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Abstract

This paper proposes the application of particle swarm apétion PSQ to the problem ofull
model selection, FMSopr classification tasksFMS is defined as follows: given a pool of pre-
processing methods, feature selection and learning #igosi to select the combination of these
that obtains the lowest classification error for a given datathe task also includes the selection
of hyperparameters for the considered methods. This progknerates a vast search space to be
explored, well suited for stochastic optimization techugis. FMS can be applied to any classifi-
cation domain as it does not require domain knowledge. m@iffemodel types and a variety of
algorithms can be considered under this formulation. Funtlore, competitive yet simple models
can be obtained witFMS We adoptPSOfor the search because of its proven performance in
different problems and because of its simplicity, sincehegi expensive computations nor com-
plicated operations are needed. Interestingly, the wayséaech is guided allonBSOto avoid
overfitting to some extend. Experimental results on benckrdata sets give evidence that the
proposed approach is very effective, despite its simglickurthermore, results obtained in the
framework of a model selection challenge show the competiiss of the models selected with
PSQ compared to models selected with other techniques thasfon a single algorithm and that
use domain knowledge.

Keywords: full model selection, machine learning challenge, pagtgbarm optimization, exper-
imentation, cross validation

1. Introduction

Model selection is the task of picking the model that best describes a d4tdestie et al., 2001).
Since the phrasedescribing a data setan be interpreted in several different ways, the model
selection task can denote diverse related problems, including: variableatnre selection (Bengio
and Chapados, 2003; Guyon et al., 2006a; Guyon and Elisseef),Z¥&tem identification (Moss
and Feng, 2002; Nelles, 2001), parameter-hyperparameter optimiz&tigor et al., 2006b; Kim
etal., 2002; Hastie et al., 2001; Cawley and Talbot, 2007b; Escalarite2fi@/), and discretization
(Boullé, 2007; Hue and Bowdl 2007). In this paper we give a broader interpretation to this task
and call itfull model selectiorfFMS). TheFMS problem consists on the following: given a pool of
preprocessing methods, feature selection and learning algorithms, thel@cmbination of these
that obtains the lowest classification error for a given data set. This leskialudes the selection
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of hyperparameters for the considered methods, resulting in a vashsgmce that is well suited
for stochastic optimization techniques.

Adopting a broader interpretation to the model selection problem allows usisidew different
model types and a variety of methods, in contrast to techniques that coasiidegle model type
(i.e., either learning algorithm or feature selection method, but not bothd aimyle method (e.qg.,
neural networks). Also, since neither prior domain knowledge nor madbarning knowledge is
required,FMS can be applied to any classification problem without modification. This is a clear
advantage over ad-hoc model selection methods that perform well ogla domain or that work
for a fixed algorithm. This will help users with limited machine learning knowledgge FMS
can be seen as a black-box tool for model selection. Machine learnpeytexcan also benefit
from this approach. For example, several authors make use of sseatdyies for the selection of
candidate modelf_utz, 2006; Boulé, 2007; Reunanen, 2007; Wichard, 2007), WS approach
can be adopted for obtaining such candidate models.

One could expect a considerable loss of accuracy by gaining genetdbtyever, this is not
the case of the proposed approach since in international competitionsviédttmmparable per-
formance to other techniques that were designed for a single algorithnu¢ileg, hyperparameter
optimization) and to methods that took into account domain knowledge (Guyain 2008). The
main drawback is the computational cost to explore the vast search g@ateularly for large
data sets. But, we can gain efficiency without a significant loss in aggurg@dopting a random
subsampling strategy, see Section 4.3. The difficult interpretability of thetedlenodels is an-
other limitation of the proposed approach. However, naive users maytaitctrade interpretably
for ease-of-use, while expert users may gain insight in the problemnat by analyzing the struc-
ture of the selected model (type of preprocessing chosen, numbeatofde selected, linearity or
non-linearity of the predictor).

In this paper, we propose to use particle swarm optimizaf@{ for exploring the full-models
search spacéSOQOis a bio-inspired search technique that has shown comparable perfahaehat
of evolutionary algorithms (Angeline, 1998; Reyes and Coello, 2006k é¥olutionary algorithms,
PSOis useful when other techniques such as gradient descend or duadygtieal discovery are
not applicable. Combinatoric and real-valued optimization problems in which gtimiaation
surface possesses many locally optimal solutions, are well suited famswydimization. INFMSit
must be found the best combination of methods (for preprocessingrdesiection and learning)
and simultaneously optimizing real valued functions (finding pseudo-optiarainpeters for the
considered methods), in consequence, the applicati®®afis straightforward.

The methodological differences between swarm optimization and evoluiaigorithms have
been highlighted by several authors (Angeline, 1998; Kennedy aachiti, 1995, 2001). However
a difference in performance has not been demonstrated in favor of gitthod. Such demonstra-
tion would be a difficult task because no black-box stochastic optimizatiomitligocan outper-
form another over all optimization problems, not even over random ls€@ralpert and Macready,
1997; van den Bergh, 2001). We selecR8Oinstead of evolutionary algorithms because of its
simplicity and generality as no important modification was made for applyinghkM8. PSOis
easier to implement than evolutionary algorithms because it only involves a sipefator for up-
dating solutions. In contrast, evolutionary algorithms require a particyfaesentation and specific
methods for cross-over, mutation, speciation and selection. Furthera®@has been found to be
very effective in a wide variety of applications, being able to producel gotutions at a very low
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computational cost (Gudise and Venayagamoorthy, 2003; &helez et al., 2004; Xiaohui et al.,
2003; Yoshida et al., 2001; Robinson, 2004; Kennedy and Ebegt1, Reyes and Coello, 2006).

PSOis compared to pattern seardh in order to evaluate the added value of using the swarm
strategy instead of another intensive search method. We coss@enong other search techniques
because of its simplicity and proved performance in model selection (MommBemett, 2002;
Bi et al., 2003; Dennis and Torczon, 1994). Cross validatoW)(is used in both technigues for
assessing thgoodnes®f models. Experimental results in benchmark data give evidence that both
PSOandPS are effective strategies faftMS. However, it was found tha®SO outperformsPS
showing better convergence behavior and being less prone to overfittintpermore, the proposed
method was evaluated in the context of a model selection competition in whidtakspecialized
and prior-knowledge based methods for model selection were usedtld$/smlected witlPSOwere
always among the top ranking models through the different stages of @flerae (Guyon et al.,
2006c¢, 2007, 2008; Escalante et al., 2007). During the challengbestientry was ranked"over
all ranked participants,’Samong the methods that did not use domain knowledge Zhdrong
the methods that used the software provided by the organizers (Guwgbn 2006¢, 2007, 2008).
In this paper we outperform the latter entry while reducing the computatiamdkeh by using a
subsampling strategy; our best entry is currently the top-ranked onegamaodels that do not use
prior domain knowledge and@over all entries, see Section 4.3.

PSOhas been widely used for parameter selection in supervised learninggéyand Eber-
hart, 1995, 2001; Salerno, 1997; Gudise and Venayagamoorthy).2d0wever, parameter selec-
tion is related with the first level of inference in which, given a learning iélgm, the task is to find
parameters for such algorithm in order to describe the data. For exampleyial networks the
adjustment of weights between units according to some training data is a paraetettion prob-
lem. Hyperparameter optimization, on the other hand, is related with the sesehdflenference,
that is, finding parameters for the methods that in turn should determine gararfae describ-
ing the data. In the neural network example, selecting the optimal numbeiitsf the learning
rate, and the number of epochs for training the network is a hyperpansopti@ization problem.
FMSis capable of operating across several levels of inference by simulisiygeerforming feature
selection, preprocessing and classifier selection, and hyperpararpgieization for the selected
methods.PSOhas been used for hyperparameter optimization by Voss and Feng (2o0&ver
they restricted the problem to linear systems for univariate data sets, eongidne hundred data
observations. In this paper we are going several steps further: pliecdP SOfor FMS considering
non-linear models in multivariate data sets with a large number of observations.

Parallel to this work, Gorissen et al. used genetic algorithms for meta-nmeldetisn in regres-
sion tasks (Gorissen, 2007; Gorissen et al., 2008), a similar appragctnierged totally indepen-
dently to our proposal. One should note, however, that this method hasibee for a different task
in low dimensional data sets; most results are reported for 2D data. Evethigitfimensionality
the method has been run for only a few iterations with a small population sieé. (ide of a genetic
algorithm required the definition of specific operatimmseach of the considered mode{3orissen et
al. considered seven different models (including neural network&emmel methods) that required
of 18 different genetic operators for creation, mutation and cross{@@rissen, 2007; Gorissen
et al., 2008). Additionally, general operators for speciation and seteative also defined. In the
present work a single operator was used for updating solutionsdtegaiof the considered models.
This clearly illustrates the main advantageR8Oover genetic algorithms, namely generality and
simplicity.
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The main contribution of this work is experimental: we provide empirical evidendicating
that by usingPSOwe were able to perform intensive search over a huge space argkedeccin
selecting competitive models without significantly overfitting. This is due to thethagearch is
guided inPSQ performing a broad search around promising solutions but not oveydoterms of
really fine optimization. This sort of search is known to help avoiding oveditiynundercomput-
ing (Dietterich, 1995). Experimental results supported by some a postemaisss give evidence
of the validity of our approach. The way we approached the model selqatiblem and the use of
a stochastic-search strategy are also contributions. To the best af@muliekige there are no similar
works that consider thEMS problem for classification tasks.

The rest of this paper is organized as follows. In the next section weibdeshe generd?SO
algorithm. In Section 3, we describe the applicatioP8f0to FMS. Section 4 presents experimental
results in benchmark data; comparing the performanéeS#to that ofPSin FMSand analyzing
the performance dPSOunder different parameter settings; also, are described the resulitseubta
in the framework of a model selection competition. In Section 5, we analyzeanischs inPSMS
that allow to select competitive models without overfitting the data. Finally, in Se6tiae present
the conclusions and outline future research directions.

2. Particle Swarm Optimization (PSO)

PSOQis a population-based search algorithm inspired by the behavior of bialoggenmunities
that exhibit both individual and social behavior; examples of these coritiesiare flocks of birds,
schools of fishes and swarms of bees. Members of such societiescehamon goals (e.g., find-
ing food) that are realized by exploring its environment while interacting antteem. Proposed by
Kennedy and Eberhart (19985)SOhas become an established optimization algorithm with applica-
tions ranging from neural network training (Kennedy and Eberha@518alerno, 1997; Kennedy
and Eberhart, 2001; Gudise and Venayagamoorthy, 2003; Engeih2®06) to control and engi-
neering design (Hedndez et al., 2004; Xiaohui et al., 2003; Yoshida et al., 2001; Robj28d14).
The popularity oPSOQis due in part to the simplicity of the algorithm (Kennedy and Eberhart, 1995;
Reyes and Coello, 2006; Engelbrecht, 2006), but mainly to its effeesgefor producing good re-
sults at a very low computational cost (Gudise and Venayagamoorthy, Reinedy and Eberhart,
2001; Reyes and Coello, 2006). Like evolutionary algorithR&0Qis appropriate for problems with
immense search spaces that present many local minima.

In PSOeach solution to the problem at hand is called a particle. At eachttiesch particle,
i, has a position} =< X 1,X ,,...,X 4 > in the search space; whedlds the dimensionality of the
solutions. A set of particleS = {x},x},...,xt,} is called a swarm. Particles have an associated
velocity value that they use fdlying (exploring) through the search space. The velocity of particle
i at timet is given byvi =< { 1,Vi »,...,\i 4 >, whereV , is the velocity for dimensiok of particle
i at timet. Particles adjust their flight trajectories by ’using the following updating teaps

\/}#:va}frclxrlx (Pij =% j) +C2axT2x (Pgj—X ), (1)
X5 =XV @
where p; j is the value in dimensior) of the best solution found so far by partidle p; =<

Pi1,---,Pi.d > is called personal bestpy ; is the value in dimension of the best particle found
so far in the swarmS); p; =< pg1,.--, Pgd > is considered the leader particle. Note that through
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p; andpg each particle takes into account individual (local) and social (global) information fer u
dating its velocity and position. In that respegt,c; € R are constants weighting the influence of
local and global best solutions, respectively.r, ~ U0, 1] are values that introduce randomness
into the search procesé! is the so called inertia weight, whose goal is to control the impact of the
past velocity of a particle over the current one, influencing the locabéotzhl exploration abilities

of the algorithm. This is one of the most used improvemen®3®for enhancing the rate of con-
vergence of the algorithm (Shi and Eberhart, 1998, 1999; van deghB2001). For this work we
considered an adaptive inertia weight specified by a triMet (Wstart, Ws, Wend); Wherewsta: and
Weng are the initial and final values f&W, respectively, andvs indicates the fraction of iterations

in whichW is decreased. Under this settigis decreased by =W — wdecfrom iterationt = 1
(whereW = Wgtart) UP to iterationt = | x ws (after whichW = Weng); Wherewgec = ""S‘f";i;v"fve”d and

| is the maximum number of iterations. This setting allows us to explore a largetateasart of

the optimization, wheflV is large, and to slightly refine the search later by using a smaller inertia
weight (Shi and Eberhart, 1998, 1999; van den Bergh, 2001).

An adaptiveV can be likened to the temperature parameter in simulated annealing (Kirkpatrick
et al., 1983); this is because, in essence, both parameters influendelthleamd local exploration
abilities of their respective algorithms, although in different ways. A constais analogous to
the momentum parametprin gradient descend with momentum term (Qian, 1999), where weights
are updated by considering both the current gradient and the weighgelof the previous step
(weighed byp). Interestingly, the inertia weight is also similar to the weight-decay consgant (
used in machine learning to prevent overfitting. In neural networks thghtgeare decreased by
(1—vy) in each learning step, which is equivalent to add a penalty term into thefermtion that
encourages the magnitude of the weights to decay towards zero (Bi}ify,F2astie et al., 2001);
the latter penalizes complex models and can be used to obtain sparse soRigsbog(2006).

The pseudo code of tHieSOalgorithm considered in this work is shown in Algorithm 1; default
recommended values for tR®&Sproblem are shown as well (these values are based on the analysis
of Section 2.1 and experimental results from Section 4.2). The swarm demdn initialized,
considering restrictions on the values that each dimension can take. Negpdbnesf each
particle is evaluated angl,, p; _, are initialized. Then, the iteratiMeSOprocess starts, in each
iteration:i) the velocities and positions of each particle in every dimension are updatediag to
if needed; andv) the inertia weight is decreased. This process is repeated until either a maximu
number of iterations is reached or a minimum fitness value is obtained by a partibke swarm
(we used the first criterion fdFMS); eventually, an (locally) optimal solution is found.

A fitness function is used to evaluate the aptitugeodnesgsof candidate solutions. The def-
inition of a specific fitness function depends on the problem at hand; iergkib must reflect the
proximity of the solutions to the optima. A fitness functibn W — R, whereW is the space of
particles positions, should return a scdligifor each particle positior;, indicating how far particle
i is from the optimal solution to the problem at hand. FMSthe goal is to improve classification
accuracy of full models. Therefore, any functibn which takes as input a model and returns an
estimate of classification performance, is suitable (see Section 3.3).

Note that in Equation (1) every particle in the swarm knows the best posaiamdfso far by
any other particle within the swarm, thatpg. Under this formulation a fully-connected swarm-
topology is considered in which every member knows the leader particletdgoogy has shown
to converge faster than any other topology (Kennedy and Mendeg; BR&yes and Coello, 2006;
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Algorithm 1 Particle swarm optimization.
Require: [Default recommended values for FMS]
—¢1,C2: individual/social behavior weight$g; = ¢, = 2]
—m: swarm size{m = 5]
—1: number of iterations|l = 50
—F(W — R): fitness function; (W — R) = 2—fold CV BER]
—W: Inertia weightw = (1.2, 0.5, 0.4)
Set decrement factor faW (Wgec= Wﬁ%;v"f"e"d)
Initialize swarm 6= {x1,X2,...,Xm})
Computefy, . =F(x1.. m) (Section 3.3)
Locate Ieaderp(g) and set personal beSF&(“,m =X1,...m)
t=1
whilet <1 do
forall x; € Sdo
Calculate velocity; for x;(Equation (1))
Update position ok; (Equation (2))
Computefy, = F(xi)
Updatep; (if necessary
end for
Updatepy (if necessary
if t < |l xws]then
W =W — Wgec

end if
t++

end while
return pq

Kennedy and Eberhart, 2001; Engelbrecht, 2006). With this topolayyever, the swarm is prone
to converge to local minima. We tried to overcome this limitation by using the adaptvgain
weight,W.

2.1 PSO Parameters

Selecting the best parametdW, c;,c2,m 1) for PSOis another model selection task. In the ap-
plication of PSOfor FMS we are dealing with a very complex problem lying in the third level
of inference. Fortunately, several empirical and theoretical studies lbeen performed about the
parameters oPSOfrom which useful information can be obtained (Shi and Eberhart, 1D989;
Kennedy and Mendes, 2002; Reyes and Coello, 2006; Ozcan ananyit®98; Clerc and Kennedy,
2002; van den Bergh, 2001). In the rest of this sectionRB®parameters are analyzed in order
to select appropriate values fBMS. Later on, in Section 4.2, results of experiments viR®Ofor
FMSunder different parameter settings are presented.
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We will start analyzinges, ¢z € R, the weighting factors for individual and social behavior. It
has been shown that convergence is guarahtEed®SOunder certain values afy,c, (van den
Bergh, 2001; Reyes and Coello, 2006; Ozcan and Mohan, 1998; &erKennedy, 2002). Most
convergence studies have simplified the problem to a single one-dimengantiale, settingp =
C1 X 1 +Cz X Iz, andpgy andp; constant (van den Bergh, 2001; Reyes and Coello, 2006; Ozcan and
Mohan, 1998; Clerc and Kennedy, 2002). A complete study including #rdianweight is carried
out by van den Bergh (2001). In agreement with this study the wakie8.8 guarantees eventual
convergence of the algorithm when the inertia welhis close to 10. For the experiments in this
work it was fixedc; = ¢ = 2, with these values we hage< 3.8 with high probabilityP(@ < 3.8) ~
0.9, given the uniformly distributed numberg r, (van den Bergh, 2001). The configuration—=
¢, = 2 also has been proven, empirically, to be an effective choice for tteeaepters (Kennedy
and Eberhart, 1995; Shi and Eberhart, 1998, 1999; Kennedy amd®4, 2002).

Note, however, the restriction théf remains close to.0. In our experiments we considered
a value ofW = 1.2 at the beginning of the search, decreasing it during 50% \{ise= 0.5) of the
PSOQiterations up to the valug/ = 0.4. In consequence, it is possible that at the end of the search
process the swarm may show divergent behavior. In practice, leowtee latter configuration for
W resulted very useful foFMS, see Section 4. This selection\Wf should not be surprising since
even the configuratiolV = (1,1,0) has obtained better results than using a fwéih empirical
studies (Shi and Eberhart, 1998). Experimental results with differftgurations oW for FMS
give evidence that the configuration we selected can provide better nibdelasing constarw/,
see Section 4.2; although further experiments need to be performed intorsieect the bestv
configuration folFMS,

With respect tan, the size of the swarm, experimental results suggest that the size of the pop
lation does not damage the performanc®80O(Shi and Eberhart, 1999), although slightly better
results have been obtained with a large valuenp{Shi and Eberhart, 1999). Our experimental
results in Section 4.2 confirm that the selectiomois not crucial, although (contrary to previous
results) slightly better models are obtained by using a small swarm size. Thadatteimportant
result forFMS because using a small number of particles reduces the number of fitmesi®riu
evaluations, and in consequence the computational cost of the search.

Regarding the number of iterations, to the best of our knowledge, thevenienk on the subject.
This is mainly due to the fact that this issue depends mostly on the complexity ofdhleim at
hand and therefore a general rule cannot be derived=M&the number of iterations should not be
large to avoid oversearching (Dietterich, 1995). For most experimentisipaper we fixed = 100.
However, experimental results in Section 4.2 show that by runRfa@for a smaller number of
iterations is enough to obtain models of the same, and even better, generafeafarmance. This
gives evidence that early stopping can be an useful mechanism to asofidting, see Section 5.

3. Particle Swarm Model Selection

Since one of the strong advantagesP&Ois its simplicity, its application td-MS is almost di-
rect. Particle swarm full model selection (hereaR&MS that is the application d?SOto FMS) is

1. Note that inPSOwe say that the swarm converges iff {imins pge = p, wherep is an arbitrary position in the search
space and indexes iterations oPSQ Sincep refers to an arbitrary position, this definition does not mean either
convergence to local or global optimum, but convergence to the gh#slposition in the swarm (van den Bergh,
2001; Reyes and Coello, 2006; Engelbrecht, 2006).
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| ID [ Objectname | F [ Hyperparameters | Description
1 Ftest FS | fmax Wmin, Pval, fdrmax Feature ranking according the F-statistic
2 Ttest FS | fmax Wmin, Pval,» fdrmax Feature ranking according the T-statistic
3 aucfs FS | fmax Wmin, Pval, fdrmax Feature ranking according to the AUC criterion
4 odds-ratio FS | fmax Wmin, Pval,» fdrmax Feature ranking according to the odds ratio statistic
5 relief FS fmax Wmin, Knum Relief ranking criterion
6 rffs FS fmax Wmin Random forest used as feature selection filter
7 svcrfe FS fmax Recursive feature elimination filter using svc
8 Pearson FS | fmax Wmin, Pval, fdrmax | Feature ranking according to the Pearson correlation coef.
9 ZFilter FS fmax Wmin Feature ranking according to a heuristic filter
10 gs FS fmax Forward feature selection with Gram-Schmidt orth.
11 s2n FS fmax Wmin Signal-to-noise ratio for feature ranking
12 pc—extract | FS fmax Extraction of features witPCA
1 normalize Pre center Normalization of the lines of the data matrix
2 standardize | Pre center Standardization of the features
3 | shift—scale | Pre takgog Shifts and scale data
[ 1] bias | Pos | none | Finds the best threshold for the output of the classifie}s

Table 1: Feature selectioRr$), preprocessingRre) and postprocessind?¢9 objects available in
CLORP. A brief description of the methods and their hyperparameters is presented

described by the pseudocode in Algorithm 1, in this section are presedé@iaal details about
PSMS first we describe the pool of methods considered in this work; then,eseritbe the rep-
resentation of particles and the fitness function used; finally, we briefgusscomplexity is-
sues. The code d?SMSis publicly available from the following websitgtp:/ccc.inaoep.

mx/~ hugojair/code/psms/

3.1 The Challenge Learning Object Package

In order to implemenPSMSwe need to define the models search space. For this purpose we con-
sider the set of methods in a machine learning toolbox from which full modeldeayenerated.
Currently, there are several machine learning toolboxes, some of thaiolpavailable (Franc and
Hlavac, 2004; van der Heijden et al., 2004; Wichard and Merkwirthy2@dtten and Frank, 2005;
Saffari and Guyon, 2006; Weston et al., 2005); even there is a tfatitsgournal JMLR) dedi-
cated to machine learning software. This is due to the increasing intenestifeomachine learning
community in the dissemination and popularization of this research field (Sbarger2006). The
Challenge Learning Object PackagéCLOP) is one of such development kits distributed under the
GNU license (Saffari and Guyon, 2006; Guyon et al., 2006¢, 200082 CLOPIs aMatlab® tool-

box with implementations of feature-variable selection methods and machineggafgorithms
(CLOP also includes th&SMSimplementation used in this work). The list of available prepro-
cessing, feature selection and postprocessing methods @LIBE toolbox is shown in Table 1; a
description of the learning algorithms availableGhOPis presented in Table 2. One should note
that this version o€LOPincludes the methods that best performed in a model selection competition
(Guyon et al., 2008; Cawley and Talbot, 2007a; Lutz, 2006).

2. Seéehttp:/iclopinet.com/CLOP/
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[ ID | Object name | Hyperparameters [ Description
1 zarbi none Linear classifier
2 naive none Naive Bayes
3 klogistic none Kernel logistic regression
4 gkridke none Generalized kridge (VLOO)
5 logitboost units number, shrinkage, depth Boosting with trees (R)
6 neural units number, shrinkage, maxiter, balance Neural network (Netlab)
7 svC shrinkage, kernel parameters (coef0, degree, gamma) SVM classifier
8 kridge shrinkage, kernel parameters (coef0, degree, gamma) Kernel ridge regression
9 rf units number, balance, mtry Random forest (R)
10 Issvm shrinkage, kernel parameters (coefO, degree, gamma), balanc&ernel ridge regression

Table 2: Available learning objects with their respective hyperparameténs iGLOP package.

In consequence, fdPSMSthe poof of methods to select from are those methods described in
Tables 1 and 2. ICLOP a typical model consists of thehain which is a grouping object that
allows us to perform serial concatenation of different methods. A chajnincdude combinations
of (several/none) feature selection algorithm(s) followed by (severa)mreprocessing method(s),
in turn followed by a learning algorithm and finally (several/none) posgssiag algorithm(s). For
example, the model given by:
chain{gs(fmax= 8),standardize(center=1),neural(units=10,s=0.5,balance=1,iter510)
usesgsfor feature selectiorstandardizatiorof data and a balancatkural networkclassifier with
10 hidden units, learning rate offf) and trained for 10 iterations. In this work chain objects that
include methods for preprocessing, feature selection and classificadi@omsidered full-models.
Specifically, we consider models with at most one feature selection methadldwing to perform
preprocessing before feature selection and viceversa, see Se@ionh& bias method was used
as postprocessing in every model tested to set an optimal threshold in thg olutibe models in
order to minimize their error. The search spac€tSis given by all the possible combinations of
methods and hyperparameters; an infinite search space due to thduedlparameters.

3.2 Representation

In PSOeach potential solution to the problem at hand is considered a particle. |&agie rep-
resented by their position, which is nothing butladimensional numerical vectod (being the
dimensionality of the solution). IFMS potential solutions are full-models, in consequence, for
PSMSwe need a way to codify a full-model by using a vector of numbers. For tniggse we
propose the representation described in Equation (3), the dependerirae () is omitted for
clarity.

Xi =<Xi pre; Yi,1...Npre» Xi, 53 ¥i,1,...Ns» Xi,sely Xi class Yi,1,...Nejass -~ (3)

wherex; pre € {1,...,8} represents a combination of preprocessing methods. Each combination is
represented by a binary vector of size 3 (i.e., the number of prepingasgthods considered),
there are 2= 8 possible combinations. Each element of the binary vector representsie sie-
processing method; if the value of tk& element is set to 1 then the preprocessing methodith

=k is used (see Table 1). For example, the first combinatid)0,0 > meansno preprocessing

while the seventh 1,1,0 > means that this modek;) usesnormalizationandstandardizatioras

3. Notice that theCLOP package includes also the spider package (Weston et al., 2005) whigtmiimcludes other
implementations of learning algorithms and preprocessing methods. vdgwe this work we only use€LOP
objects.
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preprocessingy; 1..n,, codify the hyperparameters for the selected combination of preprogessin
methods Npre = 3 because each preprocessing method has a single hyperparamteteénanthe
order of the preprocessing methods is fixed (istandardizationcan never be performed before
normalizatior), in the future we will relax this constraink; s € {0,...,12} represents théD of

the feature selection method used by the model (see Table 1); and, its respective hyperpa-
rametersN;s is set to the maximum number of hyperparameters that any feature selectiamdmeth
can takex; sel is a binary variable that indicates whether preprocessing should bemed before

its respective hyperparameteMassis the maximum number of hyperparameters that a classifier
can take. This numerical codification must be decoded and used withalregrouping object for
obtaining a full-model from a patrticle positio. Note that the dimensionality of each particle is
d=1+Npre+ 1+ Nfs+ 14+ 1+ Nejass= 16.

3.3 Fitness Function

In FMS it is of interest to select models that minimize classification errors on unsean(ida,
maximizing generalization performance). Therefore, the fitness fundiipahould relate a model
with an estimate of its classification performance in unseen data. The simpliétyMEallows us

to use any classification performance measufe, &&cause the method does not require derivatives.
Thus, valid options foF include mean absolute error, balanced error rate, squared rogtreoall,
precision, area under tHROC curve, etcetera. For this work it was used the balanced error rate
(BER asF. BERtakes into account misclassification rates in both classes, which pr&@&mSof
selecting biased models (favoring the majority class) in imbalanced data seterfmore BERhas
been used in machine learning challenges as leading error measunmekiogrparticipants (Guyon
etal., 2007, 2008). ThBERof modely is the average of the misclassifications obtainedtmyer

the classes in a data set, as described in Equation (4):

seru) - 55 @

whereE, andE_ are the misclassifications rates for the positive and negative clasges;tresly.

The selection of the fitness function is a crucial aspe&$@Q However, forPSMS the critical
part lies in the way an estimate of generalization performance of a modehfgiand training data)
is obtained, and not in the fitness function itself. This is the main challenge ddlreelgction, since
error estimates using training data are very optimistic about the behavior @lsmmdunseen data,
this phenomenon is known as overfitting (Bishop, 2006; Hastie et al., 20fles, 2001). In order
to overcome overfitting thBERwas calculated usingla-fold cross validatiortk-fold CV)approach
(Note that theBERIs still obtained from training data). This is the only explicit mechanisiA®MS
to avoid overfitting. k-fold CV is the most used hold-out approach for model selection (Nelles,
2001; Hastie et al., 2001; Cawley and Talbot, 2007b). Using a high value ayk = N where
N is the training set size (i.eleave one out CV), the error estimate is almost unbiased, but can
have high variance because thdraining sets are very similar to each other (Nelles, 2001; Cawley
and Talbot, 2007b); furthermore, computation time could be a serious prgblastie et al., 2001;
Nelles, 2001). With a low value fdt, the estimate can have low variance but the bias could be a
problem. The selection of an optimilis still an open problem in the model selection field. For
this work were performed experiments wikke {2,5, 10}, but no statistically-significant difference,
among these values, was found, see Section 4.2.
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3.4 Computational Complexity

As we have seen, the search space irAlS problem is composed by all the possible models that
can be built given the considered methods and their hyperparametéss ah infinite search space
even with the restriction imposed to the values that models can take; this is the mairadk of
FMS. However, the use of particle swarm optimization (PSO) allows us to hathes®mplexity

of this problem. Most algorithms used fBMS cannot handle very big search spaces. But PSO is
well suited to large search spaces: it converges fast and has a rablgagEmputational complexity
(Kennedy and Eberhart, 2001; Reyes and Coello, 2006). As weesafiamn Algorithm 1PSOis
very simple and does not involve expensive operations.

The computational expensivenessR8MSis due to the fitness function we used. For each
selected model the fitness function should train and evaluate such ketigles. Depending on
the model complexity this process can be performed on linear, quadratigteertorder times.
Clearly, computing the fitness function using the entire training set, as appmkeold CV, could
reducePSMScomplexity, although we could easily overfit the data. For a single rudSHSthe
fitness function should be evaluatpd= mx (I + 1) times, withm being the swarm size aridthe
number of iterations. Suppose the computational complexity of mbdelbounded by\p then
the computational complexity d#SMSwill be bounded byp x k x Ag. Becauseé\g is related to
the computational complexity of modal (which depends on the size and dimensionality of the
data set) this value may vary dramatically. For instance, computing the fitnegiofufor a nave
Bayes model in a high dimensional data set takes around two sécaviisreas computing the
same fitness function for the same data set could take several minutes gatstgrtor classifier
is used.

In order to reduce the computational costREMSwe could introduce a complexity penalty-
term into the fitness function (this is current work). A simpler alternativetsmius calculating the
fithess function for each model using only a small subset of the availatslerdadomly selected and
different each time. This approach can also be useful for avoidind feicéma. The subsampling
heuristic was used for high-dimensional data sets and for data sets witfealanber of examples.
Experimental results show an important reduction of processing time, wighsighificant loss of
accuracy, see Section 4.3. We emphasize that complexity is due to the rfahe&®S problem.
With this approach, however, users will be able to obtain models for theirvdttaut requiring
knowledge on the data or on machine learning technigues.

4. Experimental Results

In this section results of experiments wRtSMSusing benchmark data from two different sources
are presented. First, we present results on a suite of benchmark misehiniag data setsised by
several authors (Mika et al., 2000aRch et al., 2001; Cawley and Talbot, 2007b); such data sets
are described in Table 3, ten replications (i.e., random splits of training atidgealata) of each
data set were considered. These data sets were used to cdegiate PSin the FMS problem
(Section 4.1) and to study the performanc@&MSunder different settings (Section 4.2). Next we
appliedPSMSto the data sets used in a model selection competition (Section 4.3). The goal of th
latter experiments is to compare the performancde®fSagainst other model selection strategies.

4. Most of the experiments were carried out on a workstation Rétiitiurd M 4 processor at 2.5 GHz, and 1 gigabyte
in RAM.
5. These data sets are available frattp:/ida.first.fraunhofer.de/projects/bench/bench marks.htm .
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ID | Data set Training Testing Input Fea-
Patterns Patterns tures

1 | Breast cancer 200 77 9

2 | Diabetes 468 300 8

3 | Flare solar 666 400 9

4 | German 700 300 20

5 | Heart 170 100 13

6 | Image 1300 1010 20

7 | Splice 1000 2175 60

8 | Thyroid 140 75 5

9 | Titanic 150 2051 3

Table 3: Data sets used in the comparisoP80andPS ten replications (i.e., random splits of
training and testing sets) for each data set were considered.

4.1 A Comparison of PSO and PS

In the first set of experiments we compared the performanB&aito that of another search strategy
in the FMS problem. The goal was to evaluate the advantages of using the swarngyswaes
another intensive search method. Among the available search techniquedested®S because
of its simplicity and proved performance in model selection (Dennis and dord©94; Momma
and Bennett, 2002; Bi et al., 2003Sis a direct search method that samples points in the search
space in a fixed pattern about the best solution found so far (the cétttermattern). Fithess values
are calculated for the sampled points trying to find a minimizer; if a new minimum is ferdtte
center of the pattern is changed, otherwise the search step is reducald; blyis process is iterated
until a stop criteria is met. The consider@&algorithm described in Algorithm 2 is an adaptation
of that proposed by Momma et al. for hyperparameter optimization of stgpotor regression
(Momma and Bennett, 2002; Bi et al., 2003).

The input toPSis the patterrP and the search stel Intuitively, P specifies the direction of
the neighboring solutions that will be explored; whilespecifies the distance to such neighboring
solutions. There are several ways to genelPater this work we used the nearest neighbor sampling
pattern (Momma and Bennett, 2002). Such pattern is given numerically ®y[lg —lq4 0], 4],
wherel 4 is the identity matrix of sizel; 0144 is a vector of size 1d with all zero entriesd is the
dimensionality of the problemA, a vector of size Xk d, is the search step by which the space of
solutions is explored. We defingl= dmaxas dninals \whereg|,avais@Nd dminvals &€ the maximum
and minimum values that the solutions can take, respectively. Each iterati®8 iafolves the
evaluation ofN; — 1 solutions (wheré\. is the number of columns &). Solutions are updated by
addings; (j €1,...,Nc — 1) to the current-best solutiagy; where eacls; is obtained by multiplying
(element-by-element) the search step vedt@nd thej" column of P. dq is replaced by a new
solutionq; only if qu < fmin= fqg. The output ofPSis g, the solution with the lowest fitness
value; we encourage the reader to follow the references for furtttailel (Momma and Bennett,
2002; Dennis and Torczon, 1994).

For applyingPSto theFMS problem (hereaftePATSM$ the solutiongy was initialized in the
same way that each particle in the swarm was initializedP#8MS(i.e., randomly). The same
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Algorithm 2 Pattern searchp; is theit" column of PN; the number of columns in P.
Require:
—lps: NnUMber of iterations
—F(W — R): fitness function
—P: pattern
—A: search step
Initialize solutiong; (i = 1)
Computefy, = F(q;) (Section 3.3)
Setqg =Q; fmin = fqi
while i < lpsdo

forall pj € Py n.-1doO
Sj = A.pj
g =0gtSj

Computefq, = F(d;)
if qu < fmin then
Updatqu (qg =4q; fmin = qu)
end if
i++
end for
A=A7/2
end while
return g

representation, fithess function and restrictions on the values that eaehsibn can take were
considered for both methods, see Section 3. Under these sd@Biga very competitive baseline
for PSQ

In each experiment described below, weR&and PSOperform the same number of fitness
function evaluations, using exactly the same settings and data sets, geis@atéir comparison.
Since both methods use the same fitness function and perform the same oififithess function
evaluations, the difference in performance indicates the gain we havgidingthe search accord-
ing to Equations (1) and (2). As recommended by Demsar, we used the Whleigned-rank test
for the comparison of the resultant models (Demsar, 2006). In the followawill refer to this
statistical test with 95% of confidence when mentioning statistical significance.

We compared thEMS ability of PSMSandPATSM3uy evaluating the accuracy of the selected
models at the end of the search process; that is, we compared themzeréer of modelp, and
dgy in Algorithms 1 and 2, respectively. We also compared the performance cfollations tried
through the search. For each trial we fixed the number of iterationBP$diSto | = 100 with
a swarm size ofn= 10. In consequence, both search strategies performed| + 1) = 1010
evaluations of the fitness function in each run. Because more thafd@eénodels were tested we
used 2-fold CV for computing the fitness function. In each trial the training set was usdeM&
and the resultant model was evaluated in the test set. This process watetefor each replica of
each data set described in Table 3. Averaged results of this experimesti@vn in Table 4. We
show the averag€V error obtained through the search proc&>¢-BER and the error obtained by
the selected model, at the end of the search, in the teseseBER.
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ID | Data set PATSMS PSMS test-| PATSMS PSMS CV-
test-BER BER CV-BER BER
1 | Breast-cancer | 36.98°0.08 | 33.59°0.12 | 32.64"0.06 | 32.96"0.01
2 | Diabetes 26.07°0.03 | 25.37°0.02 | 25.3970.02 | 26.480.05
3 | Flare-solar 32.8770.02 | 32.65°0.01 | 32.69°0.01 | 33.1370.01
4 | German 28.65°0.02 | 28.2870.02 | 31.00°0.00 | 31.020.00
5 | Heart 19.50°0.19 | 17.3570.06 | 16.9670.07 | 19.930.03
6 | Image 3.5870.01 | 2.50"'0.01 | 11.5470.10 | 15.8870.04
7 | Splice 13.9470.99 | 9.46'0.25 | 18.01"0.05 | 19.150.07
8 | Thyroid 10.8470.39 | 5.9870.06 | 11.1570.20 | 15.49°0.12
9 | Titanic 29.94"0.00 | 29.60°0.00 | 27.1970.13 | 27.32'0.13

Table 4: Average and variance wst-BERand CV-BERobtained by models selected wigSMS
and PATSMSthe best results are shown lold. test-BERis the BER obtained by the
selected model using the test set (averaged over 10 replications add@acket) CV-BER
is the average ofV BERobtained by each of the candidate solutions through the search
process (averaging performed over all particles and iterations amd.@weplications of
each data set) .

The performance of both search strategies is simiR8MSoutperformedPATSMSthrough
all of the data sets at the end of the search process (Columns 3 and 4eémMYal hetest-BER
differences are statistically significant for all but tere-solarandgermandata sets. In the latter
data sets the hypothesis that models selected MIISMSand PSMS perform equally cannot be
rejected. However, note that for these data sets the models selectdSMiBoutperformed those
selected withPATSMSIn 6 out of 10 replications. Globally, we noticed that from the 90 trials
(9—data setsx 10—replications for each, see Table 3),.8% of the models selected witiSMS
outperformed those obtained wBATSMSWhile only in 222% of the run$*,ATSMSutperformed
PSMS in the rest both methods tied in performance. A statistical test over thesesQlisrwas
performed and a statistically-significant difference, favof®MS was found. Despit®ATSMS
being a strong baseline, these results give evidencePBitSoutperformsPATSMSat the end of
the search process.

Columns five and six in Table 4 show the aver&geR obtained with each strategy through the
1010 evaluations for each data set (averaged over replicatioWsBERreflects the behavior of the
search strategies through the search prodea3.SMSslightly outperformedSMSin this aspect,
though the difference is statistically significant only for theart, imageandthyroid data sets. The
slight superior performance GfATSMSn CV-BERIis due to the pattern we used and the search
procedure itself PATSMSperforms a finer grained search over a restricted search areadatmin
initial solutiongg. The latter results in a lowezV-BERbecaus€ATSMSalways moves the pattern
towards the local minimum nearest to the initial solutiq@., PSMSon the other hand, explores
a much larger search space because the search is not only guideddegtiselution found so far
(Pg), but also by the individual best solutions of each partiplg (,). The latter produces a higher
CV-BERIn average because, even when @¥-BERof the final models is low, many models of
variedCV-BERperformance are tried through the search.
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Figure 1: Performance d&FATSMYcircles) andPSMS(triangles) as a function of number of iter-
ations for an experiment with one replication of tHeart data set. FOPSMSwe show
the performance of each particle with a different color. Left: Crodsiation Balanced
Error Rate BER. Right: Test seBER In both plots we indicate with an arrow the model
selected by each search strategy.

In Figure 1 we show the performance of the solutions tried through thetsbgireach method
for a single replication of theleartdata set (for clarity in the plots we uset= 5 andl = 50 for this
experiment). We show theV and tesBERfor every model tried through the search. It can be seen
that theCV-BERof PATSMSs lower than that oPSMS showing an apparent better convergence
behavior (left plot in Figure 1). However, by looking the t&&Rof the models tried, it becomes
evident thatPATSMSis trapped into a local minimum since the very first iterations (right plot in
Figure 1).PSMS on the other hand, obtains a higligv-BERthrough the search, though it is less
prone to follow a local minimum. This is because wRSMSthe search is guided by one global
andm local solutions, which prevenSMSfrom performing a pure local search; the latter in turn
preventd? SMSof overfitting the data. This result gives evidence of the better conmeegaehavior
of PSMS

The model selected witRSMSobtained a lowetest-BERhan that selected witRATSMSsee
right plot in Figure 1). In fact all of the solutions in the final swarm outpened the solution
obtained withPATSMSn test-BER With PSMSthe model of lowest tedBERwas obtained after
3 iterations ofPSMS giving evidence of the fast convergenceR$Q One should note that the
test-BERof the worstPSMSsolutions is higher than that of the bé®ATSMSsolution. However,
near the end of the search, the possibilities Bl Scan select a worse solution thRATSMSare
small.

We have seen th&ATSMSs prone to get trapped into a local minimum because it performs a
fine grained search over a small area. This causes that only a few raetteodonsidered through
the search with this metho®SMS on the other hand, tries a wide variety of classifiers and feature
selection methods, exploring a larger search space and being able pe éswa local minima.

In order to analyze the diversity of the methods considere®8WS in Figure 2 we show the
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Figure 2: Normalized frequency of classifiers (left), feature selecticthade(middle) and combi-
nation of preprocessing methods (right) preferredP8MSthrough the search process.
In the right plot, the abbreviatiorshift, standandnorm stand forshift-scale standard-
ization andnormalization respectively. Results are normalized over the 90,900 models
tried for obtaining the results from Table 4.

normalized frequency of methods preferred8§MS through the search. The results shown in this
figure are normalized over the @O0 models tried for obtaining the results from Table 4. From
this figure, we can see that most of the classifiers and feature selectioods@tbre considered for
creating solutions. No classifier, feature selection method or combinatioemigressing methods
was used for more than 27% of the models. This reflects the fact thatdiffierethods are required
for different data sets and that some are equivalent. There wereyvegveome methods that were
slightly more used than others.

The preferred classifier was tkarbi CLORobject, that was used for about 23% of the models.
This is a surprising result becausarbiis a very simple linear classifier that separates the classes
by using information from the mean and variance of training examples (Golaib 4999). How-
ever, in 9735% of the times thatarbiwas used it was combined with a feature selection method.
Gkridge, svc, neuradndlogitboostwere all equally selected aftearbi. Ftestwas the most used
feature selection method, though most of the feature selection strategeeaseer. Note thaRear-
son, Zfilter, gsand s2nwere considered only for a small number of models. The combination
standardize + shift-scal@ras mostly used for preprocessing, although the combinatiomalize
+ standardize + shift-scalevas also highly used. Interestingly, in.1@6 of the time preprocessing
was performed before feature selection. These plots illustrate theitivafrslassifiers considered
by PSMSthrough the search process, showing &MSis not biased towards models that tend to

perform very well individually (e.g.logitboost, rf or gkridgg. Instead PSMSattempts to find the
best full model for each data set.

6. We do not show those preferred BRTSMSecause the methods selected with this strategy are, most of the times,
those considered in the initial solution. In our experiments we found thaggoh replicatiolPATSMSused the
same classifier and feature selection method for about 95% of thengeaations. The selection of these methods
depended on the initial solution instead of the way the search space isezkpltathe individual performance of the
methods. Therefore, no useful information can be obtained abouserne methods are preferred over others, even
when in average (over the 90,900 solutions tried) the histograms magilmdkr to those shown in Figure 2.

420



PARTICLE SWARM MODEL SELECTION

] k \ CV-BER \ test-BER \test-BER*\ Time
25.36°0.56 | 22.99"1.18 | 25.79°0.59 | 4166.85

5 | 25.18°0.59 | 20.50°1.53 | 26.30°0.46 | 6062.56
10 | 24.54°0.63 | 20.8271.74 | 26.03'0.51 | 7737.11

Table 5: Averag€V-BER(average CV result over all particles and iteratiotes3t-BERtest result
corresponding to the best CV resutgst-BER*(average test result over all particles and
iterations) and processing time (in seconds) for different valudsinfthe k—fold CV.
Results are averaged over a single replication of each data set ddsorifable 3.

4.2 Parameter Selection folPSMS

In this section we analyze the performancé&MSunder different settings. The goal is to identify
mechanisms ilPSMSthat allow us obtaining competitive models and, to some extent, avoiding
overfitting. For the experiments described in this section we consider a samieation for each
data set. As before, we show the aver&éerror of the solutions considered during the search
as well as the error of the selected model in the test set. We also show thgetest set error

of all solutions tried through the seartdst-BER (averaging performed over all particles and all
iterations), providing information about the generalization performand¢beomodels considered
throughout the search.

4.2.1 VWALUE OF K IN K-FOLD CV

First we analyze the behavior BSMSfor different values ok in the CV for computing the fithess
function. We consider the valuds= [2,5,10]. Average results of this experiment are shown in
Table 5.

From this table, we can see that the performance is similar for the diffeatres/ofk consid-
ered. The best results at the end of the search are obtainell wih(column 3 in Table 5), while
the best generalization performance is obtained With2 (column 4 in Table 5). However, these
differences are not statistically significant. Therefore, the null hymighbat models selected with
k = [2,5,10] perform equally inest-BERandtest-BER*cannot be rejected. The latter is an impor-
tant result because by usikg= 2 the processing time ¢#SMSis considerably reduced. Note that
for models of quadratic (or higher order) complexity, computing the fitnasstion with 2-fold
CV is even more efficient than computing the fitness function using the full traga@hdt is not sur-
prising that processing time increases as we incrkdéselumn 5 in Table 5). Although it is worth
mentioning that the variance in processing time was very large (e.gk, 02 it took 7 minutes
applyingPSMSto thetitanic data set and about five hours for ingagedata set).

4.2.2 NUMBER | OF ITERATIONS

Next we performed experiments varying the number of iteratibnsiging 2— fold CVfor comput-
ing the fitness function and a swarm size# 10. We considered the values- [10,25,50,100.
Averaged results for this experiment are shown in Table 6 (rows 2 -&)veéican see the best results
were obtained by runninBSMSfor 50 iterations. Interestingly, models selected by runii&MS
for 10 iterations outperformed those selected after 100 iteratioesirBER though the difference
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Setting | CV-BER | test-BER | test-BER* |
=10 25.33'0.33| 22.17"1.81 | 27.64°0.52
=25 25.29'0.33| 21.88'1.68 | 27.59"0.49
=50 24.0270.38 | 21.12"1.74 | 26.7270.65
=100 24.57°0.37 | 22.81'1.44 | 27.27°0.48
m=5 24.27°0.49| 20.81°'1.50 | 25.0170.85
m=10 25.0770.34 | 21.64"2.04 | 25.990.74
m=20 25.09°0.34 | 21.76"1.84 | 26.00°0.64
m=40 24.8270.43 | 21.4572.13| 25.9670.78
m=50 25.32°0.44 | 22.54"1.65| 26.1170.77
W=(0,0,0) | 23.86°0.71] 20.40°1.71| 22.46'1.32
W=(1.2,0.5,0.5)| 24.2270.76 | 19.4171.37 | 23.3871.34
W=(1,1,1) | 27.62"0.30| 21.88"1.68 | 27.1370.53

Table 6: AverageCV-BER test-BERandtest-BER*for different settings ofn, | andW. The best
results are shown ibold. Results are averaged over a single replication of each data set
described in Table 3.

was not statistically significant. The difference in performance betweerelsnsédlected after 50
and 100 iterations was statistically significant. This result shows the fagei@nce property of
PSMSand that early stopping could be an useful mechanism to avoid overfitiagection 5.

4.2.3 SNVARM SIZE M

In the next experiment we fixed the number of iterations4650 and varied the swarm size as fol-
lows,m= [5,10,20,40,50]. Results of this experiment are shown in rows 6-10 in Table 6. This time
the best result was obtained by using a swarm size of 5, however treesgasstically-significant
difference only betweem =5 andm = 50. Therefore, models of comparable performance can be
obtained by usingn= [5,10,20,40]. This is another interesting result because using a small swarm
size reduces the number of fitness function evaluationB&WSand therefore makes it more prac-
tical. An interesting result is that by using 50 iterations with any swarm sizee8teBERs very
close to theCV-BERestimate. Again, this provides evidence that early stopping can improve the
average generalization performance of the models.

4.2.4 NERTIAWEIGHTW

We also performed experiments with different configurationsVigrthe adaptive inertia weight.
Each configuration is defined by a trip\® = (Wstart, Ws , Wend), Whose elements indicate the starting
value forW, the proportion of iterations to vary it and its final value, respectively, Section 2.
Three configurations were tried with the goal of evaluating the advantafgesing an adaptive
inertia weight instead of constant values. Results of this experiment avnsh rows 11-13 in
Table 6. It can be seen that the best result€¥iBERand Test-BER were obtained withV =
(0,0,0); the differences with the other results are statistically-significant. Undecaoniiguration
PSMSis not taking into account information from past velocities for updating soisfiavhich
caused?SMSto converge quickly into a local minimum and refining the search around tims. po

422



PARTICLE SWARM MODEL SELECTION
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Prx : o]

BER
BER

i i i i i i i T
10 20 30 40 50 10 20 30 40 50 10 20 30 40 50
Iterations Iterations Iterations

Figure 3: Algorithm performance as a function of number of iterationsifé@rént configurations
of W. CV-BER(circles) andest-BER*(crosses) for théleart data set. We are display-
ing the test and CV BER values for each particle at every time step. Sinbéigscstep
involves m=5 patrticles, then for each iteration are displayed m=5 crosdem=ah cir-
cles. We consider the following configurationat = (0,0,0) (left), W = (1.2,0.5,0.4)
(middle) andwW = (1,0,1) (right). TheCV-BERandtest-BERof the best solution found
by PSMSare enclosed within a bold circle.

The best result at the end of the search (column 3 in Table 6) was obtiitnedy = (1.2,0.5,0.4),

the difference with the other results is statistically-significant. Under thisgunafiion both global
and local search is performed during tA8MSiterations; which caused high&V-BERandtest-
BER than that of the first configuration, however, the generalization perfacenaf the final model
was better. The configuratioh' = (1,0, 1) obtained the worst results in all of the measures; this is
because under this configuration the search is never refined,B8id&always takes into account
the past velocity for updating solutions. The latter configuration could tedtartchoice foFMS
because this wal?SMSdoes not over-search around any solution; however, local séaadso
an important component of any search algorithm. In Figure 3 we shoWthand testBER of
solutions tried during the search for tieart data set under the different configurations tried.
From this figure we can appreciate the fact that using constant valu®g fesults in more local
(whenW = (0,0,0)) or global search (whew = (1,0,1)). An adaptive inertia weight, on the other
hand, aims to control the tradeoff between global and local searchhwdscilts in a model with
lower variance for this example. Therefore, an adaptive inertia we@gms to be a better option
for FMS, this is because it prevents, to some extdr8MSto overfit the data. However, further
experiments need to be performed in order to select the best configuiatidh

4.2.5 INDIVIDUAL (C1) AND GLOBAL (Cp) WEIGHTS

We now analyze the performanceREMSunder different settings of the individuad;§ and global
(c2) weights. We considered three configurationscfioandcy; in the first one both weights have the
same influence in the search (i@.= 2;c, = 2), this was the setting used for all of the experiments
reported in Section 4. In the second setting the local weight has no influeribe search (i.e.,
c1 = 0;c2 = 2), while in the third configuration the global weight is not considered in gaech
(i.e.,cp = 2;co = 0). We ranPSMSfor | = 50 iterations with a swarm size of = 5, using a single
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| ID| Setting | CV-BER | test-BER | test-BER* |
1 | cp=2:c,=2]23.69°0.68| 19.7271.45| 23.9271.16
2 |p=0cp=2 | 26.87°0.43 | 22.42"1.32 | 27.13"0.55
3 |c1=2c=0]2499041|21.731.42| 25.59°0.66

Table 7: AverageCV-BER test-BERandtest-BER*for different settings o€; andc; in Equation
(1). The best results are shownbnld. Results are averaged over a single replication of
each data set described in Table 3.

Test-BER

Iterations Iterations

Figure 4: Performance d#SMSas a function of number of iterations using different settings for
c1 andcp, see Table 7. We show theV-BER(left) and Test-BER(right) for a single
replication of theHeart data setPSMSwas ran forl = 25 iterations in this experiment.
The models selected with each configuration are indicated with arrows.

replication for each data set described in Table 3; for the three coafigns considered it was used
the same adaptive inertia weight = (1.2,0.5,0.4); averaged results of this experiment are shown
in Table 7.

From this table we can see that the best performance is obtained by agséguial weights
to both factors. The difference in performance is statistically-significaat all measures with
respect to the other two configurations. Therefore, by using the @rdtguration we can obtain
solutions of better performance through and at the end of the searate iMportantly, solutions
of better generalization performance can be obtained with this configuratiwala The difference
in performance is higher with the second configuration, where the indil#olest solutions have
no influence in the search; therefoRSMSis searching locally around the global best solution. In
the third configuration the global-best solution has no influence in thelsearconsequence, the
search is guided according the-individual-best solutions. For illustration in Figures 4 and 5 we
show the performance &fSMSas a function of the number of iterations for a single replication of
theHeartdata set. In Figure 4 we show the performancB®MSfor | = 25 iterations and in Figure
5 for | =100 iterations.

From these figures we can see that@éestimate is very similar for the different settings we
considered (left plots in Figures 4 and 5). However, by looking at thimpeance of the solutions
in the test set (right plots in Figures 4 and 5), we can appreciate thagaoatfons 2 and 3 overfit
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CV-BER

Iterations Iterations

Figure 5: Performance ®#SMSas a function of number of iterations using different settings for
c; andcy, see Table 7. We show theV-BER(left) and Test-BER(right) for a single
replication of theHeart data setPSMSwas ran forl = 100 iterations in this experiment.
The models selected with each configuration are indicated with arrows.

the data (red circles and green squares). \W4ite: O we have that then= 5 particles converge to
single local minima, performing a fine grained search over this solution {relés). Withc, =0
each of than—particles converge to different local minima, overdoing the search adr ef the
m solutions (green squares). On the other hand, with the configu@tier?, c, = 2 PSMSis not
trapped into a local minimum (blue triangles); searching around promising@swu but without
doing a fine grained search over any of them.

Better models (indicated by arrows) are selectedPi®MSwith the first configuration, even
when theirCV is higher than that of the models selected with the other configurations. Fhils re
confirms thatPSMSis overfitting the data with the configurations 2 and 3. Note that with25
iterations (Figure 4) the first configuration is not converging to a local minminget; while with
| = 100 iterations (Figure 5) it looks likESMSstarts searching locally at the last iterations. This
result illustrates why early stopping can be useful for obtaining better madbl$SMS

In order to better appreciate the generalization performance for theeditfeonfigurations, in
Figure 6 we plot theCV-BERas a function otest-BERfor the run ofPSMSwith | = 25, we plot
each particle with a different color.

From this figure we can see that the best model is obtained with the firsyamatfon; for the
configurations 2 and 3 the particles obtain the samséBERfor different solutions (middle and
right plots in Figure 6). Despite th&V estimate is being minimized for these configurations, the
test-BERperformance of models does not improve. It is clear from the right ploigarg 6 that
with ¢, = 0 each patrticle is trapped in different local minima, doing a fine grainedlseaer them
that cause®SMSto overfit the data. It also can be seen from the middle plot that eyite O
the search is biased towards a single global-best solution (magenta @gae), causingg SMSto
overfit the data. On the other hand, results with the first configurationp(letf in Figure 6) show
that particles do not oversearch at any solution.

4.3 Results on the Model Selection Challenge

In this section we describe experimental result$?8MSin the framework of a model selection
competition callechgnostic learning vs. prior knowledge challen@d.vsPK) (Guyon et al., 2007,
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Figure 6: Test-BERas a function ofCV-BERfor a run of PSMSfor | = 25 iterations in theHeart
data set. Results with different configurations fgrandc, are shown. Left:.c; = 2,
c2 = 2. Middle: ¢; = 0,¢c2 = 2. Right: ¢ = 2, ¢, = 0. In each plot each patrticle is shown
with a different color. The selected model with each configuration is indicatth an
arrow.

2008). The goal of these experiments is to compare the performam®M$against other model
selection strategies that work for a single algorithm or that use domain kdgevti®r this task.
Through its different stages, tid_vsPKcompetition evaluated novel strategies for model selection
as well as the added value of using prior knowledge for improving claasdit accuracy (Guyon

et al., 2008). This sort of competitions are very useful because thrilnggn the real effectiveness
of methods can be evaluated; motivating further research in the field diath@ations among
participants.

4.3.1 (HALLENGE ProTOCOL ANDCLOP

The rules of the challenge were quite simple, the organizers provideddigesdts for binary clas-
sification together with th€LOP toolbox (Saffari and Guyon, 2006). The task was to obtain the
model with the lowesBER over the five data sets on unseen data. Participants were free to elect
usingCLOP or their own learning machine implementations. The challenge is over now, glthou
the challenge websifestill remains open, allowing the evaluation of learning techniques and model
selection methods. A complete description of the challenge and a comprehanaiysis of the
results are described by Guyon et al. (2006c, 2007, 2008).

The competition was divided into two stages. The first stage, ctilednodel selection game
(Guyon et al., 2006c¢), was focused on the evaluation of pure modeliselstrategies. In the sec-
ond stage, the goal was to evaluate the gain we can have by introducingmuisledge into the
model selection process (Guyon et al., 2007, 2008). In the latter statjsgents could introduce
knowledge of the data domain into the model selection progess knowledge track Also, par-
ticipants could use agnostic methods in which no domain knowledge is cortsidete selection
processdgnostic track

The data sets used in the agnostic track ofAhesPKchallenge are described in Table 8, these
data sets come from real domains. Data sets used for the agnostic arkhpridedge tracks were

7. Seenttp:/iwww.agnostic.inf.ethz.ch/
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different. For the agnostic track the data were preprocessed and duzamyes were introduced,
while for the prior knowledge track raw data were used, together with erigéen of the domain.
We should emphasize that, although all of the approaches evaluated Al ¥s®K competition
faced the same problem (that of choosing a model that obtains the lowssificktion error for
the data), such methods did not adopt EMS interpretation. Most of the proposed approaches
focused on a fixed machine learning technique like tree-based clasifigzs 2006), or kernel-
based methods (Cawley, 2006; Pranckeviciene et al., 2007; Guydn 20@8), and did not take
into account feature selection methods. Participants in the prior knowlealgjedould introduce
domain knowledge. Furthermore, most of participants used their own impletinastanstead of
the CLOPtoolbox.

After the challenge, the CLOP toolkit was augmented with methods, whichrpegtbwell
in the challenge (Cawley, 2006; Cawley and Talbot, 2007a; Lutz, 2008esd include Logit-
boost (Friedman et al., 2000), LSSVM (Suykens and Vandewalle,)1888 kernel ridge regres-
sion (Saunders et al., 1998; Hastie et al., 2001).

4.3.2 GOMPETITIVENESS OFPSMS

In both stages of the competition we evaluated models obtainedP8ithSunder different settings.
Models obtained bSMSwere ranked high in the participants list, showing the competitiveness of
PSMSfor model selection (Guyon et al., 2006c, 2007, 2008; Escalante e0alr) 2Furthermore,
the difference with methods that used prior knowledge was relatively snmallyisg thatFMS
can be a viable solution for the model selection problem without the need efting time in
introducing domain knowledge, and by considering a wide variety of methods

The results oPSMSin the ALvsPKchallenge have been partially analyzed and discussed else-
where (Escalante et al., 2007; Guyon et al., 2007, 2008). During Hikenbe, our best entry (called
Corrida-final) was ranke® 8" over all ranked participants!among the methods that did not use
domain knowledge and"? among the methods that used the software provided by the organizers
(Guyon et al., 2006c, 2007, 2008). Foorrida-finalwe usedk = 5 and the full training set for com-
puting the fitness function; we rdSMSfor 500 iterations for thé&dadata set and 100 iterations
for Hiva, GinaandSylva We did not appliedSMSto the Novadata set in that entry, instead we
selected a model fddovaby trial and error. For such entry we used a versio€b©Pwhere only
there were available the following classifierarbi, naive, neurahndsvc (Escalante et al., 2007);
also, only four feature selection methods were considered.

4.3.3 POST-CHALLENGE EXPERIMENTS

In the rest of this section we present resultsP@MSusing the augmented toolkit, including all
methods described in Tables 1 and 2. In these tables we consider implementédtimgitboost,
Issvm and gkridgeyhich are the classifiers that won tAévsPKchallenge (Cawley, 2006; Cawley
and Talbot, 2007a; Lutz, 2006) and were added to CLOP after the @hd ohallenge.

In order to efficiently applyPSMSto the challenge data sets we adopted a subsample strategy
in which, instead of using the full training set, small subsamples of the trairatey wlere used
to compute the fitness function. Each time the fitness function is computed we olutifierent
random sample of siz&y,= % whereN is the number of instances ai&F is a constant that
specifies the proportion of samples to be used. Subsamples are onlputseidearch process. At

8. Seéehttp://www.clopinet.com/isabelle/Projects/agnostic/ Results.html
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| Data set | Domain \ Type | Features | Training | Validation | Testing |
Ada Marketing Dense 48 4174 415 41471
Gina Digits Dense 970 3153 315 31532
Hiva Drug discovery Dense 1617 3845 384 38449
Nova | Text classification| Sparse binary 16969 1754 175 17537
Sylva Ecology Dense 216 13086 1309 130857
Table 8: Benchmark data sets used for the model selection challengesn(&tugl., 2006¢, 2007,
2008).
| Data | SF | Model | Time (m) [ Test-BER |
Ada | 1 chain({logitboost(units=469,shrinkage=0.4,depth=1) bias 368.12 16.86
Gina | 2 chain{sns(1),relief(fmax=487),gkridge,bips 482.23 241
Hiva | 3 | chain(norm(1),rffs(fmax=1001),Issvm(gamma=0.096),bias 124.54 28.01
Nova | 1 chain{rffs(fmax=338),norm(1),std(1),sns(1),gkridge,ias 82.12 5.27
Sylva| 10 chain({sns(1),odds-ratio(fmax=60),gkridge,bjas 787.58 0.62

Table 9: Models selected with'SMSor the data sets of thelLvsPKchallenge. For each data set we
show the subsampling factor us&H, the selected modeModel, some hyperparameters
are omitted for clarity), the processifigme in minutes and théest-BER obtained snsis
for shit-scale std is for standardizeandnormis for normalize See Tables 1 and 2 for a
description of methods and their hyperparameters.

the end of the search the selected model is trained using the full traininfpsétd experiments
reported in this paper we considered as training set the union of the trainthgalidation data
sets, see Table 8). Due to the dimensionality ofMlowadata set we applied principal component
analysis to this data set. Then we used the first 400 components for appyMg We fixedk = 2,

| =50 andm = 5 for our experiments based on the results from previous sections. Téeanv
PSMSfor all of the data sets under the above described settings using diffeders forSF. The
predictions of the resultant models were uploaded to the challenge websiteirt@evaluate them.
Our best ranked entry in thelLvsPK challenge website (callggsmsxjmlir_run_l) is described in
Table 9, and a comparison of it with the currently best-ranked entriesvasimorable 10.

We can see from Table 9 that very different models were select&BSfor each data set.
This is the main advantage tikéS because it allows us selecting an ad-hoc model for each data
set by considering different model types and a wide diversity of methadih exception ofAda
the selected models included a feature selection method; this result shows tintaimop of feature
selection methods and that some of them are more compatible than others withlassiféecs;
note that different numbers of features were selected for each data sl but theNovadata set
preprocessing was performed before feature selection. This caneéb®dhe fact that foNova
we used principal components instead of the original featuresA#ait was selected #gitboost
classifier, while forHiva it was selected éssvmclassifier with gaussian kernel. F&ina, Nova
andSylvait was selected thgkridgeclassifier; this classifier performs virtual leave-one out model
selection each time it is trained (Cawley et al., 2007). Note that gkiticlge andlogitboostwere
the classifiers that best performed during the challenge (Guyon et @¥, 2008); this result gives
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evidence thaPSMScan obtain similar and even better models, without spending time on ad-hoc
modifications for each data set and without using domain knowledge.

The use of the subsampling strategy allowed to efficiently ap@¥Sto all of the data sets.
About six hours were required to obtain a competitive modelAda, while about only two for
the Hiva data set. Note that applyif@SMSfor Hiva using the entire training seCprrida-final)
took about 80 hours in the same machine (Escalante et al.,, 2007). Dunirgkperiments we
found that the larger the subsamples the better the performance of thedeedel. However, the
selection ofSFalso depends on the available computer resources and time restrictionsh e
note that we can increase speedP@&MShy caching intermediate results that can be reused (e.g.,
preprocessing the data sets off-line).

Despite the use of the subsampling technique the models selected 8htisresulted very
competitive as shown in Table 10. Currently, #8MSrun is the top-ranked agnostic entry in the
challenge website; furthermore, the performance of this entry is sughearall but one prior-
knowledge entryinterim-all-prior; which is the best ranked entry overall, using “prior knowledge”
or “domain knowledge”. Note that the latter entry is formed of models that wWesigned ad-
hoc for each data set, requiring much more time, effort and knowledgeRB&S In average
PSMSoutperforms the best results presented inAhesPKchallengelJCNNO7AL row 4 in Table
10 (Guyon et al., 2007); and the best-ranked agnostic entry @8&3: Logitboost-with-trees
row 5 in Table 10 (Lutz, 2006).

The performance d?SMSs very close to that dJCNNO7AL tieing inSylvaand outperforming
one to the other in two data setBSMSoutperformsLogitboost-with-treesn three out of the five
data sets and achieves very close performance for the other two daférsetatter entry is ranked
10" in the challenge website. It is very interesting that forAtadata set the best model so far is a
logitboostclassifier with about 1000 trees (Lutz, 2006); while wRBMSwe were able to achieve
almost the same performance by using a half that number of trees, seeimovale 9. This is
important because simpler models of similar performance can be obtaineB SMiS

PSMSclearly outperformed our best-ranked entry during the challenge (iaW&ble 10); this
result gives evidence that we obtained better results by using more t#iad dassifiers; also, the
use of subsamples instead of the entire training set (when computing the filneton), does not
damage the performanceEMS although the reduction in processing time is very important. Note
that for Novathe PSMSentry obtained a slightly worse result than thaGafrrida-final; however,
the model forNovain Corrida-final was selected by trial and error which required of much more
effort and time.

Results reported in this section show the efficacl?8MSfor model selection. Despite its sim-
plicity it has shown comparable and even superior performance to thés@ed) by other model
selection strategies that focused on a single learning algorithm and to métlawdsed prior do-
main knowledge for guiding the model selection process (Lutz, 2006; deum 2007; Boud,
2007; Pranckeviciene et al., 2007; Wichard, 2007). Models seledtad?8MSare simple and yet
very competitive; furthermore, witRSMSno knowledge is needed on the methods to choose from,
nor on the domain. In consequence, it is very easy to obtain classifiersathachieve state-of-the-
art performance without spending time on designing, developing and optgraniad-hoc model.
Even thoughlPSMScan be applied to any binary classification problem, we are not claiming it will
obtain satisfactory results in every domain; however, it can be condidera first option when
dealing with binary classification tasks. It is expected that this will further awgthe performance
of models selected witRSMSIf domain knowledge is used.
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| Entry [ Description | Ada | Gina | Hiva | Nova | Sylva [ Overall | Rank |
Interim-all-prior Best-PK 17.0 | 233 | 27.1 | 471 | 0.59 10.35 1M
psmsximlr_run_| PSMS 16.86 | 2.41 | 28.01| 5.27 | 0.62 10.63 2nd
[JCNNO7AL Best-AL 16.60 | 3.39 | 28.27 | 456 | 0.62 10.68 4th
Logitboost-with-trees Best-AL 16.60 | 3.53 | 30.18| 4.69 | 0.78 11.15 10h
Corrida-final Best-PSMS-ALvsPK| 18.27 | 6.14 | 2854 | 5.11 | 1.22 11.86 42h

Table 10: Comparison of models selected vittBMSand the best entries in tiid.vsPKchallenge
data sets. We show, for reference, the best prior-knowledge dnterifn-all-prior);
the entry formed by the models described in Tablpgr{xjmir_run_l); the best individ-
ual entries for each data set in tAevsPKchallengelJCNNO7AL (Guyon et al., 2007,
2008); the second-best entry of the agnostic traagitboost-with-tre€sand our best
ranked entry evaluated during the challe@grida-final. The best results in the agnos-
tic track are shown ibold.

5. Discussion

In this section, we discuss the advantages and disadvantalg&sts8and perform a synthesis of our
experiments aiming at better understanding &M Sperforms intensive search in hyperparameter
space without overfitting the data.

5.1 Robust and Computationally Tractable Intensive Search

In Section 4 we reported experimental results that give evidence of tidtwaf the PSMSap-
proach, demonstrating in particular tHg2&MScan outperforrPATSMShrough and at the end of
the search, showing better convergence behavior and generalizatfompance. This is obtained
at the expense of moderate additional computational complexity. This clainpmiad by the
theoretical analysis of the computational complexity (Section 3.4), indicatihgaonaputations are
dominated by the number of learning machine trainings, and by the experinseatioh 4.2), in-
dicating as few as 5 particles (learning machines) and 10 iterations (i.e.jiifigs) are needed to
attain the best performance. The efficiencyP&MScan be improved, for instance by preferably
exploring learning machines, which have a lower computational cost oirtgailVe explored suc-
cessfully other heuristics, including subsampling training data, which egtcemputations, at the
expense of no performance degradation.

An analysis of the diversity of models tried BBSMSshows that this method is not biased to-
wards models that tend to perform well individually. Investigating the djfmeraf PSMSunder
different settings we found that the performancd”&MSis not significantly affected by modify-
ing its hyperparameters. However, experimental results indicate thatehaf as adaptive inertia
weight may be helpful to explore the search space better.We also otbskatecertain parameter
configurations allow the selection of competitive models, while reducing psutg time. Section
5.4 provides a final set of practical recommendations.

Results of international competitions suggest tA&MSis competitive with model selection
strategies specific to single algorithms and to strategies using prior domaimeklyaw The latter is
an important result because it shows that we can obtain competitive modetsiintiie need of an
expert on the domain, a careful analysis to the data, or even machinm¢elnowledge.
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5.2 Intensive Search without Overfitting

The findings summarized above provide empirical evidence suggéx8htiSis a reliable strategy
for agnostic model selection. However, it is not obvious vir§MSsucceeds in selecting com-
petitive models without significantly overfitting data. Our hypothesis isB&¥Sis able to avoid
overfitting because of the way the search is guid&siM Jerforms a broad search around promising
solutions without focusing on reaching local minima. SolutionB8MSare updated by taking into
account information from both: the global-best solutipg {veighted byc;) and the individual-best
solutions of each particlep( ., weighted byc;), see Equations (1) and (2). The latter combined
with an adaptive inertia weight and early stopping cause do not exdgdheasearch at any local
minima. Methods likdPATSMS$on the contrary, update solutions by moving the pattern towards
the local minimum nearest the initial solution, see Algorithm 2. Reaching exaldtgghminimum
causedPATSMSo learn peculiarities in the data set and does not necessarily result iningtain
better predictive model.

The experiments we performed in Section 4.2.5 support the above corjethe results from
Table 7 and Figures 4, 5 and 6 indicate tR&MSis able to avoid overfitting (to some extend)
because of the way the search is guide&MSsearches around good solutions without overdoing
in terms of really fine-grained optimization. This sort of search can baaemesl as suboptimal in
Dietterich’s sense‘ln machine learning it is optimal to be suboptimal{Dietterich, 1995). The
latter statement makes reference to the well known fact that overseg(thintrying to be optimal)
in model selection can lead to select models that fit very well the peculiarittese ebnsidered data
set without deriving a general predictive rule (Dietterich, 1995; dermsd Cohen, 2000; Quinlan
and Cameron-Jones, 1995; Hastie et al., 2001; Loughrey and Cinanm@005). On the contrary,
PSMSis able toundercomputéecause for updating solutions it considers local and global knowl-
edge, information from past solutions (weighted by the inertia term) andnaneéss; note that the
latter holds when a reasonable small number of iterations is performed.eFudte, our experi-
mental results provide empirical evidence that agrees with recent, yitiomadl explanations about
why and howPSOworks (Kennedy, 2008; Kennedy and Eberhart, 2001). Kennadyalhgued the
success oPSOis due to the fact that it performs‘eollaborative trial and error” search (Kennedy,
2008). That isPSOobtains good results mainly because the search is directed accordingdieth in
vidual and social knowledge; the same conclusion derived from empatal results in this section.

It is not surprising that distributed and collaborative computing can impreselts of centralized
(individualized) methods. Fd¥MS, however, it is very interesting that updating solutions in a het-
erogeneous way allows us to avoid oversearching and, in consexjuemeefitting; even when the
FMSsearch space is infinite and has many local minima solutions.

5.3 Comparison with Related Work

A variety of approaches have been proposed to select parametpecdfcsmethods for regression,
classification, feature selection, discretization etcetera (Hastie et al., B3bibp, 2006; Voss and
Feng, 2002; Nelles, 2001; Guyon et al., 2006b; Kim et al., 2002; Hastie,&2001; Cawley and
Talbot, 2007b; Bou#, 2007; Hue and Bowd| 2007). However, despite the potential advantages of
FMS (namely generality, simplicity and competitiveness), this problem has been littleedthe-
cause of the huge search space involved and because intensite medinods are prone to overfit
the data (Gorissen et al., 2008; Escalante et al., 2007). Nevertheléiss,rigst of this section we
outline techniques used to avoid oversearching/overfitting in searchrihaipalicable/related to
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FMS. One should note that traditional model selection techniques just like Akak8ayesian in-
formation criteria, the minimum description length principle and\fiiedimension are not directly
applicable tFMSand therefore they are excluded of analysis.

Grid search (withCV) is the widely used search-approach to model selection in practical appli-
cations (Momma and Bennett, 2002; Hsu et al., 2003). This method consgg$irtihg a uniform
grid over the search space where each point in the grid defines a spkexeny point in the grid
is evaluated and the point of lowest error is selected. The granularityeajrit determines both
the performance of the selected solution and the efficiency of the searfote-grained grid may
be inefficient and can lead to oversearching; while a sparse grid willtreslow performance
models. Note that the heterogeneousness of models and the variety e$ fanghe models pa-
rameters make very difficult the application of grid search toRNE problem; furthermore, the
choice of an adequate granularity can be a serious problem. Other mettestt/aised for pa-
rameter optimization that can be appliedH@Sinclude: greedy search (Dietterich, 1995), random
search (e.g., the bumping technique) (Hastie et al., 26t(Bi et al., 2003; Momma and Bennett,
2002), evolutionary computation approaches (Engelbrecht, 2006s<garet al., 2008; Angeline,
1998), and other swarm-optimization techniques (Kennedy and Ebez@@it, Engelbrecht, 2006).
Note that despite one may think that exhaustive search is the best sptorhin model selection,
this approach is impractical for most real world problems and when appdidasuffers from the
oversearching phenomenon (Dietterich, 1995).

Early stopping has been widely used to prevent overfitting in search nefhattie et al.,
2001; Engelbrecht, 2006; Loughrey and Cunningham, 2005). Thkdajdhis heuristic is to stop
searching/learning when the model starts overfitting the data. Therea®lseariants to stop
the search: after a small number of iterations, when no improvement is fafterda number of
iterations, when a solution of acceptable performance has been fagetera. A problem with
early stopping is that premature stopping the algorithm would lead to selectlgtas that has
not converged yet, while a late stopping of the search will cause sewatfjtting the data because
of oversearching. FOPSMSwe found that a small number of iterations can be enough to obtain
satisfactory results in benchmark data, although the number of iterationshkepr dependent;
therefore, we can adopt other stopping criteriaRdSin the future.

Randomness has bring into play in machine learning in order avoid overfittithgoaescape
from local minima in search (Hastie et al., 2001; Bishop, 2006; Kirkpatricd.e1983; Kennedy
and Eberhart, 2001). In learning algorithms, it has been success$altita prevent overfitting and
to obtain better predictors; learning methods that use randomness inchgiadelassifiers (Hastie
et al., 2001), neural and deep belief networks (Hastie et al., 2001;riHétal., 2006) and random-
ized decision-tree algorithms (Breiman, 2001; Geurts et al., 2006). Baopétg is a technique
(used in bagging and random forest classifiers) based on randuopliisg that has been widely
used to estimate the generalization performance of methods as an altern&@WdHastie et al.,
2001). InPSMSrandomness played an important role because it introduces diversityétednch
process and allonBSMSto avoid local minima. Furthermore, the subsampling strategy we used to
increase the speed BISMSis related to bootstrapping; in future work ®@sMSwe will explicitly
consider different subsampling estimations for the selection of the finallmode

As the adaptive inertia weight IRSQ see Section 2, there are parameters in other algorithms
that aim to avoid overfitting by exploring the search space both globally aadlyypexamples are
the temperature parameter in simulated annealing (Kirkpatrick et al., 1983)anbthentum term
in on-line gradient descend and backpropagation (Qian, 1999). idge in ridge-regression and
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weight decay in neural networks training are also related to the inertia tveigpdel averaging
and the use of ensembles have proved to be helpful to improve predictidrevaid overfitting;

this is because different models have different biases that in aveeagk m improved perfor-
mance (Hastie et al., 2001; Bishop, 2006). Future work includéxSiMSconsists of combining
particles in order to improve the performance of the swarm strategy. Fimdlling noise to the
training data is another overfitting avoidance mechanism in model selectioaltbatan be used
with PSMS

5.4 A Practical Guide to PSMS

In this section we describe the wBBMScan be put in practice in any binary classification problem.
Due to the simplicity and generality of the approach below we describe a @lagticle to use the
Matlab® implementation ofPSMS(included in theCLOP toolbox). It is assumed that the user
has available a data set (in Matfalormat) with N samples for binary classification: a matrix
Xn,d contains theN training samples of dimensionalityand a vectolY y, 1 their respective labels
(i € [-1,1]). After downloading and installin@LOP (Saffari and Guyon, 2006 RSMScan be
applied to any data set by typing the followiMgatlabR code:

%% load your data into the Matldbworkspace

1: >> load train _data.mat;

%% Create A Clop Data-Object

2:>> D =data(X,Y);

%% Create A CLOP PSMS-Object with default parameters
3: >> P = psmsx;

%% Perform PSMS

4: >> [Dat, Res] = train(P, D);

%% Train the selected model with the full training set

5: >> [Odat, TrM] = train(Res.Best_Model,D);

%% Create a test data set, note thatcan be empty

6: >> load test data; Dt = data(X,Y;);

%% Test the selected and trained model on unseen data Dt
7: >> [Pred] = test(TrM, Dt);

%% Estimate the model’s performance on unseen data B, i§ available
8: >> [BER] = balanced.errate(Pred.X, Pred.Y);

%% Analyze the ROC performance of the selected model
9: >> roc(Pred);

Note that steps 1-2 and 5-9 are associated with loading the data and thetiemahd the
selected model, respectively; which are operations not attaine&kéS Steps 3 and 4 will create
thePSMSobject and will start the search, respectively. Besides the selected, miedeutput of the
search Res line 4), is a structure with useful information about the search prosesshePSMS
documentation (Escalante, In preparation, 2009).

In Section 4.2 were presented experimental results that suggest teasthet significant differ-
ence in performance by modifying most of tREMShyperparameters. Therefore, one can choose
parameter settings f@8#SMSthat make practical its application without a significant decrement of
performance. Below are shown recommended values fd? 8MdShyperparameters. These param-
eters and other options of the current implementation can be modified very diggaglante, In
preparation, 2009).
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Recommended PSMS parameters:

Weight for individual best solution ¢; = 2
Weight for global best solution  ¢; =2

Adaptive inertia weight W =(1.2,0.5,0.4)

Number of iterations | =50

Swarm size m=>5

Folds inCV k=2

Subsampling factor SF =1 (as small as possible in large data sets)

6. Conclusions

In this paper we proposed Particle Swarm Model Selec®8M3, that is, the application of Parti-
cle Swarm OptimizationRSQ to the problem of Full Model Selectiori1S). Given a data set, the
FMS problem consists of selecting the combination of preprocessing, feafertion and learning
methods that obtains the lowest classification ervS also includes hyperparameter optimiza-
tion for the selected methods. This approach to the model selection probkethéhfollowing
advantages. First, the generality of the approach allows us to consitlredtfmodel types (for
preprocessing, feature selection and learning) and a variety of metSedendPSMScan be ap-
plied to any data set, since neither domain knowledge nor machine learnimigkige is required,
therefore it can be considered a black-box model selection method., Eniddmost importantly,
competitive and yet simple models can be obtained WiBMS We provide empirical evidence
that shows thaPSMScan be applied efficiently, without a significant loss of accuracy, byguain
subsampling heuristic and parameter settings that reduce the computati&tnal co

The simplicity of PSOand its proven performance, comparable to that of evolutionary algo-
rithms, make this search algorithm well suited fevlS. However, the application of any other
stochastic optimization strategy is also possible. The main advant&@Qit that a single equa-
tion for updating solutions is needed, as opposed to evolutionary algoritimasewnethods for
representation, mutation, cross-over, speciation and selection havedmsidered. Interestingly,
the way the search is guided REMSallows it obtaining competitive models without significantly
overfitting. Experimental results in benchmark data show superior pesftze ofPSMSwhen
compared to Pattern Search Model SelectiBATSMS, a direct search method that constitutes a
competitive baseline.

Results obtained by models selected ViABIMSn the framework of a model selection challenge
show that it is a very competitive model selection method, despite its simplicity ametajity.
In such competitions, models selected WiRBMSwere always among the top ranking models,
together with methods performing solely hyperparameter selection in a givdel family and
methods relying on prior knowledge. This demonstrates that, via the IB8@QfFMSis a viable
strategy for model selection. This is remarkable because we noted inggedmpetitions (Guyon
et al., 2005; Guyon et al., 2006b) that each data set had a differenpedorming method, yet
researchers performirfgMS (in an effort to find the model family best suited to a given problem)
were not successful. The participants, which obtained the best reaudigecage over all data sets
restricted themselves to hyperparameter selection in one given model famitpntrast, in this
paper we demonstrated the viability BMS using thePSOsearch strategy. Our work paves the
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way to the use of intensive search techniques to perfeviin the entire model space of machine
learning toolkits. With the increasing availability of diverse and sophisticatechima learning
toolkits and the improvements in computing power, we foreseeRRE8 will become an effective
methodology.

Current work includes the use BSMSfor the selection of model-members for ensembles and
the hierarchical application ®#SOfor FMS and hyperparameter optimizatioRSMSis currently
being applied to different tasks, including galaxy classification, automaticaéraagotation, object
recognition and text classification. Future work includes the introductica pénalty-term into
the fitness function; such that (computationally) inexpensive models loeefdby PSMS. The
extension oPSMSto the multi-class classification and regression problems is another futuke wor
direction.
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