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Abstract
We describe, analyze, and experiment with a framework for empiricalloss minimization with regularization.
Our algorithmic framework alternates between two phases. On each iteration we first perform anuncon-
strainedgradient descent step. We then cast and solve an instantaneous optimization problem that trades off
minimization of a regularization term while keeping close proximity to the result of the first phase. This
view yields a simple yet effective algorithm that can be used for batch penalized risk minimization and on-
line learning. Furthermore, the two phase approach enables sparse solutions when used in conjunction with
regularization functions that promote sparsity, such asℓ1. We derive concrete and very simple algorithms
for minimization of loss functions withℓ1, ℓ2, ℓ2

2, andℓ∞ regularization. We also show how to construct ef-
ficient algorithms for mixed-normℓ1/ℓq regularization. We further extend the algorithms and give efficient
implementations for very high-dimensional data with sparsity. We demonstrate the potential of the proposed
framework in a series of experiments with synthetic and natural data sets.
Keywords: subgradient methods, group sparsity, online learning, convex optimization

1. Introduction

Before we begin, we establish notation for the content of this paper. We denote scalars by lower case letters
and vectors by lower case bold letters, for example,w. The inner product of two vectorsu andv is denoted
〈u,v〉. We use‖x‖p to denote thep-norm of the vectorx and‖x‖ as a shorthand for‖x‖2.

The focus of this paper is an algorithmic framework for regularized convex programming to minimize the
following sum of two functions:

f (w)+ r(w), (1)

where bothf andr are convex bounded below functions (so without loss of generality we assume they are
into R+). Often, the functionf is an empirical loss and takes the form∑i∈Sℓi(w) for a sequence of loss
functionsℓi : R

n → R+, andr(w) is a regularization term that penalizes for excessively complex vectors, for
instancer(w) = λ‖w‖p. This task is prevalent in machine learning, in which a learning problem for decision
and prediction problems is cast as a convex optimization problem. To that end, we investigate a general
and intuitive algorithm, known asforward-backward splitting, to minimize Eq. (1), focusing especially on
derivations for and use of non-differentiable regularization functions.

Many methods have been proposed to minimize general convex functions such as that in Eq. (1). One of
the most general is the subgradient method (see, e.g., Bertsekas, 1999), which is elegant and very simple. Let
∂ f (w) denote the subgradient set off atw, namely,

∂ f (w) = {g | ∀v : f (v) ≥ f (w)+ 〈g,v−w〉} .
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Sub-gradient procedures then minimize the functionf (w) by iteratively updating the parameter vectorw

according to the update rule
wt+1 = wt −ηtg

f
t ,

whereηt is a constant or diminishing a step size andg
f
t ∈ ∂ f (wt) is an arbitrary vector from the subgradient

set of f evaluated atwt . A more general method than the above is the projected gradient method, which
iterates

wt+1 = ΠΩ

(

wt −ηtg
f
t

)

= argmin
w∈Ω

{

∥

∥

∥w− (wt −ηtg
f
t )
∥

∥

∥

2

2

}

whereΠΩ(w) is the Euclidean projection ofw onto the setΩ. Standard results (Bertsekas, 1999) show that
the (projected) subgradient method converges at a rate ofO(1/ε2), or equivalently that the errorf (w)−
f (w⋆) = O(1/

√
T), given some simple assumptions on the boundedness of the subdifferential set andΩ (we

have omitted constants dependent on‖∂ f‖ or dim(Ω)).
If we use the subgradient method to minimize Eq. (1), the iterates are simplywt+1 = wt −ηtg

f
t −ηtg

r
t ,

whereg
r
t ∈ ∂r(wt). A common problem in subgradient methods is that ifr or f is non-differentiable, the

iterates of the subgradient method are very rarely at the points of non-differentiability. In the case of regu-
larization functions such asr(w) = ‖w‖1, however, these points (zeros in the case of theℓ1-norm) are often
the true minima of the function. Furthermore, withℓ1 and similar penalties, zeros are desirable solutions as
they tend to convey information about the structure of the problem being solved, and in the case of statistical
inference, can often yield the correct sparsity structure of the parameters (Zhao and Yu, 2006; Meinshausen
and B̈uhlmann, 2006).

There has been a significant amount of work related to minimizing Eq. (1), especially when the func-
tion r is a sparsity-promoting regularizer, and much of it stems from the machine learning, statistics, and
optimization communities. We can hardly do justice to the body of prior work, and we provide a few refer-
ences here to the research we believe is most directly related. The approach we pursue below is known as
forward-backward splittingin the optimization literature, which is closely related tothe proximal method.

The forward-backward splitting method was first proposed byLions and Mercier (1979) and has been ana-
lyzed by several researches in the context of maximal monotone operators in the optimization literature. Chen
and Rockafellar (1997) and Tseng (2000) give conditions andmodifications of forward-backward splitting to
attain linear convergence rates. Combettes and Wajs (2005)give proofs of convergence for forward-backward
splitting in Hilbert spaces under asymptotically negligible perturbations, though without establishing strong
rates of convergence. Prior work on convergence of the method often requires an assumption of strong mono-
tonicity of the maximal monotone operators (equivalent to strong convexity of at least one of the functions
in Eq. (1)), and as far as we know, all analyses assume thatf is differentiable with Lipschitz-continuous
gradient. The analyses have also been carried out in a non-stochastic and non-online setting.

More recently, Wright et al. (2009) suggested the use of the method for sparse signal reconstruction,
wheref (w) = ‖y−Aw‖2, though they note that the method can apply to suitably smooth convex functionsf .
Nesterov (2007) gives analysis of convergence rates using gradient mapping techniques whenf has Lipschitz
continuous gradient, which was inspired by Wright et al. In the special case thatr(w) = λ‖w‖1, similar
methods to the algorithms we investigate have been proposedand termed iterative thresholding (Daubechies
et al., 2004) or truncated gradient (Langford et al., 2008) in signal processing and machine learning, but the
authors were apparently unaware of the connection to splitting methods.

Similar projected-gradient methods, when the regularization functionr is no longer part of the objective
function but rather cast as a constraint so thatr(w) ≤ λ, are also well known (Bertsekas, 1999). In signal
processing, the problem is often termed as an inverse problem with sparsity constraints, see for example,
Daubechies et al. (2008) and the references therein. Duchi et al. (2008) give a general and efficient projected
gradient method forℓ1-constrained problems. We make use of one of Duchi et al.’s results in obtaining
an efficient algorithm for the case whenr(w) = ‖w‖∞ (a setting useful for mixed-norm regularization).
There is also a body of literature on regret analysis for online learning and online convex programming with
convex constraints, which we build upon here (Zinkevich, 2003; Hazan et al., 2006; Shalev-Shwartz and
Singer, 2007). Learning sparse models generally is of greatinterest in the statistics literature, specifically in
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the context of consistency and recovery of sparsity patterns throughℓ1 or mixed-norm regularization across
multiple tasks (Meinshausen and Bühlmann, 2006; Obozinski et al., 2008; Zhao et al., 2006).

In this paper, we describe a general gradient-based framework for online and batch convex programming.
To make our presentation a little simpler, we call our approach FOBOS, for FOrward-Backward Splitting.1

Our proofs are made possible through the use of “forward-looking” subgradients, and FOBOS is a distillation
of some the approaches mentioned above for convex programming. Our alternative view lends itself to unified
analysis and more general settings, efficient implementation, and provides a flexible tool for the derivation of
algorithms for old and new convex programming settings.

The paper is organized as follows. In the next section, we begin by introducing and formally defining
the method, giving some simple preliminary analysis. We follow the introduction by giving in Sec. 3 rates
of convergence for batch (offline) optimization. We then extend the results to stochastic gradient descent
and provide regret bounds for online convex programming in Sec. 4. To demonstrate the simplicity and
usefulness of the framework, we derive in Sec. 5 algorithms for several different choices of the regularizing
functionr, though most of these results are known. We then extend thesemethods to be efficient in very high
dimensional learning settings where the input data is sparse in Sec. 6. Finally, we conclude in Sec. 7 with
experiments examining various aspects of the proposed framework, in particular the runtime and sparsity
selection performance of the derived algorithms.

2. Forward-Looking Subgradients and Forward-Backward Splitting

Our approach to Forward-Backward Splitting is motivated bythe desire to have the iterateswt attain points
of non-differentiability of the functionr. The method alleviates the problems of non-differentiability in
cases such asℓ1-regularization by taking analytical minimization steps interleaved with subgradient steps.
Put informally, FOBOS can be viewed as analogous to theprojectedsubgradient method while replacing or
augmenting the projection step with an instantaneous minimization problem for which it is possible to derive
a closed form solution. FOBOS is succinct as each iteration consists of the following two steps:

wt+ 1
2

= wt −ηtg
f
t , (2)

wt+1 = argmin
w

{

1
2

∥

∥

∥
w−wt+ 1

2

∥

∥

∥

2
+ηt+ 1

2
r(w)

}

. (3)

In the above,g f
t is a vector in∂ f (wt) andηt is the step size at time stept of the algorithm. The actual value

of ηt depends on the specific setting and analysis. The first step thus simply amounts to an unconstrained
subgradient step with respect to the functionf . In the second step we find a new vector that interpolates
between two goals: (i) stay close to the interim vectorwt+ 1

2
, and (ii) attain a low complexity value as

expressed byr. Note that the regularization function is scaled by an interim step size, denotedηt+ 1
2
. The

analyses we describe in the sequel determine the specific value ofηt+ 1
2
, which is eitherηt or ηt+1.

A key property of the solution of Eq. (3) is the necessary condition for optimality and gives the reason
behind the name FOBOS. Namely, the zero vector must belong to subgradient set of the objective at the
optimumwt+1, that is,

0 ∈ ∂
{

1
2

∥

∥

∥
w−wt+ 1

2

∥

∥

∥

2
+ηt+ 1

2
r(w)

}∣

∣

∣

∣

w=wt+1

.

Sincewt+ 1
2

= wt −ηtg
f
t , the above property amounts to

0 ∈ wt+1−wt +ηtg
f
t +ηt+ 1

2
∂r(wt+1). (4)

1. An earlier draft of this paper referred to our algorithm asFOLOS, for FOrward LOoking Subgradients. In order not to confuse
readers of the early draft, we attempt to stay close to the earlier name and use the acronym FOBOSrather than Fobas.
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The property0 ∈ wt+1−wt +ηtg
f
t +ηt+ 1

2
∂r(wt+1) implies that so long as we choosewt+1 to be the mini-

mizer of Eq. (3), we are guaranteed to obtain a vectorg
r
t+1 ∈ ∂r(wt+1) such that

0 = wt+1−wt +ηtg
f
t +ηt+ 1

2
g

r
t+1 .

The above equation can be understood as an update scheme where the new weight vectorwt+1 is a linear
combination of the previous weight vectorwt , a vector from the subgradient set off evaluated atwt , and a
vector from the subgradient ofr evaluated at the yet to be determinedwt+1, hence the name Forward-Looking
Subgradient. To recap, we can writewt+1 as

wt+1 = wt −ηt g
f
t −ηt+ 1

2
g

r
t+1, (5)

whereg
f
t ∈ ∂ f (wt) andg

r
t+1 ∈ ∂r(wt+1). Solving Eq. (3) withr above has two main benefits. First, from

an algorithmic standpoint, it enables sparse solutions at virtually no additional computational cost. Second,
the forward-looking gradient allows us to build on existinganalyses and show that the resulting framework
enjoys the formal convergence properties of many existing gradient-based and online convex programming
algorithms.

3. Convergence Analysis ofFOBOS

Upon first look FOBOSlooks substantially different from sub-gradient and online convex programming meth-
ods. However, the fact that FOBOS actually employs a forward-looking subgradient of the regularization
function lets us build nicely on existing analyses. In this section we modify known results while using the
forward-looking property of FOBOS to provide convergence rate analysis for FOBOS. To do so we will set
ηt+ 1

2
properly. As we show in the sequel, it is sufficient to setηt+ 1

2
to ηt or ηt+1, depending on whether we

are doing online or batch optimization, in order to obtain convergence and low regret bounds. We start with
an analysis of FOBOS in a batch setting. In this setting we use the subgradient off , setηt+ 1

2
= ηt+1 and

updatewt to wt+1 as prescribed by Eq. (2) and Eq. (3).
Throughout the section we denote byw

⋆ the minimizer of f (w) + r(w). In what follows, define
‖∂ f (w)‖ , sup

g∈∂ f (w) ‖g‖. We begin by deriving convergence results under the fairly general assump-
tion (see, e.g., Langford et al. 2008 or Shalev-Shwartz and Tewari 2009) that the subgradients are bounded as
follows:

‖∂ f (w)‖2 ≤ A f(w)+G2, ‖∂r(w)‖2 ≤ Ar(w)+G2 . (6)

For example, any Lipschitz loss (such as the logistic loss orhinge loss used in support vector machines)
satisfies the above withA= 0 andG equal to the Lipschitz constant. Least squares estimation satisfies Eq. (6)
with G= 0 andA= 4. The next lemma, while technical, provides a key tool for deriving all of the convergence
results in this paper.

Lemma 1 (Bounding Step Differences)Assume that the norms of the subgradients of the functions f and r
are bounded as in Eq. (6):

‖∂ f (w)‖2 ≤ A f(w)+G2, ‖∂r(w)‖2 ≤ Ar(w)+G2 .

Letηt+1 ≤ ηt+ 1
2
≤ ηt and suppose thatηt ≤ 2ηt+ 1

2
. If we use theFOBOSupdate of Eqs. (2) and (3), then for

a constant c≤ 4 and any vectorw⋆,

2ηt(1−cAηt) f (wt)+2ηt+ 1
2
(1−cAηt+ 1

2
)r(wt+1)

≤ 2ηt f (w⋆)+2ηt+ 1
2
r(w⋆)+‖wt −w

⋆‖2−‖wt+1−w
⋆‖2 +7ηtηt+ 1

2
G2 .
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Proof We begin with a few simple properties of the forward-lookingsubgradient steps before proceeding
with the core of the proof. Note first that for someg

f
t ∈ ∂ f (wt) andg

r
t+1 ∈ ∂r(wt+1), we have as in Eq. (5)

wt+1−wt = −ηtg
f
t −ηt+ 1

2
g

r
t+1 . (7)

The definition of a subgradient implies that for anyg
r
t+1 ∈ ∂r(wt+1) (and similarly for anyg f

t ∈ ∂ f (wt) with
f (wt) and f (w⋆))

r(w⋆) ≥ r(wt+1)+
〈

g
r
t+1,w

⋆ −wt+1
〉

⇒ −
〈

g
r
t+1,wt+1−w

⋆
〉

≤ r(w⋆)− r(wt+1). (8)

From the Cauchy-Shwartz Inequality and Eq. (7), we obtain

〈

g
r
t+1,(wt+1−wt)

〉

=
〈

g
r
t+1,(−ηtg

f
t −ηt+ 1

2
g

r
t+1)

〉

≤ ‖gr
t+1‖‖ηt+ 1

2
g

r
t+1 +ηtg

f
t ‖ ≤ ηt+ 1

2
‖gr

t+1‖2 +ηt‖gr
t+1‖‖g

f
t ‖

≤ ηt+ 1
2

(

Ar(wt+1)+G2)+ηt
(

Amax{ f (wt), r(wt+1)}+G2) . (9)

We now proceed to bound the difference betweenw
⋆ andwt+1, and using a telescoping sum we will even-

tually bound f (wt)+ r(wt)− f (w⋆)− r(w⋆). First, we expand norm squared of the difference betweenwt

andwt+1,

‖wt+1−w
⋆‖2 = ‖wt − (ηtg

f
t +ηt+ 1

2
g

r
t+1)−w

⋆‖2

= ‖wt −w
⋆‖2−2

[

ηt

〈

g
f
t ,wt −w

⋆
〉

+ηt+ 1
2

〈

g
r
t+1,wt −w

⋆
〉

]

+‖ηtg
f
t +ηt+ 1

2
g

r
t+1‖2

= ‖wt −w
⋆‖2−2ηt

〈

g
f
t ,wt −w

⋆
〉

+‖ηtg
f
t +ηt+ 1

2
g

r
t+1‖2

−2ηt+ 1
2

[〈

g
r
t+1,wt+1−w

⋆
〉

−
〈

g
r
t+1,wt+1−wt

〉]

. (10)

We can bound the third term above by noting that

‖ηtg
f
t +ηt+ 1

2
g

r
t+1‖2

= η2
t ‖g

f
t ‖2 +2ηtηt+ 1

2

〈

g
f
t ,gr

t+1

〉

+η2
t+ 1

2
‖gr

t+1‖2

≤ η2
t A f(wt)+2ηtηt+ 1

2
A max{ f (wt), r(wt+1)}+η2

t+ 1
2

Ar(wt+1)+4η2
t G2 .

We now use Eq. (9) to bound the last term of Eq. (10) and the above bound onηtg
f
t +ηt+ 1

2
g

r
t+1 to get that

‖wt+1−w
⋆‖2

≤ ‖wt −w
⋆‖2−2ηt

〈

g
f
t ,wt −w

⋆
〉

−2ηt+ 1
2

〈

g
r
t+1,wt+1−w

⋆
〉

+‖ηtg
f
t +ηt+ 1

2
g

r
t+1‖2

+2ηt+ 1
2

(

ηt+ 1
2

Ar(wt+1)+2ηt A max{ f (wt), r(wt+1)}+2ηtG
2
)

≤ ‖wt −w
⋆‖2 +2ηt ( f (w⋆)− f (wt))+2ηt+ 1

2
(r(w⋆)− r(wt))+7η2

t G2

+η2
t A f(wt)+3ηtηt+ 1

2
A max{ f (wt), r(wt)}+2η2

t+ 1
2

Ar(wt+1) (11)

≤ ‖wt −w
⋆‖2 +7η2

t G2

+2ηt ( f (w⋆)− (1−cηtA) f (wt))+2ηt+ 1
2

(

r(w⋆)− (1−cηt+ 1
2
A)r(wt+1)

)

. (12)

To obtain Eq. (11) we used the standard convexity bounds established earlier in Eq. (8). The final bound given
by Eq. (12) is due to the fact that 3Aηtηt+ 1

2
≤ 6Aη2

t and that for anya,b≥ 0, max{a,b} ≤ a+b. Rearranging
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the termsf (·) andr(·) yields the desired inequality.

The lemma allows a proof of the following theorem, which constitutes the basis for deriving concrete
convergence results for FOBOS. It is also demonstrates the ease of proving convergence results based on the
lemma and the forward looking property.

Theorem 2 Assume the following hold: (i) the norm of any subgradient from∂ f and the norm of any sub-
gradient from∂r are bounded as in Eq. (6), (ii) the norm ofw

⋆ is less than or equal to D, (iii) r(0) = 0, and
(iv) 1

2ηt ≤ ηt+1 ≤ ηt . Then for a constant c≤ 4 with w1 = 0 andηt+ 1
2

= ηt+1,

T

∑
t=1

[ηt ((1−cAηt) f (wt)− f (w⋆))+ηt ((1−cAηt)r(wt)− r(w⋆))] ≤ D2 +7G2
T

∑
t=1

η2
t .

Proof Rearranging thef (w⋆) andr(w⋆) terms from the bound in Lemma 1, we sum the loss terms overt
from 1 throughT and get a canceling telescoping sum:

T

∑
t=1

[ηt ((1−cAηt) f (wt)− f (w⋆))+ηt+1 ((1−cAηt+1)r(wt+1)− r(w⋆))]

≤ ‖w1−w
⋆‖2−‖wT+1−w

⋆‖2 +7G2
T

∑
t=1

η2
t ≤ ‖w1−w

⋆‖2 +7G2
T

∑
t=1

η2
t . (13)

We now bound the time-shiftedr(wt+1) terms by noting that

T

∑
t=1

ηt+1 ((1−cAηt+1)r(wt+1)− r(w⋆))

=
T

∑
t=1

ηt ((1−cAηt)r(wt)− r(w⋆))+ηT+1 ((1−cAηT+1)r(wt+1)− r(w⋆))+η1r(w⋆)

≥
T

∑
t=1

ηt ((1−cAηt)r(wt+1)− r(w⋆))+ r(w⋆)(η1−ηT+1)

≥
T

∑
t=1

ηt ((1−cAηt)r(wt)− r(w⋆)) . (14)

Finally, we use the fact that‖w1−w
⋆‖= ‖w⋆‖≤D, along with with Eq. (13)) and Eq. (14) to get the desired

bound.

In the remainder of this section, we present a few corollaries that are consequences of the theorem. The
first corollary underscores that the rate of convergence in general is approximately 1/ε2, or, equivalently,
1/
√

T.

Corollary 3 (Fixed step rate) Assume that the conditions of Thm. 2 hold and that we runFOBOS for a
predefined T iterations withηt = D√

7TG
and that(1−cA D√

7TG
) > 0. Then

min
t∈{1,...,T}

f (wt)+ r(wt) ≤
1
T

T

∑
t=1

f (wt)+ r(wt) ≤
3DG

√
T
(

1− cAD
G
√

7T

) +
f (w⋆)+ r(w⋆)

1− cAD
G
√

7T

.

2904



EFFICIENT LEARNING USING FORWARD BACKWARD SPLITTING

Proof Since we haveηt = η for all t, the bound on the convergence rate from Thm. 2 becomes

η(1−cAη)T min
t∈{1,...,T}

[ f (wt)+ r(wt)− f (w⋆)− r(w⋆)]

≤ η(1−cAη)
T

∑
t=1

[ f (wt)− f (w⋆)]+ [r(wt)− r(w⋆)] ≤ D2 +7G2Tη2 .

Plugging in the specified value forη gives the bound.

Another direct consequence of Thm. 2 is convergence of the minimum overt when running FOBOS with
ηt ∝ 1/

√
t or with non-summable step sizes decreasing to zero.

Corollary 4 (Convergence of decreasing step sizes)Assume that the conditions of Thm. 2 hold and the step
sizesηt satisfyηt → 0 and∑∞

t=1 ηt = ∞. Then

liminf
t→∞

f (wt)+ r(wt)− ( f (w⋆)+ r(w⋆)) = 0.

Finally, when f andr are Lipschitz with Lipschitz constantG, we immediately have

Corollary 5 In addition to the conditions of Thm. 2, assume that the norm of any subgradient from∂ f and
the norm of any subgradient from∂r are bounded by G. Then

min
t∈{1,...,T}

( f (wt)+ r(wt))− ( f (w⋆)+ r(w⋆)) ≤ D2 +7G2 ∑T
t=1 η2

t

2∑T
t=1 ηt

. (15)

Bounds of the above form, where we obtain convergence for oneof the points in the sequencew1, . . . ,wT

rather than the last pointwT , are standard in subgradient optimization. The main reasonthat this weaker result
occurs is due to the fact that we cannot guarantee a strict descent direction when using arbitrary subgradients
(see, for example, Theorem 3.2.2 from Nesterov 2004). Another consequence of using non-differentiable
functions means that analyses such as those carried out by Tseng (2000) and Chen and Rockafellar (1997)
are difficult to apply, as the stronger rates rely on the existence and Lipschitz continuity of∇f (w). However,
it is possible to show linear convergence rates under suitable smoothness and strong convexity assumptions.
When∇f (w) is Lipschitz continuous, a more detailed analysis yields convergence rates of 1/ε (namely, 1/T
in terms of number of iterations needed to beε close to the optimum). A more complicated algorithm related
to Nesterov’s “estimate functions” (Nesterov, 2004) leadsto O(1/

√
ε) convergence (Nesterov, 2007). For

completeness, we give a simple proof of 1/T convergence in Appendix C. Finally, the above proof can be
modified slightly to give convergence of the stochastic gradient method. In particular, we can replaceg

f
t in

the iterates of FOBOSwith a stochastic estimate of the gradient ˜g
f
t , whereE[g̃

f
t ] ∈ ∂ f (wt). We explore this

approach in slightly more depth after performing a regret analysis for FOBOS below in Sec. 4 and describe
stochastic convergence rates in Corollary 10.

We would like to make further comments on our proof of convergence for FOBOS and the assumptions
underlying the proof. It is often not necessary to have a Lipschitz loss to guarantee boundedness of the
subgradients off andr, so in practice an assumption of bounded subgradients (as inCorollary 5 and in the
sequel for online analysis) is not restrictive. If we know that an optimalw⋆ lies in some compact setΩ and
thatΩ ⊆ dom( f + r), then Theorem 24.7 of Rockafellar (1970) guarantees that∂ f and∂r are bounded. The
lingering question is thus whether we can guarantee that such a setΩ exists and that our iterateswt remain
in Ω. The following simple setting shows that∂ f and∂r are indeed often bounded.

If r(w) is a norm (possibly scaled) andf is lower bounded by 0, then we know thatr(w⋆) ≤ f (w⋆)+
r(w⋆) ≤ f (w1)+ r(w1). Using standard bounds on norms, we get that for someγ > 0

‖w⋆‖∞ ≤ γr(w⋆) ≤ γ( f (w1)+ r(w1)) = γ f (w1) ,
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where for the last inequality we used the assumption thatr(w1) = 0. Thus, we obtain thatw⋆ lies in a
hypercube. We can easily project onto this box by truncatingelements ofwt lying outside it at any iteration
without affecting the bounds in Eq. (12) or Eq. (15). This additional Euclidean projectionΠΩ to an arbitrary
convex setΩ with w

⋆ ∈ Ω satisfies‖ΠΩ(wt+1)−w
⋆‖ ≤ ‖wt+1 −w

⋆‖. Furthermore, so long asΩ is an
ℓp-norm ball, we know that

r(ΠΩ(wt+1)) ≤ r(wt+1) . (16)

Thus, looking at Eq. (11), we notice thatr(w⋆)− r(wt+1)≤ r(w⋆)− r(ΠΩ(wt+1)) and the series of inequal-
ities through Eq. (12) still hold (so long ascηt+ 1

2
A ≤ 1, which it will if Ω is compact so that we can take

A = 0). In general, so long as Eq. (16) holds andw
⋆ ∈ Ω, we can projectwt+1 into Ω without affecting

convergence guarantees. This property proves to be helpfulin the regret analysis below.

4. Regret Analysis ofFOBOS

In this section we provide regret analysis for FOBOS in online settings. In an online learning problem, we
are given a sequence of functionsft : R

n → R. The learning goal is for the sequence of predictionswt

to attain low regret when compared to a single optimal predictor w
⋆. Formally, let ft(w) denote the loss

suffered on thetth input loss function when using a predictorw. The regret of an online algorithm which
usesw1, . . . ,wt , . . . as its predictors w.r.t. a fixed predictorw

⋆ while using a regularization functionr is

Rf+r(T) =
T

∑
t=1

[ ft(wt)+ r(wt)− ( ft(w
⋆)+ r(w⋆))] .

Ideally, we would like to achieve 0 regret to a stationaryw
⋆ for arbitrary length sequences.

To achieve an online bound for a sequence of convex functionsft , we modify arguments of Zinkevich
(2003). Using the bound from Lemma 1, we can readily state andprove a theorem on the online regret of
FOBOS. It is possible to avoid the boundedness assumptions in the proof of the theorem (getting a bound
similar to that of Theorem 2 but for regret), however, we do not find it significantly more interesting. Aside
from its reliance on Lemma 1, this proof is quite similar to Zinkevich’s, so we defer it to Appendix A.

Theorem 6 Assume that‖wt −w
⋆‖ ≤ D for all iterations and the norm of the subgradient sets∂ ft and∂r

are bounded above by G. Let c> 0 an arbitrary scalar. Then, the regret bound ofFOBOS with ηt = c/
√

t
satisfies

Rf+r(T) ≤ 2GD+

(

D2

2c
+7G2c

)√
T .

The following Corollary is immediate from Theorem 6.

Corollary 7 Assume the conditions of Theorem 6 hold. Then, settingηt = D
4G

√
t
, the regret ofFOBOS is

Rf+r(T) ≤ 2GD+4GD
√

T .

We can also obtain a better regret bound for FOBOS when the sequence of loss functionsft(·) or the
functionr(·) is strongly convex. As demonstrated by Hazan et al. (2006), with the projected gradient method
and strongly convex functions, it is possible to achieve regret on the order ofO(logT) by using the curvature
of the sequence of functionsft rather than simply using convexity and linearity as in Theorems 2 and 6. We
can extend these results to FOBOS for the case in whichft(w)+ r(w) is strongly convex, at least over the
domain‖w−w

⋆‖ ≤ D. For completeness, we recap a few definitions and provide thelogarithmic regret
bound for FOBOS. A function f is calledH-strongly convex if

f (w) ≥ f (wt)+ 〈∇ f (wt),w−wt〉+
H
2
‖w−wt‖2.
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Thus, if r and the sequence of functionsft are strongly convex with constantsH f ≥ 0 andHr ≥ 0, we have
H = H f +Hr andH-strong convexity gives

ft(wt)− f (w⋆)+ r(wt)− r(w⋆) ≤
〈

g
f
t +g

r
t ,wt −w

⋆
〉

− H
2
‖wt −w

⋆‖2 . (17)

We do not need to assume that bothft andr are strongly convex. We only need assume that at least one of
them attains a positive strong convexity constant. For example, if r(w) = λ

2‖w‖2, thenH ≥ λ so long as
the functionsft are convex. With Eq. (17) in mind, we can readily build on Hazan et al. (2006) and prove a
stronger regret bound for the online learning case. The proof is similar to that of Hazan et al., so we defer it
also to Appendix A.

Theorem 8 Assume as in Theorem 6 that‖wt −w
⋆‖ ≤ D and that∂ ft and ∂r are bounded above by G.

Assume further that ft + r is H-strongly convex for all t. Then, when using step sizesηt = 1/Ht, the regret of
FOBOS is

Rf+r(T) = O

(

G2

H
logT

)

.

We now provide an easy lemma showing that for Lipschitz losses with ℓ2
2 regularization, the boundedness

assumptions above hold. This, for example, includes the interesting case of support vector machines. The
proof is not difficult but relies tacitly on a later result, sowe leave it to Appendix A.

Lemma 9 Let the functions ft be G-Lipschitz so that‖∂ ft(w)‖ ≤ G. Let r(w) = λ
2‖w‖2. Then‖w⋆‖ ≤ G/λ

and the iterateswt generated byFOBOSsatisfy‖wt‖ ≤ G/λ.

Using the regret analysis for online learning, we are able toreturn to learning in a batch setting and give
stochastic convergence rates for FOBOS. We build on results of Shalev-Shwartz et al. (2007) and assume as in
Sec. 3 that we are minimizingf (w)+ r(w). Indeed, suppose that on each step of FOBOS, we choose instead
of someg f

t ∈ ∂ f (wt) a stochastic estimate of the gradient ˜g
f
t whereE[g̃

f
t ] ∈ ∂ f (wt). We assume that we still

use the truer (which is generally easy, as it is simply the regularizationfunction). It is straightforward to use
theorems 6 and 8 above as in the derivation of theorems 2 and 3 from Shalev-Shwartz et al. (2007) to derive
the following corollary on the expected convergence rate ofFOBOS as well as a guarantee of convergence
with high probability.

Corollary 10 Assume that the conditions on∂ f , ∂r, andw
⋆ hold as in the previous theorems and letFOBOS

be run for T iterations. Let s be an integer chosen uniformly at random from{1, . . . ,T}. If ηt = D
4G

√
t
, then

Es[ f (ws)+ r(ws)] ≤ f (w⋆)+ r(w⋆)+
2GD+4GD

√
T

T
.

With probability at least1−δ,

f (ws)+ r(ws) ≤ f (w⋆)+ r(w⋆)+
2GD+4GD

√
T

δT
.

If f + r is H-strongly convex and we chooseηt ∝ 1/t, we have

Es[ f (ws)+ r(ws)] = f (w⋆)+ r(w⋆)+O

(

G2 logT
HT

)

and with probability at least1−δ,

f (ws)+ r(ws) = f (w⋆)+ r(w⋆)+O

(

G2 logT
HδT

)

.
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5. Derived Algorithms

In this section we derive a few variants of FOBOS by considering different regularization functions. The
emphasis of the section is on non-differentiable regularization functions, such as theℓ1 norm of w, which
lead to sparse solutions. We also derive simple extensions to mixed-norm regularization (Zhao et al., 2006)
that build on the first part of this section.

First, we make a few changes to notation. To simplify our derivations, we denote byv the vectorwt+ 1
2

=

wt −ηtg
f
t and letλ̃ denoteηt+ 1

2
·λ. Using this newly introduced notation the problem given in Eq. (3) can

be rewritten as

minimize
w

1
2
‖w−v‖2 + λ̃ r(w). (18)

Let [z]+ denote max{0,z}. For completeness, we provide full derivations for all the regularization functions
we consider, but for brevity we do not state formally well established technical lemmas. We note that many
of the following results were given tacitly by Wright et al. (2009).

5.1 FOBOSwith ℓ1 Regularization

The update obtained by choosingr(w) = λ‖w‖1 is simple and intuitive. First note that the objective is
decomposable as we can rewrite Eq. (18) as

minimize
w

n

∑
j=1

(

1
2
(w j −v j)

2 + λ̃|w j |
)

.

Let us focus on a single coordinate ofw and for brevity omit the indexj. Let w⋆ denote the minimizer
of 1

2(w− v)2 + λ̃|w|. Clearly, w⋆ · v ≥ 0. If it were not, then we would havew⋆ · v < 0, however1
2v2 <

1
2v2−w⋆ ·v+ 1

2(w⋆)2 < 1
2(v−w⋆)2 + λ̃|w⋆|, contradicting the supposed optimality ofw⋆. The symmetry of

the objective inv also shows us that we can assume thatv≥ 0; we therefore need to minimize12(w−v)2+ λ̃w
subject to the constraint thatw≥ 0. Introducing a Lagrange multiplierβ ≥ 0 for the constraint, we have the
Lagrangian1

2(w−v)2 + λ̃w−βw. By taking the derivative of the Langrangian with respect tow and setting
the result to zero, we get that the optimal solution isw⋆ = v− λ̃+β. If w⋆ > 0, then from the complimentary
slackness condition that the optimal pair ofw⋆ andβ must havew⋆β = 0 (Boyd and Vandenberghe, 2004) we
must haveβ = 0, and thereforew⋆ = v− λ̃. If v < λ̃, thenv− λ̃ < 0, so we must haveβ > 0 and again by
complimentary slackness,w⋆ = 0. The case whenv≤ 0 is analogous and amounts to simply flipping signs.
Summarizing and expanding notation, the components of the optimal solutionw⋆ = wt+1 are computed from
wt+ 1

2
as

wt+1, j = sign
(

wt+ 1
2 , j

)[

|wt+ 1
2 , j |− λ̃

]

+
= sign

(

wt, j −ηtg
f
t, j

)[∣

∣

∣
wt, j −ηtg

f
t, j

∣

∣

∣
−ηt+ 1

2
·λ
]

+
. (19)

Note that this update can lead to sparse solutions. Whenever the absolute value of a component ofwt+ 1
2

is

smaller thañλ, the corresponding component inwt+1 is set to zero. Thus, Eq. (19) gives a simple online and
offline method for minimizing a convexf with ℓ1 regularization.

Such soft-thresholding operations are common in the statistics literature and have been used for some
time (Donoho, 1995; Daubechies et al., 2004). Langford et al. (2008) recently proposed and analyzed the
same update, terming it the “truncated gradient.” The analysis presented here is different from the analysis in
the aforementioned paper as it stems from a more general framework. Indeed, as illustrated in this section,
the derivation and method is also applicable to a wide variety of regularization functions. Nevertheless, both
analyses merit consideration as they shed light from different angles on the problem of learning sparse models
using gradients, stochastic gradients, or online methods.This update can also be implemented very efficiently
when the support ofg f

t is small (Langford et al., 2008), but we defer details to Sec.6, where we give a unified
view that facilitates efficient implementation for all the norm regularization functions we discuss.
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5.2 FOBOSwith ℓ2
2 Regularization

Whenr(w) = λ
2 ‖w‖2

2, we obtain a very simple optimization problem,

minimize
w

1
2
‖w−v‖2 +

1
2

λ̃‖w‖2,

where for conciseness of the solution we replaceλ̃ with 1
2λ̃. Differentiating the above objective and setting

the result equal to zero, we havew
⋆ −v + λ̃w

⋆ = 0, which, using the original notation, yields the update

wt+1 =
wt −ηtg

f
t

1+ λ̃
. (20)

Informally, the update simply shrinkswt+1 back toward the origin after each gradient-descent step. InSec. 7
we briefly compare the resulting FOBOS update to modern stochastic gradient techniques and show that the
FOBOSupdate exhibits similar empirical behavior.

5.3 FOBOSwith ℓ2 Regularization

A lesser used regularization function is theℓ2 norm of the weight vector. By settingr(w) = λ̃‖w‖ we obtain
the following problem,

minimize
w

1
2
‖w−v‖2 + λ̃‖w‖. (21)

The solution of Eq. (21) must be in the direction ofv and takes the formw⋆ = sv wheres≥ 0. To show that
this is indeed the form of the solution, let us assume for the sake of contradiction thatw⋆ = sv+u whereu is
in the null space ofv (if u has any components parallel tov, we can add those tosv and obtain an orthogonal
u
′) ands may be negative. Sinceu is orthogonal tov, the objective function can be expressed in terms ofs,

v, andu as
1
2
(1−s)2‖v‖2 +

1
2
‖u‖2 + λ̃(‖v‖+‖u‖) ≥ 1

2
(1−s)2‖v‖2 + λ̃‖v‖.

Thus,u must be equal to the zero vector,u = 0, and we can write the optimization problem as

minimize
s

1
2
(1−s)2‖v‖2 + λ̃s‖v‖ .

Next note that a negative value fors cannot constitute the optimal solution. Indeed, ifs< 0, then

1
2
(1−s)2‖v‖2 + λ̃s‖v‖ <

1
2
‖v‖2 .

This implies that by settings = 0 we can obtain a lower objective function, and this precludes a negative
value fors as an optimal solution. We therefore end again with a constrained scalar optimization problem,
minimizes≥0

1
2(1−s)2‖v‖2 + λ̃s‖v‖. The Lagrangian of this problem is

1
2
(1−s)2‖v‖2 + λ̃s‖v‖−βs ,

whereβ ≥ 0. By taking the derivative of the Langrangian with respect to s and setting the result to zero, we
get that(s−1)‖v‖2+ λ̃‖v‖−β = 0 which gives the following closed form solution:s= 1− λ̃/‖v‖+β/‖v‖2.
Whenevers> 0 then the complimentary slackness conditions imply thatβ = 0 andscan be further simplified
and written ass= 1− λ̃/‖v‖. The last expression is positive iff‖v‖ > λ̃. If ‖v‖ < λ̃, thenβ must be positive
and complimentary slackness implies thats= 0.

Summarizing, the second step of the FOBOSupdate withℓ2 regularization amounts to

wt+1 =

[

1− λ̃
‖wt+ 1

2
‖

]

+

wt+ 1
2

=

[

1− λ̃
‖wt −ηtg

f
t ‖

]

+

(wt −ηtg
f
t ) .
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Thus, theℓ2 regularization results in a zero weight vector under the condition that‖wt −ηtg
f
t ‖ ≤ λ̃. This

condition is rather more stringent for sparsity than the condition for ℓ1 (where a weight is sparse based only
on its value, while here, sparsity happens only if the entireweight vector hasℓ2-norm less thañλ), so it is
unlikely to hold in high dimensions. However, it does constitute a very important building block when using
a mixedℓ1/ℓ2-norm as the regularization function, as we show in the sequel.

5.4 FOBOSwith ℓ∞ Regularization

We now turn to a less explored regularization function, theℓ∞ norm ofw. This form of regularization is not
capable of providing strong guarantees against over-fitting on its own as many of the weights ofw may not be
penalized. However, there are settings in which it is desirable to consider blocks of variables as a group, such
asℓ1/ℓ∞ regularization. We continue to defer the discussion on mixing different norms and focus merely on
theℓ∞ norm as it serves as a building block. That is, we are interested in obtaining an efficient solution to the
following problem,

minimize
w

1
2
‖w−v‖2 + λ̃‖w‖∞ . (22)

It is possible to derive an efficient algorithm for finding theminimizer of Eq. (22) using properties of the
subgradient set of‖w‖∞. However, a solution to the dual form of Eq. (22) is well established. Recalling
that the conjugate of the quadratic function is a quadratic function and the conjugate of theℓ∞ norm is theℓ1

barrier function, we immediately obtain that the dual of theproblem given by Eq. (22) is

maximize
α

−1
2
‖α−v‖2

2 s.t. ‖α‖1 ≤ λ̃ . (23)

Moreover, the vector of dual variablesα satisfies the relationα = v−w. Thus, by solving the dual form
in Eq. (23) we can readily obtain a solution for Eq. (22). The problem defined by Eq. (23) is equivalent to
performing Euclidean projection onto theℓ1 ball and has been studied by numerous authors. The solution
that we overview here is based on recent work of Duchi et al. (2008). The maximizer of Eq. (23), denoted
α

⋆, is of the form
α⋆

j = sign(v j) [|v j |−θ]+ , (24)

whereθ is a non-negative scalar. Duchi et al. (2008) describe a linear time algorithm for findingθ. We
thus skip the analysis of the algorithm and focus on its core properties that affect the solution of the original
problem Eq. (22). To findθ we need to locate a pivot element inv, denoted by theρth order statisticv(ρ)

(wherev(1) is the largest magnitude entry ofv), with the following property,v(ρ) is the smallest magnitude
element inv such that

∑
j:|v j |>|v(ρ)|

(

|v j |− |v(ρ)|
)

< λ̃ .

If all the elements inv (assuming that we have added an extra 0 element to handle the smallest entry ofv)
satisfy the above requirement then the optimal choice forθ is 0. Otherwise,

θ =
1
ρ



 ∑
j:|v j |>|v(ρ)|

|v j |− λ̃



 .

Thus, the optimal choice ofθ is zero when∑n
j=1 |v j | ≤ λ̃ (this is, not coincidentally, simply the subgradient

condition for optimality of the zero vector in Eq. (22)).
Using the linear relationshipα = v−w ⇒ w = v−α along with the solution of the dual problem as

given by Eq. (24), we obtain the following solution for Eq. (22),

wt+1, j = sign
(

wt+ 1
2 , j

)

min
{∣

∣

∣
wt+ 1

2 , j

∣

∣

∣
, θ
}

. (25)
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As stated above,θ = 0 iff ‖wt+ 1
2
‖1 ≤ λ̃ and otherwiseθ > 0 and can be found inO(n) steps. In words,

the components of the vectorwt+1 are the result of capping all of the components ofwt at θ whereθ is
zero when the 1-norm ofwt+ 1

2
is smaller thañλ. Interestingly, this property shares a duality resemblance

with the ℓ2-regularized update, which results in a zero weight vector when the 2-norm (which is self-dual)
of v is less thañλ. We can exploit these properties in the context of mixed-norm regularization to achieve
sparse solutions for complex prediction problems, which wedescribe in the sequel and for which we present
preliminary results in Sec. 7. Before doing so, we present one more norm-related regularization.

5.5 FOBOSwith Berhu Regularization:

We now consider a regularization function which is a hybrid of the ℓ1 and ℓ2 norms. Similar toℓ1 reg-
ularization, Berhu (for inverse Huber) regularization results in sparse solutions, but its hybridization with
ℓ2

2 regularization prevents the weights from being excessively large. Berhu regularization (Owen, 2006) is
defined as

r(w) = λ
n

∑
j=1

b(w j) = λ
n

∑
j=1

[

|w j | [[|w j | ≤ γ]]+
w2

j + γ2

2γ
[[|w j | > γ]]

]

.

In the above,[[·]] is 1 if its argument is true and is 0 otherwise. The positive scalar γ controls the value
for which the Berhu regularization switches fromℓ1 mode toℓ2 mode. Formally, whenw j ∈ [−γ,γ], r(w)
behaves asℓ1, and forw j outside this region, the Berhu penalty behaves asℓ2

2. The Berhu penalty is convex
and differentiable except at 0, where it has the same subdifferential set asλ‖w‖1.

To find a closed form update fromwt+ 1
2

to wt+1, we minimize in each variable12(w− v)+ λ̃b(w); the
derivation is fairly standard but technical and is providedin Appendix B. The end result is aesthetic and
captures theℓ1 andℓ2 regions of the Berhu penalty,

wt+1, j =



















0
∣

∣

∣wt+ 1
2 , j

∣

∣

∣≤ λ̃

sign(wt+ 1
2 , j)
[

|wt+ 1
2 , j |− λ̃

]

λ̃ < |wt+ 1
2 , j | ≤ λ̃+ γ

w
t+ 1

2 , j

1+λ̃/γ
γ+ λ̃ <

∣

∣

∣wt+ 1
2 , j

∣

∣

∣

. (26)

Indeed, as Eq. (26) indicates, the update takes one of two forms, depending on the magnitude of the coordinate
of wt+ 1

2 , j . If |wt+ 1
2 , j | is greater thanγ+ λ̃, the update is identical to the update forℓ2

2-regularization of Eq. (20),

while if the value is no larger thanγ+ λ̃, the resulting update is equivalent to the update forℓ1-regularization
of Eq. (19).

5.6 Extension to Mixed Norms

We saw above that when using either theℓ2 or theℓ∞ norm as the regularization function, we obtain an all
zeros vector if||wt+ 1

2
||2 ≤ λ̃ or ||wt+ 1

2
||1 ≤ λ̃, respectively. The zero vector does not carry any generalization

properties, which surfaces a concern regarding the usability of the these norms as a form of regularization.
This seemingly problematic phenomenon can, however, be useful in the setting we discuss now. In many
applications, the set of weights can be grouped into subsetswhere each subset of weights should be dealt
with uniformly. For example, in multiclass categorizationproblems each classr may be associated with a
different weight vectorwr . The prediction for an instancex is a vector

〈

w
1,x
〉

, . . . ,
〈

w
k,x
〉

wherek is
the number of different classes. The predicted class is the index of the inner-product attaining the largest
of the k values, argmaxj

〈

w
j ,x
〉

. Since all the weight vectors operate over the same instancespace, in
order to achieve a sparse solution, it may be beneficial to tiethe weights corresponding to the same input
feature. That is, we would like to employ a regularization function that tends to zero the row of weights
w1

j , . . . ,w
k
j simultaneously. In these circumstances, the nullification of the entire weight vector byℓ2 andℓ∞

regularization becomes a powerful tool.
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Formally, letW represent an× k matrix where thej th column of the matrix is the weight vectorw j

associated with classj. Thus, theith row corresponds to the weight of theith feature with respect to all
classes. The mixedℓr/ℓs-norm (Obozinski et al., 2007) ofW, denoted‖W‖ℓr/ℓs

, is obtained by computing the
ℓs-norm of each row ofW and then applying theℓr -norm to the resultingn dimensional vector, for instance,
‖W‖ℓ1/ℓ∞

= ∑n
j=1maxj |Wi, j |. Thus, in a mixed-norm regularized optimization problem (such as multiclass

learning), we seek the minimizer of the objective function

f (W)+λ‖W‖ℓr/ℓs
.

Given the specific variants of various norms described above, the FOBOSupdate for theℓ1/ℓ∞ and theℓ1/ℓ2

mixed-norms is readily available. Let ¯w
r denote therth row of W. Analogously to the standard norm-based

regularization, we letV = Wt+ 1
2

be a shorthand for the result of the gradient step. For theℓ1, ℓp mixed-norm,
wherep = 2 or p = ∞, we need to solve the problem

minimize
W

1
2
‖W−V‖2

Fr + λ̃‖W‖ℓ1/ℓ2
≡ minimize

w̄1,...,w̄k

n

∑
i=1

(

1
2

∥

∥w̄
i − v̄

i
∥

∥

2
2 + λ̃

∥

∥w̄
i
∥

∥

p

)

, (27)

wherev̄
i is theith row of V. It is immediate to see that the problem given in Eq. (27) is decomposable into

n separate problems of dimensionk, each of which can be solved by the procedures described in the prequel.
The end result of solving these types of mixed-norm problemsis a sparse matrix with numerous zero rows.
We demonstrate the merits of FOBOSwith mixed-norms in Sec. 7.

6. Efficient Implementation in High Dimensions

In many settings, especially online learning, the weight vectorwt and the gradientsg f
t reside in a very high-

dimensional space, but only a relatively small number of thecomponents ofg f
t are non-zero. Such settings

are prevalent, for instance, in text-based applications: in text categorization, the full dimension corresponds to
the dictionary or set of tokens that is being employed while each gradient is typically computed from a single
or a few documents, each of which contains words and bigrams constituting only a small subset of the full
dictionary. The need to cope with gradient sparsity becomesfurther pronounced in mixed-norm problems, as
a single component of the gradient may correspond to an entire row ofW. Updating the entire matrix because
a few entries ofg f

t are non-zero is clearly undesirable. Thus, we would like to extend our methods to cope
efficiently with gradient sparsity. For concreteness, we focus in this section on the efficient implementation
of ℓ1, ℓ2, andℓ∞ regularization, recognizing that the extension to mixed-norms (as in the previous section) is
straightforward. The upshot of following proposition is that wheng f

t is sparse, we can use lazy evaluation of
the weight vectors and defer to later rounds the update of components ofwt whose corresponding gradient
entries are zero. We detail this after the proposition, which is technical so the interested reader may skip the
proof to see the simple algorithms for lazy evaluation.

Proposition 11 LetwT be the end result of solving a succession of T self-similar optimization problems for
t = 1, . . . ,T,

P .1 : wt = argmin
w

1
2
‖w−wt−1‖2 +λt‖w‖q . (28)

Letw⋆ be the optimal solution of the following optimization problem:

P .2 : w
⋆ = argmin

w

1
2
‖w−w0‖2 +

(

T

∑
t=1

λt

)

‖w‖q .

Then for q∈ {1,2,∞} the vectorswT andw
⋆ are identical.

Proof It suffices to show that the proposition is correct forT = 2 and then use an inductive argument,
because the proposition trivially holds forT = 1. We provide here a direct proof for each norm separately by
examining the updates we derived in Sec. 5 and showing thatw2 = w

⋆.
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Note that the objective functions are separable forq = 1. Therefore, forℓ1-regularization it suffices to
prove the proposition for any component of the vectorw. We omit the index of the component and denote by
w0,w1,w2,w3, . . . one coordinate ofw along the iterations ofP .1 and byw⋆ the result for the same component
when solvingP .2. We need to show thatw⋆ = w2. Expanding theℓ1-update of Eq. (19) over two iterations
we get the following,

w2 = sign(w1) [|w1|−λ2]+ = sign(w1)
[∣

∣sign(w0) [|w0|−λ1]+
∣

∣−λ2
]

+
= sign(w0) [|w0|−λ1−λ2]+ ,

where we used the positivity of| · |. ExaminingP .2 and using Eq. (19) again we get

w⋆ = sign(w0) [|w0|−λ1−λ2]+ .

Therefore,w⋆ = w2 as claimed.
Next we prove the proposition forℓ2, returning to using the entire vector for the proof. Using the explicit

ℓ2-update from Eq. (20), we can expand the norm of the vectorw1 due to the programP .1 as follows,

‖w1‖ =

[

1− λ1

‖w0‖

]

+

‖w0‖ = [‖w0‖−λ1]+ .

Similarly, we get that‖w2‖ = [‖w1‖−λ2]+. Combining the norm equalities we see that the norm ofw2 due
to the succession of the two updates is

‖w2‖ =
[

[‖w0‖−λ1]+ −λ2
]

+
= [‖w0‖−λ1−λ2]+ .

Computing directly the norm ofw⋆ due to the update given by Eq. (20) yields

‖w⋆‖ =

[

1− λ1 +λ2

‖w0‖

]

+

‖w0‖ = [‖w0‖−λ1−λ2]+ .

Thus,w⋆ andw2 have the same norm. Since the update itself retains the direction of the original vectorw0,
we get thatw⋆ = w2 as needed.

We now turn to the most complicated update and proof of the three norms, theℓ∞ norm. We start by
recapping the programsP .1 andP .2 for T = 2 andq = ∞,

P .1 : w1 = argmin
w

{

1
2
‖w−w0‖2 +λ1‖w‖∞

}

(29)

w2 = argmin
w

{

1
2
‖w−w1‖2 +λ2‖w‖∞

}

, (30)

P .2 : w
⋆ = argmin

w

{

1
2
‖w−v‖2

2 +(λ1 +λ2)‖w‖∞

}

. (31)

We prove the equivalence of the two programs in two stages. First, we examine the case‖w0‖1 > λ1 + λ2,
and then consider the complement case‖w0‖1 ≤ λ1 + λ2. For concreteness and simplicity, we assume that
w0 � 0, since, clearly, the objective is symmetric inw0 and−w0. We thus can assume that all entries of
w0 are non-negative. In the proof we use the following operators: [v]+ now denotes the positive component
of each entry ofv, min{v,θ} denotes the component-wise minimum between the elements ofv andθ, and
likewise max{v,θ} is the component-wise maximum. Starting with the case‖w0‖1 > λ1 + λ2, we examine
Eq. (29). From Lagrange duality we know that thatw1 = w0−α1, whereα1 is the solution of

minimize
α

1
2
‖α−w0‖2

2 s.t. ‖α‖1 ≤ λ1 .

As described by Duchi et al. (2008) and reviewed above in Sec.5, α1 = [w0−θ1]+ for someθ1 ∈ R+. The
form of α1 readily translates to the following form forw1: w1 = w0−α1 = min(w0,θ1). Applying similar
reasoning to the second step ofP .1 yieldsw2 = w1−α2 = w0−α1−α2, whereα2 is the minimizer of

1
2
‖α−w1‖2

2 =
1
2
‖α− (w0−α1)‖2

2 s.t. ‖α‖1 ≤ λ2 .
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Again, we haveα2 = [w1−θ2]+ = [w0−α1−θ2]+ for someθ2 ∈ R+. The successive steps then imply that

w2 = min{w1,θ2} = min{min{w0,θ1},θ2} .

We next show that regardless of theℓ1-norm ofw0, θ2 ≤ θ1. Intuitively, if θ2 > θ1, the second minimiza-
tion step ofP .1 would perform no shrinkage ofw1 to getw2. Formally, assume for the sake of contradiction
thatθ2 > θ1. Under this assumption, we would have thatw2 = min{min{w0,θ1},θ2} = min{w0,θ1} = w1.
In turn, we obtain that0 belongs to the subgradient set of Eq. (30) when evaluated atw = w1, thus,

0 ∈ w1−w1 +λ2∂‖w1‖∞ = λ2∂‖w1‖∞ .

Clearly, the set∂‖w1‖∞ can contain0 only whenw1 = 0. Since we assumed thatλ1 < ‖w0‖1, and hence
thatα1 � w0 andα1 6= w0, we have thatw1 = w0−α1 6= 0. This contradiction implies thatθ2 ≤ θ1.

We now examine the solution vectors to the dual problems ofP .1, α1 andα2. We know that‖α1‖1 =
λ1 so that‖w0−α1‖1 > λ2 and henceα2 is at the boundary‖α2‖1 = λ2 (see again Duchi et al. 2008).
Furthermore, the sum of the these vectors is

α1 +α2 = [w0−θ1]+ +
[

w0− [w0−θ1]+ −θ2
]

+
. (32)

Let v denote a component ofw0 greater thanθ1. For any such component the right hand side of Eq. (32)
amounts to

[v− (v−θ1)−θ2]+ +[v−θ1]+ = [θ1−θ2]+ +v−θ1 = v−θ1 = [v−θ1]+ ,

where we used the fact thatθ2 ≤ θ1 to eliminate the term[θ1−θ2]+. Next, letu denote a component of
w0 smaller thanθ1. In this case, the right hand side of Eq. (32) amounts to[u−0−θ2]+ + 0 = [u−θ2]+.
Recapping, the end result is that the vector sumα1 +α2 equals[w0−θ2]+. Moreover,α1 andα2 are inR

n
+

as we assumed thatw0 � 0, and thus

‖ [w0−θ2]+ ‖1 = ‖α1 +α2‖1 = λ1 +λ2 . (33)

We now show thatP .2 has the same dual solution as the sequential updates above.The dual ofP .2 is

minimize
α

1
2
‖α−w0‖2

2 s.t. ‖α‖1 ≤ λ1 +λ2.

Denoting byα0 the solution of the above dual problem, we havew
⋆ = w0 −α0 andα0 = [w0−θ]+ for

someθ ∈ R+. Examining the norm ofα0 we obtain that

‖α0‖1 =
∥

∥[w0−θ]+
∥

∥

1 = λ1 +λ2 (34)

because we assumed that‖w0‖1 > λ1 + λ2. We can view the terms
∥

∥[w0−θ2]+
∥

∥

1 from Eq. (33) and
∥

∥[w0−θ]+
∥

∥

1 from Eq. (34) as functions ofθ2 and θ, respectively. The functions are strictly decreasing
functions ofθ andθ2 over the interval[0,‖w0‖∞]. Therefore, they are invertible for 0< λ1 + λ2 < ‖w0‖1.
Since

∥

∥[w0−θ]+
∥

∥

1 =
∥

∥[w0−θ2]+
∥

∥

1, we must haveθ2 = θ. Recall that the solution of Eq. (31) isw⋆ =
min{w0,θ}, and the solution of the sequential update induced by Eq. (29) and Eq. (30) is
min{min{w0,θ1},θ2} = min{w0,θ2}. The programsP .1 andP .2 therefore result in the same vector
min{w0,θ2} = min{w0,θ} and their induced updates are equivalent.

We now examine the case when‖w0‖1 ≤ λ1+λ2. If the 1-norm ofw0 is also smaller thanλ1, ‖w0‖1 ≤ λ1,
then the dual solution for the first step ofP .1 isα1 = w0, which makesw1 = w0−α1 = 0 and hencew2 = 0.
The dual solution for the combined problem is clearlyα0 = w0; again,w⋆ = w0−α0 = 0. We are thus left
with the caseλ1 < ‖w0‖1 ≤ λ1 + λ2. We straightforwardly get that the solution to Eq. (31) isw

⋆ = 0. We
now prove that the iterated solution obtained byP .1 results in the zero vector as well. First, consider the
dual solutionα1, which is the minimizer of‖α−w0‖2 subject to‖α‖1 ≤ λ1. Sinceα1 = [w0−θ1]+ for
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someθ1 ≥ 0, we know that each component ofα1 is between zero and its corresponding component inw0,
therefore,‖w0−α1‖1 = ‖w0‖1−‖α‖1 = ‖w0‖1−λ1 ≤ λ2. The dual of the second step ofP .1 distills to
the minimization1

2‖α− (w0−α1)‖2 subject to‖α‖1 ≤ λ2. Since we showed that‖w0−α‖1 ≤ λ2, we get
α2 = w0−α1. This means thatθ2 = 0. Recall that the solution ofP .1 is min{w0,θ2}, which amounts to
the zero vector whenθ2 = 0. We have thus showed that both optimization problems result in the zero vector.
This proves the equivalence ofP .1 andP .2 for q = ∞.

The algorithmic consequence of Proposition 11 is that it is possible to perform a lazy update on each
iteration by omitting the terms ofwt (or whole rows of the matrixWt when using mixed-norms) that are
outside the support ofg f

t , the gradient of the loss at iterationt. However, we do need to maintain the
step-sizes used on each iteration and have them readily available on future rounds when we need to update
coordinates ofw orW that were not updated in previous rounds. LetΛt denote the sum of the step sizes times
regularization multipliersληt used from round 1 throught. Then a simple algebraic manipulation yields that
instead of solving

wt+1 = argmin
w

{

1
2
‖w−wt‖2

2 +ληt‖w‖q

}

repeatedly whenwt is not being updated, we can simply cache the last timet0 thatw (or a coordinate inw
or a row fromW) was updated and, when it is needed, solve

wt+1 = argmin
w

{

1
2
‖w−wt‖2

2 +(Λt −Λt0)‖w‖q

}

.

The advantage of the lazy evaluation is pronounced when using mixed-norm regularization as it lets us avoid
updating entire rows so long as the row index corresponds to azero entry of the gradientg f

t . We would like
to note that the lazy evaluation due to Proposition 11 includes as a special case the efficient implementation
for ℓ1-regularized updates first outlined by Langford et al. (2008). In sum, at the expense of keeping a time
stampt for each entry ofw or row ofW and maintaining a list of the cumulative sumsΛ1,Λ2, . . ., we can get
O(s) updates ofw when the gradientg f

t is s-sparse, that is, it has onlysnon-zero components.

7. Experiments

In this section we describe the results of experiments we performed whose goal are to demonstrate the merits
and underscore a few weaknesses of FOBOS. To that end, we also evaluate specific instantiations of FOBOS

with respect to several state-of-the-art optimizers and projected subgradient methods on different learning
problems. In the experiments that focus on efficiency and speed of convergence, we evaluate the methods
in terms of their number of operations, which is approximately the number of floating point operations each
method performs. We believe that this metric offers a fair comparison of the different algorithms as it lifts
the need to cope with specific code optimization such as cachelocality or different costs per iteration of each
of the methods.

7.1 Sensitivity Experiments

We begin our experiments by performing a sensitivity analysis of FOBOS. We perform some of the analysis
in later sections during our comparisons to other methods, but we discuss the bulk of it here. We focus on
two tasks in our sensitivity experiments: minimizing the hinge loss (used in Support Vector Machines) with
ℓ2

2 regularization and minimizing theℓ1-regularized logistic loss. These set the loss functionf as

f (w) =
1
n

n

∑
i=1

[1−yi 〈xi ,w〉]+ +
λ
2
‖w‖2

2 and f (w) =
1
n

n

∑
i=1

log
(

1+e−yi〈xi ,w〉
)

+λ‖w‖1

respectively. Note that both loss functions have subgradient sets bounded by1n ∑n
i=1‖yixi‖2. Therefore, if all

the instances are of bounded norm, so are the subgradients ofthe empirical loss functions.
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Figure 1: Sensitivity of deterministic FOBOSto initial step size on logistic regression. Key is initial step size.
Left: ηt ∝ 1/

√
t. Right: ηt ∝ 1/t.

We perform analysis using dimensionsd ∈ {50,100,200,400,800} and data set sizesn∈ {200,400}. We
investigate the effect of correlation of the featuresxi j with one another by generating uncorrelated, moder-
ately correlated, and highly correlated features. Specifically, to generate feature vectorsxi ∈ R

d, we sample
n random vectorszi ∼ N(0, I), zi ∈ R

d. We then construct a random covariance matrixΣ whose correla-
tions |ρi j | = |Σi j |/

√

Σii Σ j j have mean.2 for the moderately correlated experiments and.3 for the highly
correlated experiments (on the highly correlated data, more than one-tenth of the features were more than
80% correlated). To getx, we then setxi = Lzi , whereL is the Cholesky decomposition ofΣ (the identity
in the uncorrelated case), and normalizexi to have‖xi‖∞ = 1. We compared different stochastic gradient
estimators that were based on varying sample sizes: a singleexample, 10% of the training set, 20% of the
training set, and deterministic gradient using the entire data set. We also tested ten different initial step sizes.
However, we give in the graphs results for only a subset of theinitial steps that reveals the overall dependency
on the step size. Further, we also checked three schemes for decaying the step size:ηt ∝ 1/t, ηt ∝ 1/

√
t, and

ηt ∝ 1 (constant step size). We discuss the results attained by constant step sizes only qualitatively, though,
to keep the clarity of the figures. Whenηt was a constant we divided the initial step size by

√
T, the total

number of iterations being taken. We performed each experiment 10 times and averaged the results.
We distill the large number of experiments into a few figures here, deferring some of the analysis to the

sequel. Thus in this section we focus on the case whenn= 400 andd = 800, since the experiments with other
training set sizes and dimensions gave qualitatively similar results. Most of the results in this section focus on
the consequences of the initial step sizeη1, though we also discuss different schedules of the learningrate and
the sample size for computing the subgradients. In each experiment, we setλ = .25/

√
n, which in the logistic

case gave roughly 50% sparsity. Before our discussion, we note that we can bound theℓ2-norm ofw⋆ for
both the logistic and the hinge loss. In the case of the logistic, we haveλ‖w⋆‖2 ≤ λ‖w⋆‖1 ≤ f (0) = log2.
Similarly, for the hinge loss we haveλ2 ‖w⋆‖2

2 ≤ f (0) = 1. In both cases we can boundG by the norm of the
‖xi‖, which is in our settings approximately 9. Thus, looking at the bounds from Sec. 3 and Sec. 4, when
ηt ∝ 1/

√
T, the initial step size amounts toη1 ≈ D/

√
7G≈ 2.3 and whenηt ∝ 1/

√
t, the initial step should

be η1 ≈ D/4G ≈ 1.5 for logistic regression. For the hinge loss, whenηt ∝ 1/
√

t, and the initial step ends
beingη1 ≈ D/4G≈ .35. We see in the sequel that these approximate step sizes yield results competitive with
the best initial step sizes, which can be found only in hindsight.

We begin by considering the effect of initial step size forℓ1-regularized logistic regression. We plot
results for the moderately correlated data sets, as we investigate the effect of correlation later on. The results
are given in Figures 1 and 2, where we plot the objective valueat each time step minus the optimal objective
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Figure 2: Sensitivity of stochastic FOBOS to initial step size on logistic regression. Key is initial step size.
Left: ηt ∝ 1/

√
t. Right: ηt ∝ 1/t.

value attained,f (wt)+ r(wt)− f (w⋆)− r(w⋆). We plot the function values of the initial step size that was
chosen automatically, by estimatingD andG as described above, in bold red in the figures. Interestingly, the
left side of Fig. 1 suggests that the best performing initialsteps whenηt ∝ 1/

√
t are near 1.5:η1 = 2.15 gives

good regret (we also saw thatη1 = 4.6 performed well, but do not include it in the plot). In Fig. 2,we see
similar behavior for stochastic FOBOSwhen using 10% of the samples to estimate the gradient. Though we
do not plot these results, the stochastic case with constantstep sizes also performs well when the step sizes
areηt ≈ 2.2/

√
T. The deterministic variant of FOBOScould not not take as many steps in the allotted time as

the stochastic versions, so its performance was not competitive. All methods are somewhat sensitive to initial
step size. Nonetheless, for these types of learning problems it seems plausible to estimate an initial step size
based on the arguments given in the previous paragraph, especially when using the step rate ofηt ∝ 1/

√
t

that was suggested by the analysis in Sec. 4.
We performed similar experiments with the hinge loss withℓ2

2 regularization. As the objective is strongly
convex,2 our analysis from Sec. 4 and Theorem 8 suggests a step rate ofηt = 1/λt. From the right plot in
Fig. 3, we see that the best performing step sizes where the two largest, which is consistent with our analysis
since 1/λ = 80. For the the 1/

√
t steps, which we present on the left of Fig. 3 respectively, such initial step

sizes are too large. However, we can see again that the approximation suggested by our arguments above
gives good performance. In sum, it seems that while FOBOS and stochastic FOBOS are fairly sensitive to
initial step sizes and rate schedule, our theoretical results from the previous sections give relatively good
initial step size heuristics. We will see similar behavior in the sequel.

7.2 Comparison to Subgradient Optimizers

We now move on to the description of experiments using FOBOS to solveℓ2
2-regularized learning problems,

focusing on comparison to the state-of-the-art subgradient optimizer Pegasos (Shalev-Shwartz et al., 2007).
Pegasos was originally implemented and evaluated on Support Vector Machine (SVM) problems by using
the hinge-loss as the empirical loss function along with anℓ2

2 regularization term. Nonetheless, Pegasos can
be rather simply extended to the binary logistic loss function. We thus experimented with both the hinge and
logistic loss functions. To generate data for our experiments, we chose a vectorw with entries distributed
normally with a zero mean and unit variance, while randomly zeroing 50% of the entries in the vector. The

2. We assume there is no bias term in the objective, since any optimization method must deal with this so we find it outside the scope
of the paper.
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Figure 3: Sensitivity of stochastic methods to initial stepsize on hinge loss minimization withℓ2
2-

regularization. Key is initial step size. Left:ηt ∝ 1/
√

t. Right: ηt ∝ 1/t.

examplesxi ∈ R
d were also chosen at random with entries i.i.d. normally distributed. We also performed

experiments using correlated data. The results attained oncorrelated data were similar, so we do not report
them in our comparison to Pegasos. To generate target values, we setyi = sign(〈xi ,w〉), and negated the
sign of 10% of the examples to add label noise. In all experiments, we usedn = 1000 training examples of
dimensiond = 400.

The graphs of Fig. 4 show (on a log-scale) the objective function, namely, the regularized empirical loss
of the algorithms, minus the optimal value of the objective function. These results were averaged over 20
independent runs of the algorithms. In all experiments witha regularization of the form1

2λ‖w‖2
2, we used

step sizes of the formηt = 1/(λt) to achieve the logarithmic regret bound of Sec. 4. The left graph of
Fig. 4 conveys that FOBOSperforms comparably to Pegasos on hinge (SVM) loss. Both algorithms quickly
approach the optimal value. In this experiment we let both Pegasos and FOBOSemploy a projection after each
gradient step onto aℓ2 norm ball in whichw

⋆ must lie (see Shalev-Shwartz et al. 2007 and the discussion
following the proof of Theorem 2). However, in the experiment corresponding to the right plot of Fig. 4, we
eliminated the additional projection step and ran the algorithms with the logistic loss. In this case, FOBOS

slightly outperforms Pegasos. We hypothesize that the slightly faster rate of FOBOS is due to the explicit
shrinkage that FOBOSperforms in theℓ2

2 update (see Eq. (20) and Lemma 9).

7.3 Comparison to Other Methods for Smooth Problems

As mentioned in our discussion of related work, many methodshave been proposed in the optimization and
machine learning literature for minimizing Eq. (1) whenf is smooth, particularly whenf has a Lipschitz-
continuous gradient. For the case ofℓ1-regularized logistic regression, Koh et al. (2007) propose an efficient
interior point method. Tseng and Yun (2007) give analysis ofa (block) coordinate descent method that
uses approximations to the Hessian matrix and an Armijo-type backtracking line search to solve non-smooth
regularized problems with smooth objectives; their methodwas noted to be effective forℓ1/ℓ2-regularized
logistic regression, for example, by Meier et al. (2008). Wealso compare FOBOSand its stochastic variants to
the SPARSA method of Wright et al. (2009), which shares the same update as FOBOSbut uses a simple line
search strategy to choose the its steps. Note that none of these methods apply whenf is non-smooth. Lastly,
we compare FOBOS to projected-gradient methods. Forℓ1-regularized problems, Duchi et al. (2008) show
how to compute projections to anℓ1-ball in linear time, and Schmidt et al. (2009) extend the method to show
that projection of a matrixW ∈ R

d×k to anℓ1/ℓ2-constraint can be computed inO(dk) time. To compare
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Figure 4: Comparison of FOBOS with Pegasos on the SVM (left) and logistic regression (right). The right
hand side plot shows the performance of the algorithms without a projection step.

our methods to projected gradient methods, we first solve theregularized version of the problem. We then
constrain the norm ofw or the mixed-norm ofW to lie within a ball of radiusλ‖w⋆‖1 or λ‖W⋆‖ℓ1/ℓ2

.
We compared FOBOS to each of the above methods on many different synthetic datasets, and we report

a few representative results. In our experiments, SPARSA seemed to outperform FOBOS and the projected
gradient methods when using full (deterministic) gradientinformation. The additional function evaluations
incurred by the line search in SPARSA seem to be insignificant to runtime, which is a plausible explanation
for SPARSA’s superior performance. We therefore do not report results for the deterministic versions of
FOBOSand projected gradient methods to avoid clutter in the figures.

In the first set of experiments, we compare FOBOS’s performance onℓ1-regularized logistic regression
to each of the above methods. That is, we setf (w) to be the average logistic loss andr(w) = λ‖w‖1 and
use a data set withn = 1000 examples andd = 400 dimensions. We compare the performance of stochastic
FOBOS to the other algorithms in terms of two aspects. The first is the value ofλ, which we set to five
logarithmically spaced values that gave solution vectorsw

⋆ ranging from 100% non-zero entries to only 5%
non-zero entries. The second aspect is on the correlation ofthe features. We generated random data sets with
uncorrelated features, features that were on average 20% correlated with one another, and features that were
on average 30% correlated with one another. In the latter case about 350 pairs of features had above 80%
correlation (see the description of feature generation at the beginning of the section). We normalized each
examplex to have features in the range[−1,1]. We assigned labels for each example by randomly choosing
a 50% sparse vectorw, settingyi = sign(〈w,xi〉), and negating 5% of they values.

The results comparing FOBOS to the other algorithms for different settings of the regularizer λ are in
Fig. 5. They-axis is f (wt)+ r(wt)− f (w⋆)− r(w⋆), the distance of the current value from the optimal value,
and thex-axis is the approximate number of operations (FLOPs) for each method. We used the approximation
we derived based on Corollary 7 in our earlier discussion of sensitivity to set the initial step size and used
ηt ∝ 1/

√
t. Tseng and Yun’s method requires setting of constants for the backtracking-based line search.

We thus use the settings in Meier et al. (2008). In attempt to make the comparisons as fair as possible, we
used some of Tseng and Yun’s code yet reimplemented the method to take advantage of the specific structure
of logistic regression. Similarly, we used the line-searchparameters in Wright et al.’s publicly available
Matlab code for SPARSA, though we slightly modified their code to handle arbitrary loss functions. From
the figure, we see that asλ grows, yielding sparser solutions forw

⋆, the performance of coordinate descent
and especially the interior point method start to degrade relative to the stochastic methods and SPARSA.

In our experiments we found that the stochastic methods werequite resilient to overly-large initial step-
sizes, as they quickly took a large number of steps. SPARSA employs an easy to implement and efficient
line search, and in general yielded good performance. The coordinate descent method, with its somewhat
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Figure 5: Performance ofℓ1-regularized logistic regression methods with different settings ofλ on correlated
synthetic data. Left to right, top to bottom:w

⋆ has 0% sparsity,w⋆ has 25% sparsity,w⋆ has 40%
sparsity,w⋆ has 70% sparsity, andw⋆ has 95% sparsity.
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Figure 6: Performance ofℓ1-regularized logistic regression methods with different correlations on synthetic
data. Left: uncorrelated data. Right: highly correlated data.

0 2 4 6 8 10 12

x 10
9

10
−2

10
−1

10
0

f(
w

t) 
+

 r
(w

t) 
−

 f
(w

* ) 
−

 r
(w

* )

Approximate Operations
 

 

SpaRSA
Stoch Fobos
Stoch Proj
Coord

0 2 4 6 8 10 12

x 10
9

10
−2

10
−1

10
0

f(
w

t) 
+

 r
(w

t) 
−

 f
(w

* ) 
−

 r
(w

* )

Approximate Operations

Figure 7: Performance ofℓ1/ℓ2-regularized multiclass logistic regression methods withdifferent settings of
λ on correlated synthetic data. Left:w

⋆ has 60% sparsity. Right:w⋆ has 30% sparsity.

complicated backtracking line search, was difficult to implement correctly. Therefore, our experiments and
experience suggest that SPARSA is likely to be preferred for smooth problems. Nonetheless, stochastic
FOBOS quickly obtains a solution within about 10−2 of the optimal value. Since the regularized empirical
loss serves as a proxy for attaining good generalization performance, we found that in numerous cases this
accuracy sufficed to achieve competitivetestloss.

In Fig. 6 we compare FOBOS to the other methods on data with uncorrelated, moderately correlated, and
very correlated features. These plots all haveλ set so thatw⋆ has approximately 40% sparsity. From the
plots, we see that stochastic FOBOSand projected gradient actually perform very well on the more correlated
data, very quickly getting to within 10−2 of the optimal value, though after this they essentially jam. As in the
earlier experiments, SPARSA seems to perform quite well for these moderately sized experiments, though
the interior point method’s performance improves as the features become more correlated.
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Figure 8: Comparison test error rate of FOBOS, SPARSA, projected gradient, and coordinate descent on
MNIST digit recognition data set. Right: magnified view of left plot.

The last set of experiments with synthetic data sets was on mixed-norm-regularized multiclass logistic
regression. The objective that we used in this case is

1
n

n

∑
i=1

log

(

1+ ∑
j 6=yi

e〈xi ,w
j−w

yi 〉
)

+λ‖W‖ℓ1/ℓq . (35)

In the above equationq represents the norm over rows of the matrixW, and in our experiments it is either 1,
2, or∞ (in this section,q= 2). The goal is to classify correctly examples whose labels are in{1, . . . ,k} while
jointly regularizing entries of the vectorsw j . We usedn = 5000 datapoints of dimensiond = 1000 with
k = 10 classes, meaning we minimize a loss over a matrixW ∈ R

d×k with 10000 parameters. To generate
data, we sample examplesxi from a normal distribution with moderate correlation, randomly choose a matrix
W, and setyi = argmaxj

〈

xi ,w
j
〉

with 5% label noise. We show results in Fig. 7. In the three figures,
vary λ to give solutionsW⋆ with roughly 60% zero rows, 30% zero rows, and completely non-sparseW⋆.
From the figures, it is apparent that the stochastic methods,both FOBOS and projected gradient, exhibit
very good initial performance but eventually lose to the coordinate descent method in terms of optimization
speed. As before, if one is willing to use full gradient information, SPARSA seems a better choice than the
deterministic counterpart of FOBOSand projected gradient algorithms. We thus again do not present results
for deterministic FOBOSwithout any line search.

7.4 Experiments with Real Data Sets

Though in the prequel we focus on optimization speed, the main goal in batch learning problems is attaining
good test-set error rates rather than rapid minimization off (w) + r(w). In order to better understand the
merits of different optimization methods, we compared the performance of different optimizers on achieving
a good test-set error rate on different data sets. Nonetheless, for these tests the contours for the training
objective value were qualitatively very similar to the test-set error rate curves. We used the StatLog LandSat
Satellite data set (Spiegelhalter and Taylor, 1994), the MNIST handwritten digit database, and a sentiment
classification data set (Blitzer et al., 2007).

The MNIST database consists of 60,000 training examples anda 10,000 example test set with 10 classes.
We show average results over ten experiments using random 15,000 example subsamples of the training set.
For MNIST, each digit is a 28× 28 gray scale imagez which is represented as a 282 = 784 dimensional
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Figure 9: Comparison of FOBOSand SPARSA on sentiment classification task.

vector. Direct linear classifiers do not perform well on thisdata set. Thus, rather than learning weights for
the original features, we learn the weights for a kernel machine with Gaussian kernels, where the value of the
j th feature for theith example is

xi j = K(zi ,z j) , e−
1
2‖zi−z j‖2

.

We usedℓ1/ℓ2 regularization and compared FOBOS, SPARSA, coordinate descent, and projected gradient
methods on this test (as well as stochastic gradient versions of FOBOS and projected gradient). The results
for deterministic FOBOSand projected gradient were similar to SPARSA, so we do not present them. We also
experimented with stochastic group sizes of 100 and 200 examples for FOBOS, but the results were similar, so
we plot only the results from the 100 example runs. As before,we used theℓ1/ℓ2 norm of the solution vectors
for FOBOS, SPARSA, and coordinate descent as the constrained value for theprojected gradient method. For
each of the gradient methods, we estimated the diameterD and maximum gradientG as in the synthetic
experiments, which led us to use a step size ofηt = 30/

√
t. The test set error rate as a function of number

of operations for each of the methods are shown in Fig. 8. FromFig. 8, it is clear that the stochastic gradient
methods (FOBOSand projected gradient) were significantly faster than any of the other methods. Before the
coordinate descent method has even visited every coordinate once, stochastic FOBOS(and similarly stochastic
projected gradient) have attained the minimal test-set error. The inferior performance of coordinate descent
and deterministic gradient methods can be largely attributed to the need to exhaustively scan the data set.
Even if we use only a subset of 15,000 examples, it takes a nontrivial amount of time to simply handle each
example. Moreover, the objective values attained during training are qualitatively very similar to the test loss,
so that stochastic FOBOSmuchmore quickly reduces the training objective than the deterministic methods.

We also performed experiments on a data set that was very qualitatively different from the MNIST and
LandSAT data sets. For this experiment, we used the multi-domain sentiment data set of Blitzer et al. (2007),
which consists of product reviews taken from Amazon.com formany product types. The prediction task is
to decide whether an article is a positive or negative review. The features are bigrams that take values in
{0,1}, totalling about 630,000 binary features. In any particular example, at most a few thousand features
are non-zero. We used 10,000 examples in each experiment andperformed 10 repetitions while holding
out 1000 of the examples as a test set and using 9000 of the examples for training. We usedℓ1-regularized
logistic regression and setλ = 3 · 10−5, which gave the best generalization performance and resulted in
roughly 5% non-zeros in the final vectorw. We compare stochastic FOBOS to SPARSA in Fig. 9, since
the projected gradient method is much slower than FOBOS (detailed in the sequel). For FOBOS we use 900
examples to compute each stochastic gradient. We use two different initial step sizes, one estimated using
the approximation described earlier and a second where we scale it by 1/5. The left plot in Fig. 9 shows the
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Figure 10: Left: FOBOS sparsity and test error for LandSat data set withℓ1-regularization. Right: FOBOS

sparsity and test error for MNIST data set withℓ1/ℓ2-regularization. Key is identical for both
plots.

training objective value as a function of the number of operations for each of the three methods as well as
error bars equal to the standard deviation of the objective.The right plot shows the error rates on the test
sets. The behavior in the experiment is similar to that in Fig. 8, where the stochastic methods very quickly
attain a small test error. Effectively, before SPARSA finishes two steps, the stochastic methods have arrived
at approximate solutions that attain the minimal test set error rates.

We now change our focus from training time to the attained sparsity levels for multiclass classification
with ℓ1, ℓ1/ℓ2, andℓ1/ℓ∞ regularization on MNIST and the StatLog LandSat data set. For the LandSat data
set we attempt to classify 3×3 neighborhoods of pixels in a satellite image as a particular type of ground,
and we expanded the input 36 features into 1296 features by taking the product of all features.

In the left plot of Fig. 10, we show the test set error and sparsity level of W as a function of training time
(100 times the number of single-example gradient calculations) for theℓ1-regularized multiclass logistic loss
with 720 training examples. The green lines show results forusing all 720 examples to calculate the gradient,
black using 20% of the examples, and blue using 10% of the examples to perform stochastic gradient. Each
used the same learning rateηt ∝ 1/

√
t, and the reported results are averaged over 5 independent runs with

different training data sets. The righthand figure shows a similar plot for training FOBOS on the MNIST
data set withℓ1/ℓ2-regularization. The objective value in training has a similar contour to the test loss. As
expected, FOBOS with stochastic gradient descent gets to its minimum test classification error, and as the
training set size increases this behavior is consistent. However, the deterministic version increases the level
of sparsity throughout its run, while the stochastic-gradient version has highly variable sparsity levels and
does not give solutions as sparse as the deterministic counterpart. We saw similar behavior when using
stochastic versus deterministic projected gradient methods. The slowness of the deterministic gradient means
that we do not see the sparsification immediately in larger tests; nonetheless, for longer training times similar
sparsifying behavior emerges.

As yet, we do not have a compelling justification for the difference in sparsity levels between stochastic
and deterministic gradient FOBOS. We give here some intuitive arguments, leaving a more formal anal-
ysis to future work. We develop one possible explanation by exploring the effect of taking a stochastic
gradient step starting from the true solution vectorw

⋆. Considerℓ1-regularized FOBOS with regulariza-
tion multiplier λ. Let g

f be the gradient off (w⋆). For j such thatw⋆
j > 0, we havegf

j = −λ, for j

with w⋆
j < 0, gf

j = λ, and for zero entries inw⋆, we havegf
j ∈ [−λ,λ]. The FOBOS step then amounts to
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w+
j = sign(w⋆

j )
[

|w⋆
j −ηtg

f
j |−ηtλ

]

+
, which by inspection simply yieldsw⋆. Now suppose that instead of

g
f , we use a stochastic estimate ˜g

f of g
f . Then the probability that the updatew+

j of w⋆
j is zero is

P

(∣

∣

∣
w⋆

j −ηt g̃
f
j

∣

∣

∣
≤ ηtλ

)

= P

(

g̃f
j ∈
[

w⋆
j

ηt
−λ,

w⋆
j

ηt
+λ
])

.

Whenw⋆
j = 0, the probability is simplyP(g̃f

j ∈ [−λ,λ]), which does not change as a function ofηt . However,

whenw⋆
j > 0, we haveE[g̃f

j ] =−λ, while w⋆
j /ηt → ∞ asηt shrinks (and analogously forw⋆

j < 0). In essence,
the probability of a non-zero parameter staying non-zero ishigh, however, the probability of a zero parameter
staying zero is constant. Intuitively, then, we expect thatstochastic gradient descent will result in more
non-zero coefficients than the deterministic variant of FOBOS.

7.5 Experiments with Sparse Gradient Vectors

In this section, we consider the implications of Proposition 11 for learning with sparse data. We show that it
is much more efficient to use the updates described in Proposition 11 than to maintainℓ1-constraints onw as
in Duchi et al. (2008). Intuitively, the former requires rather simple bookkeeping for maintaining the sumΛt

discussed in Sec. 6, and it is significantly easier to implement and more efficient than Duchi et al.’s red-black
tree-based implementation. Indeed, whereas a red-black tree requires at least a thousand of lines of code for
its balancing, joining, and splitting operations, the efficient FOBOS updates require fewer than 100 lines of
code.

We simulated updates to a weight vectorw with a sparse gradientg f
t for different dimensionsd of w ∈R

d

and different sparsity levelss for g
f
t with card(g f

t ) = s. To do so, we generate a completely densew whose
ℓ1-norm is at most a pre-specified valueb and add a random vectorg to w with s non-zeros. We then either
projectw+g back to the constraint‖w‖1 ≤ b using the algorithm of Duchi et al. (2008) or perform a FOBOS

update tow +g using the algorithm in Sec. 6. We choseλ in the FOBOS update to give approximately the
same sparsity as the constraint onb. In Table 1 we report timing results averaged over 100 independent
experiments for different dimensionsd of w and different cardinalitiess of g. Though theoretically the
sparse FOBOSupdates should have no dependence on the dimensiond, we found that cache locality can play
a factor when performing updates to larger dimensional vectors. Nonetheless, it is clear from the table that the
efficient FOBOSstep is on the order of ten to twenty times faster than its projected counterpart. Furthermore,
the sparse FOBOS updates apply equally as well to mixed norm regularization,and while there are efficient
algorithms for both projection to bothℓ1/ℓ2 andℓ1/ℓ∞ balls (Schmidt et al., 2009; Quattoni et al., 2009), they
are more complicated than the FOBOS steps. Lastly, though it may be possible to extend the efficient data
structures of Duchi et al. (2008) to theℓ1/ℓ2 case, there is no known algorithm for efficient projections with
sparse updates to anℓ1/ℓ∞ constraint.

Dimensiond s= 5000 s= 10000 s= 20000
Project FOBOS Project FOBOS Project FOBOS

5·104 0.72 0.07 2.12 0.12 4.53 0.23
2·105 0.80 0.10 2.06 0.16 5.09 0.34
8·105 0.86 0.15 2.22 0.17 5.34 0.39

3.2·106 1.07 0.13 2.75 0.16 6.31 0.52
6.4·106 1.20 0.10 2.83 0.29 6.62 0.48

Table 1: Comparison of the average time (in hundredths of a second) required to compute projection ofw+g

onto anℓ1-constraint to the analogous update required by the FOBOSstep.
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Figure 11: The sparsity patterns attained by FOBOSusing mixed-norm andℓ1 regularization for a multiclass
logistic regression problem.

7.6 Effects of Regularization

Our final experiments focus mostly on sparsity recovery of the different regularizers and their effects on test-
set performance. While these are somewhat orthogonal to the previous experiments, we believe there is a
relative paucity of investigation of the effects of mixed-norm regularization on classifier performance.

As a verification experiment of FOBOS with a mixed-norm regularizer, we solved a multiclass logistic
regression problem whose objective is given in Eq. (35). To solve this task, we randomly generated a matrix
W of dimension 200×30. The instances hadd = 200 dimensions, the number of classes wask = 30, and
we zeroed out the first 100 rows ofW. We next generatedn = 1000 samplesxi ∈ R

d with zero mean and
unit variance. We setyi = argmaxj

〈

xi ,w
j
〉

and added 10% label noise. We then used FOBOS to find an
approximate minimizer of the objective defined by Eq. (35).

To compare the effects of different regularizers, we minimized Eq. (35) usingℓ1/ℓ1, ℓ1/ℓ2, andℓ1/ℓ∞
regularization. We repeated the experiment 20 times with different randomly selectedW that had the same
sparsity pattern. On the left side of Fig. 11 we illustrate the sparsity pattern (far left) of the weight vector
that generated the data and color-coded maps of the sparsitypatterns learned using FOBOSwith the different
regularization schemes. The colors indicate the fraction of times a weight ofW was set to be zero. A white
color indicates that the weight was found (or selected) to bezero in all of the experiments while a black
color means that it was never zero. The regularization valueλ was set so that the learned matrixW would
have approximately 50% zero weights. From Fig. 11, we see that both ℓ1/ℓ2 and ℓ1/ℓ∞ were capable of
zeroing entire rows of parameters and often learned a sparsity pattern that was close to the sparsity pattern
of the matrix that was used to generate the examples. The standardℓ1 regularizer (far right) performed very
poorly in terms of structure recovery. In fact, theℓ1-regularizer did not yield a single row of zeros in any of
the experiments, underscoring one of the merits of using mixed-norm regularization in structured problems.
Quantitatively, 96.3% and 94.5% of the zero rows ofW were correctly identified when using FOBOS with
ℓ1/ℓ2 andℓ1/ℓ∞ regularization, respectively. In contrast, not one of the zero rows ofW was identified correctly
as an all zero row using pureℓ1 regularization.

The right plot in Fig. 11 shows the sparsity levels (fractionof non-zero weights) achieved by FOBOS as
a function of the number of iterations of the algorithm. Eachline represents a different synthetic experiment
asλ is modified to give more or less sparsity to the solution vector w

⋆. The results demonstrate that FOBOS

quickly selects the sparsity pattern ofw
⋆, and the level of sparsity persists throughout its execution. We

found this sparsity pattern common to all problems we tested, including mixed-norm problems. This is not
particularly surprising, as Hale et al. (2007) recently gave an analysis showing that after a finite number of
iterations, FOBOS-like algorithms attain the sparsity of the true solutionw

⋆.
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% Non-zero ℓ1 Test ℓ1/ℓ2 Test ℓ1/ℓ∞ Test
5 .43 .29 .40
10 .30 .25 .30
20 .26 .22 .26
40 .22 .19 .22

Table 2: LandSat classification error versus sparsity

% Non-zero ℓ1 Test ℓ1/ℓ2 Test ℓ1/ℓ∞ Test
5 .37 .36 .47
10 .26 .26 .31
20 .15 .15 .24
40 .08 .08 .16

Table 3: MNIST classification error versus sparsity

For comparison of the different regularization approaches, we report in Table 2 and Table 3 the test set
error as a function of row sparsity of the learned matrixW. For the LandSat data, we see that using the block
ℓ1/ℓ2 regularizer yields better performance for a given level of structural sparsity. However, on the MNIST
data theℓ1 regularization and theℓ1/ℓ2 achieve comparable performance for each level of structural sparsity.
Moreover, for a given level of structural sparsity, theℓ1-regularized solution matrixW attains significantly
higher overall sparsity, roughly 90% of the entries of each non-zero row are zero. The different performance
on the different data sets might indicate that structural sparsity is effective only when the set of parameters
indeed exhibit natural grouping.

For our final experiment, we show the power of FOBOS with mixed-norm regularization in the context
of image compression. For this experiment, we represent each image as a set of patches where each patch is
in turn represented as a 79 dimensional vector as described by Grangier and Bengio (2008). The goal is to
jointly describe the set of patches by a single high-dimensional yet sparse set of dictionary features. Each of
the dictionary terms is also inR79. Let x j denote thej th patch of an image withk patches to be compressed
andci be theith dictionary vector from a dictionary ofn vectors. The regularized objective is thus

1
2

k

∑
j=1

∥

∥

∥

∥

∥

x j −
n

∑
i=1

wi j ci

∥

∥

∥

∥

∥

2

2

+λ
n

∑
i=1

‖w̄i‖q .

In our experiments, the number of dictionary vectorsn was 1000 and the number of patchesk was around 120
on average. We report results averaged over 100 different images. We experiment with the three settings for
q we have used in prior experiments, namelyq∈ {1,2,∞}. In Fig. 12 we report the average reconstruction
error as a function of the fraction of dictionary vectors actually used. As one would expect, the mixed-norm
regularizers (ℓ1/ℓ2 andℓ1/ℓ∞) achieve lower reconstruction error as a function of dictionary sparsity than
strict ℓ1-regularization. Theℓ1/ℓ2-regularization also gives a slight, but significant, reconstruction improve-
ment overℓ1/ℓ∞-regularization. We hypothesize that this is related to therelative efficiency ofℓ1/ℓ∞ as a
function of the geometry of the input space, as was theoretically discussed in Negahban and Wainwright
(2008). Further investigation is required to shed more light into this type of phenomenon, and we leave it for
future research.

8. Conclusions and Future Work

In this paper we analyzed a framework for online and batch convex optimization with a diverse class of regu-
larization functions. We provided theoretical justification for a type of convex programming method we call
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Figure 12: Image reconstruction error as a function of groupsparsity.

FOBOS, which is known also as forward-backward splitting, iterative shrinkage and thresholding for the spe-
cial case ofℓ1-regularized problems, or SPARSA. Specifically, we described both offline convergence rates
for arbitrary convex functions with regularization as wellas regret bounds for online convex programming of
regularized losses. Our derivation includes as a corollarythe case ofℓ1 regularization, which was concretely
studied by Langford et al. (2008). Our approach provides a simple mechanism for solving online convex
programs with many regularization functions, giving sparsity in parameters and different types of block or
group regularization straightforwardly. Furthermore, the FOBOS framework is general and able to minimize
any convex subdifferentialable functionf so long as the forward looking step of Eq. (3) can be computed.

We have also provided a good deal of empirical evaluation of the method in comparison to other modern
optimization methods for similar problems. Our practical experience suggests that for small to medium
problems, SPARSA is effective and simple to implement (as opposed to more complicated coordinate descent
methods), while for large scale problems, performing stochastic FOBOS is probably preferable. We have also
shown that FOBOS is efficient for online learning with sparse data.

A few directions for further research suggest themselves, but we list here only two. The first is the
question of whether we can modify the algorithm to work with arbitrary Bregman divergences of a function
h instead of squared Euclidean distance, that is, we would like to form a generalized FOBOSupdate which is
based on instantaneous optimization problems with Bregmandivergences for convex differentiableh, where
Bh(u,v) = h(u)−h(v)−〈∇h(v),u−v〉. We assume the generalized update would, loosely speaking,be
analogous to nonlinear projected subgradient methods and the mirror descent (see, e.g., Beck and Teboulle
2003). This might allow us to give bounds for our algorithms in terms of other dual norms, such asℓ1/ℓ∞
norms on the gradients or diameter of the space, rather than simply ℓ2. We believe the attainment and rate of
sparsity when using stochastic gradient information, as suggested by the discussion of Fig. 10, merits deeper
investigation that will be fruitful and interesting.
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Appendix A. Online Regret Proofs

Proof of Theorem 6 Looking at Lemma 1, we immediately see that if‖∂ f‖ and‖∂r‖ are bounded byG,

ft(wt)− ft(w
⋆)+ r(wt+1)− r(w⋆) ≤ 1

2ηt

(

‖wt −w
⋆‖2−‖wt+1−w

⋆‖2)+
7
2

G2ηt . (36)

Now we use Eq. (36) to obtain that

Rf+r(T) =
T

∑
t=1

( ft(wt)− ft(w
⋆)+ r(wt)− r(w⋆))+ r(wT+1)− r(w⋆)− r(w1)+ r(w⋆)

≤ GD+
T

∑
t=1

1
2ηt

(

‖wt −w
⋆‖2−‖wt+1−w

⋆‖2)+
7G2

2

T

∑
t=1

ηt

sincer(w) ≤ r(0)+G‖w‖ ≤ GD. We can rewrite the above bound and see

Rf+r(T) ≤ GD+
1

2η1
‖w1−w

⋆‖2 +
1
2

T

∑
t=2

‖wt −w
⋆‖2
(

1
ηt

− 1
ηt−1

)

+
7G2

2

T

∑
t=1

ηt

≤ GD+
D2

2η1
+

D2

2

T

∑
t=2

(

1
ηt

− 1
ηt−1

)

+
7G2

2

T

∑
t=1

ηt ,

where we used again the bound on the distance of eachwt to w
⋆ for the last inequality. Lastly, we use the

fact that the sum1
η1

+∑T
t=2(

1
ηt
− 1

ηt−1
) telescopes and get that

Rf+r(T) ≤ GD+
D2

2ηT
+

7G2

2

T

∑
t=1

ηt .

Settingηt = c/
√

t and recognizing that∑T
t=1 ηt ≤ 2c

√
T concludes the proof.

Proof of Theorem 8 The proof builds straightforwardly on Theorem 1 from Hazan et al. (2006) and our
proof of Theorem 6. We sum Eq. (17) fromt = 1 toT and get

Rf+r(T) ≤
T

∑
t=1

(

〈

g
f
t +g

r
t ,wt −w

⋆
〉

− H
2
‖wt −w

⋆‖2
)

≤ 2GD+
1
2

T−1

∑
t=1

(

1
ηt

‖wt −w
⋆‖2− 1

ηt
‖wt+1−w

⋆‖2−H‖wt −w
⋆‖2
)

+
7G2

2

T−1

∑
t=1

ηt

≤ 2GD+
1
2

T−1

∑
t=2

‖wt −w
⋆‖2
(

1
ηt

− 1
ηt−1

−H

)

+
1

η1
‖w1−w

⋆‖2 +
7G2

2

T−1

∑
t=1

ηt .

The second inequality follows from Eq. (36) and the third inequality from a rearrangement of the sum and
removal of the negative term(1/ηT−1)‖wT −w

⋆‖2. Taking ηt = 1
Ht , we see that 1/ηt − 1/ηt−1 −H =

Ht −H(t −1)−H = 0, so we can bound the regret by

Rf+r(T) ≤ 2GD+HD2 +
7G2

2

T−1

∑
t=1

1
Ht

≤ 2GD+HD2 +
7G2

2H
(1+ logT) = O

(

G2

H
logT

)

.
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Proof of Lemma 9 The triangle inequality implies that
∥

∥

∥

∥

∥

T

∑
t=1

∂ ft(wt)

∥

∥

∥

∥

∥

≤
T

∑
t=1

‖∂ ft(wt)‖ ≤ TG .

Let g⋆
t ∈ ∂ ft(w⋆) be such that

0 =
T

∑
t=1

g
⋆
t +Tλw

⋆ ∈
T

∑
t=1

∂ ft(w
⋆)+T∂r(w⋆)

so‖w⋆‖ = ‖∑T
t=1g

⋆
t ‖/(Tλ) ≤ G/λ.

For the second part, assume thatw0 = 0, and for our induction thatwt satisfies‖wt‖ ≤ G/λ. Then
computing the FOBOSupdate from Eq. (20),

‖wt+1‖ =
‖wt −ηtg

f
t ‖

1+ληt
≤ ‖wt‖+ηt‖g f

t ‖
1+ληt

≤ G/λ+ηtG
1+ληt

=
G(1+ληt)

λ(1+ληt)
.

Appendix B. Update for Berhu Regularization

Recalling the Berhu regularizer and combining it with Eq. (18) for one variable, we see that we want to
minimize

1
2
(w−v)2 + λ̃b(w) =

1
2
(w−v)2 + λ̃

[

|w| [[|w| ≤ γ]]+
w2 + γ2

2γ
[[|w| > γ]]

]

.

First, if |v| ≤ λ̃, then exactly reasoning to that for minimization of theℓ1-regularized minimization step
implies that the optimal solution isw = 0.

When|v|> λ̃, there are two remaining cases to check. Let us assume without loss of generality thatv> λ̃.
It is immediate to verify thatw≥ 0 at the optimum. Now, suppose thatv− λ̃ ≤ γ. Takingw = v− λ̃ ≤ γ (so
thatw > 0) gives us that∂b(w) = {λ̃}. Thus, the subgradient set of our objective contains a single element,
w−v+ λ̃∂|w| = v− λ̃−v+ λ̃1 = 0. Therefore, whenv− λ̃ ≤ γ the optimal value ofw is v− λ̃. The last case
we need to examine is whenv− λ̃ > γ, which we as we show shortly puts the solutionw⋆ in theℓ2

2 realm of
b(w). By choosingw = v

1+ λ̃
γ

we get that,

w =
v

1+ λ̃
γ

=
vγ

γ+ λ̃
>

(γ+ λ̃)γ
γ+ λ̃

= γ .

Therefore,w > γ and thusw is in theℓ2
2 region of the Berhu penaltyb(w). Furthermore, for this choice ofw

the derivative of the penalty is

w−v+ λ̃
w
γ

=
vγ

γ+ λ̃
−v+ λ̃

vγ
γ(γ+ λ̃)

=
vγ

γ+ λ̃
− v(γ+ λ̃)

γ+ λ̃
+ λ̃

v

γ+ λ̃
= 0.

Combining the above results, inserting the conditions on the sign, and expandingv = wt+ 1
2 , j gives Eq. (26).
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Appendix C. Fast Convergence Rate for Smooth Objectives

In this appendix, we describe an analysis of FOBOSwhich yields anO(1/T) rate of convergence whenf has
Lipschitz-continuous gradient. Our analysis is by no meansnew. It is a distilled and simplified adaptation of
the analysis of Nesterov (2007) to our setting.

Throughout the appendix we assume that∇ f (w) is Lipschitz continuous with a constantL, that is,
‖∇ f (w)−∇ f (v)‖ ≤ L‖w−v‖. The fundamental theorem of calculus then readily implies that (Nesterov,
2004, Lemma 1.2.3)

| f (w)− f (v)−〈∇ f (v),w−v〉 | ≤ L
2
‖w−v‖2 . (37)

To see that Eq. (37) holds, add and subtract〈∇ f (v),w−v〉 to note that

f (w)− f (v) =
Z 1

0
〈∇ f (v + t(w−v)),w−v〉dt

= 〈∇ f (v),w−v〉+
Z 1

0
〈∇ f (v + t(w−v))−∇ f (v),w−v〉dt

which, by using Cauchy-Shwartz inequality, yields

| f (w)− f (v)−〈∇ f (v),w−v〉 | ≤
Z 1

0
|〈∇ f (v + t(w−v))−∇ f (v),w−v〉|dt

≤
Z 1

0
‖∇ f (v + t(w−v))−∇ f (v)‖‖w−v‖dt ≤

Z 1

0
tL‖w−v‖2dt =

L
2
‖w−v‖2 .

For the remainder of this section, we assume thatf (w)+ r(w) is coercive, so that as‖w‖→ ∞, f (w)+
r(w) → ∞. We thus have that the level sets off (w)+ r(w) are bounded:‖w−w

⋆‖ ≤ D for all w such that
f (w)+ r(w) ≤ f (0)+ r(0). Consider the “composite gradient mapping” (Nesterov, 2007)

m(v,w) = f (v)+ 〈∇ f (v),w−v〉+ L
2
‖w−v‖2 + r(w) . (38)

Before proceeding with the proof of fast convergence rate, we would like to underscore the equivalence of
the FOBOSupdate and the composite gradient mapping. Formally, minimizing m(v,w) with respect tow is
completely equivalent to taking a FOBOSstep withη = 1/L andv = wt . To obtain the FOBOSupdate from
Eq. (38) we simply need to dividem(v,w) by L = 1/η, omit terms that solely depend onv = wt , and use
the fact thatwt+ 1

2
= wt −ηtg

f
t = v−∇f (v)/L.

For notational convenience, letφ(w) = f (w) + r(w). Denote byw+ the vector minimizingm(v,w).
Then from Eq. (37) we get that

φ(w+) = f (w+)+ r(w+) ≤ f (v)+
〈

∇ f (v),w+ −v
〉

+
L
2
‖w+ −v‖2 + r(w+) = inf

w

m(v,w). (39)

Further, becausef (v)+ 〈∇ f (v),w−v〉 ≤ f (w) for all w, we have

inf
w

m(v,w) ≤ inf
w

[

f (w)+
L
2
‖w−v‖2 + r(w)

]

= inf
w

[

φ(w)+
L
2
‖w−v‖2

]

. (40)

Now we consider the change in function value fromwt to wt+1 for the FOBOSupdate withη = 1/L. To
do this, we take an arbitrary optimal pointw

⋆ and restrictwt+1 to lie on the line betweenwt andw
⋆, which

constrains the set of infimum values above and allows us to carefully control them. With this construction,
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along with Eqs. (39) and (40) we get that

φ(wt+1) ≤ inf
w

[

φ(w)+
L
2
‖w−wt‖2

]

≤ inf
α∈[0,1]

[

φ(αw
⋆ +(1−α)wt)+

L
2
‖αw

⋆ +(1−α)wt −wt‖2
]

≤ inf
α∈[0,1]

[

αφ(w⋆)+(1−α)φ(wt)+
α2L
2

‖w⋆ −wt‖2
]

. (41)

The bound in Eq. (41) follows due to the convexity ofφ. One immediate consequence of Eq. (41) is that
φ(wt+1) ≤ φ(wt), since atα = 0 we obtain the same objective forφ. Thus, all iterates of the method satisfy
‖wt −w

⋆‖ ≤ D. We therefore can distill the bound to be

φ(wt+1) ≤ inf
α∈[0,1]

[

φ(wt)+α(φ(w⋆)−φ(wt))+α2 LD2

2

]

.

The argument of the infimum of the equation above is a quadratic equation inα. We need to analyze two
possible cases for the optimal solution. In the first case when φ(wt)−φ(w⋆) > LD2, the optimal value ofα
is 1 andφ(wt+1) ≤ φ(w⋆)+LD2/2. Therefore, we will never encounter again this case in future iterations.
The second occurs whenφ(wt)−φ(w⋆)≤ LD2, so we haveα = (φ(wt)−φ(w⋆))/LD2 ∈ [0,1], which yields

φ(wt+1) ≤ φ(wt)−
(φ(wt)−φ(w⋆))2

2LD2 . (42)

To obtain the form of the convergence rate let us define the inverse residual valueρt = 1/(φ(wt)−φ(w⋆)).
By analysing the rate at whichρt tends to infinity we obtain our desired convergence rate. From the definition
of ρt and the bound of Eq. (42) we get that

ρt+1−ρt =
1

φ(wt+1)−φ(w⋆)
− 1

φ(wt)−φ(w⋆)
=

φ(wt)−φ(w⋆)−φ(wt+1)+φ(w⋆)

(φ(wt+1)−φ(w⋆))(φ(wt)−φ(w⋆))

= ρtρt+1(φ(wt)−φ(wt+1)) ≥ ρtρt+1
(φ(wt)−φ(w⋆))2

2LD2 =
ρtρt+1

2ρ2
t LD2

≥ 1
LD2 ,

where the last inequality is due to the fact thatρt+1 ≥ ρt and thereforeρtρt+1/ρ2
t ≥ 1. Summing the differ-

encesρt+1−ρt from t = 0 throughT −1, we getρT ≥ T/2LD2. Thus, fort ≥ 1 we have

φ(wt)−φ(w⋆) = 1/ρt ≤
2LD2

t
.

To recap, by settingη = 1/L while relaying on the fact thatf has Lipschitz continuous gradient with constant
L, we obtain a 1/T rate of convergence

f (wT)+ r(wT) ≤ f (w⋆)+ r(w⋆)+
2LD2

T
.
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N. Meinshausen and P. Bühlmann. High dimensional graphs and variable selection with the Lasso.Annals of
Statistics, 34:1436–1462, 2006.

S. Negahban and M. Wainwright. Phase transitions for high-dimensional joint support recovery. InAdvances
in Neural Information Processing Systems 22, 2008.

Y. Nesterov.Introductory Lectures on Convex Optimization. Kluwer Academic Publishers, 2004.

Y. Nesterov. Gradient methods for minimizing composite objective function. Technical Report 76, Center
for Operations Research and Econometrics (CORE), CatholicUniversity of Louvain (UCL), 2007.

G. Obozinski, B. Taskar, and M. Jordan. Joint covariate selection for grouped classification. Technical Report
743, Dept. of Statistics, University of California Berkeley, 2007.

G. Obozinski, M. Wainwright, and M. Jordan. High-dimensional union support recovery in multivariate
regression. InAdvances in Neural Information Processing Systems 22, 2008.

2933



DUCHI AND SINGER

Art Owen. A robust hybrid of lasso and ridge regression. Technical report, Stanford University, 2006.

A. Quattoni, X. Carreras, M. Collins, and T. Darrell. An efficient projection for L1,infinity regularization. In
Proceedings of the 26th International Conference on Machine Learning, 2009.

R.T. Rockafellar.Convex Analysis. Princeton University Press, 1970.

M. Schmidt, E. van den Berg, M. Friedlander, and K. Murphy. Optimizing costly functions with simple
constraints: a limited-memory projected quasi-Newton method. InProceedings of the Twelfth International
Conference on Artificial Intelligence and Statistics, 2009.

S. Shalev-Shwartz and Y. Singer. Logarithmic regret algorithms for strongly convex repeated games. Tech-
nical report, The Hebrew University, 2007. Available at http://www.cs.huji.ac.il/∼shais.

S. Shalev-Shwartz and A. Tewari. Stochastic methods forℓ1-regularized loss minimization. InProceedings
of the 26th International Conference on Machine Learning, 2009.

S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasos: Primal estimated sub-gradient solver for SVM. In
Proceedings of the 24th International Conference on Machine Learning, 2007.

D. Spiegelhalter and C. Taylor.Machine Learning, Neural and Statistical Classification. Ellis Horwood,
1994.

P. Tseng. A modified forward backward splitting method for maximal monotone mappings.SIAM Journal
on Control and Optimization, 38:431–446, 2000.

P. Tseng and S. Yun. A coordinate gradient descent method fornonsmooth separable minimization.Mathe-
matical Programming Series B, 117:387–423, 2007.

S. Wright, R. Nowak, and M. Figueiredo. Sparse reconstruction by separable approximation.IEEE Transac-
tions on Signal Processing, 57(7):2479–2493, 2009.

P. Zhao and B. Yu. On model selection consistency of Lasso.Journal of Machine Learning Research, 7:
2541–2567, 2006.

P. Zhao, G. Rocha, and B. Yu. Grouped and hierarchical model selection through composite absolute penal-
ties. Technical Report 703, Statistics Department, University of California Berkeley, 2006.

M. Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. InProceedings of
the Twentieth International Conference on Machine Learning, 2003.

2934


