byCarpeDiem . To a good extent, provin@arpeDiem correct will involve proving that,
indeed,G(y;) = y(yt) andB; = f3.

4.1 Algorithm 2 — Main Procedure

Algorithm 2 initializesG(y1) andB; values and calls Algorithm 3 on all layers.2T. More specif-
ically, G(y1) is set toSf (as required by Equation 1). Aldgy, is set to the maximal vertical weight
found plusS"* (as required by Equation 4).

4.2 Algorithm 3 — Forward search strategy

The forward strategy searches for the best vertex for lagtwpping as soon as this vertex can be
determined unambiguously.

At the beginning of the analysis of each layer all vertices in the layeclased The algorithm
scans vertices in the order given By. As mentioned at the beginning of Section 4, in the general
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begin
foreachy; { Initialization Step} do
2 ‘ G(y1) < S),; { Opens vertey }
end
3 | yy—argmay, (G(y1));
By — G(y;) +SY;

foreachlayerte 2...T do
‘ yi < result of Algorithm 3 on layet;

end
return path toys;

end

Algorithm 2: CarpeDiem .

begin
Yi < most promising vertex;
y; < next vertex in thed; ordering;
Open vertex; {call Algorithm 4};
while G(y{) < By + ) do
4 Open vertexy; {call Algorithm 4};
Yi  argmaxe e vy [G(Y')];
yi < next vertex in thed; ordering;
end
6 Bt+1 — G(W)+Sl*;
return y;;
end

Algorithm 3: Forward search strategy.

case, the algorithm can avoid opening all vertices in every layer. Thehseastopped when the
difference in vertical weight off andy; is big enough to counterbalance any advantage that can be
possibly derived from exploiting a better transition and/or a better ancdsttormulae, letr(y;)

be the best predecessor §gr the (forward) search is stopped when the currently best vgftard

the next vertex; in the J; ordering satisfy:

accounts for a possibly bet-
accounts for a better vertical accounts for a possibly bet- ter transition fromy; prede-
weight ofyy w.r.t. yt ter predecessor of w.r.t.y; ~ cessor

——
S-9 = HMawoD) + (S-S - ©

The above formula is a direct consequence of the exit condition ofttie loop of Algorithm 3,
and it can be obtained by substitutiigyandG with § andy, and then expandingandy using their
definitions (we repeat the relevant definitions in Tabkedndb).

3. The soundness of the substitution is guaranteed by Theorems 1 and 2.
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a) Definition of B B=vy; ,+S"
b) Definition ofy (see Eq. 1) y(y{) = Y(TU(Y)) + S ey + S

Table 1: Summary of few useful quantities

In case the stop criterion is not met, the algorithm calls Algorithm 4 (also ezfdor as the
backward strategywhich setsG(y;) = y(y;). If necessary, the “maximal” vertex (the vertex that,
so far, has associated maximal reward) is updated. Before eXitingjs readied for later use, and
the best vertex is returned.

4.3 Algorithm 4 — Backward search strategy

The backward search strategy opens a veitey finding its best ancestor and settifigy; ) accord-
ingly. In much the same spirit as in the forward strategy, the algorithm sawes somputatiom)
by exploitingZ;_1 in order to inspect first the most promising vertices, ahtdy taking advantage
of B;_1 in order to stop the search as soon as possible.

Data: A vertexy; to be opened
begin
Yi_1 < most promising vertex;
Yi_, < next vertex in thed;_; ordering;
while 'y, is opendo
Vi1 agmagey e[GO+ S,y
Yi_, < next vertex in thed;_; ordering;
end
i 1 I
hile (G(f_1)+ Sy, <Bra+S) +8)do
Openy,_; {call Algorithm 4};
Yi_, < arg maXrc(y v .} [G()/’) + %1/“)//} ;
Y;_, < next vertex in thed;_; ordering;

=

end
7 GW) «— G(¥;_p) + %73/{11 T
end

Algorithm 4 : Backward search strategy to opgn

The first loop finds the best predecessor among the open verticeseof fail. In the second
loop, we exploit the same idea behind the forward strategy. Let us ingpeekit condition of the
second loop:

G(yi1) + Sé’Ltsz_l <B1+ %—1 +S".

With the exception of the symbols in bold font, the formula is the same as the one éxithe
condition of the while loop in Algorithm 3. The bold symbols take into account #sition to the
target vertex. Namelx&&hyﬂ1 takes into account the transition from the current best vestex X

1860



CARPEDIEM: OPTIMIZING THE VITERBI ALGORITHM

to the target vertey; andS'* accounts for the maximal reward that a transition frgfm to y; can
possibly obtain.

Also the internal working of the second loop is very similar to the one in theduhstrategy.
After opening (through a recursive calf) ,, the current best vertex is set to the besy;of and

Y1

4.4 Example

In the following we provide a description of an executionCafpeDiem over a toy problem. The
problem consists of labeling a sequence containing four events and tete (aamed andj). The
example is reported in Figure 3. The weight shown on the edge betweds yaheandy; corre-
sponds tdi%t,yu- The boundS" on the maximum horizontal reward is 60. Two further quantities
are reported in the figure, and shown graphically by means of boxesdotat vertices: within
rectangular boxes, we report the vertical weight of the vertex. Withinded boxes, we report:

e G(w), if y; is open;

o B+ %31 if y; is closed and; has already been computed;

e 0, otherwise.

Here we give a detailed description of the algorithm execution over the graph.

step (a) At the beginning of the execution, all vertices are closed. The initializatiqgrs $steAlgo-
rithm 2 open all vertices in layer 1. Clearly, there is no reward for amgianvertices in layer
0 and no incoming transitions to be taken into account. The best vertex inllagé¢nus the
vertex having the maximum vertical weight.

step (b) The analysis of layer 2 starts by opening the most promising vertex in that(laréex ).
Since all vertices at layer 1 are open, the backward strategy alreadyhmplete information
at disposal, and it does not need to enter the second loop tojep&nceG( j2) has been
computed, the algorithm compares this value to the bound on the weight ofgshpdibk to
io. Since&% + B, = 165 cannot outperforrft(j,) = 220, there is no need to open vertgx

step (c) To openis, the backward strategy goes back to layer 2 and searches for thpabedb
that vertex. Again, verte can be left closed, since there is no chance that the best pigth to
traverses it. In fact,

By + S, + S = (100+ 60) +5+60= 225
cannot outperform the reward
G(j2) + S, j, = 220+ 15= 235

obtained by passing through. ThenG(is) is set to 235- 100= 335.

Unfortunately, this does not allow to make a definitive decision about whttises the best
vertex of layer 3, sinc®; + S.(j’3 is (220+ 60) + 70= 350. Next step will thereby settle the
guestion by opening verteps.
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@ @ ‘ o [100]  Vertex vertical weight
100 Total weight for the path
Closed node Node being opened Open node Best node leading to a given vertex.
This is an estimation in
closed nodes. It is the

o 1 optimal weight in
~ ; layer indicator actua p‘ it
Arc on the optimal path Yy open vertices.

Arc not on the optimal path

Figure 3:CarpeDiem in action on a toy problem.

step (d) The goal is, at this point, to find the best pathjto Even thoughj, has a clear advantage
overiy, this does not suffice to exclude that the latter one is on the optimal pagh(soce
G(j2)+ SJ-137 i, Z Ba+ Sﬁ + S): the backward strategy is then forced to recursively call itself
to openio.

step (e) By openingiz, the algorithm set&(i2) to 125 (the best path being— i), thus ruling it
out as a candidate for being on the optimal patlsto

step (f) In returning to consider layer 3, we are back to the path j» — i3. To open vertices,
and j3 has been wasteful, though unavoidable.
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step (g) The first vertex to be opened in its layer jig Interestingly, the best path tf is not
through the best vertex in layer 3. In fact, while the highest reward threee steps walk is
on vertexis, it is more convenient to go through vertgxto reach vertex.

step (h) SinceG(j4) =485 is larger that®, + S(i the algorithm terminates leavingclosed.

In Section 6 real world problems are considered, and much larger optinmgzatisiained.

4.5 Algorithm Properties

An intuitive way of characterizing the algorithm complexity is to consider Formdulahere the
exit condition of Algorithm 3 is rewritten in order to point out why in some casessafe to stop
inspecting the current layer. Clearly, the sooner the loop exit conditioatisfied, the faster the
algorithm.

Arguably, the worst case happens when vertical rewards, being émueach label, do not
provide any discriminative power. In such a case, the left term in Formidaéro, the inequality
is never satisfied, and Algorithm 3 calls Algorithm 4 overkalertices in every layer. In this case,
for each one of th& vertices to be opened in a new layer, the first loop of Algorithm 4 iteratess ove
all K predecessors. However, no recursive call takes place. Overtile worst case hypothesis,
CarpeDiem has order ofo(TKK + TKlog(K)) = O(TK?) time complexity* CarpeDiem is never
asymptotically worse than the Viterbi algorithm.

The best case happens when horizontal rewards, being equakfotransition, do not provide
any discriminative power. In such a case the right hand side of the ilitggna-ormula 6 is zero
and the inequality is guaranteed to be satisfied immediately. Moreover, beingakward strategy
based on a bound similar to the one that leads to Formula 6, it will never opetrear vertex. Then,
a single vertex per layer is opened &alpeDiem has order oD(T + TKlog(K)) = O(T Klog(K))
time complexity. A more formal argument abdtdrpeDiem complexity is stated by Theorem 3
and proved in Appendix B.

Theorem 3 CarpeDiem has QT K?) worst case time complexity and DK logK) best case time
complexity.

CarpeDiem finds the optimal sequence of labels. By using standard book-keepimgigees,
the optimal sequence of labels can be tracked back by starting from the bgtidhaoint. Then, the
optimality of CarpeDiem can be proved by showing that the vertex returned by the forwardgyrate
at the end of the algorithm is the end-point of the optimal path through thégieus property,
stated by Theorem 1, is formally proved in Appendix A.

Theorem 1 Let us consider a sequence of calls to Algorithm 3 on lageBs...,t (t <T). When
Algorithm 3 terminates on layer t, the returned vertgxsythe endpoint of the optimal path to layer
t. Formally,

e YY) = Y-

Beside the theoretical properties of the algorithm, it is important for the prawditio consider
its actual performances over real world problems. In the generaticasdgorithm will open some,
but not all vertices: the exact number of the vertices that will be inspelepends on the particular

4. TheO(TKlog(K)) term in the formula accounts for the time needed to sort vertices accdoding
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application and on how the features have been engineered. EmpiricahegiSection 6) suggests
that many problems are closer to the best case than to the worst. Beforuaitg the experi-
mentation, we show hoWarpeDiem can be instantiated in the context of a supervised sequential
learning system and, more in particular, in a system based on the voteg{ercalgorithm.

5. Grounding the Voted Perceptron Algorithm on Car peDi em

The supervised sequential learning problem can be formulated as f¢Detterich, 2002).

Let {(m,yi)}:il be a set oN training examples. Each example is a pair of sequences
(%,Vi), whereXi = (X 1,X2,...,% 1) andyi = (¥i1,Yi2,...,¥i5). The goal is to con-
struct a classifieH that can correctly predict a new label sequeyieeH (X) given an
input sequencg.

The SSL problem has been approached with many different technidumesng others, we recall
Sliding Windows (Dietterich, 2002), hidden Markov models (Rabiner, 198®&ximum Entropy
Markov Models (McCallum et al., 2000), Conditional Random Fields @rf et al., 2001), Dy-
namic Conditional Random Fields (Sutton et al., 2007), and the voted pencetgorithm (Collins,
2002).

The voted perceptron uses the Viterbi algorithm at both learning andfidagen time. It is
then particularly appropriate for the application of our technique. Maedwelies on théoolean
features frameworkMcCallum et al., 2000) which is more general than the HMMs model with
respect to representing the graph. In this framework, dependingwiidabures are implemented,
both static (homogeneous) adgnamictransition matrices can be modeled. We use the @ym
namictransition matrix to indicate that weights associated to edges may change fronoimhéop
time point, depending on the observations.

In the boolean features framework the learnt classifier is built in terms et afsboolean
features. Each featurgreports about a salient aspect of the sequence to be labelled in a given
time instant. More formally, given a time poithta boolean feature is g Q-valued function of the
whole sequence of feature vect@rsand of a restricted neighborhoodyef The function is meant
to return 1 if the characteristics of the sequexaeound time stepsupport the classifications given
at and around;. Under a first order Markov assumption, eagtiepends only o andy;_;. Let
us denote withwg, the weight associated to featupe The classifier learnt by the voted perceptron
algorithm has the form

.
H(X) = arg maXZlZch' O(X, Wi, Ye-1,t)
v &l

and is suitable to be evaluated using the Viterbi algorithm.

In practice, not all boolean features depend on hptandy;_;. Let us distinguish features
depending on botly; andy;_; from those depending only op. We denote withd® the set of
features that depends only gnand thus models per vertex (vertical) information. Analogously,
we denote with®! the set of features that depend on bgttandy;_; modeling, thus, per edge
(horizontal) information. The vertical and horizontal weights can be thaéutated as:

gi = Z ch(P(Ktht)

0ol
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and

%J/-lvytfl = Z Wo@(X, ¥, Yi-1,t).
OSGE

In general, the bound on the maximal transition weigfitcan be set to the sum of all positive
horizontal weights:

pePt

whereJ(x) is xif x> 0, and 0 otherwise. Itis noteworthy that this quantity can be computed without
any extra—domain specific—knowledge.

Often, however, better bounds can be given based on specific don@atddge. An example
of such improvements (one that we exploit throughout our experimentatms)sts in partitioning
the horizontal features into sets of mutually exclusive features. Thenotredbcan be computed
as the sum of the maximal weight of each partition. In case the partitions elegeno a single set
(i.e., all horizontal features are mutually exclusive), the maximal horizerdaght can be used. For
instance, in many domains where HMMs are routinely applied, horizontalrsaare used only
to check the last two predicted labels. In such domains, if a horizontakéeistasserted, no other
feature can and we can appropriately set

b (r;gp(w@. (7)

6. Experimentation

To figure out whether and howarpeDiem can be applied to actual tasks, we tested it on three
different problems: the problem of music harmony analysis (RadicionEspdsito, 2007), the fre-
guently asked questions (FAQs) segmentation problem (McCallum et a0),28td a text recog-
nition problem built starting from the “letter recognition” data set from the W@lchine learning
repository (Frey and Slate, 1991).

The running time of an execution @arpeDiem depends on how the weights of vertical and
horizontal features compare: the more discriminative are vertical feaititle respect to horizontal
features, the larger is the ed@erpeDiem has over the Viterbi algorithm.

Overall the three experiments cover three situations that are likely to ocquadtice. The
music analys problem represents a situation wigtehas been selected by exploiting detailed
domain knowledge: horizontal features have been divided into setsrofrivial partitions and
the bound has been set accordingly (see end of Section 5). Featuhes FAQs segmentation
problem have been developed by McCallum et al. (2000) on a diffeyestém, and then imported
into ours without modifications. Features used in the text recognition task dmlthrough a real
engineering process; on the contrary, they can be seen as a firsméoesteninaive attempt to
tackle the problem. In these last two cases, we hav8'setsing Formula 7.

6.1 Tonal Harmony Analysis

Given a musical flow, the task of music harmony analysis consists in assg@déibel to each time
point (Temperley, 2001; Pardo and Birmingham, 2002). Such labelalrénesunderlying harmony
by indicating a fundamental noteo6t) and amode using chord names such as ‘C minor’.
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Music analysis task can be naturally represented as a supervisecht&gearning problem.
In fact, by considering only the “vertical” aspects of musical structune, would hardly produce
reasonable analyses. Experimental evidences about human cogrveah tfeat in order to dis-
ambiguate unclear cases, composers and listeners refer to “horizadalids of music as well:
in these cases, context plays a fundamental role, and contextualaoueg cseful to the analysis
system.

The system relies on 39 features. They have been engineered saethttké into account the
prescriptions from music harmony theory, a field where vertical and dvutét features naturally
arise. Vertical features report about simultaneous sounds and their correlation withutfenty
predicted chord.Horizontal features capture metric patterns and chordal successions. This is a
case where not all horizontal features are mutually exclusive gteis not the maximal of pos-
itive horizontal weights) and where horizontal weights may change over tioe instance, the
same transition between two chords can receive different weightsdaicgdo whether it falls on
accented/unaccented beats.

The training set is composed of 30 chorales0@) events) by J.S. Bach (1675-1750). The
classifiers have been tested on 42 separate chorak&7(8vents) from the same author.

6.2 FAQs Segmentation

We experimented on the FAQs segmentation problem as introduced by McGetllam(2000).
It basically consists of segmenting Usenet FAQs into four distinct sectitesad’, ‘question’,
‘answer’, and ‘tail’.

In this data set, events correspond to text lines and sequences oaddsFAQs. McCallum
et al. define 24 boolean features. Each one is coupled with each posbkilidédaa total of 96
features. Additionally, 16 features are used to take into account thégosansitions between
labels.

The data set consists of a learning set containing 26 sequences (29e6) and a test set
containing 22 sequences (33,091 events).

6.3 Text Recognition

Our third experiment deals with the problem of recognizing printed text. Weetlathe classifiers

on the “The Frog King” tale (122 sequences981 events) by Grimm brothers, and tested over
the “Cinderella” tale (240 sequences,, 384 events) by the same authors. The classifier is called
to recognize each letter composing the tale. The data set has been bullbas.fcEach letter
(corresponding to an individual event) in the tales has been encodediiyg at random one of its
possible descriptions as provided by tettersUCI data set (Frey and Slate, 1991). Each sentence
corresponds to a distinct sequence.

We briefly recall here the characteristics of the letters data set as origpralpsed by the
authors. The data set contains,@00 letters described using 16 integer valued features. Such
attributes capture highly heterogeneous facets of the scanned raw iogass horizontal and
vertical position, the width and height, the mean number of edges per pixellitwe images have
been obtained by randomly distorting 16 fonts taken from the US NationadBuof Standards.
The features used by the learning system are:

5. It can be found dtp:/ftp.ics.uci.edu/pub/machine-learning-database slletter-recognition
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Experiment | Viterbi | CarpeDiem | Time Saved (%)
music Analysis 13,582 1,507 88.90%
FAQs segmentatio 537 144 73.15%
letter recognition | 961,969 34,244 96.44%

Table 2: CPU Time (expressed in seconds) and percentage of time sa@agh&Diem .

1. 26x (16x 16) = 6,656 vertical features, obtained by the original attributes devised by Frey
and Slate (1991). The reported figure is explained as follows. We aanséth of the 16
values of the 16 attributes in the original data set, thus resulting in 256 possihlgnations.
Each such combination is still to be coupled with the 26 letters of the English @phab

2. the 27x 27 = 729 horizontal features, obtained by considetihg A4, where4 is the set of
letters in the english alphabet, plus a sign for blanks.

6.4 Procedure

We compare the performances@drpeDiem against those provided by the Viterbi algorithm. To
this aim, we embedde@arpeDiem in a SSL system implementing the voted perceptron learning
algorithm (Collins, 2002). The learnt weights have been then used to builalagsifiers: one
based on the Viterbi algorithm, the other one baseGapeDiem .

For each one of the three problems we divided the data into a learningdsattast set. Each
learning set has been further divided into ten data sets of increasisgthiedirst one contains 10%
of the data, the second one 20% of the data, and so forth). Also, epehiragnt has been repeated
by varying the number of learning iterations from 1 to 10, for a grand tdtaDO classifiers per
problem. We tested each learnt classifier on the appropriate test selingdhe classification time
obtained by using firgEarpeDiem and then Viterbi.

In the following we will indicate each one of the 100 classifiers by using twobers separated
by a colon: the former number corresponds to the size of the training s&rding for 10%, 2 for
20%, ..., 10 for 100%), the latter one indicates the number of iteratiomsngtance, the classifier
8:1 has been acquired by iterating once on 80% of the learning set.

6.5 Results

As earlier mentioned (and implied by Theorem@3rpeDiem performs exact inference: classifiers
built on CarpeDiem provide the same answers as those built on the Viterbi algorithm.

We measured the total classification time spent by the algorithms as well as tagetiene
savedby CarpeDiem with respect to the Viterbi algorithm. They are provided in Table 2: average
time savings range from about 73% (FAQs segmentation) to over 96% (lettegmition). Fig-
ures 4, 5 and 6 graphically report a detailed account of each expédri@éssification times for
each problem were obtained using a fixed size test set. By observingpfilegreported in the fig-
ures, itis apparent that, while the Viterbi algorithm runs in approximatelgteon time CarpeDiem
performances depend on the particular classifier used.

In all trials of all experiment€arpeDiem runs in a small fraction of the time needed by Viterbi.
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Music Analysis
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Figure 4: Results on the music analysis problem. We report on the absitiedaarnt classifiers
indicatingi:j for classifier acquired usin¢llO-i)% of the training set anql iterations.
Labels on the abscissas refer only to the first classifier for each bloekperiments;
the following nine bars refer to the remaining ones. For instance, label Bdsisoned
below the bar corresponding to the classifier trained on the 30% of the gyaetrand
using 1 iteration. The following nine bars refer to classifiers 3:2,.3:33:10. We report
on the ordinates the CPU seconds needed for the classification of thetteSestical
bars refer to the time spent @arpeDiem . Triangles refer to the time spent by Viterbi.

One interesting fact is unveiled by the profile of the classification time. Sincesagh one
of the three experiments—classification is performed on a data set of feescbse would expect
roughly constant classification time. By converse, at least in the first xpergnents (Figures 4
and 5), the emerging patterns are similar to those usually observed at ¢etmmén We remark that
the hundred runs of each experiment differ only in the set of weights lngehe classifier. Then
it is apparent that, as the voted perceptron learns, it somehow modifiesitjetsvin a way that
proves to be detrimental to the work @drpeDiem .

To explain the observed patterns, let us consider an informative vegatakeg, and examine
the first iteration of the voted perceptron on a sequence of Iehgthl00. Also, we assume that
@. is asserted 60 times, and that it votes for the correct label 50 times out oE%én though
this example may seem unrealistic, it is AofThe first iteration on the first sequence the voted
perceptron chooses labels at random. Then, the vast majority of themevifiitbrrectly assigned,
thus implying a large number of feature weights updates. If all the labelstatwp, is asserted
are actually mislabelled, due to the way the update rule acts, the weight asddoiq, will be
increased by 40. This large increase occurs all at once at the end of the firsigieren the first
sequence, and it is likely to overestimate the weighpof The voted perceptron will spend the
rest of learning trying to compensate for this overestimation. Howevesesuient updates will be

6. For instance, in the music analysis problem, this could be the case ffaatuee that votes for the chord that has
exactly 3 notes asserted in the current event.
7. That s, 50- (60— 50) = 40.
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FAQs Segmentation
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Figure 5: Results on the FAQs Segmentation problem. The conventions ddoptde same as for

Figure 4.
Letter Recognition
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Figure 6: Results on the letter recognition problem. In the inner frame we tiegdiimne spent by
CarpeDiem using the first fifty classifiers. The conventions adopted are the sanue as f
Figure 4.

of smaller magnitude. In fact, the following predicted labeling will not be ramgayuessed, thus
implying a reduced number of updates.

By summarizing, highly predictive features have their weights initially set tg lagge values;
such weights slowly decrease in the following. The behavior describadyckemerges in Figure 7,
where the individual weights of vertical features (for the music analysiblem) are plotted as
the updates occur. Then, sin€arpeDiem is efficient when vertical features are discriminative
compared to horizontal ones, the algorithm is particularly well-suited to be diseng the early
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Figure 7: Evolution of vertical weights throughout learning. Each lineesgronds to an individual
vertical feature; vertical lines correspond to the beginning of new itemstidhe plot
refers to the music analysis data set.

learning steps of the voted perceptron where the time sav€drpgDiem reaches peaks of 997 %
(music analysis, classifier 1:1) and.88% (FAQs segmentation, classifier 1:1).

Lastly, one might wonder why the observed pattern wasn’t seen in theetmgnition problem.
Notwithstanding that the problem itself is a sequential one, to model only bigpanimbilities
proved—against our expectations—to be not enough to provide suoffidigcrimination power to
horizontal features. In other words, the horizontal features we e@wsentribute to the correct
classification only in a marginal way. This is a setting wh@agpeDiem can, and actually does,
attain exceptional time savings (Figure 6).

Prompted by such time savings, we re-ran the same experiments using rantedrizatures:
the accuracy does not drop down as significantly as in the other two prebl€his fact explains
why the pattern observed in Figures 4 and 5 is not observed in Figunedg: \gertical features re-
main predictive with respect to horizontal ones throughout the learnoaeps the performances of
CarpeDiem do not change over time. Here we note one important propei@amEDiem : Carpe-
Diem time performances reflect the degree of sequentiality inherent to the praibleand. Actu-
ally, by tracking the number of vertices opened in each layer, one caimesasure how important
sequential information is in different parts of the same sequence.

6.6 Comparison with Related Algorithms

In the following we present a brief discussion about two technologies ifhadt directly com-
parable withCarpeDiem , are much related to the algorithm. We start by reporting the results of
implementing theCarpeDiem heuristic for theA* algorithm. Then, we report about a performance
comparison with non-optimal search algorithms based on the Viterbi beaohsgsproach.
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6.6.1 RELATIONS WITH A*

It could be argued that thearpeDiem algorithm looks interestingly similar to th algorithm (Hart
et al., 1968). In order to investigate this similarity let us consider the followgiktic, based on
the same ideas underlyif@arpeDiem :

h(yt) :t; [rr;?x(i) +Sl*] = (T-t)s" +tgt [r@&x(i)] :

The heuristic estimates the distance to the goal by summing the best verticat imedgich layer
and the best possible transition between any two layers.

Even though the heuristic is intuitively connected to the strategy implemen@agieDiem , the
differences are indeed remarkable. A firstimportant difference is inhbie criteria implemented
in Algorithms 3 and 4 (we will focus only on Algorithm 3 for the sake of exposiidTrhe criterion
in Algorithm 3 statesdo not consider any further node in this layer if

G(Y) >=B+ 5.

SinceB; = G(y;_,) + S, the above criterion approximates the reward of the optimal path by means
of S only once rather than tHE—t times taken by(y;). Hence A* incurs an high risk of opening
vertices in layers far from the goal only because of the cumulation of tyga®ximations.

Another important difference between the two algorithms is in the factGiraeDiem imple-
ments two different heuristics: one is used by Algorithm 3 and one is usédgoyithm 4. On the
contraryA* uses the same criterion throughout the computation. Finally, the data steucteeed
by CarpeDiem are simpler (and faster) than those needed to imple#ient

In order to empirically assess wheth&rcould be competitive with respect @arpeDiem , we
implemented the above heuristic and paid particular attention to tuning the datargtsucThe
resulting algorithm turned out to be even less efficient than the Viterbiidigar

Of course, this does not mean that the same principles implementaifgpiem could not be
plugged intoA* by means of a carefully chosen heuristic. Rather, it shows that the prableot
trivial, and deservead-hocresearch efforts.

6.6.2 VITERBI BEAM SEARCH

To compareCarpeDiem with algorithms based on the Viterbi beam search (VBS) strategy presents
several difficulties. On the one hand, we have an algorithm that guasaopgimality, but not com-
putational performances; on the other hand, we have VBS approthctiegiarantee computational
performances abdicating optimality.

In VBS approaches the width of the beam (heredijés particularly important in that it affects
the tradeoff between computational gain and result optimality. For very &méBS would most
probably lead to crude approximations; in this case VBS is likely to run faster@arpeDiem just
because it disregards most of the possibly-optimal paths. By converse,were to choose the
beam size almost equal to the number of possible lakdise., b ~ K), then VBS would run in
almost the same time as the Viterbi algorithm. In between there are all other opAtsts the
quality of the solution found by VBS approaches highly depends on theskiewladopted. In the
following we will disregard any accuracy concern, so that the two agres could be compared in
terms of execution times solely.
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Let & be the ratio between the time spent GsrpeDiem and the time spent by the Viterbi
algorithm for solving a given problem: that is, the time savings reported ile aire computed as
[(1—&) x100%. Given that the time spent by a Viterbi beam search algorithm is in the ofder
b?T, the time saved by a VBS algorithm w.r.t. the Viterbi algorithm is in the order of:

(KZ2—)T 4 b?
Tk R

By equating the time saved I8arpeDiem (i.e., 1— &) and the time saved via the VBS approach, we

have that by setting:
b= /EK2 8

an algorithm based on the VBS approach will run in about the same tiQargeDiem .

We implemented a basic VBS algorithm and measured its running time over the tdt se
scribed in Section 6 and experimented with different settings dfhe results show that to obtain
the same running times &sarpeDiem , the beam size needs to be set as follows:

e b =25 for the Tonal Harmony Analysis data set. Belag: 78, this amounts to consider 32%
of the possible labels;

e b= 2 for the FAQ Segmentation data set. Belg- 4, this amounts to consider 50% of the
possible labels;

e b =15 for the text recognition data set. Beidg= 27, this amounts to consider 586 of the
possible labels;

Two aspects are remarkable in the above resiltsie reported figures have been observed empir-
ically rather than determined using the above formula. It is immediate to verifyhtbgptare very
close to the ones returned by using Formul&)8ye omitted to implement a heuristic to guide the
VBS search. Since computing the heuristic would require additional effibitstimings used to
derive such numbers are optimistic approximations of the actual time neecdefdibbfledged VBS
algorithm.

In summaryCarpeDiem runs at least as fast as a VBS approach when a small to medium beam
size is used while providing some additional benefits. Again, investigatingtiditions that make
appropriate one approach over the other one, deserves furthmrdeg the research.

7. Conclusions

In this paper we have propos€drpeDiem , a replacement of the Viterbi algorithm. On average,
CarpeDiem allows evaluating the best path in a layered and weighted graph in a fradtibe o
time needed by the Viterbi algorithn€arpeDiem is based on a property exhibited by most tasks
commonly tackled by means of sequential learning techniques: the obsesvatiand around a
time instant are very relevant for determining theh label, while information about the succession
of labels is mainly useful in order to disambiguate unclear cases. The &xtehich the property
holds determines the performances of the algorithm. We formally prove@ahaDiem finds the
best possible sequence of labatwl that the algorithm complexity ranges betwe@(T KlogK) in

the best case, ar@(TK?) in the worst case. The fact that the worst case complexity is the same as
the Viterbi algorithm complexity suggests that, by and la@gepeDiem is suitable for substituting
the Viterbi algorithm.
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In Section 3, we reviewed recently proposed alternatives and pointatentollowing advan-
tages ofCarpeDiem with respect to the competitors:

e itis parameter free;
¢ it does not require any prior knowledge or tuning;
e it never compromises on optimality.

At the present time, the main strength of other approaches with respectstisahat they have
been devised to improve the forward-backward algorithm as well. We tlefeextension of our
approach in that direction to future work.

In addition to the theoretical grounding G&rpeDiem complexity, we provided an experimen-
tation on three real world problems, and compared its execution time with that dtdrbi algo-
rithm. The experiments show that large time savings can be obtained. Thietefigures show
time savings ranging from 73% to 96% with respect to the Viterbi algorithm.

A further interesting facet d@arpeDiem is that its execution trace provides clues about the prob-
lems at hand. It can then be used to understand how salient sequewtiaiatibn is. Also, within
the same sequence, it is often interesting to investigate the time steps whexetstdguformation
gets crucial thus implying higher classification time. For instance, in RadiciwhEaposito (2007)
we used this fact to find where musical excerpts get more difficult.

In a world where the quantity of information as well as its complexity is ever aging, there
is the need for sophisticated tools to analyse it in reasonable time. Our pencispthat, in most
problems, long chains of dependencies are useful to reach top rdsultheir influence on the
correct labelling decreases with the length of the chain. In a probabilistioggethe length of the
chain of dependencies would be called the ‘order of the Markov assumpitosuch a context, it
would be appropriate to say that what we call ‘vertical’ features arealgteatures making a zero
order Markov assumption (no dependency at all), while horizontal festare features making a
first order Markov assumption. The higher the order of the Markowraption we want to plug into
the model, the slower the algorithm that evaluates the sequential classifier. dfiess is correct,
however, the higher the Markov assumption, the less informative aregheds that use it. Should
this be the caseCarpeDiem strategy could be extended to efficiently handle higher order Markov
assumptions, thereby allowing to use sequential classifiers to tackle adetgdproblems.
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Appendix A. Soundness

A proof of soundness fo€arpeDiem consists in showing that; is the endpoint of the optimal
path through the graph of interest. Although the whole algorithm is condesité finding out
the optimal path, we presently restrict ourselves to find the optimal endpwmiog, standard book
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symbol | description

S vertical weight of vertex,

S}hyH horizontal weight for transition frong_; andy;

S maximal transition reward (fixed for the whole graph)
y(yt) the weight of the best path tp

Vi the weight of the best path to the best vertex in l¢vel
B Vo1 +S"

G(yt) | Y(n) as calculated bgarpeDiem

B B: as calculated b¢arpeDiem

Table 3: Summary of the notation adopted.

keeping techniques can be used during the search to store path inforntdi®path can be then
be retrieved irD(T) time.

The proof consists in two Theorems and one Lemma,; in particular, Theoreémedtly im-
plies the soundness @arpeDiem , while Theorem 2 and Lemma 1 are necessary in the proof of
Theorem 1.

Before entering the core of the proof, let us summarize the notation adoyptedlistinguish
between values that are calculated@aypeDiem , and those representing properties of the graph.
We will use blackboard character& @ndB) to denote the former ones and greek lettgrand3)
for the latter ones. A summary of important definitions is reported in Table 3.

We start by stating and proving Lemma 1, which ensures the soundnessméih bound used
by CarpeDiem .

Lemma 1 If B; = ; then the bound exploited by CarpeDiem does not underestimate the refvard
the optimal path to any vertex. Formally,

B =B = Bi+S), > y(n)

Proof Let us consider the optimal pathypand denote witht(y;) the predecessor gf. Then, by
definition we havey;_; > y(Ti(yt)), andS™* > §, ... Itimmediately follows that:

W—1+Sl* +S/)t > Y(T(ye)) + %%tﬂ'f(yt) +gi‘
By definition B, = y;_, + S'* andy(yt) = Y(T(%)) + S}, riy,) + Sk, Which yields:
B +$t > Y(Wt)

and by assumption, this implies:
Bi+S), > y(%).

Theorem 1 Let us consider a sequence of calls to Algorithm 3 on lageBs...,t (t < T). When
Algorithm 3 terminates on layer t, the returned vertgxsythe endpoint of the optimal path to layer
t. Formally,

VYY) = YO%)-
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Proof We prove the stronger fact

By = Bt AV V(YY) > YOR)-

The proof is by induction oh. The base case for the induction is guaranteed by the initialization
step in Algorithm 2 wher@, andy(y;) are set. We start by showing that

Vy1:y(y1) = Y(y1) 9)
as follows:

y(y1) = y(argmay, G(y1)) — by line 3 (Algorithm 2)
= y(argmay,§ ) — by line 2 (Algorithm 2)
= y(argmax,y(y1)) — by Equation 2
= max;, Y(y1)
\
YY1 :¥(y1) = Y(ya)-

In order to proveB, = B,, we note that Algorithm 2 sef®;, to G(y;) + S**:

By= G(y;)+S"
= §,+S* - byline 2 (Algorithm 2)
y(y;)+S* — by Equation 2
= Vyi+S"*  — by definition ofy; (Table 3) and Equation 9
= B2 — by definition of3, (Table 3)

Let us now assume that for @Jl1 <f < t:8
B
>

Wt() ¥(¥%e)

then we proveB; = [3; as follows:

Bi= G(y; ;)+S* — by instruction 6 (Algorithm 3)
= Yy ;) +S¥ — Dby Theorem 2
= V;+S* — byEquation 10 and definition of ,
= B — by definition of3; (Table 3)
In order to provevy: : y(Y;) > y(y%) we start by noting that at the end of the main loop of

Algorithm 3 it holdsG(y;) > Bt + % Also, for anyy; C; y; we have (by Definition 2—Equation 5):
By + ) < B+ ). Itfollows thaty; T y{ = G() = By + ). Using Lemma 1 we have

Ve Ce Yt = G(Y) > y(n)- (10)

8. We note that our definitions give no meaningBtpandp;. We define them to be equal regardless their value: this
simplifies the discussion allowing an easier formulation of the propertieg s&ited and proved. They are not used
in the algorithm nor in the argument anyway; the definition is thus safe.
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Moreover, since the algorithm scans the vertices in the order given; bgll verticesy:, yi J: Vi
have been considered by the main loop. Then by line 4 (Algorithm 3), bynductive hypothesis
(vf <t : Bf = B¢) and Theorem 2, we have that for each such ve@&éx) = y(y;). Moreover, due
to line 5 (Algorithm 3),G(y;) > G(y;). Putting together the two statements, we conclude that

Ve 2t Ve = G(Y%) > Y(n)- (11)

Equation 10, Equation 11, and the fact thatis a total order, yield
Wi Gyr) = Y)-

By noting thaty; is open (and exploiting again Theorem 2), we have:

et Y(YE) = YOR)-

Theorem 2 Let us assumet < t : By = B, then after opening vertex,YG(y;) = Y(W)-

Proof By line 7 (Algorithm 4),G(yt) = G(y;{_4) + %ay{ll + % Then, our main goal is to prove

G-1) + Sy, + S = YO

Replacingy(y:) with its definition (Equation 2) yields:
G(yﬂl) + Ss%t-,yt*,l + S?’t = r)T/?iX(Y(yt_l) + %]/-tvyt—l + Sﬁ) :
The above equality is satisfied if the following two properties hold:

V-1 =argmax(y(y-1) + Sy ) (12)
G(¥i-1) = Y(¥i-1)- (13)

The proof, by induction om, proves that the Equations 12 and 13 are satisfied at the moment (and
after)G(y;) is set.CarpeDiem starts by opening the most promising vertex in layer 2, this is the first
time Algorithm 4 is called and hence the base case of the induction. Let uisleondat happens
when a nodsy, is opened. Since all vertices in layer 1 have been opened by the initializéjpn s
the first loop in Algorithm 4 iterates on all of them and the second loop is retered. Then, just
before line 7, it holds

Vi = argmaxGlvn) + S

Since the initialization step guaranteas : G(y1) = y(y1), then properties 12 and 13 are satisfied.

Let us now assume by induction that after opening a vertexin layert — 1 (t > 2) it holds
G(yt—1) = Y(y%—1). We focus on the execution of Algorithm 4 on a veriein layert. Let us denote
with O;_; the set of vertices presently open in layer 1, and withC;_; the set of closed ones.
When the first loop ends, it holds:

YIil =arg max (G(Yt—l) + %J/-uYt—l) :

Yi—1€0t-1

1876



CARPEDIEM: OPTIMIZING THE VITERBI ALGORITHM

Also, since all vertices for which we have taken the argmax are in laydr and open, we apply
the inductive hypothesis and conclude that:

Vi g=arg max (y(yi-1)+Shy ,)- (14)

Yt-1€0t-1

The second loop moves some vertices filomy to O;_1. At the same time, however, it updatgs,
so that the above equality is preserved. Then, on exit we can condldylar{d (for the particular
Y;_, that caused the loop to exit):

G_1)+Shy , > Bra+t S}H + 8t (15)
Also, by definition ofJ;_, (Definition 2—Equation 5)vy:_1 : y;_; Ji—1 Yt—1 implies:
B‘**S}tfﬁsl* >Bi1+S), ,+S" (16)

Since vertices are consideredii_1 order and sincg_, is the first vertex that has not been opened,
it follows that all closed vertices follow,_, in the J;_1 order. Using this fact along with (15) and
(16), it follows:

WYWi—1 € Ce—1: Gy +§,t Bt—l+$i71 + st
By induction,G(y;_;) = Y(Y;_;). Moreover, Lemma 1 implieB;_ 1+$ . = Y(%t-1). Using these
facts, along withvy;, y; 1 : S > %’tsyt—l (Definition 2—Equation 3) we obtain:
Y¥i-1 € Ce-1: V(¥ +§’ty*1—yytl+%’tytl
Which yields:
1)+ S/t Vi1 max (V(thl) + %J’-h)/t—l) :

yl 1€Ce-1
This and (14) yield:
Vi1 =argmax(y(y1) + Sy ) -

Also, the fact thay;_, is open and the inductive hypothesis, yi@ldy; ;) = y(¥;_1)-

Appendix B. Complexity

Theorem 3 CarpeDiem has QT K?) worst case time complexity and DK logK) best case time
complexity.

Proof Let us consider the final step of an executiorCafpeDiem , and assume that for each layer
t, exactlyk; vertices have been opened. In our proof we separately consider thespiené to
process each layer of the graph. We define the quatity to represent the overall time spent by
Algorithms 3 and 4 to process layerlLet us define:

a(yt): the number of steps needed by Algorithm 3 to process vertex
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b(y:): the number of steps needed by Algorithm 4 to find the best parent forypode

We note that(y:) does not include the time spent by Algorithm 4 since such time is accounted for
by b(yt). Similarly, b(y;) does not include neither the time spent by Algorithm 3, nor the time spent
by recursive calls to Algorithm 4. In fact, the time spent in recursive calizkien into account by

b values of vertices in previous layers. Then we can comfift¢ as:

T(t) = ¥ aly) +b(y)
W

The total complexity ofarpeDiem is then:

T
T (CarpeDiem ) = time for initialization+ ;(0(1) +T(t))
t=

where the “time for initialization” includes th@(K) time spent in the first loop of Algorithm 2 plus
the O(T KlogK) time needed to sort each layer accordingito It follows:

7 (CarpeDiem ) = O(TKlogK) + i(O(l) +7(1)). 17)
=

Let us now note thah(y;) is at worstO(k;). In fact, since onlyk; vertices have been opened at
the end of the algorithm, it follows that the steps needed to analyse a werbgx(the loop in)
Algorithm 3 is at mosk;. We notice that we are overestimating the cost to analyze each node since
k: is theoverallnumber of iterations performed by the mentioned loop. However this overgistima
simplifies the following argument without hindering the result.

b(y:) is, at worst,O(k_1). In fact, since onlyk_1 vertices have been opened at the end of
the algorithm, it follows that the two loops in Algorithm 4 iterate altogether at rkasttimes.
Moreover, since the steps performed by recursive calls are not tocheléd inb(y;), it follows
that all operations ar®(1), and the complexity accounted for bgy; ) is O(ki—1). In both cases no
computational effort is spent to process closed nodes.

From the above discussion it follows that:

T(t) = Y ay) +bw)
Wt

= > O(k) +O(ki—1)

V¢ in open vertices
= k- (O(k)+O(k-1))
= O(K +kike 1)

Putting together the above equation and Equation 17 we have:

T (CarpeDiem ) O(TKlogK) + T;(O(l) +O(K + k1))
t=

T
= O(TKlogK)+ ;oa@ +kike-1).
t=
The worst case occurs wh€arpeDiem opens every node in every layer. In such cdge: K for

eacht and the above formula reduces@T K?). In the best cas@arpeDiem opens only one node
per layerk = 1 for eacht and the complexity i©(T KlogK). |
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