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Montréal, Qc, Canada H3A 2A5

Editor: Peter Bartlett

Abstract
Incorporating prior knowledge of a particular task into thearchitecture of a learning algorithm can
greatly improve generalization performance. We study herea case where we know that the function
to be learned is non-decreasing in its two arguments and convex in one of them. For this purpose we
propose a class of functions similar to multi-layer neural networks but (1) that has those properties,
(2) is a universal approximator of Lipschitz1 functions with these and other properties. We apply
this new class of functions to the task of modelling the priceof call options. Experiments show
improvements on regressing the price of call options using the new types of function classes that
incorporate thea priori constraints.

Keywords: neural networks, universal approximation, monotonicity,convexity, call options

1. Introduction

Incorporatinga priori knowledge of a particular task into a learning algorithm helps reduce the nec-
essary complexity of the learner and generally improves performance, if the incorporated knowledge
is relevant to the task and brings enough information about the unknown generating process of the
data. In this paper we consider prior knowledge on the positivity of some first and second deriva-
tives of the function to be learned. In particular such constraints have applications to modelling

1. A function f is Lipschitz inΩ if ∃c > 0, ∀x,y∈ Ω, | f (y)− f (x)| ≤ c|y−x| (Delfour and Zoĺesio, 2001).
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the price of stock options. Based on the Black-Scholes formula, the price of a call stock option
is monotonically increasing in both the “moneyness” and time to maturity of the option,and it is
convex in the “moneyness”. Section 4 better explains these terms and stock options. For a function
f (x1,x2) of two real-valued arguments, this corresponds to the following properties:

f ≥ 0,
∂ f
∂x1

≥ 0,
∂ f
∂x2

≥ 0,
∂2 f

∂x2
1

≥ 0. (1)

The mathematical results of this paper (Section 2) are the following: first we introduce a class of
one-argument functions that is positive, non-decreasing and convexin its argument. Second, we
use this new class of functions as a building block to design another class offunctions that is a
universal approximator for functions with positive outputs. Third, onceagain using the first class
of functions, we design a third class that is a universal approximator to functions of two or more
arguments, with the set of arguments partitioned in two groups: those arguments for which the
second derivative is known positive and those arguments for which we have no prior knowledge on
the second derivative. The first derivative is positive for any argument. The universality property of
the third class rests on additional constraints on cross-derivatives, which we illustrate below for the
case of two arguments:

∂2 f
∂x1∂x2

≥ 0,
∂3 f

∂x2
1∂x2

≥ 0. (2)

Thus, we assume thatf ∈ C 3, the set of functions three times continuously differentiable. Compara-
tive experiments on these new classes of functions were performed on stock option prices, showing
improvements when using these new classes rather than ordinary feedforward neural networks. The
improvements appear to be non-stationary but the new class of functions shows the most stable
behavior in predicting future prices. Detailed experimental results are presented in section 6.

2. Theory

Definition 1 A class of functionsF̂ from R
n to R is a universal approximator for a class of

functionsF from R
n to R if for any f ∈ F , any compact domain D⊂ R

n, and any positiveε, one
can find af̂ ∈ F̂ with supx∈D | f (x)− f̂ (x)| ≤ ε.

It has already been shown that the class of artificial neural networks with one hidden layer:

N̂ =

{

f (x) = w0 +
H

∑
i=1

wi ·h
(

bi +∑
j

vi j x j

)}

, (3)

for example, with a sigmoid activation functionh(s) = 1/(1+ e−s), is a universal approximator
of continuous functions (Cybenko, 1988, 1989; Hornik et al., 1989; Barron, 1993). Furthermore,
Leshno et al. (1993) have shown that any non-polynomial activation function will suffice for uni-
versal approximation. The number of hidden unitsH of the neural network is a hyper-parameter
that controls the accuracy of the approximation and it should be chosen to balance the trade-off (see
also Moody, 1994) between accuracy (bias of the class of functions) and variance (due to the finite
sample used to estimate the parameters of the model). Because of this trade-off, in the finite sample
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case, it may be advantageous to consider a “simpler” class of functions that is appropriate to the
task.

Since the sigmoidh is monotonically increasing (h′(s) = h(s)(1−h(s)) > 0), it is easy to force
the first derivatives with respect tox to be positive by forcing the weights to be positive, for example
with the exponential function:

N̂+ =

{

f (x) = ew0 +
H

∑
i=1

ewi ·h
(

bi +∑
j

evi j x j

)}

. (4)

Note that the positivity off (x) and f ′(x) is not affected by the values of the{bi} parameters. Since
the sigmoidh has a positive first derivative, its primitive, which we callsoftplus, is convex:

ζ(s) = ln(1+es)

where ln(·) is the natural logarithm operator. Note thatdζ(s)/ds= h(s) = 1/(1+e−s).

2.1 Universality for Functions with Positive Outputs

Using the softplus function introduced above, we define a new class of functions, all of which have
positive outputs:

N̂>0 = { f (x) = ζ(g(x)),g(x) ∈ N̂ }.

Theorem 2 Within the set of continuous functions fromRn to R+ = {x : x ∈ R,x > 0}, the class
N̂>0 is a universal approximator.

Proof Consider a positive functionf (x), which we want to approximate arbitrarily well. Consider
g(x) = ζ−1( f (x)) = ln(ef (x)−1), the inverse softplus transform off (x). Choose ˆg(x) from N̂ such
that supx∈D |g(x)− ĝ(x)| ≤ ε, whereD is any compact domain overRn andε is any positive real

number. The existence of ˆg(x) is ensured by the universality property ofN̂ . Set f̂ (x) = ζ(ĝ(x)) =
ln(1+ eĝ(x)). Consider any particularx and definea = min(ĝ(x),g(x)) andb = max(ĝ(x),g(x)).
Sinceb−a≤ ε, we have,

| f̂ (x)− f (x)| = ln(1+eb)− ln(1+ea)

= ln
(

1+(eb−ea)/(1+ea)
)

≤ ln(1+(eε −1)ea/(1+ea))

< ε.

�

Thus, the use of the softplus function to transform the output of a regularone hidden layer
artificial neural network ensures the positivity of the final output withouthindering the universality
property.

2.2 The Classc,nN̂++

In this section, we use the softplus function, in order to define a new class of functions with posi-
tive outputs, positive first derivatives w.r.t. all input variables and positive second derivatives w.r.t.
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DUGAS, BENGIO, BÉLISLE, NADEAU AND GARCIA

some of the input variables. The basic idea is to replace the sigmoid of a sum bya product of ei-
ther softplus or sigmoid functions over each of the dimensions (using the softplus over the convex
dimensions and the sigmoid over the others):

c,nN̂++ =

{

f (x) = ew0 +
H

∑
i=1

ewi

(

c

∏
j=1

ζ(bi j +evi j x j)

)(

n

∏
j=c+1

h(bi j +evi j x j)

)}

. (5)

One can readily check that the output is necessarily positive, the first derivatives w.r.t.x j are positive,
and the second derivatives w.r.t.x j for j ≤ c are positive. However, this class of functions has other
properties that are summarized by the following:

∂m f
∂m1x1∂m2x2 · · ·∂mnxn

≥ 0, (6)

mj ∈
{

{0,1,2} 1≤ j ≤ c

{0,1} c+1≤ j ≤ n,
n

∑
j=1

mj = m.

Here, we have assumed thatf ∈ C c+n, the set of functions that arec+ n times continuously dif-
ferentiable. We will also restrict ourselves to Lispschitz functions since theproof of the theorem
relies on the fact that the derivative of the function is bounded. The setof functions that respect
these derivative conditions will be referred to asc,nF̂++. Note that, as special cases we find that
f is positive (m= 0), and that it is monotonically increasing w.r.t. any of its inputs (m= 1), and
convex w.r.t. the firstc inputs (m= 2,∃ j : mj = 2). Also note that, when applied to our particular
case wheren = 2 andc = 1, this set of equations corresponds to Equations (1) and (2). We now
state the main universality theorem:

Theorem 3 Within the setc,nF̂++ of Lipschitz functions fromRn to R whose set of derivatives as

specified by Equation(6) are non-negative, the classc,nN̂++ is a universal approximator.

The proof of the theorem is given in Section A.

2.3 Parameter Optimization

In our experiments, conjugate gradient descent was used to optimize the parameters of the model.
The backpropagation equations are obtained as the derivatives off ∈ c,nN̂++ (Equation 5) w.r.t. to
its parameters. Letzi, j = bi j + evi j x j , ui = ewi (∏c

j=1 ζ(zi, j))(∏n
j=c+1h(zi j )) and f = ew0 + ∑H

i=1ui .
Then, we have

∂ f/∂w0 = ew0,

∂ f/∂wi = ui ,

∂ f/∂bi,k =

{

ui ·h(zi,k)/ζ(zi,k) 1≤ k≤ c

ui · (1−h(zi,k)) c+1≤ k≤ n,
(7)

∂ f/∂vi,k = evikxk ·∂ f/∂bi,k.

Except for termsh(zi,k), k≤ c of Equation (7), all values are computed through the forward phase,
that is, while computing the value off . Error backpropagation can thus be performed efficiently if
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careful attention is paid, during the forward phase, to store the values to be reused in the backprop-
agation phase.

Software implementing parameter optimization of the proposed architecture and the numerical
experiments of the following section is available on-line.2 Code was written using the “R” statistical
software package.3

3. Experiments with Artificial Data

In this section, we present a series of controlled experiments in order to assess the potential improve-
ments that can be gained from using the proposed architecture in cases where some derivatives of
the target function are known to be positive. The emphasis is put on analyzing the evolution of the
model bias and model variance values w.r.t. various noise levels and trainingset sizes.

The function we shall attempt to learn is

f (~x) = ζ(x1)ζ(x2)ζ(x3)h(x4),

y = f (~x)+ξ,

whereζ(·) is the softplus function defined above andh(·) is the sigmoid function. The input values
are drawn from a uniform distribution over the [0,1] interval, that is,xi ∼U(0,1). The noise term
ξ is added to the true functionf (~x) to generate the target valuey. Finally, ξ ∼N (0,σ2), that is, we
used additive Gaussian noise. Different values forσ have been tested.

For each combination of noise level (σ ∈ {1e-2, 3e-2, 1e-1}) and training set size (25, 50, 100,
200, 400), we chose the best performing combination of number of hiddenunits and weight decay.
In order to perform model selection, 100 models were trained using different random training sets,
for each combination. Based on validation set performance, 50 models were retained and their
validation set performances were averaged. The best performing combination was chosen based
on this average validation performance. Bias and variance were measured using these 50 selected
models when applied on another testset of 10000 examples. In each case,the number of training
epochs was 10000. The process was repeated for two architectures:the proposed architecture of
products of softplus and sigmoid functions over input dimensions with constrained weights (CPSD)
and regular unconstrained multi-layered perceptrons with a single hidden layer (UMLP).

In order to compute the bias and variance values, we first computed, for each test example, the
average of theND = 50 model outputs:

ḡ(~xi) =
1

ND

ND

∑
j=1

g j(~xi),

whereg j(~xi) is the output of thej th model associated to theith input vector~xi .
The variance was unbiasedly approximated as the average over all test examples (Ni = 10000),

of the sample variance of model outputsg j(~xi) w.r.t. the corresponding mean output ¯g(~xi):

v̂(~xi) =
1

ND −1

ND

∑
j=1

(g j(~xi)− ḡ(~xi))
2,

v̂ =
1
Ni

∑
i

v̂(~xi).

2. Software can be found athttp://www.dms.umontreal.ca/ ˜ dugas/convex/ .
3. Code found athttp://www.r-project.org/ .
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The bias was unbiasedly estimated as the average over all test examples, ofthe squared deviation
of the mean output ¯g(~xi) w.r.t. the known true function valuef (~xi), less a variance term:

b̂(~xi) = (ḡ(~xi)− f (~xi))
2− v̂(~xi)/ND,

b̂ =
1
Ni

∑
i

b̂(~xi).

Let b(~xi) = (EG(g(~xi))− f (~xi))
2 be the true bias, at point~xi whereEG() denotes expectation

taken over training set distribution, which induces a distribution of the function g produced by the
learning algorithm. Let us show thatEG(b̂(~xi)) = b(~xi):

EG(b̂(~xi)) = EG[(ḡ(~xi)− f (~xi))
2− v̂(~xi)/ND],

= EG[(ḡ(~xi)−g(~xi)+g(~xi)− f (~xi))
2]−v(~xi)/ND,

= EG[(ḡ(~xi)−g(~xi))
2]+EG[(g(~xi)− f (~xi))

2]−v(~xi)/ND,

= v(~xi)/ND +b(~xi)−v(~xi)/ND,

= b(~xi).

Table 1 reports the results for these simulations. In all cases, the bias and variance are lower
for the proposed architecture than for a regular neural network architecture, which is the result we
expected. The variance reduction is easy to understand because of theappropriate constraints on
the class of functions. The bias reduction, we conjecture to be a side effect of the bias-variance
tradeoff being performed by the model selection on the validation set: to achieve a lower validation
error, a larger bias is needed with the unconstrained artificial neural network. The improvements are
generally more important for smaller sample sizes. A possible explanation is thatthe proposed ar-
chitecture helps reduce the variance of the estimator. With small sample sizes, this is very beneficial
and becomes less important as the number of points increases.

4. Estimating Call Option Prices

An option is a contract between two parties that entitles the buyer to a claim at a future dateT
that depends on the future price,ST of an underlying asset whose price at current timet is St . In
this paper we consider the very common European call options, in which the buyer (holder) of the
option obtains the right to buy the asset at a fixed priceK called the strike price. This purchase can
only occur at maturity date (timeT). Thus, if at maturity, the price of the assetST is above the strike
priceK, the holder of the option canexercisehis option and buy the asset at priceK, then sell it back
on the market at priceST , thus making a profit ofST −K. If, on the other hand, the price of the asset
at maturityST is below the strike priceK, then the holder of the option has no interest in exercising
his option (and does not have to) and the option simply expires worthless andunexercised. For this
reason, the option is considered to be worth max(0,ST −K) at maturity and our goal is to estimate
Ct , the value of that worth at current timet.

In the econometric literature, the call function is often expressed in terms of the primary eco-
nomic variables that influence its value: the actual market price of the security (St), the strike price
(K), the remaining time to maturity (τ = T− t), the risk free interest rate (r), and the volatility of the
return (σ). One important result is that under mild conditions, the call option function is homoge-
neous of degree one with respect to the strike price and so we can perform dimensionality reduction
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Bias and Variance Analysis on Artificial Data

Ntrain Noise Architecture Bias Variance Sum
UMLP 2.31e-04 9.20e-05 3.23e-04

1e-02
CPSD 1.04e-04 3.97e-05 1.43e-04
UMLP 1.06e-03 3.46e-04 1.40e-03

25 3e-02
CPSD 9.37e-04 2.30e-04 1.17e-03
UMLP 1.07e-02 2.68e-03 1.33e-02

1e-01
CPSD 1.02e-02 2.45e-03 1.27e-02

UMLP 1.55e-04 9.41e-05 2.49e-04
1e-02

CPSD 1.03e-04 1.99e-05 1.23e-04
UMLP 1.05e-03 1.28e-04 1.18e-03

50 3e-02
CPSD 9.35e-04 9.29e-05 1.03e-03
UMLP 1.03e-02 1.22e-03 1.15e-02

1e-01
CPSD 1.02e-02 1.11e-03 1.13e-02

UMLP 1.27e-04 3.98e-05 1.67e-04
1e-02

CPSD 1.02e-04 1.01e-05 1.12e-04
UMLP 9.82e-04 2.11e-04 1.19e-03

100 3e-02
CPSD 9.39e-04 4.77e-05 9.87e-04
UMLP 1.04e-02 6.28e-04 1.10e-02

1e-01
CPSD 1.02e-02 5.30e-04 1.07e-02

UMLP 1.07e-04 2.24e-05 1.29e-04
1e-02

CPSD 1.02e-04 5.01e-06 1.07e-04
UMLP 9.45e-04 1.10e-04 1.05e-03

200 3e-02
CPSD 9.15e-04 4.31e-05 9.58e-04
UMLP 1.03e-02 3.38e-04 1.07e-02

1e-01
CPSD 1.02e-02 3.21e-04 1.05e-02

UMLP 1.03e-04 1.14e-05 1.15e-04
1e-02

CPSD 1.02e-04 2.41e-06 1.04e-04
UMLP 9.32e-04 6.15e-05 9.94e-04

400 3e-02
CPSD 9.15e-04 2.10e-05 9.36e-04
UMLP 1.04e-02 1.75e-04 1.05e-02

1e-01
CPSD 1.02e-02 1.43e-04 1.03e-02

Table 1: Comparison of the bias and variance values for two neural network architectures, three
levels of noise, and five sizes of training sets (Ntrain), using artificial data. In bold, the
best performance between the two models.

by letting our approximating function depend on the “moneyness” ratio (M = St/K) instead of the
current asset priceSt and the strike priceK independently. We must then modify the target to be the
price of the option divided by the strike price:Ct/K.

Most of the research on call option modelling relies on strong parametric assumptions of the un-
derlying asset price dynamics. Any misspecification of the stochastic process for the asset price will
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lead to systematic mispricings for any option based on the asset (Hutchinson et al., 1994). The well-
known Black-Scholes formula (Black and Scholes, 1973) is a consequence of such specifications
and other assumptions:

f (M,τ, r,σ) = MΦ(d1)−e−rτΦ(d2),

whereΦ(·) is the cumulative Gaussian function evaluated in points

d1,d2 =
lnM +(r ±σ2/2)τ

σ
√

τ
,

that is, d1 = d2 + σ
√

τ. In particular, two assumptions on which this formula relies have been
challenged by empirical evidence: the assumed lognormality of returns on theasset and the assumed
constance of volatility over time.

On the other hand, nonparametric models such as neural networks do notrely on such strong
assumptions and are therefore robust to model specification errors andtheir consequences on option
modelling and this motivates research in the direction of applying nonparametric techniques for
option modelling.

Analyzing the primary economic variables that influence the call option price,we note that the
risk free interest rate (r) needs to be somehow extracted from the term structure of interest rates
and the volatility (σ) needs to be forecasted. This latter task is a field of research in itself. Dugas
et al. (2000) have previously tried to feed in neural networks with estimatesof the volatility using
historical averages but the gains have remained insignificant. We therefore drop these two features
and rely on the ones that can be observed (St ,K,τ) to obtain the following:

Ct/K = f (M,τ).

The novelty of our approach is to account for properties of the call option function as stated
in Equation (1). These properties derive from simple arbitrage pricing theory.4 Now even though
we know the call option function to respect these properties, we do not know if it does respect the
additional cross derivative properties of Equation (2). In order to gain some insight in this direction,
we confront the Black-Scholes formula to our set of constraints:

∂ f
∂M

= Φ(d1), (8)

∂2 f
∂M2 =

φ(d1)√
τMσ

, (9)

∂ f
∂τ

= e−rτ
(

φ(d2)σ
2
√

τ
+ rΦ(d2)

)

, (10)

∂2 f
∂M∂τ

=
φ(d1)

2στ3/2

(

(r +σ2/2)τ− lnM
)

, (11)

∂3 f
∂M2∂τ

=
φ(d1)

2Mσ3τ5/2

(

ln2M−σ2τ− (r +σ2/2)2τ2) , (12)

whereφ(·) is the Gaussian density function. Equations (8), (9) and (10) confirm that the Black-
Scholes formula is in accordance with our prior knowledge of the call optionfunction: all three

4. The convexity of the call option w.r.t. the moneyness is a consequence of the butterfly spread strategy (Garcia and
Gençay, 1998).
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derivatives are positive. Equations (11) and (12) are the cross derivatives which will be positive
for any function chosen from1,2N̂++. When applied to the Black-Scholes formula, it is less clear
whether these values are positive, too. In particular, one can easily seethat both cross derivatives
can not be simultaneously positive. Thus, the Black-Scholes formula is notwithin the set 1,2F̂++.
Then again, it is known that the Black-Scholes formula does not adequately represent the market
pricing of options, but it is considered as a useful guide for evaluating call option prices. So, we do
not know if these constraints on the cross derivatives are present in the true price function.

Nonetheless, even if these additional constraints are not respected by the true function on all of
its domain, one can hope that the increase in the bias of the estimator due to the constraints will be
offset (because we are searching in a smaller function space) by a decrease in the variance of that
estimator and that overall, the mean-squared error will decrease. This strategy has often been used
successfully in machine learning (e.g., regularization, feature selection, smoothing).

5. Experimental Setup

As a reference model, we use a simple multi-layered perceptron with one hidden layer (Equation 3).
For UMLP models, weights are left unconstrained whereas forCMLP models, weights are con-
strained, through exponentiation, to be positive. We also compare our results with a recently pro-
posed model (Garcia and Gençay, 1998) that closely resembles the Black-Scholes formula for op-
tion pricing (i.e., another way to incorporate possibly useful prior knowledge):

y = α+M ·
nh

∑
i=1

β1,i ·h(γi,0 + γi,1 ·M + γi,2 · τ)

+ e−rτ ·
nh

∑
i=1

β2,i ·h(γi,3 + γi,4 ·M + γi,5 · τ), (13)

with inputsM,τ, parametersr,α,β,γ and hyperparameternh (number of hidden units). We shall
refer to Equation (13) as theUBS models. Constraining the weights of Equation (13) through
exponentiation leads to a different architecture we refer to as theCBS models.

We evaluate two new architectures incorporating all of the constraints defined in Equation (6).
The proposed architecture involves the product of softplus and sigmoid functions over input dimen-
sions, hence theUPSD modelsandCPSD modelslabels for an unconstrained version of the pro-
posed architecture and the proposed constrained architecture, respectively. Finally, we also tested
another architecture derived from the proposed one by simply summing, instead of multiplying,
softplus and sigmoid functions. For that last architecture (with constrainedweights), positivity,
monotonicity and convexity properties are respected but in that case, cross-derivatives are all equal
to zero. We do not have a universality proof for that specific class of functions. The unconstrained
and constrained architectures are labelled asUSSD modelsandCSSD models, respectively.

We used European call option data from 1988 to 1993. A total of 43518 transaction prices on
European call options on the S&P500 index were used. In Section 6, we report results on 1988
data. In each case, we used the first two quarters of 1988 as a training set (3434 examples), the
third quarter as a validation set (1642 examples) for model selection and thefourth quarter as a
test set (each with around 1500 examples) for final generalization error estimation. In tables 2 and
3, we present results for networks with unconstrained weights on the left-hand side, and weights
constrained to positive and monotone functions through exponentiation of parameters on the right-
hand side. For each model, the number of hidden units varies from one to nine. The mean squared
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error results reported were obtained as follows: first, we randomly sampled the parameter space
1000 times. We picked the best (lowest training error) model and trained it up to 1000 more epochs.
Repeating this procedure 10 times, we selected and averaged the performance of the best of these 10
models (those with training error no more than 10% worse than the best out of10). In figure 1, we
present tests of the same models on each quarter up to and including 1993 (20 additional test sets)
in order to assess the persistence (conversely, the degradation through time) of the trained models.

6. Forecasting Results

As can be seen in tables 2 and 3, unconstrained architectures obtain bettertraining, validation and
testing (test 1) results but fail in the extra testing set (test 2). A possible explanation is that con-
strained architectures capture more fundamental relationships between variables and are more ro-
bust to nonstationarities of the underlying process. Constrained architectures therefore seem to give
better generalization when considering longer time spans.

The importance in the difference in performance between constrained andunconstrained archi-
tectures on the second test set lead us to look even farther into the future and test the selected models
on data from later years. In Figure 1, we see that the Black-Scholes similarconstrained model per-
forms slightly better than other models on the second test set but then fails on later quarters. All
in all, at the expense of slightly higher initial errors our proposed architecture allows one to fore-
cast with increased stability much farther in the future. This is a very welcome property as new
derivative products have a tendency to lock in values for much longer durations (up to 10 years)
than traditional ones.
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Figure 1: Out-of-sample results from the third quarter of 1988 to the fourthof 1993 (incl.) for
models with best validation results. Left: unconstrained models; results for theUBS
models. Other unconstrained models exhibit similar swinging result patterns and levels
of errors. Right: constrained models. The proposed CPSD architecture(solid) does
best. The model with sums over dimensions (CSSD) obtains similar results. Both CMLP
(dotted) and CBS (dashed) models obtain poorer results. (dashed).
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Mean Squared Error Results on Call Option Pricing (×10−4)

Hidden Units UMLP CMLP
Train Valid Test1 Test2 Train Valid Test1 Test2

1 2.38 1.92 2.73 6.06 2.67 2.32 3.02 3.60
2 1.68 1.76 1.51 5.70 2.63 2.14 3.08 3.81
3 1.40 1.39 1.27 27.31 2.63 2.15 3.07 3.79
4 1.42 1.44 1.25 27.32 2.65 2.24 3.05 3.70
5 1.40 1.38 1.27 30.56 2.67 2.29 3.03 3.64
6 1.41 1.43 1.24 33.12 2.63 2.14 3.08 3.81
7 1.41 1.41 1.26 33.49 2.65 2.23 3.05 3.71
8 1.41 1.43 1.24 39.72 2.63 2.14 3.07 3.80
9 1.40 1.41 1.24 38.07 2.66 2.27 3.04 3.67

Hidden Units UBS CBS
Train Valid Test1 Test2 Train Valid Test1 Test2

1 1.54 1.58 1.40 4.70 2.49 2.17 2.78 3.61
2 1.42 1.42 1.27 24.53 1.90 1.71 2.05 3.19
3 1.40 1.41 1.24 30.83 1.88 1.73 2.00 3.72
4 1.40 1.39 1.27 31.43 1.85 1.70 1.96 3.15
5 1.40 1.40 1.25 30.82 1.87 1.70 2.01 3.51
6 1.41 1.42 1.25 35.77 1.89 1.70 2.04 3.19
7 1.40 1.40 1.25 35.97 1.87 1.72 1.98 3.12
8 1.40 1.40 1.25 34.68 1.86 1.69 1.98 3.25
9 1.42 1.43 1.26 32.65 1.92 1.73 2.08 3.17

Table 2: Left: the parameters are free to take on negative values. Right: parameters are constrained
through exponentiation so that the resulting function is both positive and monotone in-
creasing everywhere w.r.t. both inputs as in Equation (4). Top: regular feedforward ar-
tificial neural networks. Bottom: neural networks with an architecture resembling the
Black-Scholes formula as defined in Equation (13). The number of hiddenunits varies
from 1 to 9 for each network architecture. The first two quarters of 1988 were used for
training, the third of 1988 for validation and the fourth of 1988 for testing. The first quarter
of 1989 was used as a second test set to assess the persistence of the models through time
(figure 1). In bold: test results for models with best validation results.

In another series of experiments, we tested the unconstrained multi-layeredperceptron against
the proposed constrained products of softplus convex architecture using data from years 1988
through 1993 incl. For each year, the first two quarters were used fortraining, the third quarter
for model selection (validation) and the fourth quarter for testing. We trained neural networks for
50000 epochs and with a number of hidden units ranging from 1 through 10. In Table 4, we report
training, validation and test results for the two chosen architectures. Model selection was performed
using the validation set in order to choose the best number of hidden units, learning rate, learning
rate decrease and weight decay. In all cases, except for 1988, theproposed architecture outper-
formed the multi-layered perceptron model. This might explain why the proposed architecture did
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Mean Squared Error Results on Call Option Pricing (×10−4)

Hidden Units UPSD CPSD
Train Valid Test1 Test2 Train Valid Test1 Test2

1 2.27 2.15 2.35 3.27 2.28 2.14 2.37 3.51
2 1.61 1.58 1.58 14.24 2.28 2.13 2.37 3.48
3 1.51 1.53 1.38 18.16 2.28 2.13 2.36 3.48
4 1.46 1.51 1.29 20.14 1.84 1.54 1.97 4.19
5 1.57 1.57 1.46 10.03 1.83 1.56 1.95 4.18
6 1.51 1.53 1.35 22.47 1.85 1.57 1.97 4.09
7 1.62 1.67 1.46 7.78 1.86 1.55 2.00 4.10
8 1.55 1.54 1.44 11.58 1.84 1.55 1.96 4.25
9 1.46 1.47 1.31 26.13 1.87 1.60 1.97 4.12

Hidden Units USSD CSSD
Train Valid Test1 Test2 Train Valid Test1 Test2

1 1.83 1.59 1.93 4.10 2.30 2.19 2.36 3.43
2 1.42 1.45 1.26 25.00 2.29 2.19 2.34 3.39
3 1.45 1.46 1.32 35.00 1.84 1.58 1.95 4.11
4 1.56 1.69 1.33 21.80 1.85 1.56 1.99 4.09
5 1.60 1.69 1.42 10.11 1.85 1.52 2.00 4.21
6 1.57 1.66 1.39 14.99 1.86 1.54 2.00 4.12
7 1.61 1.67 1.48 8.00 1.86 1.60 1.98 3.94
8 1.64 1.72 1.48 7.89 1.85 1.54 1.98 4.25
9 1.65 1.70 1.52 6.16 1.84 1.54 1.97 4.25

Table 3: Similar results as in table 2 but for two new architectures. Top: products of softplus
along the convex axis with sigmoid along the monotone axis. Bottom: the softplus and
sigmoid functions are summed instead of being multiplied. Top right: the fully constrained
proposed architecture (CPSD).

not perform as well as other architectures on previous experiments using only data from 1988. Also
note that the MSE obtained in 1989 is much higher. This is a possible explanationfor the bad results
obtained in tables 2 and 3 on the second test set. A hypothesis is that the process was undergoing
nonstationarities that affected the forecasting performances. This shows that performance can vary
by an order of magnitude from year to year and that forecasting in the presence of nonstationary
processes is a difficult task.

7. Conclusions

Motivated by prior knowledge on the positivity of the derivatives of the function that gives the price
of European options, we have introduced new classes of functions similarto multi-layer neural
networks that have those properties. We have shown universal approximation properties for these
classes. On simulation experiments, using artificial data sets, we have shownthat these classes of
functions lead to a reduction in the variance and the bias of the associated estimators. When applied
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Mean Squared Error Results
on Call Option Pricing (×10−5)

Year Architecture Units Train Valid Test
UMLP 9 2.09 1.45 3.28

1988
CPSD 9 3.86 2.70 5.23
UMLP 4 9.10 28.89 51.39

1989
CPSD 2 9.31 23.96 48.22
UMLP 9 2.17 4.81 5.61

1990
CPSD 9 1.58 4.18 5.39
UMLP 9 2.69 1.76 3.41

1991
CPSD 8 2.62 1.25 2.74
UMLP 8 3.46 1.16 1.52

1992
CPSD 8 3.27 1.28 1.27
UMLP 9 1.34 1.47 1.76

1993
CPSD 10 0.68 0.54 0.65

Table 4: Comparison between a simple unconstrained multi-layered architecture (UMLP) and the
proposed architecture (CPSD). Data from the first two quarters of each year was used as
training set, data from the third quarter was used for validation and the fourth quarter was
used for testing. We also report the number of units chosen by the model selection process.

in empirical tests of option pricing, we showed that the architecture from the proposed constrained
classes usually generalizes better than a standard artificial neural network.

Appendix A. Proof of the Universality Theorem for Class c,nN̂++

In this section, we prove theorem 2.2. In order to help the reader throughthe formal mathematics, we
first give an outline of the proof, that is, a high-level informal overviewof the proof, in Section A.1.
Then, in Section A.2, we make use of two functions namely, the thresholdθ(x) = Ix≥0 and positive
partx+ = max(0,x) functions. These two functions are part of the closure of the setc,nN̂++ since

θ(x) = lim
t→∞

h(tx),

x+ = lim
t→∞

ζ(tx).

This extended class of functions that includesθ(x) andx+ shall be referred to asc,nN̂ ∞
++. In Section

A.3, we give an illustration of the constructive algorithm used to prove universal approximation.
Now the proof, as it is stated in Section A.2, only involves functionsθ(x) andx+, that is, the limit
cases of the classc,nN̂ ∞

++ which are actually not part of classc,nN̂++. Functionsθ(x) and x+

assume the use of parameters of infinite value, making the proof without any practical bearing. For
this reason, in Section A.4, we broaden the theorem’s application fromc,nN̂

∞
++ to c,nN̂++, building

upon the proof of Section A.2.
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A.1 Outline of the Proof

The proof of the first main part (Section A.2) works by construction: we start by setting the approx-
imating function equal to a constant function. Then, we build a grid over the domain of interest
and scan through it. At every point of the grid we add a term to the approximating function. This
term is a function itself that has zero value at every point of the grid that has already been visited.
Thus, this term only affects the current point being visited and some of the points to be visited. The
task is therefore to make sure the term being added is such that the approximating function matches
the actual function at the point being visited. The functions to be added arechosen from the set
c,nN̂

∞
++ so that each of them individually respects the constraints on the derivatives. The bulk of

the work in the proof is to show that, throughout the process, at each scanned point, we need to add
a positive term to match the approximating function to the true function. For illustrative purposes,
we consider the particular case of call options of Section A.3.

In the second part (Section A.4), we build upon the proof of the first part. The same constructive
algorithm is used with the same increment values. We simply consider sigmoidal and softplus
functions that are greater or equal, in every point, than their limit counterparts, used in the first part.
Products of these softplus and sigmoidal functions are withinc,nN̂++. Consequently, the function
built here is always greater than or equal to its counterpart of the first main part. The main element
of the second part is that the difference between these two functions,at gridpoints, is capped.
This is done by setting the sigmoid and softplus parameter values appropriately. Universality of
approximation follows from (1) the capped difference, at gridpoints, between the functions obtained
in the first and second parts, (2) the exact approximation obtained at gridpoints in the first part and
(3) the bounded function variation between gridpoints.

A.2 Proof of the Universality Theorem for Class c,nN̂
∞
++

Let D be the compact domain over which we wish to obtain an approximation error below ε in
every point. Suppose the existence of an oracle allowing us to evaluate the function in a certain
number of points. LetT be the smallest hyperrectangle encompassingD. Let us partitionT in
hypercubes with sides of lengthL so that the variation of the function between two arbitrary points
of any hypercube is bounded byε/2. For example, givens, an upper bound on the derivative of the
function in any direction, settingL ≤ ε

2s
√

n would do the trick. Since we have assumed the function
to be approximated is Lipschitz, then its derivative is bounded ands does exist. The number of
gridpoints isN1 + 1 over thex1 axis, N2 + 1 over thex2 axis, . . ., Nn + 1 over thexn axis. Thus,
the number of points on the grid formed withinT is H = (N1 + 1) · (N2 + 1) · . . . · (Nn + 1). We
define gridpoints~a = (a1,a2, · · · ,an) and~b = (b1,b2, · · · ,bn) as the innermost (closest to origin)
and outermost corners ofT, respectively. Figure 2 illustrates these values. The points of the grid
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are defined as:

~p1 = a,

~p2 = (a1,a2, . . . ,an +L),

~pNn+1 = (a1,a2, . . . ,bn),

~pNn+2 = (a1,a2, . . .an−1 +L,an),

~pNn+3 = (a1,a2, . . .an−1 +L,an +L), . . . ,

~p(Nn+1)(Nn−1+1) = (a1,a2, . . . ,an−2,bn−1,bn),

~p(Nn+1)(Nn−1+1)+1 = (a1,a2, . . . ,an−2 +L,an−1,an), . . . ,

~pH = b. (14)

L

D

T b

a

Figure 2: Two dimensional illustration of the proof of universality: ellipseD corresponds to the do-
main of observation over which we wish to obtain a universal approximator.RectangleT
encompassesD and is partitioned in squares of lengthL. Points~a and~b are the innermost
(closest to origin) and outermost corners ofT, respectively.

We start with an approximating function̂f0 = f (~a), that is, the functionf̂0 is initially set to
a constant value equal tof (~a) over the entire domain. Note that, for the remainder of the proof,
notationsf̂h, fh, ĝh, without any argument, refer to the functions themselves. When an argument is
present, such as infh(~p), we refer to the value of the functionfh evaluated at point~p.

After setting f̂0 to its initial value, we scan the grid according to the order defined in Equation
(14). At each point along the grid, we add a term ( ˆgh, a function) to the current approximating
function so that it becomes exact at point{~ph}:

f̂h = ĝh + f̂h−1,

=
h

∑
k=0

ĝk,

where we have set ˆg0 = f̂0.
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The functionsf̂h, ĝh and f̂h−1 are defined over the whole domain and the increment function
ĝh must be such that at point~ph, we have f̂h(~ph) = f (~ph). We compute the constant termδh as
the difference between the value of the function evaluated at point~ph, f (~ph), and the value of the
currently accumulated approximating function at the same pointf̂h−1(~ph):

δh = f (~ph)− f̂h−1(~ph).

Now, the function ˆgh must not affect the value of the approximating function at gridpoints that
have already been visited. According to our sequencing of the gridpoints, this corresponds to having
ĝh(~pk) = 0 for 0< k < h. Enforcing this constraint ensures that∀k ≤ h, f̂h(~pk) = f̂k(~pk) = f (~pk).
We define

β̂h(~pk) =
c

∏
j=1

(pk( j)− ph( j)+L)+/L ·
n

∏
j=c+1

θ(pk( j)− ph( j)), (15)

wherepk( j) is the jth coordinate of~pk and similarly for~ph. We have assumed, without loss of
generality, that the convex dimensions are the firstc ones. One can readily verify thatβ̂h(~pk) = 0
for 0 < k < h andβ̂h(~ph) = 1. We can now define the incremental function as:

ĝh(~p) = δhβ̂h(~p), (16)

so that after all gridpoints have been visited, our final approximation is

f̂H(~p) =
H

∑
h=0

ĝh(~p),

with f (~p) = f̂H(~p) for all gridpoints.
So far, we have devised a way to approximate the target function as a sum of terms from the

set c,nN̂
∞
++. We know our approximation to be exact in every point of a grid and that thegrid is

tight enough so that the approximation error is bounded above byε/2 anywhere withinT (thus
within D): take any point~q within a hypercube. Let~q1 and~q2 be the innermost (closest to origin)
and outermost gridpoints of~q’s hypercube, respectively. Then, we havef (~q1) ≤ f (~q) ≤ f (~q2)
and, assumingδh ≥ 0 ∀h, f (~q1) = f̂H(~q1) ≤ f̂H(~q) ≤ f̂H(~q2) = f (~q2). Thus, | f̂H(~q)− f (~q)| ≤
| f (~q2)− f (~q1)| ≤ Ls

√
n ≤ ε/2, since we have setL ≤ ε

2s
√

n. And there remains to be shown that,

effectively,δh ≥ 0 ∀h. In order to do so, we will express the target function at gridpoint~ph, f (~ph)
in terms of theδk coefficients (0< k≤ h), then solve forδh and show that it is necessarily positive.

First, let pk( j) = a( j) +~ιk( j)L and define~ιk = (ik(1), ik(2), . . . , ik(n)) so that~pk = ~a+ L ·~ιk.
Now, looking at Equations (15) and (16), we see that ˆgk(~p) is equal to zero if, for anyj, pk( j) >
p( j). Conversely, ˆgk(~p) can only be different from zero ifpk( j) ≤ p( j), ∀ j or, equivalently, if
ik( j) ≤ i( j), ∀ j.

Next, in order to facilitate the derivations to come, it will be convenient to define some subsets
of {1,2, . . . ,H}, the indices of the gridpoints ofT. Given indexh, defineQh,l ⊂ {1,2, . . . ,H} as

Qh,l = {k : ik( j) ≤ ih( j) if j ≤ l andik( j) = ih( j) if j > l}.
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In particular,Qh,n = {k : ik( j) ≤ ih( j)∀ j} andQh,0 = {h}. Thus, we have

f (~ph) = f̂H(~ph)

= ∑
k∈Qh,n

ĝk(~ph)

= ∑
k∈Qh,n

δk

c

∏
j=1

(ih( j)− ik( j)+1)+

n

∏
j=c+1

θ(ih( j)− ik( j))

= ∑
k∈Qh,n

δk

c

∏
j=1

(ih( j)− ik( j)+1). (17)

Now, let us define the finite difference of the function along thel th axis as

∆l f (~ph) = f (~ph)− f (~phl ), (18)

where~phl is the neighbor of~ph on T with all coordinates equal except along thel th axis where
ihl (l) = ih(l)−1. The following relationship shall be useful:

Qh,l\Qhl ,l = {k : ik( j) ≤ ih( j) if j < l , ik(l) ≤ ih(l) andik( j) = ih( j) if j > l}\
{k : ik( j) ≤ ih( j) if j < l , ik(l) < ih(l) andik( j) = ih( j) if j > l}

= {k : ik( j) ≤ ih( j) if j ≤ l −1 andik( j) = ih( j) if j > l −1}
= Qh,l−1. (19)

We now have the necessary tools to solve forδh by differentiating the target function. Using Equa-
tions (17), (18) and (19) we get:

∆n f (~ph) = ∑
k∈Qh,n

δk

c

∏
j=1

(ih( j)− ik( j)+1)

− ∑
k∈Qhn,n

δk

c

∏
j=1

(ihn( j)− ik( j)+1).

Sinceihn( j) = ih( j) for j ≤ c, then

∆n f (~ph) = ∑
k∈Qh,n−1

δk

c

∏
j=1

(ih( j)− ik( j)+1).

This process is repeated for non-convex dimensionsn−1,n−2, . . . ,c+1 until we obtain

∆c+1 . . .∆n f (~ph) = ∑
k∈Qh,c

δk

c

∏
j=1

(ih( j)− ik( j)+1),
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at which point we must consider differentiating with respect to convex dimensions:

∆c . . .∆n f (~ph) = ∑
k∈Qh,c

δk

c

∏
j=1

(ih( j)− ik( j)+1)

− ∑
k∈Qhc,c

δk

c

∏
j=1

(ihc( j)− ik( j)+1)

= ∑
k∈Qh,c

δk(ih(c)− ik(c)+1)
c−1

∏
j=1

(ih( j)− ik( j)+1)

− ∑
k∈Qhc,c

δk(ih(c)− ik(c))
c−1

∏
j=1

(ih( j)− ik( j)+1).

According to Equation (19),Qh,c\Qhc,c = Qh,c−1 and by definitionik(c)− ih(c) = 0 ∀k ∈ Qh,c−1.
Using this, we subtract a sum of zero terms from the last equation in order tosimplify the result:

∆c . . .∆n f (~ph) = ∑
k∈Qh,c

δk(ih(c)− ik(c)+1)
c−1

∏
j=1

(ih( j)− ik( j)+1)

− ∑
k∈Qhc,c

δk(ih(c)− ik(c))
c−1

∏
j=1

(ih( j)− ik( j)+1)

− ∑
k∈Qh,c−1

δk(ih(c)− ik(c))
c−1

∏
j=1

(ih( j)− ik( j)+1)

= ∑
k∈Qh,c

δk(ih(c)− ik(c)+1)
c−1

∏
j=1

(ih( j)− ik( j)+1)

− ∑
k∈Qh,c

δk(ih(c)− ik(c))
c−1

∏
j=1

(ih( j)− ik( j)+1)

= ∑
k∈Qh,c

δk

c−1

∏
j=1

(ih( j)− ik( j)+1).

Differentiating once again with respect to dimensionc:

∆2
c . . .∆n f (~ph) = ∑

k∈Qh,c

δk

c−1

∏
j=1

(ih( j)− ik( j)+1)

− ∑
k∈Qhc,c

δk

c−1

∏
j=1

(ihc( j)− ik( j)+1).

and sinceihc( j) = ih(c)∀ j ≤ c−1, then

∆2
c . . .∆n f (~ph) = ∑

k∈Qh,c−1

δk

c−1

∏
j=1

(ih( j)− ik( j)+1).
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This process of differentiating twice is repeated for all convex dimensionsso that

∆2
1 . . .∆2

c∆c+1 . . .∆n f (~ph) = ∑
k∈Qh,0

δk.

= δh

Now, by definition of the integral operator,

∆ f = f (b)− f (a)
b−a =

1
b−a

Z b

a
f ′dx,

so that if f ′ ≥ 0 over the range[a,b], then consequently,∆ f ≥ 0. Since, according to Equation (6),
we have

∂n+c f (ph)

∂x2
1∂x2

2 . . .∂x2
c∂xc+1 . . .∂xn

≥ 0,

then∆2
1 . . .∆2

c∆c+1 . . .∆n f (~ph) ≥ 0 andδh ≥ 0.
For gridpoints with eitherih( j) = 1 for any j or with ih( j) = 2 for any j ≤ c, solving for δh

requires fewer thann+c differentiations. Since the positivity of the derivatives off corresponding
to these lower order differentiations are covered by Equation (6), then we also have thatδh ≥ 0
for these gridpoints laying at or near some of the boundaries ofT. Thus, c,nN̂

∞
++ is a universal

approximator ofc,nF̂++.
�

A.3 Illustration of the Constructive Algorithm

In order to give the reader a better intuition regarding the constructive algorithm and as how to solve
for δh, we apply the developments of the previous subsection to1,2N̂++, the set of functions that
include call price functions, that is, positive convex w.r.t. the first variable and monotone increasing
w.r.t. both variables. Figure 3 illustrates the two dimensional setting of our example with the points
of the grid labelled in the order in which they are scanned according the constructive procedure.
Here, we will solveδ6.

For the set1,2N̂++, we have,

f (~ph) =
H

∑
k=1

δk · (ph(1)− pk(1)+L)+ ·θ(ph(2)− pk(2)).

Applying this to the six gridpoints of Figure 3, we obtainf (~p1) = δ1, f (~p2) = (δ1 + δ2), f (~p3) =
(2δ1 + δ3), f (~p4) = (2δ1 +2δ2 + δ3 + δ4), f (~p5) = (3δ1 +2δ3 + δ5), f (~p6) = (3δ1 +3δ2 +2δ3 +
2δ4 +δ5 +δ6).

Differentiating w.r.t. the second variable, then the first, we have:

∆2 f (~p6) = f (~p6)− f (~p5)

∆1∆2 f (~p6) = ( f (~p6)− f (~p5))− ( f (~p4)− f (~p3))

∆2
1∆2 f (~p6) = ( f (~p6)− f (~p5))− ( f (~p4)− f (~p3))

−( f (~p4)− f (~p3))+( f (~p2)− f (~p1))

= δ6.
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2 p4 p6

p

p

p p1 3 5

Figure 3: Illustration in two dimensions of the constructive proof. The pointsare labelled according
to the order in which they are visited. The function is known to be convex w.r.t.to the
first variable (abscissa) and monotone increasing w.r.t. both variables.

The conclusion associated with this result is that the third finite difference ofthe function must
be positive in order forδ6 to be positive as well. As stated above, enforcing the corresponding
derivative to be positive is a stronger condition which is respected by all element functions of
c,nN̂++. In the illustration above, other increment terms (δ1 throughδ5) can be solved for with
fewer differentiations. As mention in the previous subsection, derivatives associated to these lower
order differentiations are all positive.

A.4 Proof of the Universality Theorem for Class c,nN̂++

In Section A.2, we obtained an approximating functionf̂H ∈ c,nN̂
∞
++ such that| f̂H − f | ≤ ε/2. Here,

we will build a function f̃H ∈ c,nN̂++ everywhere greater or equal tôfH , but we will show how the
difference between the two functions can be bounded so thatf̃H − f̂H ≤ ε/2 at all gridpoints.

We start with an approximating functioñf0 = f̂0 = f (~a), that is, f̃0 is initially set to a constant
value equal tof (~a) over the entire domain. Then, we scan the grid in an orderly manner, according
to the definition of the set of points{~ph}. At each point~ph along the grid, we add a term ˜gh (a
function) to the current approximating functioñfh−1:

f̃h = g̃h + f̃h−1

=
h

∑
k=1

g̃k

=
h

∑
k=1

δkβ̃k,

where theδk are kept equal to the ones found in Section A.2 and we define the set ofβ̃k functions
as a product of sigmoid and softplus functions, one for each input dimension:

β̃h(~p) =
n

∏
j=1

β̃h, j(~p).

For each of the convex coordinates, we set:

β̃h, j(~p) =
1
α

ζ(α · (p( j)− ph( j)+L)). (20)
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Figure 4: Illustration of the difference betweenβ̃h, j (solid) andβ̂h, j (dotted) for convex (left) and
non-convex (right) dimensions.

whereα > 0. Now, note thatκ, the maximum of the difference between the softplus function of
Equation (20) and the positive part functionβ̂h, j(~p) = (p( j)− ph( j)+ L)+, is attained forp( j) =
ph( j)− L where the difference is ln2/α. Thus, in order to cap the difference resulting from the
approximation along the convex dimensions, we simply need to setκ (α) to a small (large) enough
value which we shall soon define. Let us now turn to the non-convex dimensions where we set:

β̃h, j(~p) = (1+κ) h(γ · p( j)+η)

and add two constraints:

h(γ(ph( j)−L)+η) =
κ

1+κ
,

h(γ · ph( j)+η) =
1

1+κ
.

Solving forγ andη, we obtain:

γ = −2
L

lnκ, (21)

η =

(

2ph( j)
L

−1

)

lnκ. (22)

For non-convex dimensions, we haveβ̂h, j(~p) = θ(p( j)− ph( j)). Thus, for values ofp( j) such that
ph( j)−L < p( j) < ph( j), we have a maximum differencẽβh, j − β̂h, j of 1. For other values ofp( j),
the difference is capped byκ. In particular, the difference is bounded above byκ for all gridpoints
and is zero for gridpoints withp( j) = ph( j). These values are illustrated in Figure 4.

We now compare incremental terms. Our goal is to cap the difference between g̃h and ĝh by
ε/2H. This will lead us to bound the value ofκ. At gridpoints,β̂h is equal to

β̂h =
n

∏
j=1

mj ,
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wheremj ∈ {0,1} along non-convex dimensions andmj is equal to a non-negative integer along the
convex dimensions. Also, sinceβ̃h, j − β̂h, j ≤ κ at gridpoints, then

β̃h ≤
n

∏
j=1

(mj +κ).

In order find a bound on the value ofκ, we need to consider two cases. First, consider the case
wheremj > 0∀ j:

g̃h− ĝh ≤ δh

(

n

∏
j=1

(mj +κ)−
n

∏
j=1

mj

)

≤ δh

(

n

∏
j=1

mj(1+κ)−
n

∏
j=1

mj

)

= δh((1+κ)n−1)
n

∏
j=1

mj

≤ δh((1+κ)n−1)
n

∏
j=1

(Nj +1)

≤ ε((1+κ)n−1)H.

In that case, we have ˜gh− ĝh < ε/2H if

κ ≤ (1/2H2 +1)1/n−1. (23)

Now, consider cases where∃ j : mj = 0. Letd = #{ j : mj = 0}. Then,

g̃h− ĝh ≤ δh

(

n

∏
j=1

(mj +κ)−
n

∏
j=1

mj

)

≤ δhκd ∏
mj 6=0

(Nj +1)(1+κ)

≤ δhκd(1+κ)n−dH

≤ εκd2n−dH

≤ εκ2n−1H,

so that here, the bound onκ is:

κ ≤ 1
2nH2 . (24)

Depending on the relative values ofn andH, one of the two bounds may be effective so that both
values of Equations (23) and (24) must be considered in order to set anupper bound onκ:

κ ≤ min

(

(1/2H2 +1)1/n−1,
1

2nH2

)

.
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Values forα = ln2/κ, γ, andη (Equations 21 and 22) are derived accordingly.
Thus, for any gridpoint, we have:

f̃h− f̂h =
H

∑
k=1

g̃h− ĝh

≤ H · ε/2H

= ε/2.

In Section A.2, we developed an algorithm such thatf̂ = f for any gridpoint. In this present
subsection, we showed that softplus and sigmoid parameters could be chosen such thatf̂ ≤ f̃ ≤
f̂ + ε/2 for any gridpoint. Note thatf , f̂ , and f̃ are increasing along each input dimension.

As in Section A.2, consider any point~q ∈ D. Let ~q1 and~q2 be the innermost and outermost
gridpoints of~q’s encompassing hypercube of side lengthL. In Section A.2, we showed how a grid
could be made tight enough so thatf (~q2)− f (~q1) ≤ ε/2.

With these results at hand, we can set upper and lower bounds onf̃ (~q). First, observe that
f̃H(~q) ≥ f̃H(~q1) ≥ f̂H(~q1) = f (~q1), which provides us with a lower bound oñfH(~q). Next, for the
upper bound we have:̃fH(~q) ≤ f̃H(~q2) ≤ f̂H(~q2)+ ε/2 = f (~q2)+ ε/2≤ f (~q1)+ ε. Thus, f̃H(~q) ∈
[ f (~q1), f (~q1)+ ε] and f (~q) ∈ [ f (~q1), f (~q1)+ ε/2] ⊂ [ f (~q1), f (~q1)+ ε]. Since bothf (~q) and f̃ (~q)
are within a range of lengthε, then| f̃ (~q)− f (~q)| ≤ ε.

�
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