Journal of Machine Learning Research 10 (2009) 1239-1262 bm8ted 10/01; Revised 10/08; Published 6/09

Incorporating Functional Knowledge in Neural Networks

Charles Dugas DUGAS@DMS.UMONTREAL.CA
Department of Mathematics and Statistic

Universi€é de Montéal

2920 Chemin de la tour, suite 5190

Montreal, Qc, Canada H3T 1J4

Yoshua Bengio BENGIOY@IRO.UMONTREAL.CA
Department of Computer Science and Operations Research

Universié de Montéal

2920 Chemin de la tour, suite 2194

Montreal, Qc, Canada H3A 1J4

Francois Belisle BELISLE.FRANCOIS@GMAIL .COM
Claude Nadeau CLAUDE_NADEAU @HC-SC.GC.CA
Health Canada

Tunney’s Pasture, PL 0913A

Ottawa, On, Canada K1A 0K9

René Garcia GARCIAR@CIRANO.QC.CA
CIRANO

2020 rue University, 25étage

Montréal, Qc, Canada H3A 2A5

Editor: Peter Bartlett

Abstract

Incorporating prior knowledge of a particular task into #rehitecture of a learning algorithm can
greatly improve generalization performance. We study hex@se where we know that the function
to be learned is non-decreasing in its two arguments andcegdanwne of them. For this purpose we
propose a class of functions similar to multi-layer neuetivorks but (1) that has those properties,
(2) is a universal approximator of Lipschitfunctions with these and other properties. We apply
this new class of functions to the task of modelling the pa€eall options. Experiments show
improvements on regressing the price of call options udiegniew types of function classes that
incorporate the priori constraints.

Keywords: neural networks, universal approximation, monotoniatnvexity, call options

1. Introduction

Incorporatinga priori knowledge of a particular task into a learning algorithm helps reduce the nec
essary complexity of the learner and generally improves performancejif¢brporated knowledge

is relevant to the task and brings enough information about the unknowmaragang process of the
data. In this paper we consider prior knowledge on the positivity of somstediitd second deriva-
tives of the function to be learned. In particular such constraints hguicagons to modelling

1. Afunction f is Lipschitz inQ if 3¢ > 0, ¥x,y € Q, |f(y) — f(X)| < cly—X| (Delfour and Zoksio, 2001).

(©2009 Charles Dugas, Yoshua Bengio, Francd@hdie, Claude Nadeau and ReGarcia.

DUGAS, BENGIO, BELISLE, NADEAU AND GARCIA

the price of stock options. Based on the Black-Scholes formula, the piriaecall stock option
is monotonically increasing in both the “moneyness” and time to maturity of the o@iahit is
convex in the “moneyness”. Section 4 better explains these terms and gtomkso For a function
f(x1,x2) of two real-valued arguments, this corresponds to the following properties

of of 02f
—>0 —>0 —>0. 1
oxy — Xy — ox; — @)

f>0,
The mathematical results of this paper (Section 2) are the following: first tnedince a class of
one-argument functions that is positive, non-decreasing and camiexargument. Second, we
use this new class of functions as a building block to design another cldasations that is a
universal approximator for functions with positive outputs. Third, oagain using the first class
of functions, we design a third class that is a universal approximatomictiuns of two or more
arguments, with the set of arguments partitioned in two groups: those artgifoenvhich the
second derivative is known positive and those arguments for whichawe fo prior knowledge on
the second derivative. The first derivative is positive for any augt. The universality property of
the third class rests on additional constraints on cross-derivativésh wie illustrate below for the
case of two arguments:

02 f 03 f
> b N 24,
0X10%X2 — aX%aXZ

(2)

Thus, we assume théte 3, the set of functions three times continuously differentiable. Compara-
tive experiments on these new classes of functions were performedadrogiiion prices, showing
improvements when using these new classes rather than ordinary feadfaoreural networks. The
improvements appear to be non-stationary but the new class of functions she most stable
behavior in predicting future prices. Detailed experimental results asepted in section 6.

2. Theory

Definition 1 A class of functiongF from R" to R is a universal approximator for a class of
functions¥ from R" to R if for any f € F, any compact domain & R", and any positive, one
can find af € F with supp|f(x) — f(x)| <e.

It has already been shown that the class of artificial neural netwatkowe hidden layer:

ﬁ[:{f(x):Wo+_iwi-h<bi+zvijxj>}, (3)
i= J

for example, with a sigmoid activation functidifs) = 1/(1+ e~%), is a universal approximator
of continuous functions (Cybenko, 1988, 1989; Hornik et al., 1988rd@), 1993). Furthermore,
Leshno et al. (1993) have shown that any non-polynomial activatioctifun will suffice for uni-
versal approximation. The number of hidden utitof the neural network is a hyper-parameter
that controls the accuracy of the approximation and it should be choseattetucke the trade-off (see
also Moody, 1994) between accuracy (bias of the class of functionkyariance (due to the finite
sample used to estimate the parameters of the model). Because of this trad¢heffinite sample

1240

INCORPORATINGFUNCTIONAL KNOWLEDGE IN NEURAL NETWORKS

case, it may be advantageous to consider a “simpler” class of functiohis tappropriate to the
task.

Since the sigmoidh is monotonically increasind((s) = h(s)(1—h(s)) > 0), it is easy to force
the first derivatives with respect xdo be positive by forcing the weights to be positive, for example
with the exponential function:

9§[+_{f(x)_eWOJrieWi-h(bi+2e"”xj>}. (4)
i= J

Note that the positivity off (x) and f'(x) is not affected by the values of t{e;} parameters. Since
the sigmoidch has a positive first derivative, its primitive, which we cadiftplus is convex:

2s) =In(1+¢)|

where Ir{-) is the natural logarithm operator. Note tli{s) /ds= h(s) = 1/(1+¢e~%).

2.1 Universality for Functions with Positive Outputs

Using the softplus function introduced above, we define a new classdiidns, all of which have
positive outputs:

oo = {F(X) = 2(g(x)),9(x) € A}

Theorem 2 Within the set of continuous functions frdki to R = {x: x € R,x > 0}, the class
ALo is a universal approximator.

Proof Consider a positive functiofi(x), which we want to approximate arbitrarily well. Consider
g(x) = 1(f(x)) = In(ef® — 1), the inverse softplus transform 6fx). Choosey(x) from A’ such
that sup.p [9(X) —d(X)| < &, whereD is any compact domain ovék" ande is any positive real
number. The existence gfX) is ensured by the universality propertyaf. Setf(x) = Z(§(x)) =
In(1+ &9™). Consider any particulax and definea = min(g(x),g(x)) andb = max§(x),g(x)).
Sinceb—a < g, we have,

1f(x) — f(x)] In(1+€°) —In(14€)
— In (1+ (& —e¥)/(1+ ea))
In(1+ (6 —1)e*/(1+€%))

E.

ANVAN

]
Thus, the use of the softplus function to transform the output of a regularhidden layer
artificial neural network ensures the positivity of the final output withontering the universality

property.

2.2 The Classc,nfMJr

In this section, we use the softplus function, in order to define a new ddsaaions with posi-
tive outputs, positive first derivatives w.r.t. all input variables andtppessecond derivatives w.r.t.

1241

DUGAS, BENGIO, BELISLE, NADEAU AND GARCIA

some of the input variables. The basic idea is to replace the sigmoid of a sarproguct of ei-
ther softplus or sigmoid functions over each of the dimensions (using tt@usobver the convex
dimensions and the sigmoid over the others):

n

~ H c
et = {f(x) =W +zle"v‘ (I_LZ(bij +e"”xj)> (|_| 1h(bij +e"”xj)> } . (5)
i= = j=c+

One can readily check that the output is necessarily positive, the firgatiées w.r.t.x; are positive,
and the second derivatives w.x.for j < c are positive. However, this class of functions has other
properties that are summarized by the following:
omf
ale]_amZXZ ce am”Xn

0, (6)

{{071,2} 1<j<c

mj .
{0,1} c+1<j<n,

n
m; = m
A"

Here, we have assumed thiaE C°'", the set of functions that a+ n times continuously dif-
ferentiable. We will also restrict ourselves to Lispschitz functions sincetbef of the theorem
relies on the fact that the derivative of the function is bounded. Thefdeinctions that respect
these derivative conditions will be referred to aﬁj—'++. Note that, as special cases we find that

f is positive (n = 0), and that it is monotonically increasing w.r.t. any of its inputs= 1), and
convex w.r.t. the first inputs fn= 2,3j : m; = 2). Also note that, when applied to our particular
case wheren = 2 andc = 1, this set of equations corresponds to Equations (1) and (2). We now
state the main universality theorem:

Theorem 3 Within the set, % of Lipschitz functions frork" to R whose set of derivatives as
specified by Equatio(6) are non-negative, the classsAl. - is a universal approximator.

The proof of the theorem is given in Section A.

2.3 Parameter Optimization

In our experiments, conjugate gradient descent was used to optimizerémegtars of the model.
The backpropagation equations are obtained as the derivatifes of, A/, (Equation 5) w.r.t. to
its parameters. Let | = bjj +€"ixj, ui = €"([17.14(z,j))(M{-c+1h(zj)) and f = e + sHou.
Then, we have
of fowp = €',
of /ows = ui,
u-h(zx)/l(zk) 1<k<c
Ui-(lfh(ZLk)) c+1<k<n,
of Jovixy = e"‘kxk-af/abi,k.

af /oD (7)

Except for term$(z), k < c of Equation (7), all values are computed through the forward phase,
that is, while computing the value df Error backpropagation can thus be performed efficiently if

1242

INCORPORATINGFUNCTIONAL KNOWLEDGE IN NEURAL NETWORKS

careful attention is paid, during the forward phase, to store the valuesrgubed in the backprop-
agation phase.

Software implementing parameter optimization of the proposed architectureeandrtierical
experiments of the following section is available on-lfn€ode was written using the “R” statistical
software packagé.

3. Experiments with Artificial Data

In this section, we present a series of controlled experiments in ordesdssahe potential improve-
ments that can be gained from using the proposed architecture in casesseme derivatives of
the target function are known to be positive. The emphasis is put on amalye evolution of the
model bias and model variance values w.r.t. various noise levels and tragtises.

The function we shall attempt to learn is

f(X) = {(x)l(x)q(xa)h(xa),
y = fX)+E,

where((+) is the softplus function defined above and) is the sigmoid function. The input values
are drawn from a uniform distribution over the [0,1] interval, thakisy 1(0,1). The noise term
¢ is added to the true functiof(X) to generate the target valyeFinally, & ~ A((0,0?), that is, we
used additive Gaussian noise. Different valuesoftwave been tested.

For each combination of noise level € {1e-2, 3e-2, 1le-}) and training set size (25, 50, 100,
200, 400), we chose the best performing combination of number of higitiesand weight decay.
In order to perform model selection, 100 models were trained usingeliffeandom training sets,
for each combination. Based on validation set performance, 50 modetsretined and their
validation set performances were averaged. The best performingitatinb was chosen based
on this average validation performance. Bias and variance were measing these 50 selected
models when applied on another testset of 10000 examples. In eachihsasember of training
epochs was 10000. The process was repeated for two architedtoegsroposed architecture of
products of softplus and sigmoid functions over input dimensions with ainstt weights (CPSD)
and regular unconstrained multi-layered perceptrons with a single hidgen(laMLP).

In order to compute the bias and variance values, we first computedadbrtest example, the
average of thélp = 50 model outputs:

_ 1 No
gX) = WDzlgj(%),
=

wheregj (%) is the output of thg'" model associated to th¥ input vectorx;.
The variance was unbiasedly approximated as the average over akdegtles {; = 10000),
of the sample variance of model outpgi$X;) w.r.t. the corresponding mean outm(k,):

1 2

O = PXCIORCON

0 = :lizv(xi).

2. Software can be found hitp://www.dms.umontreal.ca/ ~ dugas/convex/
3. Code found altttp://www.r-project.org/

1243

DUGAS, BENGIO, BELISLE, NADEAU AND GARCIA

The bias was unbiasedly estimated as the average over all test examtilesofared deviation
of the mean outpug(X;) w.r.t. the known true function valug(X;), less a variance term:

b(%) = (G(%)— f(%))>—9(%)/No,
b = = Sb®)

=Y
Q|

pd

Let b(%) = (Es(g(%)) — f(%))? be the true bias, at poist whereEg() denotes expectation
taken over training set distribution, which induces a distribution of the fumctiproduced by the
learning algorithm. Let us show thBg(b(X)) = b(X):

Ec(b(X)) = Es[(@(%)— f(%))2—0(%)/No],
= Eq[(9(%) —g(%) +9(%) — (%)) — V(%) /Nb,
= Eo[(9(%) —9(%))4 +Es[(9(X) — f(%))?] — v(%)/Np,
)
)

= V(Xi
= b(x).

Table 1 reports the results for these simulations. In all cases, the biasaadce are lower
for the proposed architecture than for a regular neural networktactire, which is the result we
expected. The variance reduction is easy to understand becauseapipttopriate constraints on
the class of functions. The bias reduction, we conjecture to be a sida efféhe bias-variance
tradeoff being performed by the model selection on the validation set: tovachiewer validation
error, a larger bias is needed with the unconstrained artificial neurabrie The improvements are
generally more important for smaller sample sizes. A possible explanation ih¢hatoposed ar-
chitecture helps reduce the variance of the estimator. With small sample sigésytry beneficial
and becomes less important as the number of points increases.

4. Estimating Call Option Prices

An option is a contract between two parties that entitles the buyer to a claimuatire dateT
that depends on the future pricg; of an underlying asset whose price at current ttinneS. In
this paper we consider the very common European call options, in whictuttez tholder) of the
option obtains the right to buy the asset at a fixed piKiczalled the strike price. This purchase can
only occur at maturity date (timg). Thus, if at maturity, the price of the as>is above the strike
priceK, the holder of the option caxercisehis option and buy the asset at pri€gthen sell it back
on the market at pric&r, thus making a profit o&r — K. If, on the other hand, the price of the asset
at maturitySr is below the strike pric&, then the holder of the option has no interest in exercising
his option (and does not have to) and the option simply expires worthleasnamdrcised. For this
reason, the option is considered to be worth (a8 — K) at maturity and our goal is to estimate
C:, the value of that worth at current tinhe

In the econometric literature, the call function is often expressed in terme gifrttnary eco-
nomic variables that influence its value: the actual market price of theigeqy), the strike price
(K), the remaining time to maturity & T —t), the risk free interest rate)(and the volatility of the
return). One important result is that under mild conditions, the call option functioomnsdye-
neous of degree one with respect to the strike price and so we canpetifoensionality reduction

1244

INCORPORATINGFUNCTIONAL KNOWLEDGE IN NEURAL NETWORKS

Bias and Variance Analysis on Artificial Data

Ntrain Noise Architecture Bias Variance Sum
1e-02 UMLP 2.31e-04 9.20e-05 3.23e-04
CPSD 1.04e-04 3.97e-05 1.43e-04
o5 36-02 UMLP 1.06e-03 3.46e-04 1.40e-03
CPSD 9.37e-04 2.30e-04 1.17e-03
1e-01 UMLP 1.07e-02 2.68e-03 1.33e-02
CPSD 1.02e-02 2.45e-03 1.27e-02
1e-02 UMLP 1.55e-04 9.41e-05 2.49e-04
CPSD 1.03e-04 1.99e-05 1.23e-04
UMLP 1.05e-03 1.28e-04 1.18e-03

50 3e-02
CPSD 9.35e-04 9.29e-05 1.03e-03
16-01 UMLP 1.03e-02 1.22e-03 1.15e-02
CPSD 1.02e-02 1.11e-03 1.13e-02
16-02 UMLP 1.27e-04 3.98e-05 1.67e-04
CPSD 1.02e-04 1.01e-05 1.12e-04
UMLP 9.82e-04 2.11e-04 1.19e-03
100 3e-02 CPSD 9.39e-04 4.77e-05 9.87e-04
1e-01 UMLP 1.04e-02 6.28e-04 1.10e-02
CPSD 1.02e-02 5.30e-04 1.07e-02
1e-02 UMLP 1.07e-04 2.24e-05 1.29e-04
CPSD 1.02e-04 5.01e-06 1.07e-04
UMLP 9.45e-04 1.10e-04 1.05e-03
200 3802 pep 9.15e-04 4.31e-05 9.58e-04
1e-01 UMLP 1.03e-02 3.38e-04 1.07e-02
CPSD 1.02e-02 3.21e-04 1.05e-02
1e-02 UMLP 1.03e-04 1.14e-05 1.15e-04
CPSD 1.02e-04 2.41e-06 1.04e-04
UMLP 9.32e-04 6.15e-05 9.94e-04
400 3e-02 CPSD 9.15e-04 2.10e-05 9.36e-04
16-01 UMLP 1.04e-02 1.75e-04 1.05e-02
CPSD 1.02e-02 1.43e-04 1.03e-02

Table 1. Comparison of the bias and variance values for two neural deawchitectures, three
levels of noise, and five sizes of training sets (Ntrain), using artificial. datdoold, the
best performance between the two models.

by letting our approximating function depend on the “moneyness” rie=(S /K) instead of the
current asset pricg and the strike pric& independently. We must then modify the target to be the
price of the option divided by the strike pricg;/K.

Most of the research on call option modelling relies on strong paramettiogsi®ns of the un-
derlying asset price dynamics. Any misspecification of the stochasticggdaethe asset price will

1245

DUGAS, BENGIO, BELISLE, NADEAU AND GARCIA

lead to systematic mispricings for any option based on the asset (Hutchiredgri894). The well-
known Black-Scholes formula (Black and Scholes, 1973) is a consequa such specifications
and other assumptions:

f(M7T7r7 0) - MCD(dl)—eirTCD(dz),
whered(-) is the cumulative Gaussian function evaluated in points

INM + (r +02%/2)t
o1 ’

that is,d; = d, + 0/1. In particular, two assumptions on which this formula relies have been
challenged by empirical evidence: the assumed lognormality of returns asgbeand the assumed
constance of volatility over time.

On the other hand, nonparametric models such as neural networks delynoh such strong
assumptions and are therefore robust to model specification errotiseandonsequences on option
modelling and this motivates research in the direction of applying nonparamethicigeies for
option modelling.

Analyzing the primary economic variables that influence the call option psieenote that the
risk free interest rater] needs to be somehow extracted from the term structure of interest rates
and the volatility ¢) needs to be forecasted. This latter task is a field of research in itselfasDug
et al. (2000) have previously tried to feed in neural networks with estintditdee volatility using
historical averages but the gains have remained insignificant. We therbfip these two features
and rely on the ones that can be obsen®dK(, 1) to obtain the following:

G/K = f(M,1).

The novelty of our approach is to account for properties of the call ogtiaction as stated
in Equation (1). These properties derive from simple arbitrage pricingryfieNow even though
we know the call option function to respect these properties, we do et Krit does respect the
additional cross derivative properties of Equation (2). In order o game insight in this direction,
we confront the Black-Scholes formula to our set of constraints:

di,dp =

oL = (), ®
aal\;:;r - 2(po(1d§/)z ((r+0°/2t—InM).)
af/ﬁ;m _ m“’é‘ilr)w(lnzmozr(woz/Z)sz)a (12)

whereq(-) is the Gaussian density function. Equations (8), (9) and (10) confirtthibaBlack-
Scholes formula is in accordance with our prior knowledge of the call ogtination: all three

4. The convexity of the call option w.r.t. the moneyness is a consequeftbe butterfly spread strategy (Garcia and
Gencay, 1998).

1246

INCORPORATINGFUNCTIONAL KNOWLEDGE IN NEURAL NETWORKS

derivatives are positive. Equations (11) and (12) are the crossatiees which will be positive
for any function chosen from >/, . When applied to the Black-Scholes formula, it is less clear
whether these values are positive, too. In particular, one can easitiiadaoth cross derivatives
can not be simultaneously positive. Thus, the Black-Scholes formula isitioh the set 1725Af++.
Then again, it is known that the Black-Scholes formula does not addguepgesent the market
pricing of options, but it is considered as a useful guide for evaluaatigpption prices. So, we do
not know if these constraints on the cross derivatives are preser fruthprice function.

Nonetheless, even if these additional constraints are not respecteel toyeHunction on all of
its domain, one can hope that the increase in the bias of the estimator due tastraiots will be
offset (because we are searching in a smaller function space) byeadedn the variance of that
estimator and that overall, the mean-squared error will decrease. Tdtegsthas often been used
successfully in machine learning (e.g., regularization, feature seleatmatking).

5. Experimental Setup

As a reference model, we use a simple multi-layered perceptron with onenHales (Equation 3).
For UMLP models, weights are left unconstrained whereas@wLP models, weights are con-
strained, through exponentiation, to be positive. We also compare autsresth a recently pro-
posed model (Garcia and Gencay, 1998) that closely resembles tHe®tholes formula for op-
tion pricing (i.e., another way to incorporate possibly useful prior knogded

Nh

y = a+M- ZBl,i ‘h(yio+Vi1-M+yi21)
=

M
+ e lez.,i-h(Vi.,3+\ﬁ,4-|V|+Vi,5'T)v (13)
i=

with inputs M, 1, parameters, a, 3,y and hyperparametet, (number of hidden units). We shall
refer to Equation (13) as theBS models Constraining the weights of Equation (13) through
exponentiation leads to a different architecture we refer to a€B#® models

We evaluate two new architectures incorporating all of the constraintsedafirEquation (6).
The proposed architecture involves the product of softplus and sigmoadiéns over input dimen-
sions, hence thelPSD modelsand CPSD modelslabels for an unconstrained version of the pro-
posed architecture and the proposed constrained architecturestieslye Finally, we also tested
another architecture derived from the proposed one by simply summinigathef multiplying,
softplus and sigmoid functions. For that last architecture (with constrawmeghts), positivity,
monotonicity and convexity properties are respected but in that cass-devivatives are all equal
to zero. We do not have a universality proof for that specific clasamgtions. The unconstrained
and constrained architectures are labelled8SD modelsandCSSD modelsrespectively.

We used European call option data from 1988 to 1993. A total of 435h8dcdion prices on
European call options on the S&P500 index were used. In Section 6, poet results on 1988
data. In each case, we used the first two quarters of 1988 as a tra@i{@484 examples), the
third quarter as a validation set (1642 examples) for model selection arfdutth quarter as a
test set (each with around 1500 examples) for final generalizationestimation. In tables 2 and
3, we present results for networks with unconstrained weights on thhdett-side, and weights
constrained to positive and monotone functions through exponentiaticarafeters on the right-
hand side. For each model, the number of hidden units varies from onestoTiie mean squared

1247

DUGAS, BENGIO, BELISLE, NADEAU AND GARCIA

error results reported were obtained as follows: first, we randomly sdntipdeparameter space
1000 times. We picked the best (lowest training error) model and traingddt LO0O0 more epochs.
Repeating this procedure 10 times, we selected and averaged the pedemhthe best of these 10
models (those with training error no more than 10% worse than the best d0j.ah figure 1, we
present tests of the same models on each quarter up to and including 09%&&d{#onal test sets)
in order to assess the persistence (conversely, the degradationttiiraeyof the trained models.

6. Forecasting Results

As can be seen in tables 2 and 3, unconstrained architectures obtairtiagtiag, validation and
testing (test 1) results but fail in the extra testing set (test 2). A possibplargtion is that con-
strained architectures capture more fundamental relationships betwisnasand are more ro-
bust to nonstationarities of the underlying process. Constrained atcingstherefore seem to give
better generalization when considering longer time spans.

The importance in the difference in performance between constrainaghaondstrained archi-
tectures on the second test set lead us to look even farther into the futLiesathe selected models
on data from later years. In Figure 1, we see that the Black-Scholes sooilatrained model per-
forms slightly better than other models on the second test set but then failseoquarters. All
in all, at the expense of slightly higher initial errors our proposed ardhite@llows one to fore-
cast with increased stability much farther in the future. This is a very welcaogepy as new
derivative products have a tendency to lock in values for much longatidas (up to 10 years)
than traditional ones.

-3 -3
25X 10 ‘ ‘ 25X 10 | : ‘ ‘
7 2.0r 7 2.0f |
e i)
c c
o o
§ 1.57 § 1.57
@ @
® k5
= 1.0 g 1.0t
> =}
O o
(%) n
g 0.5f £ 05
Q (]
= =
0.0 : : : ‘ 0.0 : : : ‘
0 5 10 15 20 25 0 5 10 15 20 25
Quarter used as test set from 3rd of 1988 Quarter used as test set from 3rd of 1988
to 4th of 1993 (incl.) to 4th of 1993 (incl.)

Figure 1: Out-of-sample results from the third quarter of 1988 to the foafrttR93 (incl.) for
models with best validation results. Left: unconstrained models; results fddB®
models. Other unconstrained models exhibit similar swinging result pattetnieals
of errors. Right: constrained models. The proposed CPSD architetolid) does
best. The model with sums over dimensions (CSSD) obtains similar results. BtiR C
(dotted) and CBS (dashed) models obtain poorer results. (dashed).

1248

INCORPORATINGFUNCTIONAL KNOWLEDGE IN NEURAL NETWORKS

Mean Squared Error Results on Call Option Pricing 0~4)

Hidden Units UMLP CMLP

Train Valid Testl Test? Train Valid Testl Test2
1 238 192 2.73 6.06 267 2.32 3.02 3.60
2 1.68 176 151 570263 214 3.08 381
3 140 139 127 2731263 215 3.07 3.79
4 142 144 125 2732265 224 3.05 3.70
5 1.40 1.38 127 3056|267 229 3.03 364
6 141 143 124 3312263 214 308 381
7 141 141 126 3349265 223 305 371
8 1.41 143 124 39.722.63 214 3.07 3.80
9 1.40 141 124 3807266 227 3.04 3.67

Hidden Units UBS CBS

Train Valid Testl Test? Train Valid Testl Test2
1 154 158 1.40 470249 217 278 361
2 142 142 127 2453190 171 2.05 3.19
3 1.40 141 124 3083188 173 2.00 3.72
4 1.40 139 127 3143|185 170 196 3.15
5 140 140 125 3082187 1.70 2.01 351
6 1.41 142 125 3577189 170 2.04 3.19
7 1.40 140 125 3597187 172 198 312
8 140 140 125 3468186 1.69 198 325
9 1.42 143 126 3265192 173 2.08 3.17

Table 2: Left: the parameters are free to take on negative values. Rgghimpters are constrained
through exponentiation so that the resulting function is both positive and torosadn-
creasing everywhere w.r.t. both inputs as in Equation (4). Top: regedatférward ar-
tificial neural networks. Bottom: neural networks with an architecturemdsing the
Black-Scholes formula as defined in Equation (13). The number of hiddis varies
from 1 to 9 for each network architecture. The first two quarters oBM8&re used for
training, the third of 1988 for validation and the fourth of 1988 for testinge first quarter
of 1989 was used as a second test set to assess the persistence afdlsethnough time
(figure 1). In bold: test results for models with best validation results.

In another series of experiments, we tested the unconstrained multi-lgyeneaptron against
the proposed constrained products of softplus convex architecturg data from years 1988
through 1993 incl. For each year, the first two quarters were usetldioing, the third quarter
for model selection (validation) and the fourth quarter for testing. We tdameairal networks for
50000 epochs and with a number of hidden units ranging from 1 througmI&ble 4, we report
training, validation and test results for the two chosen architectures. Iideléetion was performed
using the validation set in order to choose the best number of hidden uaitsinig rate, learning
rate decrease and weight decay. In all cases, except for 198Brdpesed architecture outper-
formed the multi-layered perceptron model. This might explain why the projpashitecture did

1249

DUGAS, BENGIO, BELISLE, NADEAU AND GARCIA

Mean Squared Error Results on Call Option Pricing 0~%)

Hidden Units UPSD CPSD

Train Valid Testl Test? Train Valid Testl Test2
1 227 215 235 3.27228 214 237 351
2 1.61 158 158 1424228 213 237 3.48
3 151 153 138 18.162.28 213 2.36 3.48
4 146 151 129 2014184 154 197 419
5 157 157 146 1003183 156 195 4.8
6 151 153 135 2247185 157 1.97 4.09
7 162 1.67 1.46 778186 155 2.00 4.10
8 155 154 144 1158184 155 196 4.25
9 1.46 147 131 2613|187 160 197 412

Hidden Units USSD CSSsD

Train Valid Testl Test? Train Valid Testl Test2
1 183 159 1.93 410230 219 236 343
2 142 145 126 2500|229 219 234 3.39
3 145 146 132 3500184 158 195 411
4 156 169 133 2180185 156 1.99 4.09
5 160 169 142 1011185 152 200 421
6 157 166 139 1499186 154 2.00 4.12
7 1.61 167 1.48 800186 160 198 3.94
8 164 172 1.48 789185 154 198 4725
9 1.65 170 1.52 6.161.84 154 197 4.25

Table 3: Similar results as in table 2 but for two new architectures. Top:uptedf softplus
along the convex axis with sigmoid along the monotone axis. Bottom: the softplus an
sigmoid functions are summed instead of being multiplied. Top right: the fully cinstt
proposed architecture (CPSD).

not perform as well as other architectures on previous experiments arsiyndata from 1988. Also
note that the MSE obtained in 1989 is much higher. This is a possible explafattbe bad results
obtained in tables 2 and 3 on the second test set. A hypothesis is that tkegpveas undergoing
nonstationarities that affected the forecasting performances. Thisghawperformance can vary
by an order of magnitude from year to year and that forecasting in tieepece of nonstationary
processes is a difficult task.

7. Conclusions

Motivated by prior knowledge on the positivity of the derivatives of thection that gives the price
of European options, we have introduced new classes of functions similaulti-layer neural

networks that have those properties. We have shown universabamp@tion properties for these
classes. On simulation experiments, using artificial data sets, we have #iaivhese classes of
functions lead to a reduction in the variance and the bias of the associtiedtess. When applied

1250

INCORPORATINGFUNCTIONAL KNOWLEDGE IN NEURAL NETWORKS

Mean Squared Error Results

on Call Option Pricing ¢ 10°)
Year Architecture Units Train Valid Test
UMLP 9 209 145 3.28

1988 CPSD 9 386 270 5.23
1989 UMLP 4 9.10 28.89 51.39
CPSD 2 9.31 23.96 48.22
1990 UMLP 9 217 481 561
CPSD 9 158 4.18 5.39
1991 UMLP 9 269 176 341
CPSD 8 262 125 274
1992 UMLP 8 346 116 1.52
CPSD 8 3.27 128 1.27
1993 UMLP 9 134 147 1.76

CPSD 10 068 054 0.65

Table 4;: Comparison between a simple unconstrained multi-layered architédtMiLP) and the
proposed architecture (CPSD). Data from the first two quarters ¢f year was used as
training set, data from the third quarter was used for validation and théhfquarter was
used for testing. We also report the number of units chosen by the méeletice process.

in empirical tests of option pricing, we showed that the architecture fromrtiy@oped constrained
classes usually generalizes better than a standard artificial neurakrketwo

Appendix A. Proof of the Universality Theorem for Class C7n9§£++

In this section, we prove theorem 2.2. In order to help the reader thtbadbrmal mathematics, we
first give an outline of the proof, that is, a high-level informal overvigthe proof, in Section A.1.
Then, in Section A.2, we make use of two functions namely, the thre§{r)d= x>0 aAnd positive
partx, = max0,x) functions. These two functions are part of the closure of the. 8@, . since

B(x) = lim h(tx),

t—oo

Xy = lim(tx).

t—oo

This extended class of functions that inclu@és) andx,. shall be referred to agn A", . In Section
A.3, we give an illustration of the constructive algorithm used to proveansal approximation.
Now the proof, as it is stated in Section A.2, only involves functipbs andx., that is, the limit
cases of the clasgnA[”, which are actually not part of clasgnA,+. Functions8(x) andx;
assume the use of parameters of infinite value, making the proof withoutraetycal bearing. For
this reason, in Section A.4, we broaden the theorem’s application fighi™, to ¢nA(-+, building
upon the proof of Section A.2.

1251

DUGAS, BENGIO, BELISLE, NADEAU AND GARCIA

A.1 Outline of the Proof

The proof of the first main part (Section A.2) works by construction: taet §y setting the approx-
imating function equal to a constant function. Then, we build a grid over dineath of interest
and scan through it. At every point of the grid we add a term to the appréixignfunction. This
term is a function itself that has zero value at every point of the grid treaalaady been visited.
Thus, this term only affects the current point being visited and some ofinésgo be visited. The
task is therefore to make sure the term being added is such that the apgnogifuaction matches
the actual function at the point being visited. The functions to be addechasen from the set
cnN\;°, so that each of them individually respects the constraints on the deeisathhe bulk of
the work in the proof is to show that, throughout the process, at eaoheggoint, we need to add
a positive term to match the approximating function to the true function. For iltiv&naurposes,
we consider the particular case of call options of Section A.3.

In the second part (Section A.4), we build upon the proof of the firdt féwe same constructive
algorithm is used with the same increment values. We simply consider sigmouiaoftplus
functions that are greater or equal, in every point, than their limit coumsypesed in the first part.
Products of these softplus and sigmoidal functions are withift(; ;.. Consequently, the function
built here is always greater than or equal to its counterpart of the filist pa@t. The main element
of the second part is that the difference between these two func@rggidpoints is capped.
This is done by setting the sigmoid and softplus parameter values appropridtglersality of
approximation follows from (1) the capped difference, at gridpointsyéen the functions obtained
in the first and second parts, (2) the exact approximation obtained abgrid in the first part and
(3) the bounded function variation between gridpoints.

A.2 Proof of the Universality Theorem for Class Qnﬂi@:

Let D be the compact domain over which we wish to obtain an approximation errow lzeilo
every point. Suppose the existence of an oracle allowing us to evaluateritt®h in a certain
number of points. LeT be the smallest hyperrectangle encompasging_et us partitionT in
hypercubes with sides of lengthso that the variation of the function between two arbitrary points
of any hypercube is bounded by2. For example, gives, an upper bound on the derivative of the
function in any direction, setting < %s\m would do the trick. Since we have assumed the function
to be approximated is Lipschitz, then its derivative is boundedsatholes exist. The number of
gridpoints isN; + 1 over thex; axis, N> + 1 over thex; axis, ..., Ny + 1 over thex, axis. Thus,
the number of points on the grid formed withihis H = (N; +1)- (N2 +1)-...- (Nys+1). We
define gridpointsd = (ag, a2, ,an) andb = (b1,by,---,b,) as the innermost (closest to origin)
and outermost corners af, respectively. Figure 2 illustrates these values. The points of the grid

1252

INCORPORATINGFUNCTIONAL KNOWLEDGE IN NEURAL NETWORKS

are defined as:

= &
B2 = (ag,a,...,an+L),
Pno1 = (ag,ag,...,bn),
Pn2 = (a,@,...an-1+L,an),
N3 = (ag,@,...an-1+L,an+L),...,
PBNar)(Np1+1) = (81,82,--.,8n-2,bn-1,bn),
PNt DN 41+1 = (81,82,...,80-2+L,81-1,8n),..,
P = b (14)
T —L— b

a

Figure 2: Two dimensional illustration of the proof of universality: elliseorresponds to the do-
main of observation over which we wish to obtain a universal approxim@exntangler
encompasses and is partitioned in squares of lendthPointsa andb are the innermost
(closest to origin) and outermost cornerslgfrespectively.

We start with an approximating functiofy = f(d), that is, the functionfy is initially set to
a constant value equal td) over the entire domain. Note that, for the remainder of the proof,
notationsfy, fn, gn, without any argument, refer to the functions themselves. When an argisnen
present, such as ify(P), we refer to the value of the functidij evaluated at poing.

After setting fo to its initial value, we scan the grid according to the order defined in Equation
(14). At each point along the grid, we add a tergq, (@ function) to the current approximating
function so that it becomes exact at pofif }:

fo = Gt fooa,
h
= Z Qk7
o
where we have sep = fo.

1253

DUGAS, BENGIO, BELISLE, NADEAU AND GARCIA

The functionsfy, Gn and f_1 are defined over the whole domain and the increment function
Gnh must be such that at poind,, we havefh(ﬁh) = f(Pn). We compute the constant terdp as
the difference between the value of the function evaluated at figint(pp), and the value of the
currently accumulated approximating function at the same pfgjm(Bn):

& = f(Pn)— fros(Pn).

Now, the functiong, must not affect the value of the approximating function at gridpoints that
have already been visited. According to our sequencing of the gridptirgsorresponds to having
n(Px) = O for 0 < k < h. Enforcing this constraint ensures that < h, fn(Bx) = (k) = f(Px)-

We define

~ C

Br(P) = r!<pk<J>—ph<j>+L>+/L-_rn| 8(pe(i) — pn(i)). (15)
I

j=c+1

wherepg(j) is the j"h coordinate offik and similarly forp,. We have assumed, without loss of
generality, that the convex dimensions are the &irshes. One can readily verify th@g(px) = 0
for 0 < k < handpn(pr) = 1. We can now define the incremental function as:

Gh(P) = SnPn(P), (16)

so that after all gridpoints have been visited, our final approximation is

with f(p) = fi(p) for all gridpoints.

So far, we have devised a way to approximate the target function as afsenms from the
set cn A7, We know our approximation to be exact in every point of a grid and thagtioeis
tight enough so that the approximation error is bounded above/Byanywhere withinT (thus
within D): take any poing within a hypercube. Lefj; anddy be the innermost (closest to origin)
and outermost gridpoints dfs hypercube, respectively. Then, we hafh) < f(d) < f(d2)
and, assumingd, > 0 vh, f(d1) = fu(dh) < fu(@) < fu(@) = (). Thus,|fu(d) — f(@)] <
|f(dz) — f(d1)| < Lsy/n<¢€/2, since we have séf < ZLM And there remains to be shown that,
effectively, &, > 0Vh. In order to do so, we will express the target function at gridppintf (pn)
in terms of thed, coefficients (0< k < h), then solve fo, and show that it is necessarily positive.

First, let pc(j) = a(j) +1k(j)L and define = (ik(1),ik(2),...,ik(n)) so thatpy = &+ L - Tk.
Now, looking at Equations (15) and (16), we see t)&pJ is equal to zero if, for any, pk(j) >
p(j). Converselygk(p) can only be different from zero ipx(j) < p(j), ¥j or, equivalently, if
k(i) <i(i), vi.

Next, in order to facilitate the derivations to come, it will be convenient to defome subsets
of {1,2,...,H}, the indices of the gridpoints df. Given indexh, define@,; C {1,2,...,H} as

Q= {k:ik(j) <in(j)if j <landik(j) =in(j) if j >1}.

1254

INCORPORATINGFUNCTIONAL KNOWLEDGE IN NEURAL NETWORKS

In particular,Qyn = {k:ik(j) <in(j)V]j} andQyo = {h}. Thus, we have

>

f(Pn) f (Pn)
= Gk (Pn)
ke Qnn
- o - (in(j) —ik(j) + 1)+ ﬁ B(in(j) —ik(i))
kEQn =1 j=c+1
=S B[i) + 1), (17)
kehn =1

Now, let us define the finite difference of the function alonglfﬂeaxis as
Af(Bn) = F(Pn)— f(Pn), (18)

where py, is the neighbor ofg, on T with all coordinates equal except along #B axis where
in (I) =in(l) — 1. The following relationship shall be useful:

Q) \Qy = {k:ik()) <in(j)if j <, ik(l) <in(l) andik(j) =in(j) if j > 1}\
{krik(j) <in(i) if j <1, ik(l) <in(l) andik(j) =in(j) if j > 1}

<in(j)if j <1—1andig(j) =in(j) if j > — 1}
= Q-1 (19)

We now have the necessary tools to solvedipby differentiating the target function. Using Equa-
tions (17), (18) and (19) we get:

MiB) = 3 B[n(h)=iu(i)+
€ =

- 5 Al () +D.

ke Qﬂn.n =

Sinceip, (j) =in(j) for j <c, then
C

Anf(Br) = & [(in(J) —ik(j) +1).
(Pn) > kﬂ(lhm i(i)+1)

keQhn-1

This process is repeated for non-convex dimensioAd, n— 2, ..., c+ 1 until we obtain
C . . . -
Dci1--.Baf(P) = 5 & FL(Ih(J) —ik(j) +1),

keQe I=

1255

DUGAS, BENGIO, BELISLE, NADEAU AND GARCIA

at which point we must consider differentiating with respect to convex dsines:

C

Anf(Pn) = kz 5k|1(ih(1)—ik(j)+1)
che 1=

c

—keéccf)kjll(ihc(j) —ik(j)+1)

= O T j)+1

kezqm (in() D)
c-1

_keécﬁcék(ih(c) —ik(c)) B(Ih(j) —ik(j)+1).

According to Equation (19)Qhc\ Qh.c = Qhc—1 and by definitionix(c) —in(c) = 0 VK € Quc-1.
Using this, we subtract a sum of zero terms from the last equation in ordanpdify the result:

1
Anf(Pn) = k%] O (in(c) — ()+1)|_|1(h(j) —ik(j) +1)
€he 1=
c-1
= > A&(in(c) —ik(e)) [(in(j) —ik(j) +1)
ke Qhe.c 1=
c-1
B (i . Lo
keqzw k(in(c) Ik(C))JD](Ih(J) k(i) +1)
c-1
= Y Blin(0) —i(©) + 1) [n(i) ~ik(i) + 1)
ke Qe 1=
C 1
_kthc J

= ke%jkﬁ(ih(j)—ik(J)Jrl)-

Differentiating once again with respect to dimens@n

c-1

Anf(Pn) = kz 5er(ih(j)—ik(j)+l)
€EQe I=
c-1
—keécfkﬂ(ihc(ﬂ—ik(j)+1)-

and sincéy (j) =in(c)Vj <c—1, then

Anf(Pr) = kz BkH(ih(j)*ik(J')ﬂLl)-
€Qe1 I=

INCORPORATINGFUNCTIONAL KNOWLEDGE IN NEURAL NETWORKS

This process of differentiating twice is repeated for all convex dimensortisat

0F.. . Dci1.. Lof(PBr) = 5 &
kEQLo

Now, by definition of the integral operator,

_ 1 b
Af— fb-f@ _ /f/
b—a b—al/a dx

so that if f > 0 over the rangéa, b|, then consequentlAf > 0. Since, according to Equation (6),
we have

0" 1 (pn)
0X20X5 ... OX20Xc 1 - - - O%n

> 0

thenA2. .. AZAc,1...Anf(Ph) > 0 andd, > 0.

For gridpoints with eithern(j) = 1 for any j or with in(j) = 2 for any j < c, solving for &y
requires fewer than+ c differentiations. Since the positivity of the derivativesfoforresponding
to these lower order differentiations are covered by Equation (6), treealso have thad, > 0
for these gridpoints laying at or near some of the boundari€b. ofhus, ¢nA(”, is a universal
approximator ofc 7 ;.

([l

A.3 lllustration of the Constructive Algorithm

In order to give the reader a better intuition regarding the constructiegitign and as how to solve
for &, we apply the developments of the previous subsectiopA(. ., the set of functions that
include call price functions, that is, positive convex w.r.t. the first véeiabd monotone increasing
w.r.t. both variables. Figure 3 illustrates the two dimensional setting of our dgamith the points
of the grid labelled in the order in which they are scanned according tr&roetive procedure.
Here, we will solvede.

For the sety 2 1, we have,

H

f(Bn) = kz Ok - (Pn(1) — k(1) +L)+ - 8(pn(2) — pk(2))-
=1

Applying this to the six gridpoints of Figure 3, we obtdli(p:) = 61, f(P2) = (01+02), f(P3) =
(2814 03), f(Pa) = (201 + 202 + 83+ 84), f(Ps) = (301 + 203+ 05), f([Pe) = (381 + 302 + 203 +

204+ 05+ 0g).
Differentiating w.r.t. the second variable, then the first, we have:
A2 f(Ps) f(Pe) — f(Ps)
MAf(Bs) = (f(Ps)— f(Ps)) — (f(Pa) — f(Ps))
N f(Bs) = (f(Ps)— f(Ps)) — (f(Pa) — F(Pa))

— (F(Pa) = £(Pa3)) + (f(P2) — f(P1))
= .

1257

DUGAS, BENGIO, BELISLE, NADEAU AND GARCIA

R B R’

Figure 3: lllustration in two dimensions of the constructive proof. The peairgdabelled according
to the order in which they are visited. The function is known to be convex worthe
first variable (abscissa) and monotone increasing w.r.t. both variables.

The conclusion associated with this result is that the third finite differenteediinction must

be positive in order fodg to be positive as well. As stated above, enforcing the corresponding

derivative to be positive is a stronger condition which is respected bylatient functions of
enNi+. In the illustration above, other increment ternds throughds) can be solved for with
fewer differentiations. As mention in the previous subsection, deristigsociated to these lower
order differentiations are all positive.

A.4 Proof of the Universality Theorem for Class c,n9§C++

In Section A.2, we obtained an approximating functfane c,nﬂlﬁ‘; such that fy— f| <e/2. Here,

we will build a functionfy e cnN;+ everywhere greater or equal f@, but we will show how the
difference between the two functions can be bounded softhatfy < €/2 at all gridpoints.

We start with an approximating functioiy = fo = f (&), that is, fy is initially set to a constant
value equal tdf (&) over the entire domain. Then, we scan the grid in an orderly mannerdiagor
to the definition of the set of point§pn}. At each pointpy along the grid, we add a tergy {a
function) to the current approximating functidgp_1:

fo =

]

+
—
T
i

M

i
(o]
~

1
M= &

SkBx,

Il
M=

=
[

1

where thed, are kept equal to the ones found in Section A.2 and we define the éelﬂmﬁctions
as a product of sigmoid and softplus functions, one for each input diorens

~ n ~
Br(P) = Bn,j(P)-
,11 J
For each of the convex coordinates, we set:

Bui(B) = 2 (p(J)— p(i) +L)) (20)

1258

INCORPORATINGFUNCTIONAL KNOWLEDGE IN NEURAL NETWORKS

p(J) py (J)—L Py (4) p(J)
Convex dimension Non-convex dimension

Figure 4. lllustration of the difference betweém j (solid) andﬁh, j (dotted) for convex (left) and
non-convex (right) dimensions.

wherea > 0. Now, note thak, the maximum of the difference between the softplus function of
Equation (20) and the positive part functifp;(p) = (p(j) — pn(j) + L)+, is attained forp(j) =
pn(j) — L where the difference is Iry2. Thus, in order to cap the difference resulting from the
approximation along the convex dimensions, we simply need to &@tto a small (large) enough
value which we shall soon define. Let us now turn to the non-convex dimenwhere we set:

Bri(P = (1+K)h(y-p(j)+n)

and add two constraints:

YR L+ =
- = e
Solving fory andn, we obtain:
y = —%h’lK, (22)
n = (2p*|‘_(j)—1>|m<. 22)

For non-convex dimensions, we ha&gj(iﬁ) =0(p(j)—pn(]))- Thus, for values op(j) such that
pr(j)—L < p(j) < pn(j), we have a maximum differen@m,j — [’th of 1. For other values gb(j),
the difference is capped by In particular, the difference is bounded abovexbipr all gridpoints
and is zero for gridpoints witp(j) = pn(j). These values are illustrated in Figure 4.

We now compare incremental terms. Our goal is to cap the difference begyendd, by
€/2H. This will lead us to bound the value &f At gridpoints,By, is equal to

DUGAS, BENGIO, BELISLE, NADEAU AND GARCIA

wherem; € {0, 1} along non-convex dimensions ang is equal to a non-negative integer along the
convex dimensions. Also, sin j — Bn; < K at gridpoints, then

- n

Brn < i +K).
h D(mj K)

In order find a bound on the value rf we need to consider two cases. First, consider the case
wherem; > 0Vj:

Gh—Gn < &n (llj(mﬁFK)—Jljmj)
h (Iﬂlmj(l+K)— ﬁm,-)
= On((1+k)" I‘LmJ

Sh((1+K)"—1) [T(N; +1
h((1+K))J]](J)

< g((1+K)"— DH.

IN

IN

In that case, we havgy = gnh < €/2H if
K < (1/2H2+1)Y"—1. (23)

Now, consider cases whefg : m; = 0. Letd = #{j : m; = 0}. Then,

n n
Gh—Gn < On (mj+k)—[1m,
(fim - fm

kA |:! (Nj+1)(1+k)
m;#0

IN

Bk (1+K)"H
ex92"9H
ek2"1H,

VANVANVAN

so that here, the bound ens:

1
Depending on the relative valuesmaindH, one of the two bounds may be effective so that both
values of Equations (23) and (24) must be considered in order to sgipem bound OR:

. 1
K < mln((1/2H2+1)1/”—l,2nH2>.

1260

INCORPORATINGFUNCTIONAL KNOWLEDGE IN NEURAL NETWORKS

Values fora = In2/k, y, andn (Equations 21 and 22) are derived accordingly.
Thus, for any gridpoint, we have:

H
fh—fh = ZGh—@h
K=
< H-g/2H
= g/2.

In Section A.2, we developed an algorithm such that f for any gridpoint. In this present
subsection, we showed that softplus and sigmoid parameters could Enchash thatf < f <
f+ €/2 for any gridpoint. Note that, f, and f are increasing along each input dimension.

As in Section A.2, consider any poite D. Let G; anddy be the innermost and outermost
gridpoints ofg’s encompassing hypercube of side lenigthn Section A.2, we showed how a grid
could be made tight enough so thdt) — f(d1) < €/2.

With these results at hand, we can set upper and lower boun<f$d)n First, observe that
fu(d) > fu(dy) > fu(di) = f(dy), which provides us with a lower bound dp (d). Next, for the
upper bound we havefy; (d) < f (02) < fu(d2) +€/2 = f(t2) +€/2 < f(d) +&. Thus,fu(d) €
[(6a), f(ch) +€] and () € [f(du), (@) +€/2) [(), f(6h) +€]. Since bothf (d) and f (d)
are within a range of length then|f(q) — f(q)| <e.

(]

References

A. R. Barron. Universal approximation bounds for superpositions sifmoidal function.|lEEE
Transactions on Information Theqr$9(3):930-945, 1993.

F. Black and M. Scholes. The pricing of options and corporate liabilitiégsurnal of Political
Economy81(3):637-654, 1973.

G. Cybenko. Continuous valued neural networks with two hidden layersudficient. Technical
report, Department of Computer Science, Tufts University, Medforél, 1988.

G. Cybenko. Approximation by superpositions of a sigmoidal functigiathematics of Control,
Signals, and Systen2:303—314, 1989.

M.C. Delfour and J.-P. Z@lsio. Shapes and Geometries: Analysis, Differential Calculus, and Opti-
mization SIAM, 2001.

C. Dugas, O. Bardou, and Y. Bengio. Analyses empiriques sur desattons d’options. Tech-
nical Report 1176, Bpartment d’'informatique et de Rechercheé@ionnelle, Universi de
Montréal, Montgéal, Qiebec, Canada, 2000.

R. Garcia and R. Gencay. Pricing and hedging derivative securiiibsneural networks and a
homogeneity hint. Technical Report 98s-35, CIRANO, Méatr Qiebec, Canada, 1998.

K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward netvgake universal approx-
imators.Neural Networks2:359-366, 1989.

1261

DUGAS, BENGIO, BELISLE, NADEAU AND GARCIA

J.M. Hutchinson, A.W. Lo, and T. Poggio. A nonparametric approachi¢cingrand hedging deriva-
tive securities via learning network3ournal of Finance49(3):851-889, 1994.

M. Leshno, V. Lin, A. Pinkus, and S. Schocken. Multilayer feedfanmaetworks with a nonpoly-
nomial activation function can approximate any functitieural Networks6:861-867, 1993.

J. Moody. Prediction Risk and Architecture Selection for Neural Netwofkgringer, 1994.

1262

