
Journal of Machine Learning Research 10 (2009) 405-440 Submitted 1/07; Revised 8/08; Published 2/09

Particle Swarm Model Selection

Hugo Jair Escalante HUGOJAIR@CCC.INAOEP.MX

Manuel Montes MMONTESG@INAOEP.MX

Luis Enrique Sucar ESUCAR@INAOEP.MX

Department of Computational Sciences
National Institute of Astrophysics, Optics and Electronics
Puebla, Ḿexico, 72840

Editor: Isabelle Guyon and Amir Saffari

Abstract

This paper proposes the application of particle swarm optimization (PSO) to the problem offull
model selection, FMS,for classification tasks.FMS is defined as follows: given a pool of pre-
processing methods, feature selection and learning algorithms, to select the combination of these
that obtains the lowest classification error for a given dataset; the task also includes the selection
of hyperparameters for the considered methods. This problem generates a vast search space to be
explored, well suited for stochastic optimization techniques. FMS can be applied to any classifi-
cation domain as it does not require domain knowledge. Different model types and a variety of
algorithms can be considered under this formulation. Furthermore, competitive yet simple models
can be obtained withFMS. We adoptPSO for the search because of its proven performance in
different problems and because of its simplicity, since neither expensive computations nor com-
plicated operations are needed. Interestingly, the way thesearch is guided allowsPSOto avoid
overfitting to some extend. Experimental results on benchmark data sets give evidence that the
proposed approach is very effective, despite its simplicity. Furthermore, results obtained in the
framework of a model selection challenge show the competitiveness of the models selected with
PSO, compared to models selected with other techniques that focus on a single algorithm and that
use domain knowledge.

Keywords: full model selection, machine learning challenge, particle swarm optimization, exper-
imentation, cross validation

1. Introduction

Model selection is the task of picking the model that best describes a data set (Hastie et al., 2001).
Since the phrasedescribing a data setcan be interpreted in several different ways, the model
selection task can denote diverse related problems, including: variable and feature selection (Bengio
and Chapados, 2003; Guyon et al., 2006a; Guyon and Elisseeff, 2003), system identification (Voss
and Feng, 2002; Nelles, 2001), parameter-hyperparameter optimization (Guyon et al., 2006b; Kim
et al., 2002; Hastie et al., 2001; Cawley and Talbot, 2007b; Escalante et al., 2007), and discretization
(Boullé, 2007; Hue and Boullé, 2007). In this paper we give a broader interpretation to this task
and call itfull model selection(FMS). TheFMSproblem consists on the following: given a pool of
preprocessing methods, feature selection and learning algorithms, selectthe combination of these
that obtains the lowest classification error for a given data set. This task also includes the selection

c©2009 Hugo Jair Escalante, Manuel Montes and Enrique Sucar.

ESCALANTE, MONTES AND SUCAR

of hyperparameters for the considered methods, resulting in a vast search space that is well suited
for stochastic optimization techniques.

Adopting a broader interpretation to the model selection problem allows us to consider different
model types and a variety of methods, in contrast to techniques that consider a single model type
(i.e., either learning algorithm or feature selection method, but not both) anda single method (e.g.,
neural networks). Also, since neither prior domain knowledge nor machine learning knowledge is
required,FMS can be applied to any classification problem without modification. This is a clear
advantage over ad-hoc model selection methods that perform well on a single domain or that work
for a fixed algorithm. This will help users with limited machine learning knowledge,sinceFMS
can be seen as a black-box tool for model selection. Machine learning experts can also benefit
from this approach. For example, several authors make use of searchstrategies for the selection of
candidate models(Lutz, 2006; Boulĺe, 2007; Reunanen, 2007; Wichard, 2007), theFMSapproach
can be adopted for obtaining such candidate models.

One could expect a considerable loss of accuracy by gaining generality. However, this is not
the case of the proposed approach since in international competitions it showed comparable per-
formance to other techniques that were designed for a single algorithm (i.e.,doing hyperparameter
optimization) and to methods that took into account domain knowledge (Guyon etal., 2008). The
main drawback is the computational cost to explore the vast search space,particularly for large
data sets. But, we can gain efficiency without a significant loss in accuracy, by adopting a random
subsampling strategy, see Section 4.3. The difficult interpretability of the selected models is an-
other limitation of the proposed approach. However, naive users may accept to trade interpretably
for ease-of-use, while expert users may gain insight in the problem at hand by analyzing the struc-
ture of the selected model (type of preprocessing chosen, number of features selected, linearity or
non-linearity of the predictor).

In this paper, we propose to use particle swarm optimization (PSO) for exploring the full-models
search space.PSOis a bio-inspired search technique that has shown comparable performance to that
of evolutionary algorithms (Angeline, 1998; Reyes and Coello, 2006). Like evolutionary algorithms,
PSO is useful when other techniques such as gradient descend or direct analytical discovery are
not applicable. Combinatoric and real-valued optimization problems in which the optimization
surface possesses many locally optimal solutions, are well suited for swarm optimization. InFMSit
must be found the best combination of methods (for preprocessing, feature selection and learning)
and simultaneously optimizing real valued functions (finding pseudo-optimal parameters for the
considered methods), in consequence, the application ofPSOis straightforward.

The methodological differences between swarm optimization and evolutionary algorithms have
been highlighted by several authors (Angeline, 1998; Kennedy and Eberhart, 1995, 2001). However
a difference in performance has not been demonstrated in favor of either method. Such demonstra-
tion would be a difficult task because no black-box stochastic optimization algorithm can outper-
form another over all optimization problems, not even over random search (Wolpert and Macready,
1997; van den Bergh, 2001). We selectedPSOinstead of evolutionary algorithms because of its
simplicity and generality as no important modification was made for applying it toFMS. PSOis
easier to implement than evolutionary algorithms because it only involves a singleoperator for up-
dating solutions. In contrast, evolutionary algorithms require a particular representation and specific
methods for cross-over, mutation, speciation and selection. Furthermore,PSOhas been found to be
very effective in a wide variety of applications, being able to produce good solutions at a very low

406

PARTICLE SWARM MODEL SELECTION

computational cost (Gudise and Venayagamoorthy, 2003; Hernández et al., 2004; Xiaohui et al.,
2003; Yoshida et al., 2001; Robinson, 2004; Kennedy and Eberhart,2001; Reyes and Coello, 2006).

PSOis compared to pattern search (PS) in order to evaluate the added value of using the swarm
strategy instead of another intensive search method. We considerPSamong other search techniques
because of its simplicity and proved performance in model selection (Momma andBennett, 2002;
Bi et al., 2003; Dennis and Torczon, 1994). Cross validation (CV) is used in both techniques for
assessing thegoodnessof models. Experimental results in benchmark data give evidence that both
PSOand PS are effective strategies forFMS. However, it was found thatPSOoutperformsPS,
showing better convergence behavior and being less prone to overfitting. Furthermore, the proposed
method was evaluated in the context of a model selection competition in which several specialized
and prior-knowledge based methods for model selection were used. Models selected withPSOwere
always among the top ranking models through the different stages of the challenge (Guyon et al.,
2006c, 2007, 2008; Escalante et al., 2007). During the challenge, ourbest entry was ranked 8th over
all ranked participants, 5th among the methods that did not use domain knowledge and 2nd among
the methods that used the software provided by the organizers (Guyon etal., 2006c, 2007, 2008).
In this paper we outperform the latter entry while reducing the computational burden by using a
subsampling strategy; our best entry is currently the top-ranked one among models that do not use
prior domain knowledge and 2nd over all entries, see Section 4.3.

PSOhas been widely used for parameter selection in supervised learning (Kennedy and Eber-
hart, 1995, 2001; Salerno, 1997; Gudise and Venayagamoorthy, 2003). However, parameter selec-
tion is related with the first level of inference in which, given a learning algorithm, the task is to find
parameters for such algorithm in order to describe the data. For example, inneural networks the
adjustment of weights between units according to some training data is a parameter selection prob-
lem. Hyperparameter optimization, on the other hand, is related with the second level of inference,
that is, finding parameters for the methods that in turn should determine parameters for describ-
ing the data. In the neural network example, selecting the optimal number of units, the learning
rate, and the number of epochs for training the network is a hyperparameter optimization problem.
FMSis capable of operating across several levels of inference by simultaneously performing feature
selection, preprocessing and classifier selection, and hyperparameteroptimization for the selected
methods.PSOhas been used for hyperparameter optimization by Voss and Feng (2002), however
they restricted the problem to linear systems for univariate data sets, considering one hundred data
observations. In this paper we are going several steps further: we appliedPSOfor FMSconsidering
non-linear models in multivariate data sets with a large number of observations.

Parallel to this work, Gorissen et al. used genetic algorithms for meta-model selection in regres-
sion tasks (Gorissen, 2007; Gorissen et al., 2008), a similar approach that emerged totally indepen-
dently to our proposal. One should note, however, that this method has been used for a different task
in low dimensional data sets; most results are reported for 2D data. Even withthis dimensionality
the method has been run for only a few iterations with a small population size. Their use of a genetic
algorithm required the definition of specific operatorsfor each of the considered models. Gorissen et
al. considered seven different models (including neural networks andkernel methods) that required
of 18 different genetic operators for creation, mutation and cross-over (Gorissen, 2007; Gorissen
et al., 2008). Additionally, general operators for speciation and selection were also defined. In the
present work a single operator was used for updating solutions, regardless of the considered models.
This clearly illustrates the main advantage ofPSOover genetic algorithms, namely generality and
simplicity.

407

ESCALANTE, MONTES AND SUCAR

The main contribution of this work is experimental: we provide empirical evidence indicating
that by usingPSOwe were able to perform intensive search over a huge space and succeeded in
selecting competitive models without significantly overfitting. This is due to the waythe search is
guided inPSO: performing a broad search around promising solutions but not overdoing in terms of
really fine optimization. This sort of search is known to help avoiding overfitting by undercomput-
ing (Dietterich, 1995). Experimental results supported by some a posteriori analysis give evidence
of the validity of our approach. The way we approached the model selection problem and the use of
a stochastic-search strategy are also contributions. To the best of our knowledge there are no similar
works that consider theFMSproblem for classification tasks.

The rest of this paper is organized as follows. In the next section we describe the generalPSO
algorithm. In Section 3, we describe the application ofPSOto FMS. Section 4 presents experimental
results in benchmark data; comparing the performance ofPSOto that ofPSin FMSand analyzing
the performance ofPSOunder different parameter settings; also, are described the results obtained
in the framework of a model selection competition. In Section 5, we analyze mechanisms inPSMS
that allow to select competitive models without overfitting the data. Finally, in Section 6, we present
the conclusions and outline future research directions.

2. Particle Swarm Optimization (PSO)

PSO is a population-based search algorithm inspired by the behavior of biological communities
that exhibit both individual and social behavior; examples of these communities are flocks of birds,
schools of fishes and swarms of bees. Members of such societies sharecommon goals (e.g., find-
ing food) that are realized by exploring its environment while interacting among them. Proposed by
Kennedy and Eberhart (1995),PSOhas become an established optimization algorithm with applica-
tions ranging from neural network training (Kennedy and Eberhart, 1995; Salerno, 1997; Kennedy
and Eberhart, 2001; Gudise and Venayagamoorthy, 2003; Engelbrecht, 2006) to control and engi-
neering design (Herńandez et al., 2004; Xiaohui et al., 2003; Yoshida et al., 2001; Robinson, 2004).
The popularity ofPSOis due in part to the simplicity of the algorithm (Kennedy and Eberhart, 1995;
Reyes and Coello, 2006; Engelbrecht, 2006), but mainly to its effectiveness for producing good re-
sults at a very low computational cost (Gudise and Venayagamoorthy, 2003; Kennedy and Eberhart,
2001; Reyes and Coello, 2006). Like evolutionary algorithms,PSOis appropriate for problems with
immense search spaces that present many local minima.

In PSOeach solution to the problem at hand is called a particle. At each timet, each particle,
i, has a positionxt

i =< xt
i,1,x

t
i,2, . . . ,x

t
i,d > in the search space; whered is the dimensionality of the

solutions. A set of particlesS = {xt
1,x

t
2, . . . ,x

t
m} is called a swarm. Particles have an associated

velocity value that they use forflying (exploring) through the search space. The velocity of particle
i at timet is given byvt

i =< vt
i,1,v

t
i,2, . . . ,v

t
i,d >, wherevt

i,k is the velocity for dimensionk of particle
i at timet. Particles adjust their flight trajectories by using the following updating equations:

vt+1
i, j = W×vt

i, j +c1× r1× (pi, j −xt
i, j)+c2× r2× (pg, j −xt

i, j), (1)

xt+1
i, j = xt

i, j +vt+1
i, j (2)

where pi, j is the value in dimensionj of the best solution found so far by particlei; pi =<
pi,1, . . . , pi,d > is called personal best.pg, j is the value in dimensionj of the best particle found
so far in the swarm (S); pg =< pg,1, . . . , pg,d > is considered the leader particle. Note that through

408

PARTICLE SWARM MODEL SELECTION

pi andpg each particlei takes into account individual (local) and social (global) information for up-
dating its velocity and position. In that respect,c1,c2 ∈ R are constants weighting the influence of
local and global best solutions, respectively.r1, r2 ∼ U [0,1] are values that introduce randomness
into the search process.W is the so called inertia weight, whose goal is to control the impact of the
past velocity of a particle over the current one, influencing the local andglobal exploration abilities
of the algorithm. This is one of the most used improvements ofPSOfor enhancing the rate of con-
vergence of the algorithm (Shi and Eberhart, 1998, 1999; van den Bergh, 2001). For this work we
considered an adaptive inertia weight specified by a tripletW = (wstart,wf ,wend); wherewstart and
wend are the initial and final values forW, respectively, andwf indicates the fraction of iterations
in whichW is decreased. Under this settingW is decreased byW = W−wdecfrom iterationt = 1
(whereW = wstart) up to iterationt = I ×wf (after whichW = wend); wherewdec= wstart−wend

I×wf
and

I is the maximum number of iterations. This setting allows us to explore a large area at the start of
the optimization, whenW is large, and to slightly refine the search later by using a smaller inertia
weight (Shi and Eberhart, 1998, 1999; van den Bergh, 2001).

An adaptiveW can be likened to the temperature parameter in simulated annealing (Kirkpatrick
et al., 1983); this is because, in essence, both parameters influence the global and local exploration
abilities of their respective algorithms, although in different ways. A constant W is analogous to
the momentum parameterp in gradient descend with momentum term (Qian, 1999), where weights
are updated by considering both the current gradient and the weight change of the previous step
(weighed byp). Interestingly, the inertia weight is also similar to the weight-decay constant (γ)
used in machine learning to prevent overfitting. In neural networks the weights are decreased by
(1− γ) in each learning step, which is equivalent to add a penalty term into the errorfunction that
encourages the magnitude of the weights to decay towards zero (Bishop, 2006; Hastie et al., 2001);
the latter penalizes complex models and can be used to obtain sparse solutions (Bishop, 2006).

The pseudo code of thePSOalgorithm considered in this work is shown in Algorithm 1; default
recommended values for theFMSproblem are shown as well (these values are based on the analysis
of Section 2.1 and experimental results from Section 4.2). The swarm is randomly initialized,
considering restrictions on the values that each dimension can take. Next, the goodnessof each
particle is evaluated andpg, p1,...,m are initialized. Then, the iterativePSOprocess starts, in each
iteration: i) the velocities and positions of each particle in every dimension are updated according to
Equations (1) and (2);ii) thegoodnessof each particle is evaluated;iii) pg andp1,...,m are updated,
if needed; andiv) the inertia weight is decreased. This process is repeated until either a maximum
number of iterations is reached or a minimum fitness value is obtained by a particlein the swarm
(we used the first criterion forFMS); eventually, an (locally) optimal solution is found.

A fitness function is used to evaluate the aptitude (goodness) of candidate solutions. The def-
inition of a specific fitness function depends on the problem at hand; in general it must reflect the
proximity of the solutions to the optima. A fitness functionF : Ψ → R, whereΨ is the space of
particles positions, should return a scalarfxi for each particle positionxi , indicating how far particle
i is from the optimal solution to the problem at hand. ForFMS the goal is to improve classification
accuracy of full models. Therefore, any functionF , which takes as input a model and returns an
estimate of classification performance, is suitable (see Section 3.3).

Note that in Equation (1) every particle in the swarm knows the best position found so far by
any other particle within the swarm, that ispg. Under this formulation a fully-connected swarm-
topology is considered in which every member knows the leader particle. Thistopology has shown
to converge faster than any other topology (Kennedy and Mendes, 2002; Reyes and Coello, 2006;

409

ESCALANTE, MONTES AND SUCAR

Algorithm 1 Particle swarm optimization.
Require: [Default recommended values for FMS]
– c1,c2: individual/social behavior weights;[c1 = c2 = 2]
– m: swarm size;[m = 5]
– I : number of iterations;[I = 50]
– F(Ψ → R): fitness function; [F(Ψ → R) = 2−fold CV BER]
– W: Inertia weightW = (1.2, 0.5, 0.4)
Set decrement factor forW (wdec= wstart−wend

I×wf
)

Initialize swarm (S= {x1,x2, . . . ,xm})
Computefx1,...,m = F(x1,...,m) (Section 3.3)
Locate leader (pg) and set personal bests (p1,...,m = x1,...,m)
t = 1
while t < I do

for all x i ∈ S do
Calculate velocityvi for xi(Equation (1))
Update position ofxi (Equation (2))
Computefxi = F(xi)
Updatepi (if necessary)

end for
Updatepg (if necessary)
if t < ⌊I ×wf ⌋ then

W = W−wdec

end if
t++

end while
return p g

Kennedy and Eberhart, 2001; Engelbrecht, 2006). With this topology, however, the swarm is prone
to converge to local minima. We tried to overcome this limitation by using the adaptive inertia
weight,W.

2.1 PSO Parameters

Selecting the best parameters(W,c1,c2,m, I) for PSOis another model selection task. In the ap-
plication of PSO for FMS we are dealing with a very complex problem lying in the third level
of inference. Fortunately, several empirical and theoretical studies have been performed about the
parameters ofPSOfrom which useful information can be obtained (Shi and Eberhart, 1998, 1999;
Kennedy and Mendes, 2002; Reyes and Coello, 2006; Ozcan and Mohan, 1998; Clerc and Kennedy,
2002; van den Bergh, 2001). In the rest of this section thePSOparameters are analyzed in order
to select appropriate values forFMS. Later on, in Section 4.2, results of experiments withPSOfor
FMSunder different parameter settings are presented.

410

PARTICLE SWARM MODEL SELECTION

We will start analyzingc1,c2 ∈ R, the weighting factors for individual and social behavior. It
has been shown that convergence is guaranteed1 for PSOunder certain values ofc1,c2 (van den
Bergh, 2001; Reyes and Coello, 2006; Ozcan and Mohan, 1998; Clerc and Kennedy, 2002). Most
convergence studies have simplified the problem to a single one-dimensionalparticle, settingφ =
c1× r1 +c2× r2, andpg andpi constant (van den Bergh, 2001; Reyes and Coello, 2006; Ozcan and
Mohan, 1998; Clerc and Kennedy, 2002). A complete study including the inertia weight is carried
out by van den Bergh (2001). In agreement with this study the valueφ < 3.8 guarantees eventual
convergence of the algorithm when the inertia weightW is close to 1.0. For the experiments in this
work it was fixedc1 = c2 = 2, with these values we haveφ < 3.8 with high probabilityP(φ < 3.8)≈
0.9, given the uniformly distributed numbersr1, r2 (van den Bergh, 2001). The configurationc1 =
c2 = 2 also has been proven, empirically, to be an effective choice for these parameters (Kennedy
and Eberhart, 1995; Shi and Eberhart, 1998, 1999; Kennedy and Mendes, 2002).

Note, however, the restriction thatW remains close to 1.0. In our experiments we considered
a value ofW = 1.2 at the beginning of the search, decreasing it during 50% (i.e.,wf = 0.5) of the
PSOiterations up to the valueW = 0.4. In consequence, it is possible that at the end of the search
process the swarm may show divergent behavior. In practice, however, the latter configuration for
W resulted very useful forFMS, see Section 4. This selection ofW should not be surprising since
even the configurationW = (1,1,0) has obtained better results than using a fixedW in empirical
studies (Shi and Eberhart, 1998). Experimental results with different configurations ofW for FMS
give evidence that the configuration we selected can provide better modelsthan using constantW,
see Section 4.2; although further experiments need to be performed in order to select the bestW
configuration forFMS.

With respect tom, the size of the swarm, experimental results suggest that the size of the popu-
lation does not damage the performance ofPSO(Shi and Eberhart, 1999), although slightly better
results have been obtained with a large value ofm, (Shi and Eberhart, 1999). Our experimental
results in Section 4.2 confirm that the selection ofm is not crucial, although (contrary to previous
results) slightly better models are obtained by using a small swarm size. The latter is an important
result forFMS because using a small number of particles reduces the number of fitness function
evaluations, and in consequence the computational cost of the search.

Regarding the number of iterations, to the best of our knowledge, there is no work on the subject.
This is mainly due to the fact that this issue depends mostly on the complexity of the problem at
hand and therefore a general rule cannot be derived. ForFMSthe number of iterations should not be
large to avoid oversearching (Dietterich, 1995). For most experiments in this paper we fixedI = 100.
However, experimental results in Section 4.2 show that by runningPSOfor a smaller number of
iterations is enough to obtain models of the same, and even better, generalization performance. This
gives evidence that early stopping can be an useful mechanism to avoid overfitting, see Section 5.

3. Particle Swarm Model Selection

Since one of the strong advantages ofPSO is its simplicity, its application toFMS is almost di-
rect. Particle swarm full model selection (hereafterPSMS, that is the application ofPSOto FMS) is

1. Note that inPSOwe say that the swarm converges iff limt→inf pgt = p, wherep is an arbitrary position in the search
space andt indexes iterations ofPSO. Sincep refers to an arbitrary position, this definition does not mean either
convergence to local or global optimum, but convergence to the globalbest position in the swarm (van den Bergh,
2001; Reyes and Coello, 2006; Engelbrecht, 2006).

411

ESCALANTE, MONTES AND SUCAR

ID Object name F Hyperparameters Description

1 Ftest FS fmax, wmin, pval, f drmax Feature ranking according the F-statistic
2 Ttest FS fmax, wmin, pval, f drmax Feature ranking according the T-statistic
3 aucfs FS fmax, wmin, pval, f drmax Feature ranking according to the AUC criterion
4 odds-ratio FS fmax, wmin, pval, f drmax Feature ranking according to the odds ratio statistic
5 relief FS fmax, wmin, knum Relief ranking criterion
6 rffs FS fmax, wmin Random forest used as feature selection filter
7 svcrfe FS fmax Recursive feature elimination filter using svc
8 Pearson FS fmax, wmin, pval, f drmax Feature ranking according to the Pearson correlation coef.
9 ZFilter FS fmax, wmin Feature ranking according to a heuristic filter
10 gs FS fmax Forward feature selection with Gram-Schmidt orth.
11 s2n FS fmax, wmin Signal-to-noise ratio for feature ranking
12 pc−extract FS fmax Extraction of features withPCA

1 normalize Pre center Normalization of the lines of the data matrix
2 standardize Pre center Standardization of the features
3 shi f t−scale Pre takelog Shifts and scale data

1 bias Pos none Finds the best threshold for the output of the classifiers

Table 1: Feature selection (FS), preprocessing (Pre) and postprocessing (Pos) objects available in
CLOP. A brief description of the methods and their hyperparameters is presented.

described by the pseudocode in Algorithm 1, in this section are presented additional details about
PSMS: first we describe the pool of methods considered in this work; then, we describe the rep-
resentation of particles and the fitness function used; finally, we briefly discuss complexity is-
sues. The code ofPSMSis publicly available from the following websitehttp://ccc.inaoep.
mx/ ˜ hugojair/code/psms/ .

3.1 The Challenge Learning Object Package

In order to implementPSMSwe need to define the models search space. For this purpose we con-
sider the set of methods in a machine learning toolbox from which full models can be generated.
Currently, there are several machine learning toolboxes, some of them publicly available (Franc and
Hlavac, 2004; van der Heijden et al., 2004; Wichard and Merkwirth, 2007; Witten and Frank, 2005;
Saffari and Guyon, 2006; Weston et al., 2005); even there is a track of this journal (JMLR) dedi-
cated to machine learning software. This is due to the increasing interest from the machine learning
community in the dissemination and popularization of this research field (Sonnenburg, 2006). The
Challenge Learning Object Package2 (CLOP) is one of such development kits distributed under the
GNU license (Saffari and Guyon, 2006; Guyon et al., 2006c, 2007, 2008).CLOP is aMatlabR tool-
box with implementations of feature-variable selection methods and machine learning algorithms
(CLOP also includes thePSMSimplementation used in this work). The list of available prepro-
cessing, feature selection and postprocessing methods in theCLOP toolbox is shown in Table 1; a
description of the learning algorithms available inCLOP is presented in Table 2. One should note
that this version ofCLOPincludes the methods that best performed in a model selection competition
(Guyon et al., 2008; Cawley and Talbot, 2007a; Lutz, 2006).

2. Seehttp://clopinet.com/CLOP/ .

412

PARTICLE SWARM MODEL SELECTION

ID Object name Hyperparameters Description

1 zarbi none Linear classifier
2 naive none Näıve Bayes
3 klogistic none Kernel logistic regression
4 gkridke none Generalized kridge (VLOO)
5 logitboost units number, shrinkage, depth Boosting with trees (R)
6 neural units number, shrinkage, maxiter, balance Neural network (Netlab)
7 svc shrinkage, kernel parameters (coef0, degree, gamma) SVM classifier
8 kridge shrinkage, kernel parameters (coef0, degree, gamma) Kernel ridge regression
9 rf units number, balance, mtry Random forest (R)
10 lssvm shrinkage, kernel parameters (coef0, degree, gamma), balanceKernel ridge regression

Table 2: Available learning objects with their respective hyperparameters inthe CLOP package.

In consequence, forPSMSthe pool3 of methods to select from are those methods described in
Tables 1 and 2. InCLOP a typical model consists of thechain, which is a grouping object that
allows us to perform serial concatenation of different methods. A chain may include combinations
of (several/none) feature selection algorithm(s) followed by (several/none) preprocessing method(s),
in turn followed by a learning algorithm and finally (several/none) postprocessing algorithm(s). For
example, the model given by:
chain{gs(f max= 8),standardize(center=1),neural(units=10,s=0.5,balance=1,iter=10)}
usesgs for feature selection,standardizationof data and a balancedneural networkclassifier with
10 hidden units, learning rate of 0.5, and trained for 10 iterations. In this work chain objects that
include methods for preprocessing, feature selection and classification are considered full-models.
Specifically, we consider models with at most one feature selection method, but allowing to perform
preprocessing before feature selection and viceversa, see Section 3.2. The bias method was used
as postprocessing in every model tested to set an optimal threshold in the output of the models in
order to minimize their error. The search space inFMS is given by all the possible combinations of
methods and hyperparameters; an infinite search space due to the real valued parameters.

3.2 Representation

In PSOeach potential solution to the problem at hand is considered a particle. Particles are rep-
resented by their position, which is nothing but ad−dimensional numerical vector (d being the
dimensionality of the solution). InFMS potential solutions are full-models, in consequence, for
PSMSwe need a way to codify a full-model by using a vector of numbers. For this purpose we
propose the representation described in Equation (3), the dependenceon time (t) is omitted for
clarity.

xi =< xi,pre,yi,1...Npre,xi, f s,yi,1,...Nf s,xi,sel,xi,class,yi,1,...Nclass > (3)

wherexi,pre ∈ {1, . . . ,8} represents a combination of preprocessing methods. Each combination is
represented by a binary vector of size 3 (i.e., the number of preprocessing methods considered),
there are 23 = 8 possible combinations. Each element of the binary vector represents a single pre-
processing method; if the value of thekth element is set to 1 then the preprocessing method withID
= k is used (see Table 1). For example, the first combination< 0,0,0 > meansno preprocessing;
while the seventh< 1,1,0 > means that this model (xi) usesnormalizationandstandardizationas

3. Notice that theCLOP package includes also the spider package (Weston et al., 2005) which inturn includes other
implementations of learning algorithms and preprocessing methods. However, in this work we only usedCLOP
objects.

413

ESCALANTE, MONTES AND SUCAR

preprocessing.yi,1...Npre codify the hyperparameters for the selected combination of preprocessing
methods,Npre = 3 because each preprocessing method has a single hyperparameter; note that the
order of the preprocessing methods is fixed (i.e.,standardizationcan never be performed before
normalization), in the future we will relax this constraint.xi, f s ∈ {0, . . . ,12} represents theID of
the feature selection method used by the model (see Table 1), andyi,1...Nf s its respective hyperpa-
rameters;Nf s is set to the maximum number of hyperparameters that any feature selection method
can take.xi,sel is a binary variable that indicates whether preprocessing should be performed before
feature selection or viceversa.xi,class∈ {1, . . . ,10} represents the classifier selected andyi,1,...Nclass

its respective hyperparameters;Nclass is the maximum number of hyperparameters that a classifier
can take. This numerical codification must be decoded and used with thechaingrouping object for
obtaining a full-model from a particle positionxi . Note that the dimensionality of each particle is
d = 1+Npre+1+Nf s+1+1+Nclass= 16.

3.3 Fitness Function

In FMS it is of interest to select models that minimize classification errors on unseen data (i.e.,
maximizing generalization performance). Therefore, the fitness function (F) should relate a model
with an estimate of its classification performance in unseen data. The simplicity ofPSMSallows us
to use any classification performance measure asF , because the method does not require derivatives.
Thus, valid options forF include mean absolute error, balanced error rate, squared root error, recall,
precision, area under theROCcurve, etcetera. For this work it was used the balanced error rate
(BER) asF . BERtakes into account misclassification rates in both classes, which preventsPSMSof
selecting biased models (favoring the majority class) in imbalanced data sets. Furthermore,BERhas
been used in machine learning challenges as leading error measure for ranking participants (Guyon
et al., 2007, 2008). TheBERof modelψ is the average of the misclassifications obtained byψ over
the classes in a data set, as described in Equation (4):

BER(ψ) =
E+ +E−

2
(4)

whereE+ andE− are the misclassifications rates for the positive and negative classes, respectively.
The selection of the fitness function is a crucial aspect inPSO. However, forPSMS, the critical

part lies in the way an estimate of generalization performance of a model (givenF and training data)
is obtained, and not in the fitness function itself. This is the main challenge of model selection, since
error estimates using training data are very optimistic about the behavior of models on unseen data,
this phenomenon is known as overfitting (Bishop, 2006; Hastie et al., 2001;Nelles, 2001). In order
to overcome overfitting theBERwas calculated using ak−fold cross validation(k-fold CV)approach
(Note that theBERis still obtained from training data). This is the only explicit mechanism ofPSMS
to avoid overfitting. k-fold CV is the most used hold-out approach for model selection (Nelles,
2001; Hastie et al., 2001; Cawley and Talbot, 2007b). Using a high value for k, sayk = N where
N is the training set size (i.e.,leave one out- CV), the error estimate is almost unbiased, but can
have high variance because theN training sets are very similar to each other (Nelles, 2001; Cawley
and Talbot, 2007b); furthermore, computation time could be a serious problem (Hastie et al., 2001;
Nelles, 2001). With a low value fork, the estimate can have low variance but the bias could be a
problem. The selection of an optimalk is still an open problem in the model selection field. For
this work were performed experiments withk∈ {2,5,10}, but no statistically-significant difference,
among these values, was found, see Section 4.2.

414

PARTICLE SWARM MODEL SELECTION

3.4 Computational Complexity

As we have seen, the search space in theFMSproblem is composed by all the possible models that
can be built given the considered methods and their hyperparameters. This is an infinite search space
even with the restriction imposed to the values that models can take; this is the main drawback of
FMS. However, the use of particle swarm optimization (PSO) allows us to harnessthe complexity
of this problem. Most algorithms used forFMScannot handle very big search spaces. But PSO is
well suited to large search spaces: it converges fast and has a manageable computational complexity
(Kennedy and Eberhart, 2001; Reyes and Coello, 2006). As we can see from Algorithm 1,PSOis
very simple and does not involve expensive operations.

The computational expensiveness ofPSMSis due to the fitness function we used. For each
selected model the fitness function should train and evaluate such modelk−times. Depending on
the model complexity this process can be performed on linear, quadratic or higher order times.
Clearly, computing the fitness function using the entire training set, as opposed to k-fold CV, could
reducePSMScomplexity, although we could easily overfit the data. For a single run ofPSMSthe
fitness function should be evaluatedρ = m× (I + 1) times, withm being the swarm size andI the
number of iterations. Suppose the computational complexity of modelλ is bounded byλO then
the computational complexity ofPSMSwill be bounded byρ× k× λO. BecauseλO is related to
the computational complexity of modelλ (which depends on the size and dimensionality of the
data set) this value may vary dramatically. For instance, computing the fitness function for a näıve
Bayes model in a high dimensional data set takes around two seconds4, whereas computing the
same fitness function for the same data set could take several minutes if a support vector classifier
is used.

In order to reduce the computational cost ofPSMSwe could introduce a complexity penalty-
term into the fitness function (this is current work). A simpler alternative solution is calculating the
fitness function for each model using only a small subset of the available data; randomly selected and
different each time. This approach can also be useful for avoiding local minima. The subsampling
heuristic was used for high-dimensional data sets and for data sets with a large number of examples.
Experimental results show an important reduction of processing time, withouta significant loss of
accuracy, see Section 4.3. We emphasize that complexity is due to the nature of the FMSproblem.
With this approach, however, users will be able to obtain models for their datawithout requiring
knowledge on the data or on machine learning techniques.

4. Experimental Results

In this section results of experiments withPSMSusing benchmark data from two different sources
are presented. First, we present results on a suite of benchmark machinelearning data sets5 used by
several authors (Mika et al., 2000; Rätsch et al., 2001; Cawley and Talbot, 2007b); such data sets
are described in Table 3, ten replications (i.e., random splits of training and testing data) of each
data set were considered. These data sets were used to comparePSOto PS in the FMS problem
(Section 4.1) and to study the performance ofPSMSunder different settings (Section 4.2). Next we
appliedPSMSto the data sets used in a model selection competition (Section 4.3). The goal of the
latter experiments is to compare the performance ofPSMSagainst other model selection strategies.

4. Most of the experiments were carried out on a workstation withPentiumTM 4 processor at 2.5 GHz, and 1 gigabyte
in RAM.

5. These data sets are available fromhttp://ida.first.fraunhofer.de/projects/bench/bench marks.htm .

415

ESCALANTE, MONTES AND SUCAR

ID Data set Training
Patterns

Testing
Patterns

Input Fea-
tures

1 Breast cancer 200 77 9
2 Diabetes 468 300 8
3 Flare solar 666 400 9
4 German 700 300 20
5 Heart 170 100 13
6 Image 1300 1010 20
7 Splice 1000 2175 60
8 Thyroid 140 75 5
9 Titanic 150 2051 3

Table 3: Data sets used in the comparison ofPSOandPS, ten replications (i.e., random splits of
training and testing sets) for each data set were considered.

4.1 A Comparison ofPSO and PS

In the first set of experiments we compared the performance ofPSOto that of another search strategy
in the FMS problem. The goal was to evaluate the advantages of using the swarm strategy over
another intensive search method. Among the available search techniques we selectedPSbecause
of its simplicity and proved performance in model selection (Dennis and Torczon, 1994; Momma
and Bennett, 2002; Bi et al., 2003).PS is a direct search method that samples points in the search
space in a fixed pattern about the best solution found so far (the center of the pattern). Fitness values
are calculated for the sampled points trying to find a minimizer; if a new minimum is find then the
center of the pattern is changed, otherwise the search step is reduced byhalf; this process is iterated
until a stop criteria is met. The consideredPSalgorithm described in Algorithm 2 is an adaptation
of that proposed by Momma et al. for hyperparameter optimization of support vector regression
(Momma and Bennett, 2002; Bi et al., 2003).

The input toPS is the patternP and the search step∆. Intuitively, P specifies the direction of
the neighboring solutions that will be explored; while∆ specifies the distance to such neighboring
solutions. There are several ways to generateP; for this work we used the nearest neighbor sampling
pattern (Momma and Bennett, 2002). Such pattern is given numerically byP = [Id −Id 0T

1×d],
whereId is the identity matrix of sized; 01×d is a vector of size 1×d with all zero entries;d is the
dimensionality of the problem.∆, a vector of size 1×d, is the search step by which the space of
solutions is explored. We defined∆ = qmaxvals−qminvals

2 , whereqmaxvalsandqminvals are the maximum
and minimum values that the solutions can take, respectively. Each iteration ofPS involves the
evaluation ofNc−1 solutions (whereNc is the number of columns ofP). Solutions are updated by
addingsj (j ∈ 1, . . . ,Nc−1) to the current-best solutionqg; where eachsj is obtained by multiplying
(element-by-element) the search step vector∆ and the j th column ofP. qg is replaced by a new
solutionq j only if fq j

< fmin = fqg
. The output ofPS is qg, the solution with the lowest fitness

value; we encourage the reader to follow the references for further details (Momma and Bennett,
2002; Dennis and Torczon, 1994).

For applyingPSto theFMSproblem (hereafterPATSMS) the solutionqg was initialized in the
same way that each particle in the swarm was initialized forPSMS(i.e., randomly). The same

416

PARTICLE SWARM MODEL SELECTION

Algorithm 2 Pattern search.pi is theith column of P,Nc the number of columns in P.
Require:
– Ips: number of iterations
– F(Ψ → R): fitness function
– P: pattern
– ∆: search step
Initialize solutionqi (i = 1)
Computefqi

= F(qi) (Section 3.3)
Setqg = qi ; fmin = fqi

while i < Ips do
for all p j ∈ P1,...,Nc−1 do

sj = ∆.p j

q j = qg +sj

Computefq j
= F(q j)

if fq j
< fmin then

Updateqg (qg = q j , fmin = fq j
)

end if
i++

end for
∆ = ∆/2

end while
return q g

representation, fitness function and restrictions on the values that each dimension can take were
considered for both methods, see Section 3. Under these settingsPSis a very competitive baseline
for PSO.

In each experiment described below, we letPSandPSOperform the same number of fitness
function evaluations, using exactly the same settings and data sets, guaranteeing a fair comparison.
Since both methods use the same fitness function and perform the same numberof fitness function
evaluations, the difference in performance indicates the gain we have by guiding the search accord-
ing to Equations (1) and (2). As recommended by Demsar, we used the Wilcoxon signed-rank test
for the comparison of the resultant models (Demsar, 2006). In the followingwe will refer to this
statistical test with 95% of confidence when mentioning statistical significance.

We compared theFMSability of PSMSandPATSMSby evaluating the accuracy of the selected
models at the end of the search process; that is, we compared the performance of modelspg and
qg in Algorithms 1 and 2, respectively. We also compared the performance of the solutions tried
through the search. For each trial we fixed the number of iterations forPSMSto I = 100 with
a swarm size ofm = 10. In consequence, both search strategies performedm× (I + 1) = 1010
evaluations of the fitness function in each run. Because more than 180,000 models were tested we
used 2−fold CV for computing the fitness function. In each trial the training set was used for FMS
and the resultant model was evaluated in the test set. This process was repeated for each replica of
each data set described in Table 3. Averaged results of this experiment are shown in Table 4. We
show the averageCV error obtained through the search process (CV-BER) and the error obtained by
the selected model, at the end of the search, in the test set (test-BER).

417

ESCALANTE, MONTES AND SUCAR

ID Data set PATSMS
test-BER

PSMS test-
BER

PATSMS
CV-BER

PSMS CV-
BER

1 Breast-cancer 36.98+−0.08 33.59+−0.12 32.64+−0.06 32.96+−0.01
2 Diabetes 26.07+−0.03 25.37+−0.02 25.39+−0.02 26.48+−0.05
3 Flare-solar 32.87+−0.02 32.65+−0.01 32.69+−0.01 33.13+−0.01
4 German 28.65+−0.02 28.28+−0.02 31.00+−0.00 31.02+−0.00
5 Heart 19.50+−0.19 17.35+−0.06 16.96+−0.07 19.93+−0.03
6 Image 3.58+−0.01 2.50+−0.01 11.54+−0.10 15.88+−0.04
7 Splice 13.94+−0.99 9.46+−0.25 18.01+−0.05 19.15+−0.07
8 Thyroid 10.84+−0.39 5.98+−0.06 11.15+−0.20 15.49+−0.12
9 Titanic 29.94+−0.00 29.60+−0.00 27.19+−0.13 27.32+−0.13

Table 4: Average and variance oftest-BERandCV-BERobtained by models selected withPSMS
andPATSMS, the best results are shown inbold. test-BERis theBERobtained by the
selected model using the test set (averaged over 10 replications of eachdata set).CV-BER
is the average ofCV BERobtained by each of the candidate solutions through the search
process (averaging performed over all particles and iterations and over 10 replications of
each data set) .

The performance of both search strategies is similar.PSMSoutperformedPATSMSthrough
all of the data sets at the end of the search process (Columns 3 and 4 in Table 4). Thetest-BER
differences are statistically significant for all but theflare-solarandgermandata sets. In the latter
data sets the hypothesis that models selected withPATSMSandPSMS perform equally cannot be
rejected. However, note that for these data sets the models selected withPSMSoutperformed those
selected withPATSMSin 6 out of 10 replications. Globally, we noticed that from the 90 trials
(9−data sets,× 10−replications for each, see Table 3), 68.9% of the models selected withPSMS
outperformed those obtained withPATSMS. While only in 22.2% of the runsPATSMSoutperformed
PSMS, in the rest both methods tied in performance. A statistical test over these 90 results was
performed and a statistically-significant difference, favoringPSMS, was found. DespitePATSMS
being a strong baseline, these results give evidence thatPSMSoutperformsPATSMSat the end of
the search process.

Columns five and six in Table 4 show the averageBERobtained with each strategy through the
1010 evaluations for each data set (averaged over replications).CV-BERreflects the behavior of the
search strategies through the search process.PATSMSslightly outperformedPSMSin this aspect,
though the difference is statistically significant only for theHeart, imageandthyroid data sets. The
slight superior performance ofPATSMSin CV-BERis due to the pattern we used and the search
procedure itself.PATSMSperforms a finer grained search over a restricted search area around the
initial solutionqg. The latter results in a lowerCV-BERbecausePATSMSalways moves the pattern
towards the local minimum nearest to the initial solution,qg. PSMS,on the other hand, explores
a much larger search space because the search is not only guided by thebest solution found so far
(pg), but also by the individual best solutions of each particle (p1,...,m). The latter produces a higher
CV-BERin average because, even when theCV-BERof the final models is low, many models of
variedCV-BERperformance are tried through the search.

418

PARTICLE SWARM MODEL SELECTION

10 20 30 40 50

10

15

20

25

30

35

40

Iterations

B
E

R

CV−BER

PATSMSPSMS
10 20 30 40 50

10

15

20

25

30

35

40

45

50

Iterations

B
E

R

Test−BER

PATSMSPSMS

Figure 1: Performance ofPATSMS(circles) andPSMS(triangles) as a function of number of iter-
ations for an experiment with one replication of theHeart data set. ForPSMSwe show
the performance of each particle with a different color. Left: Cross-validation Balanced
Error Rate (BER). Right: Test setBER. In both plots we indicate with an arrow the model
selected by each search strategy.

In Figure 1 we show the performance of the solutions tried through the search by each method
for a single replication of theHeartdata set (for clarity in the plots we usedm= 5 andI = 50 for this
experiment). We show theCV and testBERfor every model tried through the search. It can be seen
that theCV-BERof PATSMSis lower than that ofPSMS, showing an apparent better convergence
behavior (left plot in Figure 1). However, by looking the testBERof the models tried, it becomes
evident thatPATSMSis trapped into a local minimum since the very first iterations (right plot in
Figure 1).PSMS, on the other hand, obtains a higherCV-BERthrough the search, though it is less
prone to follow a local minimum. This is because withPSMSthe search is guided by one global
andm local solutions, which preventsPSMSfrom performing a pure local search; the latter in turn
preventsPSMSof overfitting the data. This result gives evidence of the better convergence behavior
of PSMS.

The model selected withPSMSobtained a lowertest-BERthan that selected withPATSMS(see
right plot in Figure 1). In fact all of the solutions in the final swarm outperformed the solution
obtained withPATSMSin test-BER. With PSMSthe model of lowest testBERwas obtained after
3 iterations ofPSMS, giving evidence of the fast convergence ofPSO. One should note that the
test-BERof the worstPSMSsolutions is higher than that of the bestPATSMSsolution. However,
near the end of the search, the possibilities thatPSMScan select a worse solution thanPATSMSare
small.

We have seen thatPATSMSis prone to get trapped into a local minimum because it performs a
fine grained search over a small area. This causes that only a few methods are considered through
the search with this method.PSMS, on the other hand, tries a wide variety of classifiers and feature
selection methods, exploring a larger search space and being able to escape from local minima.
In order to analyze the diversity of the methods considered byPSMS, in Figure 2 we show the

419

ESCALANTE, MONTES AND SUCAR

Figure 2: Normalized frequency of classifiers (left), feature selection method (middle) and combi-
nation of preprocessing methods (right) preferred byPSMSthrough the search process.
In the right plot, the abbreviationsshift, standandnormstand forshift-scale, standard-
izationandnormalization, respectively. Results are normalized over the 90,900 models
tried for obtaining the results from Table 4.

normalized frequency of methods preferred byPSMS6 through the search. The results shown in this
figure are normalized over the 90,900 models tried for obtaining the results from Table 4. From
this figure, we can see that most of the classifiers and feature selection methods were considered for
creating solutions. No classifier, feature selection method or combination of preprocessing methods
was used for more than 27% of the models. This reflects the fact that different methods are required
for different data sets and that some are equivalent. There were, however, some methods that were
slightly more used than others.

The preferred classifier was thezarbi CLOP-object, that was used for about 23% of the models.
This is a surprising result becausezarbi is a very simple linear classifier that separates the classes
by using information from the mean and variance of training examples (Golub et al., 1999). How-
ever, in 97.35% of the times thatzarbi was used it was combined with a feature selection method.
Gkridge, svc, neuraland logitboostwere all equally selected afterzarbi. Ftestwas the most used
feature selection method, though most of the feature selection strategies were used. Note thatPear-
son, Zfilter, gsand s2n were considered only for a small number of models. The combination
standardize + shift-scalewas mostly used for preprocessing, although the combinationnormalize
+ standardize + shift-scalewas also highly used. Interestingly, in 70.1% of the time preprocessing
was performed before feature selection. These plots illustrate the diversity of classifiers considered
by PSMSthrough the search process, showing thatPSMSis not biased towards models that tend to
perform very well individually (e.g.,logitboost, rf or gkridge). Instead,PSMSattempts to find the
best full model for each data set.

6. We do not show those preferred byPATSMSbecause the methods selected with this strategy are, most of the times,
those considered in the initial solution. In our experiments we found that for each replicationPATSMSused the
same classifier and feature selection method for about 95% of the search iterations. The selection of these methods
depended on the initial solution instead of the way the search space is explored or the individual performance of the
methods. Therefore, no useful information can be obtained about why some methods are preferred over others, even
when in average (over the 90,900 solutions tried) the histograms may looksimilar to those shown in Figure 2.

420

PARTICLE SWARM MODEL SELECTION

k CV-BER test-BER test-BER* Time

2 25.36+−0.56 22.99+−1.18 25.79+−0.59 4166.85
5 25.18+−0.59 20.50+−1.53 26.30+−0.46 6062.56
10 24.54+−0.63 20.82+−1.74 26.03+−0.51 7737.11

Table 5: AverageCV-BER(average CV result over all particles and iterations),test-BER(test result
corresponding to the best CV result),test-BER*(average test result over all particles and
iterations) and processing time (in seconds) for different values ofk in the k−fold CV.
Results are averaged over a single replication of each data set described in Table 3.

4.2 Parameter Selection forPSMS

In this section we analyze the performance ofPSMSunder different settings. The goal is to identify
mechanisms inPSMSthat allow us obtaining competitive models and, to some extent, avoiding
overfitting. For the experiments described in this section we consider a singlereplication for each
data set. As before, we show the averageCV error of the solutions considered during the search
as well as the error of the selected model in the test set. We also show the average test set error
of all solutions tried through the searchtest-BER∗ (averaging performed over all particles and all
iterations), providing information about the generalization performance ofthe models considered
throughout the search.

4.2.1 VALUE OF K IN K -FOLD CV

First we analyze the behavior ofPSMSfor different values ofk in theCV for computing the fitness
function. We consider the valuesk = [2,5,10]. Average results of this experiment are shown in
Table 5.

From this table, we can see that the performance is similar for the different values ofk consid-
ered. The best results at the end of the search are obtained withk = 5 (column 3 in Table 5), while
the best generalization performance is obtained withk = 2 (column 4 in Table 5). However, these
differences are not statistically significant. Therefore, the null hypothesis that models selected with
k = [2,5,10] perform equally intest-BERandtest-BER*cannot be rejected. The latter is an impor-
tant result because by usingk = 2 the processing time ofPSMSis considerably reduced. Note that
for models of quadratic (or higher order) complexity, computing the fitness function with 2−fold
CV is even more efficient than computing the fitness function using the full trainingset. It is not sur-
prising that processing time increases as we increasek (column 5 in Table 5). Although it is worth
mentioning that the variance in processing time was very large (e.g., fork = 2 it took 7 minutes
applyingPSMSto thetitanic data set and about five hours for theimagedata set).

4.2.2 NUMBER I OF ITERATIONS

Next we performed experiments varying the number of iterations (I), using 2− f old CV for comput-
ing the fitness function and a swarm size ofm= 10. We considered the valuesI = [10,25,50,100].
Averaged results for this experiment are shown in Table 6 (rows 2 - 5). As we can see the best results
were obtained by runningPSMSfor 50 iterations. Interestingly, models selected by runningPSMS
for 10 iterations outperformed those selected after 100 iterations intest-BER, though the difference

421

ESCALANTE, MONTES AND SUCAR

Setting CV-BER test-BER test-BER*

I=10 25.33+−0.33 22.17+−1.81 27.64+−0.52
I=25 25.29+−0.33 21.88+−1.68 27.59+−0.49
I=50 24.02+−0.38 21.12+−1.74 26.72+−0.65
I=100 24.57+−0.37 22.81+−1.44 27.27+−0.48

m=5 24.27+−0.49 20.81+−1.50 25.01+−0.85
m=10 25.07+−0.34 21.64+−2.04 25.99+−0.74
m=20 25.09+−0.34 21.76+−1.84 26.00+−0.64
m=40 24.82+−0.43 21.45+−2.13 25.96+−0.78
m=50 25.32+−0.44 22.54+−1.65 26.11+−0.77

W=(0,0,0) 23.86+−0.71 20.40+−1.71 22.46+−1.32
W=(1.2,0.5,0.5) 24.22+−0.76 19.41+−1.37 23.38+−1.34

W=(1,1,1) 27.62+−0.30 21.88+−1.68 27.13+−0.53

Table 6: AverageCV-BER, test-BERandtest-BER*for different settings ofm, I andW. The best
results are shown inbold. Results are averaged over a single replication of each data set
described in Table 3.

was not statistically significant. The difference in performance between models selected after 50
and 100 iterations was statistically significant. This result shows the fast convergence property of
PSMSand that early stopping could be an useful mechanism to avoid overfitting, see Section 5.

4.2.3 SWARM SIZE M

In the next experiment we fixed the number of iterations toI = 50 and varied the swarm size as fol-
lows,m= [5,10,20,40,50]. Results of this experiment are shown in rows 6-10 in Table 6. This time
the best result was obtained by using a swarm size of 5, however there isa statistically-significant
difference only betweenm= 5 andm= 50. Therefore, models of comparable performance can be
obtained by usingm= [5,10,20,40]. This is another interesting result because using a small swarm
size reduces the number of fitness function evaluations forPSMSand therefore makes it more prac-
tical. An interesting result is that by using 50 iterations with any swarm size thetest-BERis very
close to theCV-BERestimate. Again, this provides evidence that early stopping can improve the
average generalization performance of the models.

4.2.4 INERTIA WEIGHT W

We also performed experiments with different configurations forW, the adaptive inertia weight.
Each configuration is defined by a tripletW = (wstart,wf ,wend), whose elements indicate the starting
value forW, the proportion of iterations to vary it and its final value, respectively, see Section 2.
Three configurations were tried with the goal of evaluating the advantagesof using an adaptive
inertia weight instead of constant values. Results of this experiment are shown in rows 11-13 in
Table 6. It can be seen that the best results inCV-BERandTest-BER∗ were obtained withW =
(0,0,0); the differences with the other results are statistically-significant. Under thisconfiguration
PSMSis not taking into account information from past velocities for updating solutions; which
causesPSMSto converge quickly into a local minimum and refining the search around this point.

422

PARTICLE SWARM MODEL SELECTION

Figure 3: Algorithm performance as a function of number of iterations for different configurations
of W. CV-BER(circles) andtest-BER*(crosses) for theHeart data set. We are display-
ing the test and CV BER values for each particle at every time step. Since each time step
involves m=5 particles, then for each iteration are displayed m=5 crosses and m=5 cir-
cles. We consider the following configurations:W = (0,0,0) (left), W = (1.2,0.5,0.4)
(middle) andW = (1,0,1) (right). TheCV-BERandtest-BERof the best solution found
by PSMSare enclosed within a bold circle.

The best result at the end of the search (column 3 in Table 6) was obtainedwith W = (1.2,0.5,0.4),
the difference with the other results is statistically-significant. Under this configuration both global
and local search is performed during thePSMSiterations; which caused higherCV-BERandtest-
BER∗ than that of the first configuration, however, the generalization performance of the final model
was better. The configurationW = (1,0,1) obtained the worst results in all of the measures; this is
because under this configuration the search is never refined, sincePSMSalways takes into account
the past velocity for updating solutions. The latter configuration could be a better choice forFMS
because this wayPSMSdoes not over-search around any solution; however, local searchis also
an important component of any search algorithm. In Figure 3 we show theCV and testBERof
solutions tried during the search for theHeart data set under the different configurations tried.
From this figure we can appreciate the fact that using constant values for W results in more local
(whenW = (0,0,0)) or global search (whenW = (1,0,1)). An adaptive inertia weight, on the other
hand, aims to control the tradeoff between global and local search, which results in a model with
lower variance for this example. Therefore, an adaptive inertia weight seems to be a better option
for FMS; this is because it prevents, to some extend,PSMSto overfit the data. However, further
experiments need to be performed in order to select the best configurationfor W.

4.2.5 INDIVIDUAL (c1) AND GLOBAL (c2) WEIGHTS

We now analyze the performance ofPSMSunder different settings of the individual (c1) and global
(c2) weights. We considered three configurations forc1 andc2; in the first one both weights have the
same influence in the search (i.e.,c1 = 2;c2 = 2), this was the setting used for all of the experiments
reported in Section 4. In the second setting the local weight has no influence in the search (i.e.,
c1 = 0;c2 = 2), while in the third configuration the global weight is not considered in the search
(i.e.,c1 = 2;c2 = 0). We ranPSMSfor I = 50 iterations with a swarm size ofm= 5, using a single

423

ESCALANTE, MONTES AND SUCAR

ID Setting CV-BER test-BER test-BER*

1 c1 = 2;c2 = 2 23.69+−0.68 19.72+−1.45 23.92+−1.16
2 c1 = 0;c2 = 2 26.87+−0.43 22.42+−1.32 27.13+−0.55
3 c1 = 2;c2 = 0 24.99+−0.41 21.73+−1.42 25.59+−0.66

Table 7: AverageCV-BER, test-BERandtest-BER*for different settings ofc1 andc2 in Equation
(1). The best results are shown inbold. Results are averaged over a single replication of
each data set described in Table 3.

Figure 4: Performance ofPSMSas a function of number of iterations using different settings for
c1 andc2, see Table 7. We show theCV-BER(left) andTest-BER(right) for a single
replication of theHeart data set.PSMSwas ran forI = 25 iterations in this experiment.
The models selected with each configuration are indicated with arrows.

replication for each data set described in Table 3; for the three configurations considered it was used
the same adaptive inertia weightW = (1.2,0.5,0.4); averaged results of this experiment are shown
in Table 7.

From this table we can see that the best performance is obtained by assigning equal weights
to both factors. The difference in performance is statistically-significant over all measures with
respect to the other two configurations. Therefore, by using the first configuration we can obtain
solutions of better performance through and at the end of the search. More importantly, solutions
of better generalization performance can be obtained with this configuration as well. The difference
in performance is higher with the second configuration, where the individual-best solutions have
no influence in the search; therefore,PSMSis searching locally around the global best solution. In
the third configuration the global-best solution has no influence in the search; in consequence, the
search is guided according them−individual-best solutions. For illustration in Figures 4 and 5 we
show the performance ofPSMSas a function of the number of iterations for a single replication of
theHeartdata set. In Figure 4 we show the performance ofPSMSfor I = 25 iterations and in Figure
5 for I = 100 iterations.

From these figures we can see that theCV estimate is very similar for the different settings we
considered (left plots in Figures 4 and 5). However, by looking at the performance of the solutions
in the test set (right plots in Figures 4 and 5), we can appreciate that configurations 2 and 3 overfit

424

PARTICLE SWARM MODEL SELECTION

Figure 5: Performance ofPSMSas a function of number of iterations using different settings for
c1 andc2, see Table 7. We show theCV-BER(left) andTest-BER(right) for a single
replication of theHeart data set.PSMSwas ran forI = 100 iterations in this experiment.
The models selected with each configuration are indicated with arrows.

the data (red circles and green squares). Withc1 = 0 we have that them= 5 particles converge to
single local minima, performing a fine grained search over this solution (red circles). Withc2 = 0
each of them−particles converge to different local minima, overdoing the search over each of the
m solutions (green squares). On the other hand, with the configurationc1 = 2, c2 = 2 PSMSis not
trapped into a local minimum (blue triangles); searching around promising solutions, but without
doing a fine grained search over any of them.

Better models (indicated by arrows) are selected byPSMSwith the first configuration, even
when theirCV is higher than that of the models selected with the other configurations. This result
confirms thatPSMSis overfitting the data with the configurations 2 and 3. Note that withI = 25
iterations (Figure 4) the first configuration is not converging to a local minimum yet; while with
I = 100 iterations (Figure 5) it looks likePSMSstarts searching locally at the last iterations. This
result illustrates why early stopping can be useful for obtaining better modelswith PSMS.

In order to better appreciate the generalization performance for the different configurations, in
Figure 6 we plot theCV-BERas a function oftest-BERfor the run ofPSMSwith I = 25, we plot
each particle with a different color.

From this figure we can see that the best model is obtained with the first configuration; for the
configurations 2 and 3 the particles obtain the sametest-BERfor different solutions (middle and
right plots in Figure 6). Despite theCV estimate is being minimized for these configurations, the
test-BERperformance of models does not improve. It is clear from the right plot in Figure 6 that
with c2 = 0 each particle is trapped in different local minima, doing a fine grained search over them
that causesPSMSto overfit the data. It also can be seen from the middle plot that withc1 = 0
the search is biased towards a single global-best solution (magenta circle),again, causingPSMSto
overfit the data. On the other hand, results with the first configuration (left plot in Figure 6) show
that particles do not oversearch at any solution.

4.3 Results on the Model Selection Challenge

In this section we describe experimental results ofPSMSin the framework of a model selection
competition calledagnostic learning vs. prior knowledge challenge(ALvsPK) (Guyon et al., 2007,

425

ESCALANTE, MONTES AND SUCAR

Figure 6: Test-BERas a function ofCV-BERfor a run ofPSMSfor I = 25 iterations in theHeart
data set. Results with different configurations forc1 andc2 are shown. Left:c1 = 2,
c2 = 2. Middle: c1 = 0, c2 = 2. Right:c1 = 2, c2 = 0. In each plot each particle is shown
with a different color. The selected model with each configuration is indicated with an
arrow.

2008). The goal of these experiments is to compare the performance ofPSMSagainst other model
selection strategies that work for a single algorithm or that use domain knowledge for this task.
Through its different stages, theALvsPKcompetition evaluated novel strategies for model selection
as well as the added value of using prior knowledge for improving classification accuracy (Guyon
et al., 2008). This sort of competitions are very useful because through them the real effectiveness
of methods can be evaluated; motivating further research in the field and collaborations among
participants.

4.3.1 CHALLENGE PROTOCOL AND CLOP

The rules of the challenge were quite simple, the organizers provided five data sets for binary clas-
sification together with theCLOP toolbox (Saffari and Guyon, 2006). The task was to obtain the
model with the lowestBERover the five data sets on unseen data. Participants were free to elect
usingCLOPor their own learning machine implementations. The challenge is over now, although
the challenge website7 still remains open, allowing the evaluation of learning techniques and model
selection methods. A complete description of the challenge and a comprehensive analysis of the
results are described by Guyon et al. (2006c, 2007, 2008).

The competition was divided into two stages. The first stage, calledthe model selection game
(Guyon et al., 2006c), was focused on the evaluation of pure model selection strategies. In the sec-
ond stage, the goal was to evaluate the gain we can have by introducing prior knowledge into the
model selection process (Guyon et al., 2007, 2008). In the latter stage participants could introduce
knowledge of the data domain into the model selection process (prior knowledge track). Also, par-
ticipants could use agnostic methods in which no domain knowledge is considered in the selection
process (agnostic track).

The data sets used in the agnostic track of theALvsPKchallenge are described in Table 8, these
data sets come from real domains. Data sets used for the agnostic and priorknowledge tracks were

7. Seehttp://www.agnostic.inf.ethz.ch/ .

426

PARTICLE SWARM MODEL SELECTION

different. For the agnostic track the data were preprocessed and dummy features were introduced,
while for the prior knowledge track raw data were used, together with a description of the domain.
We should emphasize that, although all of the approaches evaluated in theALvsPKcompetition
faced the same problem (that of choosing a model that obtains the lowest classification error for
the data), such methods did not adopt theFMS interpretation. Most of the proposed approaches
focused on a fixed machine learning technique like tree-based classifiers(Lutz, 2006), or kernel-
based methods (Cawley, 2006; Pranckeviciene et al., 2007; Guyon et al., 2008), and did not take
into account feature selection methods. Participants in the prior knowledge track could introduce
domain knowledge. Furthermore, most of participants used their own implementations, instead of
theCLOPtoolbox.

After the challenge, the CLOP toolkit was augmented with methods, which performed well
in the challenge (Cawley, 2006; Cawley and Talbot, 2007a; Lutz, 2006). These include Logit-
boost (Friedman et al., 2000), LSSVM (Suykens and Vandewalle, 1999), and kernel ridge regres-
sion (Saunders et al., 1998; Hastie et al., 2001).

4.3.2 COMPETITIVENESS OFPSMS

In both stages of the competition we evaluated models obtained withPSMSunder different settings.
Models obtained byPSMSwere ranked high in the participants list, showing the competitiveness of
PSMSfor model selection (Guyon et al., 2006c, 2007, 2008; Escalante et al., 2007). Furthermore,
the difference with methods that used prior knowledge was relatively small, showing thatFMS
can be a viable solution for the model selection problem without the need of investing time in
introducing domain knowledge, and by considering a wide variety of methods.

The results ofPSMSin theALvsPKchallenge have been partially analyzed and discussed else-
where (Escalante et al., 2007; Guyon et al., 2007, 2008). During the challenge, our best entry (called
Corrida-final) was ranked8 8th over all ranked participants, 5th among the methods that did not use
domain knowledge and 2nd among the methods that used the software provided by the organizers
(Guyon et al., 2006c, 2007, 2008). ForCorrida-finalwe usedk= 5 and the full training set for com-
puting the fitness function; we ranPSMSfor 500 iterations for theAdadata set and 100 iterations
for Hiva, Gina andSylva. We did not appliedPSMSto theNovadata set in that entry, instead we
selected a model forNovaby trial and error. For such entry we used a version ofCLOPwhere only
there were available the following classifierszarbi, naive, neuralandsvc(Escalante et al., 2007);
also, only four feature selection methods were considered.

4.3.3 POST-CHALLENGE EXPERIMENTS

In the rest of this section we present results ofPSMSusing the augmented toolkit, including all
methods described in Tables 1 and 2. In these tables we consider implementations of logitboost,
lssvm and gkridge,which are the classifiers that won theALvsPKchallenge (Cawley, 2006; Cawley
and Talbot, 2007a; Lutz, 2006) and were added to CLOP after the end ofthe challenge.

In order to efficiently applyPSMSto the challenge data sets we adopted a subsample strategy
in which, instead of using the full training set, small subsamples of the training data were used
to compute the fitness function. Each time the fitness function is computed we obtain adifferent
random sample of sizeSsub = N

SF, whereN is the number of instances andSF is a constant that
specifies the proportion of samples to be used. Subsamples are only used for the search process. At

8. Seehttp://www.clopinet.com/isabelle/Projects/agnostic/ Results.html .

427

ESCALANTE, MONTES AND SUCAR

Data set Domain Type Features Training Validation Testing

Ada Marketing Dense 48 4174 415 41471
Gina Digits Dense 970 3153 315 31532
Hiva Drug discovery Dense 1617 3845 384 38449
Nova Text classification Sparse binary 16969 1754 175 17537
Sylva Ecology Dense 216 13086 1309 130857

Table 8: Benchmark data sets used for the model selection challenges (Guyon et al., 2006c, 2007,
2008).

Data SF Model Time (m) Test-BER

Ada 1 chain({logitboost(units=469,shrinkage=0.4,depth=1),bias} 368.12 16.86
Gina 2 chain({sns(1),relief(fmax=487),gkridge,bias} 482.23 2.41
Hiva 3 chain({norm(1),rffs(fmax=1001),lssvm(gamma=0.096),bias} 124.54 28.01
Nova 1 chain({rffs(fmax=338),norm(1),std(1),sns(1),gkridge,bias} 82.12 5.27
Sylva 10 chain({sns(1),odds-ratio(fmax=60),gkridge,bias} 787.58 0.62

Table 9: Models selected withPSMSfor the data sets of theALvsPKchallenge. For each data set we
show the subsampling factor used (SF), the selected model (Model, some hyperparameters
are omitted for clarity), the processingTime in minutes and thetest-BERobtained.snsis
for shit-scale, std is for standardizeandnorm is for normalize. See Tables 1 and 2 for a
description of methods and their hyperparameters.

the end of the search the selected model is trained using the full training set (for the experiments
reported in this paper we considered as training set the union of the trainingand validation data
sets, see Table 8). Due to the dimensionality of theNovadata set we applied principal component
analysis to this data set. Then we used the first 400 components for applyingPSMS. We fixedk = 2,
I = 50 andm = 5 for our experiments based on the results from previous sections. Then we ran
PSMS for all of the data sets under the above described settings using different values forSF. The
predictions of the resultant models were uploaded to the challenge website in order to evaluate them.
Our best ranked entry in theALvsPKchallenge website (calledpsmsxjmlr run I) is described in
Table 9, and a comparison of it with the currently best-ranked entries is shown in Table 10.

We can see from Table 9 that very different models were selected byPSMSfor each data set.
This is the main advantage theFMS because it allows us selecting an ad-hoc model for each data
set by considering different model types and a wide diversity of methods. With exception ofAda,
the selected models included a feature selection method; this result shows the importance of feature
selection methods and that some of them are more compatible than others with some classifiers;
note that different numbers of features were selected for each data set. In all but theNovadata set
preprocessing was performed before feature selection. This can be due to the fact that forNova
we used principal components instead of the original features. ForAda it was selected alogitboost
classifier, while forHiva it was selected alssvmclassifier with gaussian kernel. ForGina, Nova
andSylvait was selected thegkridgeclassifier; this classifier performs virtual leave-one out model
selection each time it is trained (Cawley et al., 2007). Note that bothgkridgeand logitboostwere
the classifiers that best performed during the challenge (Guyon et al., 2007, 2008); this result gives

428

PARTICLE SWARM MODEL SELECTION

evidence thatPSMScan obtain similar and even better models, without spending time on ad-hoc
modifications for each data set and without using domain knowledge.

The use of the subsampling strategy allowed to efficiently applyPSMSto all of the data sets.
About six hours were required to obtain a competitive model forAda, while about only two for
the Hiva data set. Note that applyingPSMSfor Hiva using the entire training set (Corrida-final)
took about 80 hours in the same machine (Escalante et al., 2007). During our experiments we
found that the larger the subsamples the better the performance of the selected model. However, the
selection ofSFalso depends on the available computer resources and time restrictions. Oneshould
note that we can increase speed ofPSMSby caching intermediate results that can be reused (e.g.,
preprocessing the data sets off-line).

Despite the use of the subsampling technique the models selected withPSMSresulted very
competitive as shown in Table 10. Currently, thePSMSrun is the top-ranked agnostic entry in the
challenge website; furthermore, the performance of this entry is superiorthan all but one prior-
knowledge entry:Interim-all-prior; which is the best ranked entry overall, using “prior knowledge”
or “domain knowledge”. Note that the latter entry is formed of models that weredesigned ad-
hoc for each data set, requiring much more time, effort and knowledge thanPSMS. In average
PSMSoutperforms the best results presented in theALvsPKchallenge:IJCNN07AL, row 4 in Table
10 (Guyon et al., 2007); and the best-ranked agnostic entry (afterPSMS): Logitboost-with-trees,
row 5 in Table 10 (Lutz, 2006).

The performance ofPSMSis very close to that ofIJCNN07AL, tieing inSylvaand outperforming
one to the other in two data sets.PSMSoutperformsLogitboost-with-treesin three out of the five
data sets and achieves very close performance for the other two data sets. The latter entry is ranked
10th in the challenge website. It is very interesting that for theAdadata set the best model so far is a
logitboostclassifier with about 1000 trees (Lutz, 2006); while withPSMSwe were able to achieve
almost the same performance by using a half that number of trees, see row 2in Table 9. This is
important because simpler models of similar performance can be obtained withPSMS.

PSMSclearly outperformed our best-ranked entry during the challenge (row 6in Table 10); this
result gives evidence that we obtained better results by using more and better classifiers; also, the
use of subsamples instead of the entire training set (when computing the fitness function), does not
damage the performance ofPSMS, although the reduction in processing time is very important. Note
that forNovathePSMSentry obtained a slightly worse result than that ofCorrida-final; however,
the model forNova in Corrida-final was selected by trial and error which required of much more
effort and time.

Results reported in this section show the efficacy ofPSMSfor model selection. Despite its sim-
plicity it has shown comparable and even superior performance to those obtained by other model
selection strategies that focused on a single learning algorithm and to methodsthat used prior do-
main knowledge for guiding the model selection process (Lutz, 2006; Reunanen, 2007; Boullé,
2007; Pranckeviciene et al., 2007; Wichard, 2007). Models selected with PSMSare simple and yet
very competitive; furthermore, withPSMSno knowledge is needed on the methods to choose from,
nor on the domain. In consequence, it is very easy to obtain classifiers that can achieve state-of-the-
art performance without spending time on designing, developing and optimizing an ad-hoc model.
Even thoughPSMScan be applied to any binary classification problem, we are not claiming it will
obtain satisfactory results in every domain; however, it can be considered as a first option when
dealing with binary classification tasks. It is expected that this will further improve the performance
of models selected withPSMSif domain knowledge is used.

429

ESCALANTE, MONTES AND SUCAR

Entry Description Ada Gina Hiva Nova Sylva Overall Rank

Interim-all-prior Best-PK 17.0 2.33 27.1 4.71 0.59 10.35 1th

psmsxjmlr run I PSMS 16.86 2.41 28.01 5.27 0.62 10.63 2nd

IJCNN07AL Best-AL 16.60 3.39 28.27 4.56 0.62 10.68 4th

Logitboost-with-trees Best-AL 16.60 3.53 30.18 4.69 0.78 11.15 10th

Corrida-final Best-PSMS-ALvsPK 18.27 6.14 28.54 5.11 1.22 11.86 42th

Table 10: Comparison of models selected withPSMSand the best entries in theALvsPKchallenge
data sets. We show, for reference, the best prior-knowledge entry (Interim-all-prior);
the entry formed by the models described in Table 9 (psmxjmlr run I); the best individ-
ual entries for each data set in theALvsPKchallenge(IJCNN07AL) (Guyon et al., 2007,
2008); the second-best entry of the agnostic track (Logitboost-with-trees) and our best
ranked entry evaluated during the challengeCorrida-final. The best results in the agnos-
tic track are shown inbold.

5. Discussion

In this section, we discuss the advantages and disadvantages ofPSMSand perform a synthesis of our
experiments aiming at better understanding howPSMSperforms intensive search in hyperparameter
space without overfitting the data.

5.1 Robust and Computationally Tractable Intensive Search

In Section 4 we reported experimental results that give evidence of the validity of the PSMSap-
proach, demonstrating in particular thatPSMScan outperformPATSMSthrough and at the end of
the search, showing better convergence behavior and generalization performance. This is obtained
at the expense of moderate additional computational complexity. This claim is supported by the
theoretical analysis of the computational complexity (Section 3.4), indicating that computations are
dominated by the number of learning machine trainings, and by the experiments (Section 4.2), in-
dicating as few as 5 particles (learning machines) and 10 iterations (i.e., 50 trainings) are needed to
attain the best performance. The efficiency ofPSMScan be improved, for instance by preferably
exploring learning machines, which have a lower computational cost of training. We explored suc-
cessfully other heuristics, including subsampling training data, which reduced computations, at the
expense of no performance degradation.

An analysis of the diversity of models tried byPSMSshows that this method is not biased to-
wards models that tend to perform well individually. Investigating the operation of PSMSunder
different settings we found that the performance ofPSMSis not significantly affected by modify-
ing its hyperparameters. However, experimental results indicate that the use of an adaptive inertia
weight may be helpful to explore the search space better.We also observed that certain parameter
configurations allow the selection of competitive models, while reducing processing time. Section
5.4 provides a final set of practical recommendations.

Results of international competitions suggest thatPSMSis competitive with model selection
strategies specific to single algorithms and to strategies using prior domain knowledge. The latter is
an important result because it shows that we can obtain competitive models without the need of an
expert on the domain, a careful analysis to the data, or even machine learning knowledge.

430

PARTICLE SWARM MODEL SELECTION

5.2 Intensive Search without Overfitting

The findings summarized above provide empirical evidence suggestingPSMSis a reliable strategy
for agnostic model selection. However, it is not obvious whyPSMSsucceeds in selecting com-
petitive models without significantly overfitting data. Our hypothesis is thatPSMSis able to avoid
overfitting because of the way the search is guided:PSMSperforms a broad search around promising
solutions without focusing on reaching local minima. Solutions inPSMSare updated by taking into
account information from both: the global-best solution (pg, weighted byc2) and the individual-best
solutions of each particle (p1,...,m, weighted byc1), see Equations (1) and (2). The latter combined
with an adaptive inertia weight and early stopping cause do not exaggerate the search at any local
minima. Methods likePATSMS, on the contrary, update solutions by moving the pattern towards
the local minimum nearest the initial solution, see Algorithm 2. Reaching exactly alocal minimum
causesPATSMSto learn peculiarities in the data set and does not necessarily result in obtaining a
better predictive model.

The experiments we performed in Section 4.2.5 support the above conjecture. The results from
Table 7 and Figures 4, 5 and 6 indicate thatPSMSis able to avoid overfitting (to some extend)
because of the way the search is guided.PSMSsearches around good solutions without overdoing
in terms of really fine-grained optimization. This sort of search can be considered as suboptimal in
Dietterich’s sense:“In machine learning it is optimal to be suboptimal!”(Dietterich, 1995). The
latter statement makes reference to the well known fact that oversearching (i.e., trying to be optimal)
in model selection can lead to select models that fit very well the peculiarities ofthe considered data
set without deriving a general predictive rule (Dietterich, 1995; Jensen and Cohen, 2000; Quinlan
and Cameron-Jones, 1995; Hastie et al., 2001; Loughrey and Cunningham, 2005). On the contrary,
PSMSis able toundercomputebecause for updating solutions it considers local and global knowl-
edge, information from past solutions (weighted by the inertia term) and randomness; note that the
latter holds when a reasonable small number of iterations is performed. Furthermore, our experi-
mental results provide empirical evidence that agrees with recent, yet traditional, explanations about
why and howPSOworks (Kennedy, 2008; Kennedy and Eberhart, 2001). Kennedy has argued the
success ofPSOis due to the fact that it performs a“collaborative trial and error” search (Kennedy,
2008). That is,PSOobtains good results mainly because the search is directed according both indi-
vidual and social knowledge; the same conclusion derived from experimental results in this section.
It is not surprising that distributed and collaborative computing can improveresults of centralized
(individualized) methods. ForFMS, however, it is very interesting that updating solutions in a het-
erogeneous way allows us to avoid oversearching and, in consequence, overfitting; even when the
FMSsearch space is infinite and has many local minima solutions.

5.3 Comparison with Related Work

A variety of approaches have been proposed to select parameters of specific methods for regression,
classification, feature selection, discretization etcetera (Hastie et al., 2001;Bishop, 2006; Voss and
Feng, 2002; Nelles, 2001; Guyon et al., 2006b; Kim et al., 2002; Hastie et al., 2001; Cawley and
Talbot, 2007b; Boulĺe, 2007; Hue and Boullé, 2007). However, despite the potential advantages of
FMS (namely generality, simplicity and competitiveness), this problem has been little studied be-
cause of the huge search space involved and because intensive search methods are prone to overfit
the data (Gorissen et al., 2008; Escalante et al., 2007). Nevertheless, inthe rest of this section we
outline techniques used to avoid oversearching/overfitting in search that are applicable/related to

431

ESCALANTE, MONTES AND SUCAR

FMS. One should note that traditional model selection techniques just like Akaike and Bayesian in-
formation criteria, the minimum description length principle and theVC-dimension are not directly
applicable toFMSand therefore they are excluded of analysis.

Grid search (withCV) is the widely used search-approach to model selection in practical appli-
cations (Momma and Bennett, 2002; Hsu et al., 2003). This method consists ofdefining a uniform
grid over the search space where each point in the grid defines a solution; every point in the grid
is evaluated and the point of lowest error is selected. The granularity of the grid determines both
the performance of the selected solution and the efficiency of the search.A fine-grained grid may
be inefficient and can lead to oversearching; while a sparse grid will result in low performance
models. Note that the heterogeneousness of models and the variety of ranges for the models pa-
rameters make very difficult the application of grid search to theFMS problem; furthermore, the
choice of an adequate granularity can be a serious problem. Other methods already used for pa-
rameter optimization that can be applied toFMS include: greedy search (Dietterich, 1995), random
search (e.g., the bumping technique) (Hastie et al., 2001),PS(Bi et al., 2003; Momma and Bennett,
2002), evolutionary computation approaches (Engelbrecht, 2006; Gorissen et al., 2008; Angeline,
1998), and other swarm-optimization techniques (Kennedy and Eberhart,2001; Engelbrecht, 2006).
Note that despite one may think that exhaustive search is the best search option in model selection,
this approach is impractical for most real world problems and when applicable it suffers from the
oversearching phenomenon (Dietterich, 1995).

Early stopping has been widely used to prevent overfitting in search methods (Hastie et al.,
2001; Engelbrecht, 2006; Loughrey and Cunningham, 2005). The goal of this heuristic is to stop
searching/learning when the model starts overfitting the data. There are several variants to stop
the search: after a small number of iterations, when no improvement is foundafter a number of
iterations, when a solution of acceptable performance has been found, etcetera. A problem with
early stopping is that premature stopping the algorithm would lead to selecting a solution that has
not converged yet, while a late stopping of the search will cause severelyoverfitting the data because
of oversearching. ForPSMSwe found that a small number of iterations can be enough to obtain
satisfactory results in benchmark data, although the number of iterations is problem dependent;
therefore, we can adopt other stopping criteria forFMS in the future.

Randomness has bring into play in machine learning in order avoid overfitting and to escape
from local minima in search (Hastie et al., 2001; Bishop, 2006; Kirkpatrick et al., 1983; Kennedy
and Eberhart, 2001). In learning algorithms, it has been successfully used to prevent overfitting and
to obtain better predictors; learning methods that use randomness include bagging classifiers (Hastie
et al., 2001), neural and deep belief networks (Hastie et al., 2001; Hinton et al., 2006) and random-
ized decision-tree algorithms (Breiman, 2001; Geurts et al., 2006). Bootstrapping is a technique
(used in bagging and random forest classifiers) based on random sampling that has been widely
used to estimate the generalization performance of methods as an alternative toCV (Hastie et al.,
2001). InPSMSrandomness played an important role because it introduces diversity into the search
process and allowsPSMSto avoid local minima. Furthermore, the subsampling strategy we used to
increase the speed ofPSMSis related to bootstrapping; in future work onPSMSwe will explicitly
consider different subsampling estimations for the selection of the final model.

As the adaptive inertia weight inPSO, see Section 2, there are parameters in other algorithms
that aim to avoid overfitting by exploring the search space both globally and locally; examples are
the temperature parameter in simulated annealing (Kirkpatrick et al., 1983) and the momentum term
in on-line gradient descend and backpropagation (Qian, 1999). The ridge in ridge-regression and

432

PARTICLE SWARM MODEL SELECTION

weight decay in neural networks training are also related to the inertia weight. Model averaging
and the use of ensembles have proved to be helpful to improve predictions and avoid overfitting;
this is because different models have different biases that in average result in improved perfor-
mance (Hastie et al., 2001; Bishop, 2006). Future work includes inPSMSconsists of combining
particles in order to improve the performance of the swarm strategy. Finally,adding noise to the
training data is another overfitting avoidance mechanism in model selection thatalso can be used
with PSMS.

5.4 A Practical Guide to PSMS

In this section we describe the wayPSMScan be put in practice in any binary classification problem.
Due to the simplicity and generality of the approach below we describe a practical guide to use the
MatlabR implementation ofPSMS(included in theCLOP toolbox). It is assumed that the user
has available a data set (in MatlabR format) with N samples for binary classification: a matrix
XN×d contains theN training samples of dimensionalityd and a vectorYN×1 their respective labels
(yi ∈ [−1,1]). After downloading and installingCLOP (Saffari and Guyon, 2006),PSMScan be
applied to any data set by typing the followingMatlabR code:

%% load your data into the MatlabR workspace
1: >> load train data.mat;
%% Create A Clop Data-Object
2: >> D = data(X,Y);
%%Create A CLOP PSMS-Object with default parameters
3: >> P = psmsx;
%%Perform PSMS
4: >> [Dat, Res] = train(P, D);
%%Train the selected model with the full training set
5: >> [Odat, TrM] = train(Res.Best Model,D);
%%Create a test data set, note that Yt can be empty
6: >> load test data; Dt = data(Xt ,Yt);
%%Test the selected and trained model on unseen data Dt
7: >> [Pred] = test(TrM, Dt);
%%Estimate the model’s performance on unseen data Dt, ifYt is available
8: >> [BER] = balanced errate(Pred.X, Pred.Y);
%%Analyze the ROC performance of the selected model
9: >> roc(Pred);

Note that steps 1–2 and 5–9 are associated with loading the data and the evaluation of the
selected model, respectively; which are operations not attained toPSMS. Steps 3 and 4 will create
thePSMSobject and will start the search, respectively. Besides the selected model, the output of the
search (Res, line 4), is a structure with useful information about the search process,see thePSMS
documentation (Escalante, In preparation, 2009).

In Section 4.2 were presented experimental results that suggest that there is not significant differ-
ence in performance by modifying most of thePSMShyperparameters. Therefore, one can choose
parameter settings forPSMSthat make practical its application without a significant decrement of
performance. Below are shown recommended values for thePSMShyperparameters. These param-
eters and other options of the current implementation can be modified very simply(Escalante, In
preparation, 2009).

433

ESCALANTE, MONTES AND SUCAR

Recommended PSMS parameters:

Weight for individual best solution c1 = 2
Weight for global best solution c2 = 2
Adaptive inertia weight W = (1.2,0.5,0.4)
Number of iterations I = 50
Swarm size m= 5
Folds inCV k= 2
Subsampling factor SF= 1 (as small as possible in large data sets)

6. Conclusions

In this paper we proposed Particle Swarm Model Selection (PSMS), that is, the application of Parti-
cle Swarm Optimization (PSO) to the problem of Full Model Selection (FMS). Given a data set, the
FMSproblem consists of selecting the combination of preprocessing, feature selection and learning
methods that obtains the lowest classification error.FMS also includes hyperparameter optimiza-
tion for the selected methods. This approach to the model selection problem has the following
advantages. First, the generality of the approach allows us to consider different model types (for
preprocessing, feature selection and learning) and a variety of methods. Second,PSMScan be ap-
plied to any data set, since neither domain knowledge nor machine learning knowledge is required,
therefore it can be considered a black-box model selection method. Third, and most importantly,
competitive and yet simple models can be obtained withPSMS. We provide empirical evidence
that shows thatPSMScan be applied efficiently, without a significant loss of accuracy, by using a
subsampling heuristic and parameter settings that reduce the computational cost.

The simplicity ofPSOand its proven performance, comparable to that of evolutionary algo-
rithms, make this search algorithm well suited forFMS. However, the application of any other
stochastic optimization strategy is also possible. The main advantage ofPSOis that a single equa-
tion for updating solutions is needed, as opposed to evolutionary algorithms where methods for
representation, mutation, cross-over, speciation and selection have to beconsidered. Interestingly,
the way the search is guided inPSMSallows it obtaining competitive models without significantly
overfitting. Experimental results in benchmark data show superior performance ofPSMSwhen
compared to Pattern Search Model Selection (PATSMS), a direct search method that constitutes a
competitive baseline.

Results obtained by models selected withPSMSin the framework of a model selection challenge
show that it is a very competitive model selection method, despite its simplicity and generality.
In such competitions, models selected withPSMSwere always among the top ranking models,
together with methods performing solely hyperparameter selection in a given model family and
methods relying on prior knowledge. This demonstrates that, via the use ofPSO, FMS is a viable
strategy for model selection. This is remarkable because we noted in previous competitions (Guyon
et al., 2005; Guyon et al., 2006b) that each data set had a different best performing method, yet
researchers performingFMS (in an effort to find the model family best suited to a given problem)
were not successful. The participants, which obtained the best results on average over all data sets
restricted themselves to hyperparameter selection in one given model family. In contrast, in this
paper we demonstrated the viability ofFMS using thePSOsearch strategy. Our work paves the

434

PARTICLE SWARM MODEL SELECTION

way to the use of intensive search techniques to performFMS in the entire model space of machine
learning toolkits. With the increasing availability of diverse and sophisticated machine learning
toolkits and the improvements in computing power, we foresee thatFMSwill become an effective
methodology.

Current work includes the use ofPSMSfor the selection of model-members for ensembles and
the hierarchical application ofPSOfor FMSand hyperparameter optimization.PSMSis currently
being applied to different tasks, including galaxy classification, automatic image annotation, object
recognition and text classification. Future work includes the introduction ofa penalty-term into
the fitness function; such that (computationally) inexpensive models be favored by PSMS. The
extension ofPSMSto the multi-class classification and regression problems is another future work
direction.

Acknowledgments

We would like to thank the organizers and participants of the NIPS multi-level inference work-
shop and model selection game, and of theIJCNN ALvsPKchallenge. The first author thanks the
UNIPEN foundation and the US National Science Foundation for travel support. We also thank
editors and anonymous reviewers for their useful comments that have helpus to improve this paper.
We thank Dr. Eduardo Morales for his useful suggestions about the content of the paper. Last, but
not least, we thank Dr. Aurelio Ĺopez and INAOE for the provided support.

References

P. J. Angeline. Evolutionary optimization vs particle swarm optimization: Philosophy and perfor-
mance differences. InProceedings of the 7th Conference on Evolutionary Programming, volume
1447 ofLNCS, pages 601–610, San Diego, CA, March 1998. Springer.

Y. Bengio and N. Chapados. Extensions to metric-based model selection.Journal of Machine
Learning Research, 3:1209–1227, 2003.

J. Bi, M. Embrechts K. P. Bennett, C. M. Breneman, and M. Song. Dimensionality reduction via
sparse support vector machines.Journal of Machine Learning Research, Mar(3):1229–1243, Mar
2003.

C. Bishop.Pattern Recognition and Machine Learning. Springer, 2006.

M. Boullé. Report on preliminary experiments with data grid models in the agnostic learning vs
prior knowledge challgenge. InProceedings of the 20th International Joint Conference on Neural
Networks, pages 1802–1808, 2007.

L. Breiman. Random forest.Machine Learning, 45(1):5–32, 2001.

G. Cawley. Leave-one-out cross-validation based model selection criteria for weighted ls-svms.
In Proceedings of the International Joint Conference on Neural Networks (IJCNN 2006), pages
2970–2977, Vancouver, Canada, July 2006.

435

ESCALANTE, MONTES AND SUCAR

G. Cawley and N. L. C. Talbot. Agnostic learning vs prior knowledge in the design of kernel
machines. InProceedings of the 20th International Joint Conference on Neural Networks, pages
1444–1450, Orlando, Florida, 2007a.

G. Cawley, G. Janacek, and N. L. C. Talbot. Generalised kernel machines. InProceedings of the
20th International Joint Conference on Neural Networks, pages 1439–1445, Orlando, Florida,
2007.

G. C. Cawley and N. L. C. Talbot. Preventing over-fitting during model selection via bayesian
regularisation of the hyper-parameters.Journal of Machine Learning Research, 8:841–861, April
2007b.

M. Clerc and J. Kennedy. The particle swarm: Explosion, stability and convergenge in a multi-
dimensional complex space.IEEE Transactions on on Evolutionary Computation, 6(1):58–73,
February 2002.

J. Demsar. Statistical comparisons of classfifiers over multiple data sets.Journal of Machine Learn-
ing Research, 7:1–30, January 2006.

J. E. Dennis and V. J. Torczon. Derivative-free pattern search methods for multidisciplinary design
problems. InProceedings of the AIAA / USAF / NASA / ISSMO Symposium on Multidisciplinary
Analysis and Optimizatino, pages 922–932, 1994.

T. Dietterich. Overfitting and undercomputing in machine learning.ACM Comput. Surv., 27(3):
326–327, 1995. ISSN 0360-0300.

A. P. Engelbrecht.Fundamentals of Computational Swarm Intelligence. Wiley, 2006.

H. J. Escalante. Particle swarm optimization for classifier selection: A practical guide to psms.
http://ccc.inaoep.mx/ ˜ hugojair/psms/psms_doc.pdf , In preparation, 2009.

H. J. Escalante, M. Montes, and E. Sucar. Psms for neural networks on the ijcnn 2007 agnostic vs
prior knowledge challenge. InProceedings of the 20th International Joint Conference on Neural
Networks, pages 1191–1197, Orlando, FL, USA., 2007.

V. Franc and V. Hlavac. The statistical pattern recognition toolbox.http://cmp.felk.cvut.cz/
cmp/software/stprtool/index.html , 2004.

J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: a statistical view of boosting.
Annals of Statistics, 28(2):337–407, 2000.

P. Geurts, D. Ernst, and L. Wehenkel. Extremely randomized trees.Machine Learning, 63(1):3–42,
2006. ISSN 0885-6125.

T. R. Golub, D. K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. P. Mesirov, H. Coller, M. L.
Loh, J. R. Downing, M. A. Caligiuri, C. D. Bloomeld, and E. S. Lander. Molecular classification
of cancer: class discovery and class prediction by gene expression monitoring. Science, 286:
531–537, October 1999.

D. Gorissen. Heterogeneous evolution of surrogate models. Master’s thesis, Katholieke Universiteit
Leuven, Belgium, June 2007.

436

PARTICLE SWARM MODEL SELECTION

D. Gorissen, L. De Tommasi, J. Croon, and T. Dhaene. Automatic model typeselection with
heterogeneous evolution: An application to rf circuit block modeling. InIEEE Proceedings of
WCCI 2008, pages 989–996, 2008.

V.G. Gudise and G.K. Venayagamoorthy. Comparison of particle swarm optimization and back-
propagation as training algorithms for neural networks. InProceedings of the 2003 IEEE Swarm
Intelligence Symposium, 2003. (SIS03), pages 110–117, 2003.

I. Guyon and A. Elisseeff. An introduction to variable and feature selection. Journal of Machine
Learning Research, 3(Mar):1157–1182, 2003.

I. Guyon, S. Gunn, A. Ben-Hur, and G. Dror. Result analysis of the nips 2003 feature selection
challenge. InAdvances in Neural Information Processing Systems 17, pages 545–552. MIT
Press, Cambridge, MA, 2005.

I. Guyon, S. Gunn, M. Nikravesh, and L. Zadeh, editors.Feature Extraction, Foundations and
Applications. Series Studies in Fuzziness and Soft Computing. Springer, 2006a.

I. Guyon, A. Saffari, G. Dror, and J. M. Buhmann. Performance prediction challenge. InProceed-
ings of the International Joint Conference on Neural Networks (IJCNN2006), pages 2958–2965,
Vancouver, Canada, July 2006b.

I. Guyon, A. Saffari, G. Dror, G. Cawley, and O. Guyon. Benchmarkdatasets and game result
summary. InNIPS Workshop on Multi-level Inference and the Model Selection Game, Whistler,
Canada, December 2006c.

I. Guyon, A. Saffari, G. Dror, and G. Cawley. Agnostic learning vs prior knowledge challenge. In
Proceedings of the 20th International Joint Conference on Neural Networks, pages 1232–1238,
Orlando, Florida, 2007.

I. Guyon, A. Saffari, G. Dror, and Gavin Cawley. Analysis of the ijcnn 2007 competition agnostic
learning vs. prior knowledge.Neural Networks, 21(2–3):544–550, 2008.

T. Hastie, R. Tibshirani, and J. Friedman.The Elements of Statistical Learning: Data Mining,
Inference, and Prediction. Springer Verlag, New York, 2001.

E. Herńandez, C. Coello, and A. Hernández. On the use of a population-based particle swarm
optimizer to design combinational logic circuits. InEvolvable Hardware, pages 183–190, 2004.

G. Hinton, S. Osindero, and Y. Teh. A fast learning algorithm for deep belief nets.Neural Compu-
tation, 18(7):1527–1554, 2006. ISSN 0899-7667.

C. W. Hsu, C. C. Chang, and C. J. Lin. A practical guide to support vector classification. Technical
report, Taipei, 2003. URLhttp://www.csie.ntu.edu.tw/ ˜ cjlin/papers/guide/guide.
pdf .

C. Hue and M. Boulĺe. A new probabilistic approach in rank regression with optimal bayesian
partitioning.Journal of Machine Learning Research, 8:2727–2754, December 2007.

D. Jensen and P Cohen. Multiple comparisons in induction algorithms.Machine Learning, 38(3):
309–338, 2000. ISSN 0885-6125.

437

ESCALANTE, MONTES AND SUCAR

J. Kennedy. How it works: Collaborative trial and error.International Journal of Computational
Intelligence Research, 4(2):71–78, 2008.

J. Kennedy and R. Eberhart. Particle swarm optimization. InProceedings of the International
Conference on Neural Networks, volume IV, pages 1942–1948. IEEE, 1995.

J. Kennedy and R. Eberhart.Swarm Intelligence. Morgan Kaufmann, 2001.

J. Kennedy and R. Mendes. Population structure and particle swarm performance. InProceedings
of the IEEE Congress on Evolutionary Computation (CEC 2002), volume 2, pages 1671–1676,
2002.

Y. Kim, N. Street, and F. Menczer. Evolutionary model selection in unsupervised learning.Intelli-
gent Data Analysis, 6:531–556, 2002.

S. Kirkpatrick, C. Gelatt, and M. Vecchi. Optimization by simulated annealing.Science, 220(4598):
671–680, 1983.

J. Loughrey and P. Cunningham. Overfitting in wrapper-based featuresubset selection: The harder
you try the worse it gets. In F. Coenen M. Bramer and T. Allen, editors,Proceedings of AI-2004,
the Twenty-fourth SGAI International Conference on Innovative Techniques and Applications
of Artificial Intelligence, Research and Development in Intelligent Systems XXI, pages 33–43,
2005.

R. Lutz. Logitboost with trees applied to the wcci 2006 performance prediction challenge datasets.
In Proceedings of the International Joint Conference on Neural Networks (IJCNN 2006), pages
1657– 1660, Vancouver, Canada, July 2006.

S. Mika, G. R̈atsch, J. Weston, B. Schölkopf, A. J. Smola, and K.-R. M̈uller. Invariant feature
extraction and classification in kernel spaces. In S. A. Solla, T. K. Leen, and K.-R. M̈uller, editors,
Advances in Neural Information Processing Systems 12, pages 526–532, Cambridge, MA, 2000.
MIT Press.

M. Momma and K. Bennett. A pattern search method for model selection of support vector regres-
sion. InProceedings of SIAM Conference on Data Mining, 2002.

O. Nelles. Nonlinear System Identification: From Classical Approaches to Neural Networks and
Fuzzy Models. Springer, 2001.

E. Ozcan and C. K. Mohan. Analysis of a simple particle swarm optimization system. InIntelligent
Engineering Systems Through Artificial Neural Networks, pages 253–258, 1998.

E. Pranckeviciene, R. Somorjai, and M. N. Tran. Feature/model selectionby the linear programming
svm combined with state-of-art classifiers: What can we learn about the data. InProceedings of
the 20th International Joint Conference on Neural Networks, pages 1422–1428, 2007.

N. Qian. On the momentum term in gradient descent learning algorithms.Neural Netw., 12(1):
145–151, 1999. ISSN 0893-6080. doi: http://dx.doi.org/10.1016/S0893-6080(98)00116-6.

438

PARTICLE SWARM MODEL SELECTION

J. R. Quinlan and R. M. Cameron-Jones. Oversearching and layered search in empirical learning.
In Proceedings of the 14th International Joint Conference on Artificial Intelligence, pages 1019–
1024, 1995.

G. Rätsch, T. Onoda, and K.-R. M̈uller. Soft margins for adaboost.Mach. Learn., 42(3):287–320,
2001. ISSN 0885-6125. doi: http://dx.doi.org/10.1023/A:1007618119488.

J. Reunanen. Model selection and assessment using cross-indexing.In Proceedings of the 20th
International Joint Conference on Neural Networks, pages 1674–1679, 2007.

M. Reyes and C. Coello. Multi-objective particle swarm optimizers: A surveyof the state-of-the-art.
International Journal of Computational Intelligence Research, 3(2):287308, 2006.

Y. Robinson, J. Rahmat-Samii. Particle swarm optimization in electromagnetics.IEEE Transactions
on Antennas and Propagation, 52(2):397– 407, February 2004.

A. Saffari and I. Guyon. Quickstart guide for clop. Technical report, Graz University of Technology
and Clopinet, May 2006.http://www.ymer.org/research/files/clop/QuickStartV 1.0.
pdf .

J. Salerno. Using the particle swarm optimization technique to train a recurrent neural model. In
Proceedings of the Ninth International Conference on Tools with Artificial Intelligence, pages
45–49, 1997.

C. Saunders, A. Gammerman, and V. Vovk. Ridge regression learning algorithm in dual variables. In
Jude W. Shavlik, editor,Proceedings of the 15th International Conference on Machine Learning,
pages 515–521, Madison, WI, USA, 1998.

Y. Shi and R. C. Eberhart. Parameter selection in particle swarm optimization.In Evolutionary
Programming VII, pages 591–600, New York, 1998. Springer-Verlag.

Y. Shi and R. C. Eberhart. Emprirical study of particle swarm optimization. In Proceedings of the
Congress on Evolutionary Computation, pages 1945–1949, Piscataway, NJ, USA, 1999. IEEE.

S. Sonnenburg. Nips workshop on machine learning open source software. http://www2.fml.
tuebingen.mpg.de/raetsch/workshops/MLOSS06/ , December 2006.

J.A.K. Suykens and J. Vandewalle. Least squares support vector machine classifiers.Neural Pro-
cessing Letters, 9(1):293–300, 1999.

F. van den Bergh.An Analysis of Particle Swarm Optimizers. PhD thesis, University of Pretoria,
Sudafrica, November 2001.

F. van der Heijden, R. P.W. Duin, D. de Ridder, and D. M.J. Tax. Prtools:a matlab based toolbox
for pattern recognition.http://www.prtools.org/ , 2004.

M. Voss and X. Feng. Arma model selection using particle swarm optimization and aic criteria. In
Proceedings of the 15th IFAC World Congress on Automatic Control, 2002.

J. Weston, A. Elisseeff, G. BakIr, and F. Sinz. The spider machine learning toolbox.http://www.
kyb.tuebingen.mpg.de/bs/people/spider/ , 2005.

439

ESCALANTE, MONTES AND SUCAR

J. Wichard. Agnostic learning with ensembles of classifiers. InProceedings of the 20th International
Joint Conference on Neural Networks, pages 1753–1759, 2007.

J. Wichard and C. Merkwirth. Entool - a matlab toolbox for ensemble modeling.http://www.
j-wichard.de/entool/ , 2007.

I. H. Witten and E. Frank.Data Mining: Practical machine learning tools and techniques. Morgan
Kaufmann, San Francisco, 2nd edition, 2005.

D. H. Wolpert and W. G. Macready. No free lunch theorems for optimization. IEEE Transactions
on Evolutionary Computation, 4:67–82, 1997.

H. Xiaohui, R. Eberhart, and Y. Shi. Engineering optimization with particle swarm. In Proceedings
of the 2003 IEEE Swarm Intelligence Symposium, 2003. (SIS03), pages 53–57, 2003.

H. Yoshida, K. Kawata, Y. Fukuyama, S. Takayama, and Y. Nakanishi. Aparticle swarm opti-
mization for reactive power and voltage control considering voltage security assessment.IEEE
Transactions on Power Systems, 15(4):1232–1239, Jan 2001.

440

