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Abstract

We describe, analyze, and experiment with a framework for emplgsalminimization with regularization.
Our algorithmic framework alternates between two phases. On each itevegidirst perform aruncon-
strainedgradient descent step. We then cast and solve an instantaneous dpiimpizablem that trades off
minimization of a regularization term while keeping close proximity to the redutbe first phase. This
view yields a simple yet effective algorithm that can be used for batchlized risk minimization and on-
line learning. Furthermore, the two phase approach enables sparsersowhen used in conjunction with
regularization functions that promote sparsity, suclf;asWe derive concrete and very simple algorithms
for minimization of loss functions witliy, /5, é%, and/., regularization. We also show how to construct ef-
ficient algorithms for mixed-norn, /¢q regularization. We further extend the algorithms and give efficient
implementations for very high-dimensional data with sparsity. We denaiadfie potential of the proposed
framework in a series of experiments with synthetic and natural data sets.

Keywords: subgradient methods, group sparsity, online learning, convex optionza

1. Introduction

Before we begin, we establish notation for the content of plaiper. We denote scalars by lower case letters
and vectors by lower case bold letters, for example The inner product of two vectors andwv is denoted
(u,v). We use€f|z||p to denote thgp-norm of the vector: and||xz|| as a shorthand fdfx||.
The focus of this paper is an algorithmic framework for regizied convex programming to minimize the
following sum of two functions:
f(w)+r(w), (1)

where bothf andr are convex bounded below functions (so without loss of gditgwe assume they are
into R..). Often, the functionf is an empirical loss and takes the foifn.s¢(w) for a sequence of loss
functions/; : R" — R, andr(w) is a regularization term that penalizes for excessivelymervectors, for
instance (w) = Al|w||p. This task is prevalent in machine learning, in which a lesyproblem for decision
and prediction problems is cast as a convex optimizatioblpm. To that end, we investigate a general
and intuitive algorithm, known afrward-backward splittingto minimize Eq. (1), focusing especially on
derivations for and use of non-differentiable regulai@afunctions.

Many methods have been proposed to minimize general coowetiébns such as that in Eq. (1). One of
the most general is the subgradient method (see, e.g.eRags1999), which is elegant and very simple. Let
0f (w) denote the subgradient setbhtw, namely,

of(w)={g|Vv: f(v) > f(w)+ (g,v—w)}.
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Sub-gradient procedures then minimize the functidw) by iteratively updating the parameter vector
according to the update rule

. f
Wiyl = wt —MNtGt

wheren; is a constant or diminishing a step size zyﬂde of (wy) is an arbitrary vector from the subgradient
set of f evaluated atw;. A more general method than the above is the projected gradiethod, which
iterates )

w1 = nQ(wt —mgtf) = argrgin{”w (wy rltgtf)Hz}

we

wherelg (w) is the Euclidean projection ab onto the sef2. Standard results (Bertsekas, 1999) show that
the (projected) subgradient method converges at a ra@bfe?), or equivalently that the errof(w) —
f (w*) = O(1/+/T), given some simple assumptions on the boundedness of td#feuntial set and (we
have omitted constants dependent|ar|| or dim(Q)).

If we use the subgradient method to minimize Eq. (1), thaits are simplyvi+1 = wi — r]tgtf — gy
whereg{ € or(w;). A common problem in subgradient methods is thatdr f is non-differentiable, the
iterates of the subgradient method are very rarely at thetpoif non-differentiability. In the case of regu-
larization functions such agw) = ||w||,, however, these points (zeros in the case offjreorm) are often
the true minima of the function. Furthermore, withand similar penalties, zeros are desirable solutions as
they tend to convey information about the structure of tteblam being solved, and in the case of statistical
inference, can often yield the correct sparsity structdithe parameters (Zhao and Yu, 2006; Meinshausen
and Bihlmann, 2006).

There has been a significant amount of work related to mimmiEq. (1), especially when the func-
tion r is a sparsity-promoting regularizer, and much of it steresnfthe machine learning, statistics, and
optimization communities. We can hardly do justice to thdybof prior work, and we provide a few refer-
ences here to the research we believe is most directly deldtke approach we pursue below is known as
forward-backward splittingn the optimization literature, which is closely relatedte proximal method.

The forward-backward splitting method was first proposetibys and Mercier (1979) and has been ana-
lyzed by several researches in the context of maximal mowadperators in the optimization literature. Chen
and Rockafellar (1997) and Tseng (2000) give conditionsmaadifications of forward-backward splitting to
attain linear convergence rates. Combettes and Wajs (20@5proofs of convergence for forward-backward
splitting in Hilbert spaces under asymptotically neglligiberturbations, though without establishing strong
rates of convergence. Prior work on convergence of the rdaifien requires an assumption of strong mono-
tonicity of the maximal monotone operators (equivalentttorgy convexity of at least one of the functions
in Eq. (1)), and as far as we know, all analyses assumeftlimuifferentiable with Lipschitz-continuous
gradient. The analyses have also been carried out in a poheagttic and non-online setting.

More recently, Wright et al. (2009) suggested the use of ththadefor sparse signal reconstruction,
wheref (w) = ||y — Aw||?, though they note that the method can apply to suitably smoarvex functions .
Nesterov (2007) gives analysis of convergence rates usatient mapping techniques whémas Lipschitz
continuous gradient, which was inspired by Wright et al. le #ipecial case thafw) = A ||w/||;, similar
methods to the algorithms we investigate have been propostermed iterative thresholding (Daubechies
et al., 2004) or truncated gradient (Langford et al., 2068)ignal processing and machine learning, but the
authors were apparently unaware of the connection toigglithethods.

Similar projected-gradient methods, when the reguldagmdgunctionr is no longer part of the objective
function but rather cast as a constraint so ti{at) < A, are also well known (Bertsekas, 1999). In signal
processing, the problem is often termed as an inverse probligh sparsity constraints, see for example,
Daubechies et al. (2008) and the references therein. Duahi(@008) give a general and efficient projected
gradient method fo¥;-constrained problems. We make use of one of Duchi et akglt®in obtaining
an efficient algorithm for the case whetw) = ||w||. (a setting useful for mixed-norm regularization).
There is also a body of literature on regret analysis fomanlearning and online convex programming with
convex constraints, which we build upon here (Zinkevich)20Hazan et al., 2006; Shalev-Shwartz and
Singer, 2007). Learning sparse models generally is of gnéatest in the statistics literature, specifically in
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the context of consistency and recovery of sparsity patdmough?; or mixed-norm regularization across
multiple tasks (Meinshausen anditdmann, 2006; Obozinski et al., 2008; Zhao et al., 2006).

In this paper, we describe a general gradient-based frarkdaroonline and batch convex programming.
To make our presentation a little simpler, we call our apphoBoBos, for FOrward-Backward Splitting.
Our proofs are made possible through the use of “forwar#iad subgradients, anddBosis a distillation
of some the approaches mentioned above for convex progragni@ur alternative view lends itself to unified
analysis and more general settings, efficient implememntasind provides a flexible tool for the derivation of
algorithms for old and new convex programming settings.

The paper is organized as follows. In the next section, wénbieg introducing and formally defining
the method, giving some simple preliminary analysis. Wiofolthe introduction by giving in Sec. 3 rates
of convergence for batch (offline) optimization. We theneext the results to stochastic gradient descent
and provide regret bounds for online convex programmingén. 4. To demonstrate the simplicity and
usefulness of the framework, we derive in Sec. 5 algorithonséveral different choices of the regularizing
functionr, though most of these results are known. We then extend theeds to be efficient in very high
dimensional learning settings where the input data is sparSec. 6. Finally, we conclude in Sec. 7 with
experiments examining various aspects of the proposedefrank, in particular the runtime and sparsity
selection performance of the derived algorithms.

2. Forward-Looking Subgradients and Forward-Backward Splitting

Our approach to Forward-Backward Splitting is motivatedhmsy desire to have the iterates attain points
of non-differentiability of the functiorr. The method alleviates the problems of non-differentigbih
cases such ag-regularization by taking analytical minimization stepserleaved with subgradient steps.
Put informally, FoBOS can be viewed as analogous to firejectedsubgradient method while replacing or
augmenting the projection step with an instantaneous niaition problem for which it is possible to derive
a closed form solution. #80sis succinct as each iteration consists of the following tteps:

f
wt—&-% = wi— NG, (2)

“ingro) ©

Wr+1

(1
argq;umm{2 Hw_w”%
In the abovegtf is a vector ind f (wy) andn; is the step size at time stépf the algorithm. The actual value
of nt depends on the specific setting and analysis. The first steppsimply amounts to an unconstrained
subgradient step with respect to the functiinIn the second step we find a new vector that interpolates
between two goals: (i) stay close to the interim veahqgr%, and (ii) attain a low complexity value as
expressed by. Note that the regularization function is scaled by an intestep size, denoteqt+%. The
analyses we describe in the sequel determine the specifie 0&ht+%, which is eithem or ne.1.

A key property of the solution of Eq. (3) is the necessary dord for optimality and gives the reason

behind the name &80s Namely, the zero vector must belong to subgradient setebtijective at the
optimuma 1, that is,

1 2
OGG{ZwaH% +nt+%r(w)}

w=wt 1

Sincew, , 1= we— r]tgtf, the above property amounts to

0 € w1 —wy +|’]t9tf +nt+%6r(wt+1). 4)

1. An earlier draft of this paper referred to our algorithmras.os, for FOrward LOoking Subgradients. In order not to confuse
readers of the early draft, we attempt to stay close to theceadme and use the acronyroBosrather than Fobas.
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The property0 € wi 1 —w; + ntgtf + nw%ar(wtﬂ) implies that so long as we choosag, 1 to be the mini-
mizer of Eq. (3), we are guaranteed to obtain a vegfoy € or (w, 1) such that

‘
0=wi1—wr+Nigy + nt+%g{+1 .

The above equation can be understood as an update schermetivherew weight vectow; . 1 is a linear
combination of the previous weight vectax, a vector from the subgradient set oevaluated atv;, and a
vector from the subgradient okevaluated at the yet to be determined.,, hence the name Forward-Looking
Subgradient. To recap, we can wriig, 1 as

f
Wi+l =Wt — Nt Gt — rIH% gtr+1a 5)

Wheregtf € 0f (wy) andg{, , € or(wiy1). Solving Eq. (3) withr above has two main benefits. First, from

an algorithmic standpoint, it enables sparse solutiongriatally no additional computational cost. Second,

the forward-looking gradient allows us to build on existemgalyses and show that the resulting framework
enjoys the formal convergence properties of many existnaglignt-based and online convex programming
algorithms.

3. Convergence Analysis oFOBOS

Upon first look FoBOSslooks substantially different from sub-gradient and oalonvex programming meth-
ods. However, the fact thatdBos actually employs a forward-looking subgradient of the ftagmation
function lets us build nicely on existing analyses. In thést®on we modify known results while using the
forward-looking property of BBOSto provide convergence rate analysis fagos To do so we will set
Nesd properly. As we show in the sequel, it is sufficient to qgg% to nt or ni4-1, depending on whether we
are doing online or batch optimization, in order to obtainwe@gence and low regret bounds. We start with
an analysis of BBOSin a batch setting. In this setting we use the subgradierit siatnw% = Ni+1 and
updatew; to w1 as prescribed by Eqg. (2) and Eq. (3).

Throughout the section we denote ly* the minimizer of f (w) + r(w). In what follows, define
[0f (w)| £ SUR,cot(u) llgll- We begin by deriving convergence results under the faieigegal assump-
tion (see, e.g., Langford et al. 2008 or Shalev-Shwartz &wehiii 2009) that the subgradients are bounded as
follows:

10f (w)|? < Af(w) + G2, [|or(w)||? < Ar(w) + G . (6)

For example, any Lipschitz loss (such as the logistic loskimge loss used in support vector machines)
satisfies the above with= 0 andG equal to the Lipschitz constant. Least squares estimaditisfies Eq. (6)
with G =0 andA = 4. The nextlemma, while technical, provides a key tool faivieg all of the convergence
results in this paper.

Lemma 1 (Bounding Step Differences)Assume that the norms of the subgradients of the functiomsl f a
are bounded as in Eq. (6):

19F (w) ]2 < Af(w) + G, [|or (w)|]? < Ar(w) + G .

Letnir < Nesd < n¢ and suppose thaf; < 2r]t+%. If we use thé=oBOSsupdate of Egs. (2) and (3), then for
a constant ¢< 4 and any vectoww*,

2nt(1—cAn) f(wr) + 2Ny (1- CAﬂH%)r(wwl)
< 2nef(w”) + 20 g (w”) + flwg — w” |~ [l —w* |+ 7ning, 1 G
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Proof We begin with a few simple properties of the forward-looksghgradient steps before proceeding
with the core of the proof. Note first that for sorglfae of (wt) andgy, , € or(wy, 1), we have as in Eq. (5)

f
W1 —wr = —NeGy — nt+%gtr+1 : (7)

The definition of a subgradient implies that for agly , € or (w.1) (and similarly for an)gtf € 0f (wy) with
f(wi) and f (w™))

r(w”*) > r(wey1) + <gtr+17UJ* - wt+1> = - <gtr+1v'wt+1 - w*> <r(w*) —r(wei). ®)

From the Cauchy-Shwartz Inequality and Eq. (7), we obtain

f
<gtr+1a (wt+1 - wt)> = <gtr+l7 (_ntgt - nt+%g{+l)>

IN

f f
gt alllin 39t +nege | < g llgteall®+nillgtialller |
Nes g (Ar(wi) + G?) +ne (Amax{ f (wy),r (wrs1)} +G?) . 9)

IA

We now proceed to bound the difference betwaegnand w1, and using a telescoping sum we will even-
tually boundf (wy) +r(wy) — f(w*) —r(w*). First, we expand norm squared of the difference betwegen
andwt, 1,

f
H7~Ut+1—w*||2 = [Jwt — (Ntgy +ﬂt+%g{+1)—w*||2

f f
= |l —W*HZ—Z [nt <Qt , Wt —W*> -H]H% <gtr+1awt —U’*ﬂ + INtgt +nt+%gtr+l||2

f f
[ we —w*||? - 2n <gt , Wt *UJ*> +[Intgt +ﬂt+%gtr+1||2
—2N 1 (gl 1 w1 —w™) — (gl g, w1 —wr)] . (10)

We can bound the third term above by noting that

f 2
Inege +ne; 39044l

2
[

f f
n?lgd 17 +2nn,, 5 (ot gf0) +12, 3 gl 42
< ngAf(w) + 20, g Amax{f(w), F(wia)} 07, 3 Ar(wie) +4n¢G2

We now use Eq. (9) to bound the last term of Eq. (10) and theeabound orntgtf + nw%g{+1 to get that

[[wr 41 —w*||?
f f
< lwe— w*HZ —2nt <gt , Wy — w*> - Zﬂt+% <gtr+17wt+1 —W*> + [INtge +ﬂt+%gtr+1||2

+ 2r]t+% (”w% Ar(wii1) +2nt Amax{ f (wy),r(wi1)} + ZntGZ)

< Hwt*U’*H2+2ﬂt(f(’W*)*f(wt))+2ﬂt+%(r(U’*)*r(wt))ertzGZ
+r]t2Af(wt)—|—3r]tr]t+%Amax{f(wt),r(wt)}+2r]t2+%Ar(th) (11)
<l —w*||*+ Tn{G?

20 (F(w") = (1= o) F ) + 20, 3 (r(w”) = (1= g, A (wea) ) (12)

To obtain Eq. (11) we used the standard convexity boundblestad earlier in Eq. (8). The final bound given
by Eq. (12) is due to the fact thaAatr]H% < 6An? and that for any, b > 0, maxa,b} < a+b. Rearranging
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the termsf () andr(-) yields the desired inequality. |

The lemma allows a proof of the following theorem, which d@ntes the basis for deriving concrete
convergence results fordBos It is also demonstrates the ease of proving convergenadgdased on the
lemma and the forward looking property.

Theorem 2 Assume the following hold: (i) the norm of any subgradieonfd f and the norm of any sub-
gradient fromor are bounded as in Eqg. (6), (i) the norm af* is less than or equal to D, (iii))(0) = 0, and
(iv) %nt < nNt+1 < Nt. Then for a constant € 4 with w, = 0 and Nesd = Nty

T

T
Z[nt (L= cAne) f(wr) — f(w*)) +ne (L= AN (wr) —r(w*))] < D?+ 7G Zlnf .
t=

t=

Proof Rearranging thd (w*) andr(w*) terms from the bound in Lemma 1, we sum the loss terms over
from 1 throughT and get a canceling telescoping sum:

T

met ((1—cAng) f(wr) — f(w")) +Neva (1= CANg2)r (wrr1) — 1 (w™))]
t=
T T
< le—w*llz—IIwT+1—w*H2+7Gzt;nt2 < Ile—w*H2+7Gzt;nt2 : (13)
We now bound the time-shiftedw: 1) terms by noting that
T
Zﬂtﬂ (1= cAne)r (wira) —r(w™))
t=
T
= Znt((l—cAnt)r(wt)—r(w*))+nT+1((l—CAnT+1)r(wt+1)—r(w*))+n1r(w*)
t=

T
> Zﬂt (L—cAngr(weia) —r(w”)) +r(w) (N1 —Nt+1)
=

T
> t;nt((lchm)r(wt)fr(w*)) . (14)

Finally, we use the fact thditv; — w*|| = ||w*|| < D, along with with Eq. (13)) and Eq. (14) to get the desired
bound. |

In the remainder of this section, we present a few corobat@t are consequences of the theorem. The
first corollary underscores that the rate of convergenceeireral is approximately /£, or, equivalently,

1/VT.

Corollary 3 (Fixed step rate) Assume that the conditions of Thm. 2 hold and that weFoBos for a
predefined T iterations withy = —2— and that(1— cA—2—) > 0. Then

VTTG VTTG
i 1J 3DG f(w*) +r(w*
min f(wt)—H(wt)S?Z\f(wt)—kr(wt)ﬁ + (w?) CA,(D )
te{L,....T} & ﬁ(l— GC?%) 1- 0%
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Proof Since we have; = n for all t, the bound on the convergence rate from Thm. 2 becomes

N(A—cA)T min_ [f(wt)+r(wt) = f(w”) —r(w”)]

te{l,..T}
< n(l—CAn)i[f(wt)—f(w*)]+[r(wt)—f(w*)] < D*4+7G*Tn? .

t=
Plugging in the specified value fargives the bound. |

Another direct consequence of Thm. 2 is convergence of tménmim overt when running BB0OS with
nt 0 1/+/t or with non-summable step sizes decreasing to zero.

Corollary 4 (Convergence of decreasing step size)ssume that the conditions of Thm. 2 hold and the step
sizes; satisfyny — 0and ¥ > ;n¢ = . Then

Iimiﬂf f(wy) +r(wy) — (f(w*) +r(w*)) =0.

Finally, whenf andr are Lipschitz with Lipschitz consta®&, we immediately have

Corollary 5 In addition to the conditions of Thm. 2, assume that the ndramg subgradient fromdf and
the norm of any subgradient froén are bounded by G. Then
< D?4+7G*3{ 1n?

min_ (f(wy) +r(wy)) — (f(w*) +r(w*)) <

15
te{l,..T} 250 1Nt (19)

Bounds of the above form, where we obtain convergence foobtie points in the sequenee, ..., wr
rather than the last poiniT, are standard in subgradient optimization. The main reteirthis weaker result
occurs is due to the fact that we cannot guarantee a stricededirection when using arbitrary subgradients
(see, for example, Theorem 3.2.2 from Nesterov 2004). Aerotbnsequence of using non-differentiable
functions means that analyses such as those carried outdmg TR000) and Chen and Rockafellar (1997)
are difficult to apply, as the stronger rates rely on the eris¢ and Lipschitz continuity aif (w). However,
it is possible to show linear convergence rates under daitaboothness and strong convexity assumptions.
WhenOf (w) is Lipschitz continuous, a more detailed analysis yields/eagence rates of/ (namely, ¥T
in terms of number of iterations needed toghdose to the optimum). A more complicated algorithm related
to Nesterov's “estimate functions” (Nesterov, 2004) letm®(1//€) convergence (Nesterov, 2007). For
completeness, we give a simple proof gfTlconvergence in Appendix C. Finally, the above proof can be
modified slightly to give convergence of the stochastic gnaidmethod. In particular, we can replagJain
the iterates of BBOSWith a stochastic estimate of the gradiegit VvhereE[ﬁtf] € of (wy). We explore this
approach in slightly more depth after performing a regretlysis for FoBos below in Sec. 4 and describe
stochastic convergence rates in Corollary 10.

We would like to make further comments on our proof of coneee for ©BOSand the assumptions
underlying the proof. It is often not necessary to have adhjig loss to guarantee boundedness of the
subgradients of andr, so in practice an assumption of bounded subgradients @serivllary 5 and in the
sequel for online analysis) is not restrictive. If we knowtthn optimahe™ lies in some compact s€t and
thatQ C dom(f +r), then Theorem 24.7 of Rockafellar (1970) guaranteesathaindor are bounded. The
lingering question is thus whether we can guarantee thdt asetQ exists and that our iterates; remain
in Q. The following simple setting shows thaf anddr are indeed often bounded.

If r(w) is a norm (possibly scaled) arfdis lower bounded by 0, then we know thaw*) < f(w*) +
r(w*) < f(ws1)+r(wi). Using standard bounds on norms, we get that for spm@

[w™ [l < yr(w”) <Y(f(w1)+r(w1)) =yf(wi) ,
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where for the last inequality we used the assumption ithat ) = 0. Thus, we obtain that* lies in a
hypercube. We can easily project onto this box by truncatiegients otw; lying outside it at any iteration
without affecting the bounds in Eq. (12) or Eq. (15). Thisiddal Euclidean projectiofilg to an arbitrary
convex sefQ with w* € Q satisfies|Mg(wit+1) — w*|| < ||wi+1 — w*||. Furthermore, so long & is an
£p-norm ball, we know that

r(Mo(wis1)) <r(wega) - (16)

Thus, looking at Eq. (11), we notice thdtw*) — r(wi41) < r(w*) —r(MNgo(wi+1)) and the series of inequal-
ities through Eq. (12) still hold (so long mH%A < 1, which it will if Q is compact so that we can take
A =0). In general, so long as Eq. (16) holds and € Q, we can projectw1 into Q without affecting
convergence guarantees. This property proves to be hétptu regret analysis below.

4. Regret Analysis ofFOBOS

In this section we provide regret analysis fooB0sin online settings. In an online learning problem, we
are given a sequence of functiofis: R" — R. The learning goal is for the sequence of predictions
to attain low regret when compared to a single optimal ptedi@*. Formally, letf;(w) denote the loss
suffered on the!" input loss function when using a predictar. The regret of an online algorithm which
usesws,...,wy,... as its predictors w.r.t. a fixed predictar while using a regularization functianis

T
Rir(T) = Zl[ft(’wt) +r(wt) = (fi(w*) +r(w"))].
t=
Ideally, we would like to achieve 0 regret to a stationaryfor arbitrary length sequences.

To achieve an online bound for a sequence of convex functignse modify arguments of Zinkevich
(2003). Using the bound from Lemma 1, we can readily statepsmade a theorem on the online regret of
FoBos. It is possible to avoid the boundedness assumptions inrtief pf the theorem (getting a bound
similar to that of Theorem 2 but for regret), however, we dofim it significantly more interesting. Aside
from its reliance on Lemma 1, this proof is quite similar tmk&vich’s, so we defer it to Appendix A.

Theorem 6 Assume thafw; — w*|| < D for all iterations and the norm of the subgradient séfs anddr
are bounded above by G. Let0 an arbitrary scalar. Then, the regret bound BbBOS With n; = ¢/\/t
satisfies

2
Ri.r(T) < 2GD+ (EZ)C +7G20) VT .

The following Corollary is immediate from Theorem 6.

Corollary 7 Assume the conditions of Theorem 6 hold. Then, seﬁtiﬁgﬁ, the regret ofFOBOSIs

Rir(T) < 2GD+4GDVT .

We can also obtain a better regret bound farBBs when the sequence of loss functiofi§:) or the
functionr(-) is strongly convex. As demonstrated by Hazan et al. (200#), tve projected gradient method
and strongly convex functions, it is possible to achieveetgn the order 0©(logT) by using the curvature
of the sequence of functiorfg rather than simply using convexity and linearity as in Tie@as 2 and 6. We
can extend these results t@Bos for the case in which;(w) +r(w) is strongly convex, at least over the
domain|w — w*|| < D. For completeness, we recap a few definitions and providéotieithmic regret
bound for FoBOS. A function f is calledH-strongly convex if

fw) > f(wr) + (Of (wr), w —w) +g||w — .
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Thus, ifr and the sequence of functiofisare strongly convex with constarity > 0 andH; > 0, we have
H = H¢ +H, andH-strong convexity gives

H
fi(wr) = f(w") 41 (we) — r(w*) < (g{ +gl wn—w") = 2 lux—w|? . (17)

We do not need to assume that bdttandr are strongly convex. We only need assume that at least one of
them attains a positive strong convexity constant. For gtenif r(w) = %HwHZ, thenH > A so long as

the functionsf; are convex. With Eq. (17) in mind, we can readily build on Hagaal. (2006) and prove a
stronger regret bound for the online learning case. Thefpsaimilar to that of Hazan et al., so we defer it
also to Appendix A.

Theorem 8 Assume as in Theorem 6 thigiy — w*|| < D and thatof; and or are bounded above by G.
Assume further that # r is H-strongly convex for all t. Then, when using step sizes 1/Ht, the regret of
FoBosis

G2

We now provide an easy lemma showing that for Lipschitz Iesgih ¢3 regularization, the boundedness
assumptions above hold. This, for example, includes thexésting case of support vector machines. The
proof is not difficult but relies tacitly on a later result, & leave it to Appendix A.

Lemma 9 Let the functionsfbe G-Lipschitz so thad fi (w)|| < G. Let (w) = 3 |lw||?. Then||w*|| < G/A
and the iteratesv; generated byroBossatisfy||wi|| < G/A.

Using the regret analysis for online learning, we are abletiarn to learning in a batch setting and give
stochastic convergence rates fargos. We build on results of Shalev-Shwartz et al. (2007) andragsas in
Sec. 3 that we are minimizinf(w) + r(w). Indeed, suppose that on each stepoBBs, we choose instead
of somegtf € 0f (wy) a stochastic estimate of the gradigﬁtWhereE [gtf] € 0f (wy). We assume that we still
use the true (which is generally easy, as it is simply the regularizafiomction). It is straightforward to use
theorems 6 and 8 above as in the derivation of theorems 2 amdr3Shalev-Shwartz et al. (2007) to derive
the following corollary on the expected convergence ratE@8os as well as a guarantee of convergence
with high probability.

Corollary 10 Assume that the conditions @, or, andw* hold as in the previous theorems andfeiBos
be run for T iterations. Let s be an integer chosen unifornilsaadom from{1,...,T}. If ¢ = %, then

2GD+4GDVT

Es[f (ws) +1(ws)] < f(w*) +r(w*) + T

With probability at leasf. — 9,

n 2GD+4GDVT

f(ws) +r(ws) < f(w*) +r(w*) 5T

If f +ris H-strongly convex and we choogell 1/t, we have

2
Es[f (ws) + I (ws)] = f(w*)+r(w*)+o(G IogT)

HT

and with probability at least — 9,

f(ws) +r(ws) = f(w*>+r<w*)+0(GZIOQT> |

HOT
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5. Derived Algorithms

In this section we derive a few variants obBos by considering different regularization functions. The
emphasis of the section is on non-differentiable regudion functions, such as thig norm of w, which
lead to sparse solutions. We also derive simple extensmnsxed-norm regularization (Zhao et al., 2006)
that build on the first part of this section.

First, we make a few changes to notation. To simplify oundgions, we denote by the vectorww% =

wi — r]tgtf and letA denoter]H% -A. Using this newly introduced notation the problem given @ E) can
be rewritten as 1
minimize§||w—v||2+5\r(w). (18)
w

Let [7, denote max0,z}. For completeness, we provide full derivations for all teguiarization functions
we consider, but for brevity we do not state formally welladsished technical lemmas. We note that many
of the following results were given tacitly by Wright et al0@9).

5.1 FoBoswith /1 Regularization

The update obtained by choosinfw) = A||w/||; is simple and intuitive. First note that the objective is
decomposable as we can rewrite Eq. (18) as

. n/1 N

minimize JZI (Z(Wj —Vj)?+ Alw; |) .

Let us focus on a single coordinate @f and for brevity omit the indexy. Let w* denote the minimizer
of 2(w—v)2+Alw|. Clearly,w* v > 0. If it were not, then we would haver - v < 0, howeverjv? <
V2w v F(w)? < S (v—wh)? + AJw*|, contradicting the supposed optimalitywf. The symmetry of
the objective irv also shows us that we can assume that0; we therefore need to minimiégw— V)2 AW
subject to the constraint that> 0. Introducing a Lagrange multipligr> 0 for the constraint, we have the
Lagrangian% (w— V)2 +Aw — Bw. By taking the derivative of the Langrangian with respeaitand setting
the result to zero, we get that the optimal solutiowis= V—A+ B. If w* > 0, then from the complimentary
slackness condition that the optimal paivafandp must havev'3 = 0 (Boyd and Vandenberghe, 2004) we
must havep = 0, and thereforev* =v—A. If v <A, thenv—A < 0, so we must havg > 0 and again by
complimentary slacknesg; = 0. The case when < 0 is analogous and amounts to simply flipping signs.
Summarizing and expanding notation, the components ofgitimal solutionw* = w1 are computed from
wt+% as

Wi, = sign(WH%J) [|Wt+%’j | —7\] L sign(wt’j _ ﬂtg[tj) HWI-,J' _ ntgtf,j ‘ “Ni .)\L. (29)

Note that this update can lead to sparse solutions. Whenewebisolute value of a componentwg;% is

smaller than\, the corresponding componentad ;1 is set to zero. Thus, Eq. (19) gives a simple online and
offline method for minimizing a convek with ¢; regularization.

Such soft-thresholding operations are common in the Statiterature and have been used for some
time (Donoho, 1995; Daubechies et al., 2004). Langford .e2808) recently proposed and analyzed the
same update, terming it the “truncated gradient.” The aiglyresented here is different from the analysis in
the aforementioned paper as it stems from a more generaé¥ark. Indeed, as illustrated in this section,
the derivation and method is also applicable to a wide wadétegularization functions. Nevertheless, both
analyses merit consideration as they shed light from diffeangles on the problem of learning sparse models
using gradients, stochastic gradients, or online methblis.update can also be implemented very efficiently
when the support qjtf is small (Langford et al., 2008), but we defer details to Bewhere we give a unified
view that facilitates efficient implementation for all therm regularization functions we discuss.
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5.2 FoBoswith ¢3 Regularization

Whenr (w) = % |lw] % we obtain a very simple optimization problem,

o1 1
minimize=||w — v|? + ZA|jw]|?,
w 2 2

where for conciseness of the solution we replfmeith %5\. Differentiating the above objective and setting
the result equal to zero, we haue" — v + Aw* = 0, which, using the original notation, yields the update

f
wy — NGy
W= ——=—. 20
t+1 o (20)
Informally, the update simply shrinks; 1 back toward the origin after each gradient-descent stefetn 7
we briefly compare the resultingdBos update to modern stochastic gradient techniques and statvthin
FoBosupdate exhibits similar empirical behavior.

5.3 FoBoswith ¢, Regularization

A lesser used regularization function is thenorm of the weight vector. By settimdw) = 5\||w|| we obtain
the following problem,

o1 ~
m|n|m|ze§||w7v|\2+)\||wH. (21)

The solution of Eq. (21) must be in the directiomoénd takes the fornw* = sv wheres > 0. To show that

this is indeed the form of the solution, let us assume for #ke ®f contradiction thab* = sv +u whereu is

in the null space ob (if « has any components paralleldpwe can add those s and obtain an orthogonal

u') ands may be negative. Since is orthogonal tav, the objective function can be expressed in terms of

v, andu as L L .
5(1—8)2Hv||2+ §||u||2+7\(||'vH +ul)) = E(l—S)ZIIvHZH\HvII-

Thus,u must be equal to the zero vectar= 0, and we can write the optimization problem as

oo 1 ~
m|n|m|ze§(1—s)2||v\|2+)\sHvH .
S
Next note that a negative value fecannot constitute the optimal solution. Indeed; 4f O, then

1 = 1

5(1—8)2||v||2+>\8||v|| < EIIvII2 :

This implies that by setting = 0 we can obtain a lower objective function, and this preciudamegative
value forsas an optlmal solution. We therefore end again with a coingidascalar optimization problem,
minimizes>o (1) 2||v|2 4 As|jv||. The Lagrangian of this problem is

2157l + sl —Bs |
where > 0. By taking the derivative of the Langrangian with respec &nd setting the result to zero, we
get that(s— 1)||v||>+A|v| — B = 0 which gives the following closed form solutiog:=1—A/||v| +B/| v/
Whenevess > 0 then the complimentary slackness conditions imply frat0 ands can be further simplified
and written as=1— )\/||v\| The last expression is positive |fb| > A. If |v]| < A, thenB must be positive
and complimentary slackness implies that 0.

Summarizing, the second step of thedosupdate with’, regularization amounts to

A A
W41 = [11 wH% = llfl (wt*ntgtf) :
||wt+%H N [we —Negy | +
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Thus, thel, regularization results in a zero weight vector under thedit@n that |[w; — gy | < A. This
condition is rather more stringent for sparsity than thedition for £, (where a weight is sparse based only
on its value, while here, sparsity happens only if the entiegght vector hag,-norm less than\), so it is
unlikely to hold in high dimensions. However, it does caotusé a very important building block when using
a mixed?; /¢>-norm as the regularization function, as we show in the deque

5.4 FoBoswith 4, Regularization

We now turn to a less explored regularization function,dh@orm ofw. This form of regularization is not
capable of providing strong guarantees against overgitimits own as many of the weightsafmay not be
penalized. However, there are settings in which it is db&rto consider blocks of variables as a group, such
as/; /¢ regularization. We continue to defer the discussion onmgidifferent norms and focus merely on
the ¢, norm as it serves as a building block. That is, we are intedgstobtaining an efficient solution to the
following problem,

N ! >
minimize= |w —v||2 4+ A Jw|,, - (22)
w 2

It is possible to derive an efficient algorithm for finding thenimizer of Eq. (22) using properties of the
subgradient set dfw||,,. However, a solution to the dual form of Eq. (22) is well efitited. Recalling
that the conjugate of the quadratic function is a quadratiction and the conjugate of tkig norm is the/y
barrier function, we immediately obtain that the dual of pheblem given by Eq. (22) is

1 =
maX|m|ze—§||a—fu||§ st |afly <A . (23)
[

Moreover, the vector of dual variables satisfies the relatiom = v — w. Thus, by solving the dual form
in Eg. (23) we can readily obtain a solution for Eq. (22). Thelpem defined by Eq. (23) is equivalent to
performing Euclidean projection onto tlig ball and has been studied by numerous authors. The solution
that we overview here is based on recent work of Duchi et 8082 The maximizer of Eq. (23), denoted
a*, is of the form

of =sign(v;) [lvj| - 6], (24)

where0 is a non-negative scalar. Duchi et al. (2008) describe atitiene algorithm for findingd. We
thus skip the analysis of the algorithm and focus on its coopgrties that affect the solution of the original
problem Eq. (22). To find® we need to locate a pivot elementqn denoted by the™" order statistiovp)
(wherev(y is the largest magnitude entry o, with the following propertyy, is the smallest magnitude
element inv such that .
(Ivil = Ivi[) <A -

Vi[> v
If all the elements iy (assuming that we have added an extra 0 element to handlentikest entry ofv)
satisfy the above requirement then the optimal choic®ier0. Otherwise,

1 ~
6=— Z ‘Vj‘ —A
P\ i Svyp

Thus, the optimal choice df is zero wherﬁ‘:1 lvj| < A (this is, not coincidentally, simply the subgradient
condition for optimality of the zero vector in Eq. (22)).

Using the linear relationshipe = v — w = w = v — a along with the solution of the dual problem as
given by Eq. (24), we obtain the following solution for Eq2}2

, e} . (25)

Wity j = sign(wt+%7j) min{’wH%’j
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As stated above§ = O iff ||“’t+% |1 < A and otherwise® > 0 and can be found i®(n) steps. In words,

the components of the vectas; 1 are the result of capping all of the componentsugfat 8 where8 is
zero when the 1-norm ai;H% is smaller thar\. Interestingly, this property shares a duality resemtdanc

with the />-regularized update, which results in a zero weight vectoemthe 2-norm (which is self-dual)
of v is less tharh. We can exploit these properties in the context of mixedmuoggularization to achieve
sparse solutions for complex prediction problems, whictdegcribe in the sequel and for which we present
preliminary results in Sec. 7. Before doing so, we preseatroare norm-related regularization.

5.5 FoBoswith Berhu Regularization:

We now consider a regularization function which is a hybridte ¢, and /¢, norms. Similar tof; reg-
ularization, Berhu (for inverse Huber) regularizationules in sparse solutions, but its hybridization with
/2 regularization prevents the weights from being excesgilkebe. Berhu regularization (Owen, 2006) is
defined as

n m@_%VZ
f(w)=?\zb(Wj)=?\Zl wil [lwjl < v + 2y [w;| > v | -
=

In the above,[-] is 1 if its argument is true and is O otherwise. The positivalacy controls the value
for which the Berhu regularization switches frdmmode to/, mode. Formally, whewv; € [—v,Y], r(w)
behaves ag;, and forw; outside this region, the Berhu penalty behaveé%aﬁ'he Berhu penalty is convex
and differentiable except at 0, where it has the same sebéiffial set a& ||wl||;. B

To find a closed form update frome, , 1 to wi;1, we minimize in each variablg(w — v) + Ab(w); the
derivation is fairly standard but technical and is provided\ppendix B. The end result is aesthetic and
captures thé, and/, regions of the Berhu penalty,

0 ) _ ‘WH%,J' < i‘
Wiij =4 Signw 1) {‘Wt+%7j‘*)‘} A< Wl < Aty (26)
g A ‘W

Indeed, as Eq. (26) indicates, the update takes one of twesfatepending on the magnitude of the coordinate
of Wi - If |wt+% i | is greater thag+ A, the update is identical to the updatezfé«egularization of Eq. (20),

while if the value is no larger thay1+5\, the resulting update is equivalent to the update/feregularization
of Eq. (19).

5.6 Extension to Mixed Norms

We saw above that when using either theor the /. norm as the regularization function, we obtain an all
zeros vector iﬂwH% [l2<Aor ||“’t+% ||l1 <A, respectively. The zero vector does not carry any genatadiz

properties, which surfaces a concern regarding the usabflthe these norms as a form of regularization.
This seemingly problematic phenomenon can, however, biilugsethe setting we discuss now. In many
applications, the set of weights can be grouped into subgetse each subset of weights should be dealt
with uniformly. For example, in multiclass categorizatiproblems each clagsmay be associated with a
different weight vectorns”. The prediction for an instance is a vector(w!,z),...,{w*,z) wherek is
the number of different classes. The predicted class isntiexi of the inner-product attaining the largest
of the k values, argma]-x<wj,sc>. Since all the weight vectors operate over the same instspaee, in
order to achieve a sparse solution, it may be beneficial tthéenveights corresponding to the same input
feature. That is, we would like to employ a regularizationdtion that tends to zero the row of weights
le, .. ,W‘j‘ simultaneouslyIn these circumstances, the nullification of the entiregheivector by/, and/e
regularization becomes a powerful tool.
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Formally, letW represent a x k matrix where thej!" column of the matrix is the weight vectao!
associated with clasg Thus, theit" row corresponds to the weight of ti# feature with respect to all
classes. The mixet] /¢s-norm (Obozinski et al., 2007) &%, denoted|W(|,, .. is obtained by computing the
£s-norm of each row ofV and then applying thé&-norm to the resultingg dimensional vector, for instance,
IWIle, /e, = Yi—amax W j|. Thus, in a mixed-norm regularized optimization problemc{sas multiclass
learning), we seek the minimizer of the objective function

FOW) + A Wl e -

Given the specific variants of various norms described alibeeFososupdate for the/1 /¢ and thel1 /¢,
mixed-norms is readily available. Let" denote the'" row of W. Analogously to the standard norm-based
regularization, we le¥ = V\/H% be a shorthand for the result of the gradient step. Fofihk mixed-norm,
wherep = 2 or p = o, we need to solve the problem

n

o1 ~ S 1, 5 23—
minimizeZ W =VIZ+X W, = ngg@geé(z\}@'17'||2+)\||u7‘||p> ; (27)

wherev' is theit" row of V. It is immediate to see that the problem given in Eq. (27) isodeposable into

n separate problems of dimensikreach of which can be solved by the procedures describee iprédguel.
The end result of solving these types of mixed-norm problsngssparse matrix with numerous zero rows.
We demonstrate the merits obBoswith mixed-norms in Sec. 7.

6. Efficient Implementation in High Dimensions

In many settings, especially online learning, the weigltteew; and the gradientg[f reside in a very high-
dimensional space, but only a relatively small number ofdtvponents ogtf are non-zero. Such settings
are prevalent, for instance, in text-based applicatiantext categorization, the full dimension corresponds to
the dictionary or set of tokens that is being employed whalehegradient is typically computed from a single
or a few documents, each of which contains words and bigramstituting only a small subset of the full
dictionary. The need to cope with gradient sparsity becduméiser pronounced in mixed-norm problems, as
a single component of the gradient may correspond to areawotiv of W. Updating the entire matrix because
a few entries Obtf are non-zero is clearly undesirable. Thus, we would likextersd our methods to cope
efficiently with gradient sparsity. For concreteness, weufoin this section on the efficient implementation
of 41, ¢2, and/., regularization, recognizing that the extension to mixedams (as in the previous section) is
straightforward. The upshot of following proposition iﬁtlwhengtf is sparse, we can use lazy evaluation of
the weight vectors and defer to later rounds the update opooents ofw; whose corresponding gradient
entries are zero. We detail this after the proposition, Wisdechnical so the interested reader may skip the
proof to see the simple algorithms for lazy evaluation.

Proposition 11 Letwr be the end result of solving a succession of T self-similimépation problems for
t=1....T,

.1
P1: wt:argm|n§||w—wt,1||2+)\t||'w||q . (28)

Letw* be the optimal solution of the following optimization preiu:

1 z
P2: w*:argm|n§||w—on2+ (Zl)\t> lwlq -
w t=

Then for ge {1,2,»} the vectorawt andw* are identical.

Proof It suffices to show that the proposition is correct for= 2 and then use an inductive argument,
because the proposition trivially holds for= 1. We provide here a direct proof for each norm separately by
examining the updates we derived in Sec. 5 and showingdbat w*.
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Note that the objective functions are separablegfer 1. Therefore, for's-regularization it suffices to
prove the proposition for any component of the veetonVe omit the index of the component and denote by
Wo, W1, W2, W3, ... one coordinate ofv along the iterations aP.1 and byw* the result for the same component
when solving?.2. We need to show that* = wp. Expanding the;-update of Eq. (19) over two iterations
we get the following,

wz = sign(wy) [[wa| —Az] . = sign(wa) [|sign(wo) [[wo| — A1), | —Az], = sign(wo) [[wo| —A1—Az],
where we used the positivity ¢f|. Examining?.2 and using Eqg. (19) again we get
W" = sign(wo) [[Wo| —A1 —Az], .

Thereforew* = w» as claimed.
Next we prove the proposition fdp, returning to using the entire vector for the proof. Using ¢xplicit
£r-update from Eq. (20), we can expand the norm of the vaetodue to the progran®.1 as follows,

A }
wi| = [1———| ||lwol = [|lwo|l —A1
fonl = (1= oy ] ol = (ol =2l
Similarly, we get thafjwg|| = [||w1|| — A2] .. Combining the norm equalities we see that the norrwptiue
to the succession of the two updates is
wal = [[lwoll =A1], —A2], = [Jlwoll —=A1—A2], .

Computing directly the norm afy* due to the update given by Eq. (20) yields
= |1

Thus,w* andw; have the same norm. Since the update itself retains thetidineaf the original vectowo,
we get thatw™* = w, as needed.

We now turn to the most complicated update and proof of theetimorms, thé., norm. We start by
recapping the program®.1 and?.2 for T = 2 andq = o,

Mt
[|woll

} Jwoll = [lwol ~As—Adl, .
+

Pl: w = argmin{;||w—wo|2+)\1||wm} (29)
(1 )

wp = argmin é||w—w1|\ +A2|wl, p s (30)
* : 1 2

P2: w* = argmin §||w—v||2+()\1+)\2)||me . (32)

We prove the equivalence of the two programs in two stagest, Fve examine the caglevol|; > A1+ A2,

and then consider the complement cag||; < A1+ A,. For concreteness and simplicity, we assume that
wo = 0, since, clearly, the objective is symmetricdty and —wg. We thus can assume that all entries of
wo are non-negative. In the proof we use the following opesatar | now denotes the positive component
of each entry ofv, min{v,8} denotes the component-wise minimum between the elementsof 6, and
likewise maxv,0} is the component-wise maximum. Starting with the c®g||; > A1+ A2, we examine
Eq. (29). From Lagrange duality we know that that = wo — a1, whereay is the solution of

T |
minimize ||ex —wp||3 S.t. [lafl; <A1 .
As described by Duchi et al. (2008) and reviewed above in See; = [wo — 03], for some6; € R,. The
form of a1 readily translates to the following form fae:: w; = wo — ag = Min(wy, 61). Applying similar

reasoning to the second step®fl yieldsw, = wi — ap = wo — a1 — a2, Whereas is the minimizer of

1 > 1 2
§||Oé*w1||2: §||0¢*(w0*041)||2 st flafl; <Az .
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Again, we havex, = [w1 — 82], = [wo — a1 — 02] for somed, € R,. The successive steps then imply that
wy = min{w1,02} = min{min{wo,61},6,} .

We next show that regardless of thenorm ofwy, 6, < 01. Intuitively, if 82 > 81, the second minimiza-
tion step of?P.1 would perform no shrinkage @61 to getw,. Formally, assume for the sake of contradiction
that®, > 8;. Under this assumption, we would have thgt= min{min{wo,01},02} = min{wo, 01} = w;.

In turn, we obtain tha® belongs to the subgradient set of Eq. (30) when evaluatad-atw, thus,

0 € w1 — w1+ A0 |will, =A20 w1 -

Clearly, the sed ||w1]|,, can contaird only whenw; = 0. Since we assumed tha{ < ||wol|;, and hence
thatay < wo anday # wop, we have thatv; = wg — a1 # 0. This contradiction implies thd, < 0;.

We now examine the solution vectors to the dual problem®.af ci; andaz. We know that|jovy ||, =
A1 so that||wo — a1||; > A2 and hencex; is at the boundaryja||; = A2 (See again Duchi et al. 2008).
Furthermore, the sum of the these vectors is

a1+a2=[wo—elh—&—[wo—[wo—91}+—92]+. (32)

Let v denote a component abg greater tharb;. For any such component the right hand side of Eq. (32)
amounts to

[V— (V—el) —92]++ [V—G;]_]Jr = [61—92]++v—91 =Vv—0;= [V—eﬂJr R

where we used the fact th@ < 8; to eliminate the ternjf, — 6;],. Next, letu denote a component of
wo smaller tharB;. In this case, the right hand side of Eq. (32) amountgite0— 6], +0=[u—862],.
Recapping, the end result is that the vector sum- a2 equalswo — 8;] . Moreover,a; anda are inR'}
as we assumed thaip = 0, and thus

|| [wo—92]+||1:||a1+a2||1:)\1+)\2 . (33)

We now show that?.2 has the same dual solution as the sequential updates atfeeual ofP.2 is
I | P
minimize> laa—wol|5 s.t. |lafl; <Ar+As.
[e 4

Denoting byayg the solution of the above dual problem, we have = wo — ap and ag = [wo — 8], for
someb € R,.. Examining the norm ofyp we obtain that

leolly = [[[wo—6], ||, =A1+A2 (34)

because we assumed tHatol|; > A1+ A2. We can view the term§[wo—82], ||, from Eq. (33) and

|| [wo—6]. ||, from Eg. (34) as functions df, and, respectively. The functions are strictly decreasing
functions off and®, over the interval0, ||wo||,,]. Therefore, they are invertible for@ A1 + Az < |lwoll;.
Since||[wo— 8] ||, = ||[wo—62], ||,, we must haved, = 8. Recall that the solution of Eq. (31) is* =
min{wo,B8}, and the solution of the sequential update induced by Eq) @® Egq. (30) is
min{min{wo, 61},6,} = min{wy,B8,}. The programsP.1 and 2.2 therefore result in the same vector
min{wp, B2} = min{wy, 0} and their induced updates are equivalent.

We now examine the case whgmwo||; <A1+Az. Ifthe 1-norm ofwyg is also smaller thahy, ||wol|; <A1,
then the dual solution for the first step®fl is oy = wg, Which makesw; = wo— a1 = 0 and hencev, = 0.
The dual solution for the combined problem is cleadly= wo; again,w* = wo — ap = 0. We are thus left
with the case\1 < |Jwo|l; <A1+ A2. We straightforwardly get that the solution to Eq. (31ui% = 0. We
now prove that the iterated solution obtained®yl results in the zero vector as well. First, consider the
dual solutiona;, which is the minimizer of|cc — wo||? subject to||c||; < A1. Sinceay = [wo —64], for
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someB; > 0, we know that each componentef is between zero and its corresponding componeitgn
therefore ||wo — aul|; = |lwoll; — [la|l; = [Jwoll; —A1 < Ao. The dual of the second step #f1 distills to
the minimization ||cc — (wo — 1) ||? subject to]| ||, < A,. Since we showed thgtwo — ar[|; < A, we get
az = wo— . This means tha, = 0. Recall that the solution @P.1 is min{wog, 6,2}, which amounts to
the zero vector whef, = 0. We have thus showed that both optimization problems tresthe zero vector.
This proves the equivalence #f1 and?.2 for g = co. |

The algorithmic consequence of Proposition 11 is that itassfble to perform a lazy update on each
iteration by omitting the terms ofv; (or whole rows of the matriXy{ when using mixed-norms) that are
outside the support ojtf, the gradient of the loss at iteratian However, we do need to maintain the
step-sizes used on each iteration and have them readilableaon future rounds when we need to update
coordinates ofv or W that were not updated in previous rounds. Agtlenote the sum of the step sizes times
regularization multiplierain; used from round 1 through Then a simple algebraic manipulation yields that
instead of solving

. [1
wrn = argmin 3 10wl An ol
w

repeatedly whemw is not being updated, we can simply cache the last tinleatw (or a coordinate inv
or a row fromW) was updated and, when it is needed, solve

(1
wris = argminf 2 oo~ w3+ (e~ Aol

The advantage of the lazy evaluation is pronounced whemg usired-norm regularization as it lets us avoid
updating entire rows so long as the row index correspondz&y@entry of the gradierytf. We would like

to note that the lazy evaluation due to Proposition 11 inetugs a special case the efficient implementation
for ¢;-regularized updates first outlined by Langford et al. (9008 sum, at the expense of keeping a time
stampt for each entry otw or row of W and maintaining a list of the cumulative sumg /A2, ..., we can get
O(s) updates ofw when the gradiengtf is s-sparse, that is, it has on§non-zero components.

7. Experiments

In this section we describe the results of experiments wipaed whose goal are to demonstrate the merits
and underscore a few weaknesses oBBs. To that end, we also evaluate specific instantiationsas &s
with respect to several state-of-the-art optimizers amgjepted subgradient methods on different learning
problems. In the experiments that focus on efficiency anédpé convergence, we evaluate the methods
in terms of their number of operations, which is approxiryatiee number of floating point operations each
method performs. We believe that this metric offers a famparison of the different algorithms as it lifts
the need to cope with specific code optimization such as dachéty or different costs per iteration of each
of the methods.

7.1 Sensitivity Experiments

We begin our experiments by performing a sensitivity arialgé FoBos We perform some of the analysis
in later sections during our comparisons to other methoatswie discuss the bulk of it here. We focus on
two tasks in our sensitivity experiments: minimizing thede loss (used in Support Vector Machines) with
é% regularization and minimizing th@-regularized logistic loss. These set the loss funcfi@s

n

1 A 10 o
fw) =2y B-ylmw)l+ 5wl and fw) =5 log(1+e @) A ful,
1= 1=

respectively. Note that both loss functions have subgradiets bounded by s, |lyizi|,. Therefore, if all
the instances are of bounded norm, so are the subgradieiis efmpirical loss functions.
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Figure 1: Sensitivity of deterministicdB0osto initial step size on logistic regression. Key is initisd[s size.
Left: n: O 1/4/t. Right:ne O 1/t.

We perform analysis using dimensioshg {50, 100,200 400,800} and data set sizes< {200,400}. We
investigate the effect of correlation of the featuxgswith one another by generating uncorrelated, moder-
ately correlated, and highly correlated features. Spetificto generate feature vectars € RY, we sample
n random vectorg; ~ N(O,1), zj € RY. We then construct a random covariance mafriwhose correla-
tions |pij| = |Zij|//Zi2j; have mean2 for the moderately correlated experiments ador the highly
correlated experiments (on the highly correlated dataentiwain one-tenth of the features were more than
80% correlated). To get, we then setr; = Lzj, whereL is the Cholesky decomposition &f(the identity
in the uncorrelated case), and normabizeto have||zi||,, = 1. We compared different stochastic gradient
estimators that were based on varying sample sizes: a srghlaple, 10% of the training set, 20% of the
training set, and deterministic gradient using the enttadet. We also tested ten different initial step sizes.
However, we give in the graphs results for only a subset oiftitial steps that reveals the overall dependency
on the step size. Further, we also checked three schemesdayidg the step size; 01/t, n; 0 1/4/t, and
Nt 01 (constant step size). We discuss the results attainedrstantt step sizes only qualitatively, though,
to keep the clarity of the figures. Whep was a constant we divided the initial step size\§y, the total
number of iterations being taken. We performed each ex@atih0 times and averaged the results.

We distill the large number of experiments into a few figureseh deferring some of the analysis to the
sequel. Thus in this section we focus on the case whed00 andd = 800, since the experiments with other
training set sizes and dimensions gave qualitatively sinnésults. Most of the results in this section focus on
the consequences of the initial step sizethough we also discuss different schedules of the leamaitggand
the sample size for computing the subgradients. In eaclriexpet, we seh = .25/,/n, which in the logistic
case gave roughly 50% sparsity. Before our discussion, wethat we can bound th&-norm of w* for
both the logistic and the hinge loss. In the case of the lmgiste have |[w*||, < A ||w*||; < f(0) =log2.
Similarly, for the hinge loss we ha@”w*”% < f(0) = 1. In both cases we can boufby the norm of the
||=i||, which is in our settings approximately 9. Thus, lookingre bounds from Sec. 3 and Sec. 4, when
nt 0 1/+/T, the initial step size amounts tp ~ D/v/7G ~ 2.3 and whem [ 1/+/t, the initial step should
beni ~ D/4G =~ 1.5 for logistic regression. For the hinge loss, whrriJ 1/4/t, and the initial step ends
beingni = D/4G = .35. We see in the sequel that these approximate step sizesegelts competitive with
the best initial step sizes, which can be found only in higlsi

We begin by considering the effect of initial step size ferregularized logistic regression. We plot
results for the moderately correlated data sets, as wetigagsthe effect of correlation later on. The results
are given in Figures 1 and 2, where we plot the objective vatigach time step minus the optimal objective
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Figure 2: Sensitivity of stochasticdBosto initial step size on logistic regression. Key is initités size.
Left: n; 0 1/+/t. Right:ne O 1/t.

value attainedf (wy) +r(w) — f(w*) —r(w*). We plot the function values of the initial step size that was
chosen automatically, by estimatiBgandG as described above, in bold red in the figures. Interestitiggy

left side of Fig. 1 suggests that the best performing ingieps whem; [0 1//t are near 1.5n; = 2.15 gives
good regret (we also saw thai = 4.6 performed well, but do not include it in the plot). In Fig.\2e see
similar behavior for stochasticdBoswhen using 10% of the samples to estimate the gradient. Thaoeag

do not plot these results, the stochastic case with constaptsizes also performs well when the step sizes
aren; ~ 2.2/+/T. The deterministic variant of #8oscould not not take as many steps in the allotted time as
the stochastic versions, so its performance was not cotiveethll methods are somewhat sensitive to initial
step size. Nonetheless, for these types of learning prableseems plausible to estimate an initial step size
based on the arguments given in the previous paragraphsiatipevhen using the step rate gf 0 1/t

that was suggested by the analysis in Sec. 4.

We performed similar experiments with the hinge loss W%thegularization. As the objective is strongly
convex? our analysis from Sec. 4 and Theorem 8 suggests a step rgte-o1/At. From the right plot in
Fig. 3, we see that the best performing step sizes where thiatgest, which is consistent with our analysis
since YA = 80. For the the 1/t steps, which we present on the left of Fig. 3 respectivelghsnitial step
sizes are too large. However, we can see again that the apgation suggested by our arguments above
gives good performance. In sum, it seems that whib®&s and stochastic &80s are fairly sensitive to
initial step sizes and rate schedule, our theoretical te$tdm the previous sections give relatively good
initial step size heuristics. We will see similar behaviothe sequel.

7.2 Comparison to Subgradient Optimizers

We now move on to the description of experiments usiog&sto solveé%-regularized learning problems,
focusing on comparison to the state-of-the-art subgradiptimizer Pegasos (Shalev-Shwartz et al., 2007).
Pegasos was originally implemented and evaluated on Suppotor Machine (SVM) problems by using
the hinge-loss as the empirical loss function along Witw%;\regularization term. Nonetheless, Pegasos can
be rather simply extended to the binary logistic loss fuorctWe thus experimented with both the hinge and
logistic loss functions. To generate data for our experisiene chose a vectar with entries distributed
normally with a zero mean and unit variance, while randonelsoing 50% of the entries in the vector. The

2. We assume there is no bias term in the objective, since anpiaption method must deal with this so we find it outside thepsco
of the paper.
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Figure 3: Sensitivity of stochastic methods to initial stejge on hinge loss minimization Witlﬂ%—
regularization. Key is initial step size. Left; 0 1/+/t. Right:n; O 1/t.

examplesz; € RY were also chosen at random with entries i.i.d. normallyrithisted. We also performed
experiments using correlated data. The results attainesboelated data were similar, so we do not report
them in our comparison to Pegasos. To generate target yaleesety; = sign({xi,w)), and negated the
sign of 10% of the examples to add label noise. In all expantsjave usedh = 1000 training examples of
dimensiond = 400.

The graphs of Fig. 4 show (on a log-scale) the objective fanchamely, the regularized empirical loss
of the algorithms, minus the optimal value of the objectivadtion. These results were averaged over 20
independent runs of the algorithms. In all experiments itiegularization of the formA w3, we used
step sizes of the form; = 1/(At) to achieve the logarithmic regret bound of Sec. 4. The ledphrof
Fig. 4 conveys that &80s performs comparably to Pegasos on hinge (SVM) loss. Botbristihgns quickly
approach the optimal value. In this experiment we let botiaBes and 6B0semploy a projection after each
gradient step onto & norm ball in whichw* must lie (see Shalev-Shwartz et al. 2007 and the discussion
following the proof of Theorem 2). However, in the experimeorresponding to the right plot of Fig. 4, we
eliminated the additional projection step and ran the dlgaos with the logistic loss. In this casepBos
slightly outperforms Pegasos. We hypothesize that thétlidaster rate of BBOSis due to the explicit
shrinkage that Bsosperforms in theﬁ% update (see Eq. (20) and Lemma 9).

7.3 Comparison to Other Methods for Smooth Problems

As mentioned in our discussion of related work, many methal® been proposed in the optimization and
machine learning literature for minimizing Eq. (1) whéns smooth, particularly whefi has a Lipschitz-
continuous gradient. For the caselgfregularized logistic regression, Koh et al. (2007) prepas efficient
interior point method. Tseng and Yun (2007) give analysisa dblock) coordinate descent method that
uses approximations to the Hessian matrix and an Armije-hgcktracking line search to solve non-smooth
regularized problems with smooth objectives; their methvad noted to be effective fdh /¢>-regularized
logistic regression, for example, by Meier et al. (2008). Al compare &80sand its stochastic variants to
the SPARSA method of Wright et al. (2009), which shares the same epalatososbut uses a simple line
search strategy to choose the its steps. Note that noness thethods apply whehis non-smooth. Lastly,
we compare BBosto projected-gradient methods. Farregularized problems, Duchi et al. (2008) show
how to compute projections to dgp-ball in linear time, and Schmidt et al. (2009) extend thehodtto show
that projection of a matrisV € R4k to an¢y/¢,-constraint can be computed @(dk) time. To compare
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Figure 4: Comparison of #880swith Pegasos on the SVM (left) and logistic regression igfthe right
hand side plot shows the performance of the algorithms with@rojection step.

our methods to projected gradient methods, we first solveefelarized version of the problem. We then
constrain the norm o or the mixed-norm ofV to lie within a ball of radius\ [|w*(|; or A [[W*|,, /,.

We compared BB0osSto each of the above methods on many different syntheticsdta and we report
a few representative results. In our experimentaFSSA seemed to outperformoBosand the projected
gradient methods when using full (deterministic) gradiefdrmation. The additional function evaluations
incurred by the line search inP@RSA seem to be insignificant to runtime, which is a plausijganation
for SPARSA’s superior performance. We therefore do not reportlt®$or the deterministic versions of
Fososand projected gradient methods to avoid clutter in the figure

In the first set of experiments, we comparedoss performance orf;-regularized logistic regression
to each of the above methods. That is, wefdet) to be the average logistic loss andv) = A ||w||, and
use a data set with = 1000 examples and = 400 dimensions. We compare the performance of stochastic
FoBosto the other algorithms in terms of two aspects. The first é&sualue ofA, which we set to five
logarithmically spaced values that gave solution vectotrganging from 100% non-zero entries to only 5%
non-zero entries. The second aspect is on the correlatitredéatures. We generated random data sets with
uncorrelated features, features that were on average 2f#ated with one another, and features that were
on average 30% correlated with one another. In the lattex absut 350 pairs of features had above 80%
correlation (see the description of feature generatioha@tbeginning of the section). We normalized each
examplex to have features in the rangel, 1]. We assigned labels for each example by randomly choosing
a 50% sparse vectaw, settingy; = sign({w, z;)), and negating 5% of thgvalues.

The results comparingdBos to the other algorithms for different settings of the regakr A are in
Fig. 5. They-axis isf (wi) +r(wy) — f (w*) —r(w*), the distance of the current value from the optimal value,
and thex-axis is the approximate number of operations (FLOPs) fonh@aethod. We used the approximation
we derived based on Corollary 7 in our earlier discussioreogivity to set the initial step size and used
nt 0 1/yv/t. Tseng and Yun's method requires setting of constants fbtcktracking-based line search.
We thus use the settings in Meier et al. (2008). In attemptd&erthe comparisons as fair as possible, we
used some of Tseng and Yun’s code yet reimplemented the thihiake advantage of the specific structure
of logistic regression. Similarly, we used the line-segpelnameters in Wright et al.’s publicly available
Matlab code for 8ARSA, though we slightly modified their code to handle arlbjtdass functions. From
the figure, we see that asgrows, yielding sparser solutions far*, the performance of coordinate descent
and especially the interior point method start to degratidive to the stochastic methods aneaRSA.

In our experiments we found that the stochastic methods guite resilient to overly-large initial step-
sizes, as they quickly took a large number of stepsaARSSA employs an easy to implement and efficient
line search, and in general yielded good performance. Thedamte descent method, with its somewhat
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Figure 7: Performance df /¢»-regularized multiclass logistic regression methods wifferent settings of
A on correlated synthetic data. Letit* has 60% sparsity. Rightv* has 30% sparsity.

complicated backtracking line search, was difficult to iempent correctly. Therefore, our experiments and
experience suggest thaPERSA is likely to be preferred for smooth problems. Nonetbglestochastic
FoBsos quickly obtains a solution within about 18 of the optimal value. Since the regularized empirical
loss serves as a proxy for attaining good generalizatiofopeance, we found that in numerous cases this
accuracy sufficed to achieve competittestloss.

In Fig. 6 we compare &80sto the other methods on data with uncorrelated, moderatetelated, and
very correlated features. These plots all haveet so thatv* has approximately 40% sparsity. From the
plots, we see that stochastioBosand projected gradient actually perform very well on theereorrelated
data, very quickly getting to within 1@ of the optimal value, though after this they essentially.jé&sin the
earlier experiments, B\RSA seems to perform quite well for these moderately size@d@ments, though
the interior point method’s performance improves as theufea become more correlated.
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Figure 8: Comparison test error rate 0bB0S, SPARSA, projected gradient, and coordinate descent on
MNIST digit recognition data set. Right: magnified view oft lplot.

The last set of experiments with synthetic data sets was @admorm-regularized multiclass logistic
regression. The objective that we used in this case is

1n N "
=Slog(1+ S el =) )\ Wl . (35)
niz% ( _Z; > 1/4q

17Yi

In the above equatiog represents the norm over rows of the ma¥ixand in our experiments it is either 1,
2, or (in this sectiong = 2). The goal is to classify correctly examples whose labesra{1,...,k} while
jointly regularizing entries of the vectors!. We usedn = 5000 datapoints of dimensiah= 1000 with

k = 10 classes, meaning we minimize a loss over a mafttigk R9<K with 10000 parameters. To generate
data, we sample examplesfrom a normal distribution with moderate correlation, randy choose a matrix
W, and sety; = argmay <wi,wj> with 5% label noise. We show results in Fig. 7. In the threerBgu
vary A to give solutionsN* with roughly 60% zero rows, 30% zero rows, and completely-sparse/N™.
From the figures, it is apparent that the stochastic methooky, FOBOS and projected gradient, exhibit
very good initial performance but eventually lose to therdomate descent method in terms of optimization
speed. As before, if one is willing to use full gradient infation, $ARSA seems a better choice than the

deterministic counterpart ofdBosand projected gradient algorithms. We thus again do noeptassults
for deterministic ®BOswithout any line search.

7.4 Experiments with Real Data Sets

Though in the prequel we focus on optimization speed, the gaal in batch learning problems is attaining
good test-set error rates rather than rapid minimizatiofi(ef) +r(w). In order to better understand the
merits of different optimization methods, we compared teggrmance of different optimizers on achieving
a good test-set error rate on different data sets. Nonatheler these tests the contours for the training
objective value were qualitatively very similar to the test error rate curves. We used the StatLog LandSat
Satellite data set (Spiegelhalter and Taylor, 1994), thd $Mhandwritten digit database, and a sentiment
classification data set (Blitzer et al., 2007).

The MNIST database consists of 60,000 training examplesadij000 example test set with 10 classes.
We show average results over ten experiments using randg@idBxample subsamples of the training set.
For MNIST, each digit is a 2& 28 gray scale image which is represented as a?28 784 dimensional
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Figure 9: Comparison of&Bosand SPARSA on sentiment classification task.

vector. Direct linear classifiers do not perform well on thiéga set. Thus, rather than learning weights for
the original features, we learn the weights for a kernel rnmectvith Gaussian kernels, where the value of the
jth feature for tha!" example is

1. .12
XiJ':K(zi,Zj)ée_sz' zjll .

We used/;1 /¢, regularization and comparedB0OS, SPARSA, coordinate descent, and projected gradient
methods on this test (as well as stochastic gradient vessibRoBOS and projected gradient). The results
for deterministic ©BOsand projected gradient were similar teAARSA, so we do not present them. We also
experimented with stochastic group sizes of 100 and 200 pbesfor FOBOS, but the results were similar, so
we plot only the results from the 100 example runs. As befeeysed thé; /¢, norm of the solution vectors
for FOoBOSs SPARSA, and coordinate descent as the constrained value fprofected gradient method. For
each of the gradient methods, we estimated the diani®tnd maximum gradien® as in the synthetic
experiments, which led us to use a step sizgiof 30/\/t. The test set error rate as a function of number
of operations for each of the methods are shown in Fig. 8. Ffgm8, it is clear that the stochastic gradient
methods (BBosand projected gradient) were significantly faster than dnp@other methods. Before the
coordinate descent method has even visited every cooedimae, stochasticdBos(and similarly stochastic
projected gradient) have attained the minimal test-ser.elithe inferior performance of coordinate descent
and deterministic gradient methods can be largely atgibtid the need to exhaustively scan the data set.
Even if we use only a subset of 15,000 examples, it takes aimahttmount of time to simply handle each
example. Moreover, the objective values attained durigigitng are qualitatively very similar to the test loss,
so that stochasticdBos muchmore quickly reduces the training objective than the deitgistic methods.

We also performed experiments on a data set that was veritajivaly different from the MNIST and
LandSAT data sets. For this experiment, we used the muttiadio sentiment data set of Blitzer et al. (2007),
which consists of product reviews taken from Amazon.connfieny product types. The prediction task is
to decide whether an article is a positive or negative reviétve features are bigrams that take values in
{0, 1}, totalling about 630,000 binary features. In any particeleample, at most a few thousand features
are non-zero. We used 10,000 examples in each experimemeafamed 10 repetitions while holding
out 1000 of the examples as a test set and using 9000 of theptesfor training. We used,-regularized
logistic regression and saét= 3-10°°, which gave the best generalization performance and ssbirt
roughly 5% non-zeros in the final vectar. We compare stochasticoBosto SPARSA in Fig. 9, since
the projected gradient method is much slower thas&s (detailed in the sequel). FordBoswe use 900
examples to compute each stochastic gradient. We use teoatif initial step sizes, one estimated using
the approximation described earlier and a second where ate isdy 1/5. The left plot in Fig. 9 shows the
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Figure 10: Left: F©BOS sparsity and test error for LandSat data set Witliegularization. Right: BBOS
sparsity and test error for MNIST data set wilty ¢,-regularization. Key is identical for both
plots.

training objective value as a function of the number of opjers for each of the three methods as well as
error bars equal to the standard deviation of the objecfidee right plot shows the error rates on the test
sets. The behavior in the experiment is similar to that in Bigvhere the stochastic methods very quickly
attain a small test error. Effectively, beforeARSA finishes two steps, the stochastic methods have arrived
at approximate solutions that attain the minimal test setr eates.

We now change our focus from training time to the attainedssfyalevels for multiclass classification
with ¢1, £1/¢2, and{y /4. regularization on MNIST and the StatLog LandSat data settfloLandSat data
set we attempt to classify:33 neighborhoods of pixels in a satellite image as a partidyfze of ground,
and we expanded the input 36 features into 1296 featurekmgtthe product of all features.

In the left plot of Fig. 10, we show the test set error and spalevel of W as a function of training time
(100 times the number of single-example gradient calara)i for thel;-regularized multiclass logistic loss
with 720 training examples. The green lines show resulta$arg all 720 examples to calculate the gradient,
black using 20% of the examples, and blue using 10% of the pkamto perform stochastic gradient. Each
used the same learning rateJ 1/+/t, and the reported results are averaged over 5 independentuith
different training data sets. The righthand figure showsalai plot for training FoBOS on the MNIST
data set with/y /¢,-regularization. The objective value in training has a Emeontour to the test loss. As
expected, BBOS with stochastic gradient descent gets to its minimum testsification error, and as the
training set size increases this behavior is consistentveder, the deterministic version increases the level
of sparsity throughout its run, while the stochastic-geatliversion has highly variable sparsity levels and
does not give solutions as sparse as the deterministic eqamt. We saw similar behavior when using
stochastic versus deterministic projected gradient nusth®he slowness of the deterministic gradient means
that we do not see the sparsification immediately in largast@onetheless, for longer training times similar
sparsifying behavior emerges.

As yet, we do not have a compelling justification for the diffiece in sparsity levels between stochastic
and deterministic gradientdBos We give here some intuitive arguments, leaving a more fbanal-
ysis to future work. We develop one possible explanation xplaging the effect of taking a stochastic
gradient step starting from the true solution vecior. Consider/;i-regularized B©BOS with regulariza-
tion multiplier . Let g' be the gradient off (w*). For j such thatwj* >0, we havegjf = —A, for j

with WJ* <0, g{ = A, and for zero entries im*, we havegjf € [-A\,A]. The FoBoS step then amounts to
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i
g', we use a stochastic estimatedf g. Then the probability that the updatg of w is zero is

(

Whenw; = 0, the probability is simplﬂP’(gjf € [-A,A]), which does not change as a functiomef However,

whenw? > 0, we haveE [g}] = —A, while w]*/r]t — 00 asn); shrinks (and analogously for; < 0). In essence,
the probability of a non-zero parameter staying non-zehigh, however, the probability of a zero parameter
staying zero is constant. Intuitively, then, we expect stathastic gradient descent will result in more
non-zero coefficients than the deterministic variant oBbs

wh = sign(wj) [|WJ* — r]tgjf| — nt)\} N which by inspection simply yielda*. Now suppose that instead of

gl <na) =B (g e [W W
Wj_ntgj’fnt)— g; € E— »E'f‘ .

7.5 Experiments with Sparse Gradient Vectors

In this section, we consider the implications of Propositld for learning with sparse data. We show that it
is much more efficient to use the updates described in Pribgo4il than to maintaid;-constraints onw as
in Duchi et al. (2008). Intuitively, the former requireshrat simple bookkeeping for maintaining the stn
discussed in Sec. 6, and it is significantly easier to imptgraad more efficient than Duchi et al.’s red-black
tree-based implementation. Indeed, whereas a red-bleekéquires at least a thousand of lines of code for
its balancing, joining, and splitting operations, the éffit FOBOS updates require fewer than 100 lines of
code.

We simulated updates to a weight veciowith a sparse gradiemf for different dimensions of w € RY
and different sparsity levelsfor gtf with carc(gtf) =s. To do so, we generate a completely deansehose
¢1-norm is at most a pre-specified valband add a random vectgrto w with s non-zeros. We then either
projectw + g back to the constrainfw||; < b using the algorithm of Duchi et al. (2008) or performagos
update tow + g using the algorithm in Sec. 6. We chasén the FoBos update to give approximately the
same sparsity as the constraint lan In Table 1 we report timing results averaged over 100 indeépst
experiments for different dimensiomsof w and different cardinalities of g. Though theoretically the
sparse BBosupdates should have no dependence on the dimedsioa found that cache locality can play
a factor when performing updates to larger dimensionabrectNonetheless, it is clear from the table that the
efficient FoBosstep is on the order of ten to twenty times faster than itssated counterpart. Furthermore,
the sparse &B0s updates apply equally as well to mixed norm regularizateord while there are efficient
algorithms for both projection to both /¢» and/¢; /¢, balls (Schmidt et al., 2009; Quattoni et al., 2009), they
are more complicated than theBos steps. Lastly, though it may be possible to extend the efficlata
structures of Duchi et al. (2008) to tlig/ ¢, case, there is no known algorithm for efficient projectionthw
sparse updates to &g/ 4. constraint.

Dimensiond s=5000 s=10000 s=20000
Project| FoBos | Project| FoBos | Project| FOBOS
5.10° 072 | 007 | 212 | 012 | 453 | 0.23
2.10° 080 | 010 | 206 | 016 | 509 | 0.34
8.10° 0.86 0.15 2.22 0.17 5.34 0.39
3.2.10° 1.07 0.13 2.75 0.16 6.31 0.52
6.4-10° 1.20 0.10 2.83 0.29 6.62 0.48

Table 1: Comparison of the average time (in hundredths of@s required to compute projectionwf-g
onto an/i-constraint to the analogous update required by theds step.

2925



DuUCHI AND SINGER
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Figure 11: The sparsity patterns attained [mBBsusing mixed-norm ané; regularization for a multiclass
logistic regression problem.

7.6 Effects of Regularization

Our final experiments focus mostly on sparsity recovery efdtiferent regularizers and their effects on test-
set performance. While these are somewhat orthogonal toréweops experiments, we believe there is a
relative paucity of investigation of the effects of mixedrm regularization on classifier performance.

As a verification experiment of 880s with a mixed-norm regularizer, we solved a multiclass Itgis
regression problem whose objective is given in Eq. (35).dleesthis task, we randomly generated a matrix
W of dimension 200« 30. The instances hati= 200 dimensions, the number of classes was30, and
we zeroed out the first 100 rows Wf. We next generated = 1000 samples:; € RY with zero mean and
unit variance. We sef; = argmax <wi,wj> and added 10% label noise. We then usedB&sto find an
approximate minimizer of the objective defined by Eqg. (35).

To compare the effects of different regularizers, we miaedi Eq. (35) usindi/¢1, ¢1/¢>, and{1/l«
regularization. We repeated the experiment 20 times wiferéint randomly selecteéd/ that had the same
sparsity pattern. On the left side of Fig. 11 we illustrate fiparsity pattern (far left) of the weight vector
that generated the data and color-coded maps of the sppasieyns learned usingdBoswith the different
regularization schemes. The colors indicate the fractidines a weight ofV was set to be zero. A white
color indicates that the weight was found (or selected) tadre in all of the experiments while a black
color means that it was never zero. The regularization valu@as set so that the learned matikwould
have approximately 50% zero weights. From Fig. 11, we seehtbitd ¢, /¢» and ¢1/¢, were capable of
zeroing entire rows of parameters and often learned a spawitern that was close to the sparsity pattern
of the matrix that was used to generate the examples. Thdasthfy regularizer (far right) performed very
poorly in terms of structure recovery. In fact, theregularizer did not yield a single row of zeros in any of
the experiments, underscoring one of the merits of usinggdinorm regularization in structured problems.
Quantitatively, 963% and 945% of the zero rows ofV were correctly identified when usingolBos with
¢1/¢ andly /L, regularization, respectively. In contrast, not one of ta®zows oW was identified correctly
as an all zero row using pufg regularization.

The right plot in Fig. 11 shows the sparsity levels (fract@dmon-zero weights) achieved byoBosas
a function of the number of iterations of the algorithm. Etinh represents a different synthetic experiment
asA is modified to give more or less sparsity to the solution veatd. The results demonstrate thabB0S
quickly selects the sparsity pattern @f, and the level of sparsity persists throughout its exeoutid/e
found this sparsity pattern common to all problems we testeduding mixed-norm problems. This is not
particularly surprising, as Hale et al. (2007) recentlygyan analysis showing that after a finite number of
iterations, BOSlike algorithms attain the sparsity of the true solution.
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% Non-zero| ¢1 Test | ¢1/¢> Test| £1/l. Test
5 43 29 40
10 .30 .25 .30
20 .26 22 .26
40 .22 19 .22

Table 2: LandSat classification error versus sparsity

% Non-zero| ¢1 Test | ¢1/¢> Test| £1/l. Test
5 .37 .36 A7
10 .26 .26 31
20 .15 A5 .24
40 .08 .08 .16

Table 3: MNIST classification error versus sparsity

For comparison of the different regularization approachesreport in Table 2 and Table 3 the test set
error as a function of row sparsity of the learned matyixFor the LandSat data, we see that using the block
¢1/¢, regularizer yields better performance for a given leveltofctural sparsity. However, on the MNIST
data the/1 regularization and thé; /¢, achieve comparable performance for each level of structpeasity.
Moreover, for a given level of structural sparsity, theregularized solution matri¥V attains significantly
higher overall sparsity, roughly 90% of the entries of eagh-nero row are zero. The different performance
on the different data sets might indicate that structuratgsfy is effective only when the set of parameters
indeed exhibit natural grouping.

For our final experiment, we show the power ag#os with mixed-norm regularization in the context
of image compression. For this experiment, we represefitiesage as a set of patches where each patch is
in turn represented as a 79 dimensional vector as descrip&tdngier and Bengio (2008). The goal is to
jointly describe the set of patches by a single high-dinmmaiyet sparse set of dictionary features. Each of
the dictionary terms is also iR"°. Letz; denote thg" patch of an image witk patches to be compressed
andc¢; be theit" dictionary vector from a dictionary af vectors. The regularized objective is thus

1 k n 2 n )
52 wi—_ZlWijCi H_ZWHq :
= i= 2 i=

In our experiments, the number of dictionary vectorgas 1000 and the number of patchasas around 120
on average. We report results averaged over 100 differeagés We experiment with the three settings for
g we have used in prior experiments, namelg {1,2,»}. In Fig. 12 we report the average reconstruction
error as a function of the fraction of dictionary vectorsuatty used. As one would expect, the mixed-norm
regularizers {1 /¢, and¢1/¢.) achieve lower reconstruction error as a function of diwiy sparsity than
strict ¢1-regularization. The;/¢>-regularization also gives a slight, but significant, restanction improve-
ment overs /{»-regularization. We hypothesize that this is related tortHative efficiency ofl1 /4. as a
function of the geometry of the input space, as was theadstidiscussed in Negahban and Wainwright
(2008). Further investigation is required to shed moretligto this type of phenomenon, and we leave it for
future research.

8. Conclusions and Future Work

In this paper we analyzed a framework for online and batckeonptimization with a diverse class of regu-
larization functions. We provided theoretical justificatifor a type of convex programming method we call
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Figure 12: Image reconstruction error as a function of grpgrsity.

FoBos which is known also as forward-backward splitting, iterashrinkage and thresholding for the spe-
cial case off;-regularized problems, orFBRSA. Specifically, we described both offline convergencesrat
for arbitrary convex functions with regularization as waslregret bounds for online convex programming of
regularized losses. Our derivation includes as a corotteycase of; regularization, which was concretely
studied by Langford et al. (2008). Our approach providesrgpld mechanism for solving online convex
programs with many regularization functions, giving spgrs parameters and different types of block or
group regularization straightforwardly. Furthermores foBosframework is general and able to minimize
any convex subdifferentialable functidnso long as the forward looking step of Eq. (3) can be computed.

We have also provided a good deal of empirical evaluatioh®htethod in comparison to other modern
optimization methods for similar problems. Our practicaperience suggests that for small to medium
problems, 8ARSA is effective and simple to implement (as opposed to momgplicated coordinate descent
methods), while for large scale problems, performing ststh FoBoSis probably preferable. We have also
shown that BBOSis efficient for online learning with sparse data.

A few directions for further research suggest themselvaswe list here only two. The first is the
guestion of whether we can modify the algorithm to work withiary Bregman divergences of a function
h instead of squared Euclidean distance, that is, we wouddtiéorm a generalizeddBosupdate which is
based on instantaneous optimization problems with Bregiheangences for convex differentialkiie where
Bh(u,v) = h(u) — h(v) — (Oh(v),u — v). We assume the generalized update would, loosely speabéng,
analogous to nonlinear projected subgradient methodshenodhirror descent (see, e.g., Beck and Teboulle
2003). This might allow us to give bounds for our algorithmgerms of other dual norms, such &g/«
norms on the gradients or diameter of the space, rather timtys/,. We believe the attainment and rate of
sparsity when using stochastic gradient information, ggested by the discussion of Fig. 10, merits deeper
investigation that will be fruitful and interesting.
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Appendix A. Online Regret Proofs

Proof of Theorem 6 Looking at Lemma 1, we immediately see thalfdff || and||dr || are bounded b,

1 7
flawn) = fi (") () () < 5o (=P~ g —w'|P) £ 53600 (36)

Now we use Eq. (36) to obtain that

T

Rir(T) = Zl(ft(wt)*ft(w*)H(wt)*f(w*))ﬂ(wnl)*f(w*)*f(wl)H(W*)

t=

5 o (- w2 - | )+
GD+ S — (JJlwt —w*||* — |lwir1 —w™||7) + — Y Nt
t;Zm 2 t;
sincer(w) <r(0) + G|lw|| < GD. We can rewrite the above bound and see
1 1d 1 7G2 ]
R (T GD+ — ||wy — w*||?+ = w—'w*2< )
(1) < 01w P45 3 o w (== )+ 5 5

2 D2 T 7GZ T
GD+—+— == :
2Ny %(m N 1) Zlm

where we used again the bound on the distance of eadb w* for the last inequality. Lastly, we use the

fact that the sunﬁ +50 2(— - m) telescopes and get that

IN

A

IN

D2 72 T
Ri4r(T) < GD+7+ Znt :

Settingn; = ¢/+/t and recognizing thag_;n: < 2cv/T concludes the proof. [ ]

Proof of Theorem 8 The proof builds straightforwardly on Theorem 1 from Hazale (2006) and our
proof of Theorem 6. We sum Eq. (17) frame= 1 to T and get

< f r * E *1|2
ReeT) < 3 ((af +obwn—w') =5 fwr—w]|
t=
1T 1 1 ) ) ) 2T 1
< — —wrcF—- = —w*|*=H w*
< 200+5 5 (=P~ s~ | )+ 2 5
1T 1 2 1 1 || *”2 2T 1
e 2602 (__H) TP
Zt;H ‘ | Nt N1 Zl

The second inequality follows from Eq. (36) and the thirdq'mlity from a rearrangement of the sum and
removal of the negative terrfl/nr_1)|jwr —w*||2. Takingn; = 7, we see that i —1/ni_1—H =
Ht—H(t—1) —H =0, so we can bound the regret by

72T1

G 1 7G? G2
R <2GD+HD?+ = § = <2GD4+HD?+ —(1+logT ~—logT ) .
t1r(T) <2GD+ +2t m GD -+ +2H(+og) <H og)
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Proof of Lemma 9 The triangle inequality implies that

T
t;61‘t(11)t)

T
< 3 of(w)| <TG .
A
Let g; € 0f;(w*) be such that
0= Zlgt +TAw* € Zlaft )+ Tor(w*)

sol|w*|| = || YLa gt I/ (TA) < G/A.
For the second part, assume theg = 0, and for our induction thatv; satisfies||wt|| < G/A. Then
computing the BBosupdate from Eq. (20),

_ w—megll _ el +nellglll _ GA+MG  G(24+Any)
1+~ L1+~ 1+Ang M1+Any)

Appendix B. Update for Berhu Regularization
Recalling the Berhu regularizer and combining it with EcB)(for one variable, we see that we want to
minimize

~ 1 +V2

S W) Rbw) = 2w & |wl [l <] +

[l > vl | -

First, if |v| < A, then exactly reasoning to that for minimization of theregularized minimization step
implies that the optimal solution is = 0.
When|v| > A, there are two remaining cases to check. Let us assume witissLof generality that > A.
It is immediate to verify thatv > O at the optimum. Now, suppose that A < y. Takingw =v— A< Y (so
thatw > 0) gives us thadb(w) = {)\} Thus, the subgradient set of our objective contains asielgiment,
W—V+Adlw| =v—A—v+Al=0. Therefore, when— A < ythe optimal value oW isv— A. The last case
we need to examine is when- A >y, which we as we show shortly puts the solutighin the[% realm of
b(w). By choosingv = 1% we get that,
Y

Thereforew > y and thusw is in the/3 region of the Berhu penalty(w). Furthermore, for this choice of
the derivative of the penalty is

w—v+5\v—v: W~ —v+5\ W~ = W~—V(Y+~)\)+5\ VN:O.
Y VY+A Viy+A)  y+A Y+A Y+A

Combining the above results, inserting the conditions erstgn, and expanding= Wil gives Eq. (26).
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Appendix C. Fast Convergence Rate for Smooth Objectives

In this appendix, we describe an analysis of®swhich yields arO(1/T) rate of convergence wheinhas
Lipschitz-continuous gradient. Our analysis is by no mewsee. It is a distilled and simplified adaptation of
the analysis of Nesterov (2007) to our setting.

Throughout the appendix we assume thHt(w) is Lipschitz continuous with a constaht that is,
|IOf(w) —Of(v)|| < L|Jw —wv||. The fundamental theorem of calculus then readily implies {Nesterov,
2004, Lemma 1.2.3)

[f(aw) — F(0) — (OF ()1 )| < Sl ] (37)

To see that Eq. (37) holds, add and subtfatt(v),w — v) to note that

flw)—f(v) = /01<Df(v+t(w7v)),wfv>dt

1
(Df(v),w—v>+/ (OF (v + t(w — v)) — OF (v),w — v) dt
0
which, by using Cauchy-Shwartz inequality, yields
1
[fw) = f(v) = (Of @) w-v)| < [ [(Of(+tw-v) - Df (v)w-v)|dt
0
1 1 L
< / 10f (v +t(w —v)) — Of ()| |w — v|dt < / tLw—v|%dt = Sflw—v|?.
0 0
For the remainder of this section, we assume fljat) +r (w) is coercive, so that diw|| — o, f(w)+
r(w) — co. We thus have that the level setsfdfw) + r(w) are bounded}|w — w*|| < D for all w such that
f(w)+r(w) < f(0)+r(0). Consider the “composite gradient mapping” (Nesterov,7200
L
M(v, w) = f(v) + (0f (v),w - v) + 5 | w—v|*+r(w) . (38)

Before proceeding with the proof of fast convergence ratewould like to underscore the equivalence of
the FoBosupdate and the composite gradient mapping. Formally, niaiig m(v,w) with respect taw is
completely equivalent to taking adBosstep withn = 1/L andv = wy. To obtain the BBOSUpdate from
Eq. (38) we simply need to divide(v,w) by L = 1/n, omit terms that solely depend an= w, and use

the fact thatw, 3 = w; — Ngd = v —Of (v) /L.

For notational convenience, lgfw) = f(w) +r(w). Denote byw™ the vector minimizingn(v, w).
Then from Eq. (37) we get that

Pw") =f(w")+r(w") < f(v)+{0f(v),w" —v)+ %Huﬁ —v|2+r(w") =infm(v,w).  (39)
Further, becausé(v) 4+ (Of (v),w —v) < f(w) for all w, we have

infm(v,w) < inf | f(w) +;||w—v2+r(w)] =inf {(p(w) + %||w—v||2 : (40)

Now we consider the change in function value framto w1 for the FoBosupdate withn = 1/L. To
do this, we take an arbitrary optimal poiat” and restrictw; 1 to lie on the line betweeny; andw*, which
constrains the set of infimum values above and allows us &fudir control them. With this construction,
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along with Egs. (39) and (40) we get that

@(wiy1)

IN

. L
inf |otw) + 5w i

. L
< inf [(p(a'w*+(l—0()wt)+|O(w*+(l—0()'wt—wt||2}
acl0,1] 2
, . a’l, 9
< inf dag(w”) + (1—o)@(wr) + ——[lw” — w7 . (41)
ac(0,1] 2
The bound in Eq. (41) follows due to the convexity @f One immediate consequence of Eq. (41) is that
o(wi+1) < @(wy), since abl = 0 we obtain the same objective fpr Thus, all iterates of the method satisfy
||wt — w*|| < D. We therefore can distill the bound to be

2
[m<wt>+a<cp<w*> —<p<wt>>+a2LD]

< inf
W) < ué[o.l 2

]
The argument of the infimum of the equation above is a quadeagiiation ina. We need to analyze two
possible cases for the optimal solution. In the first casenvgite;) — @(w*) > LD?, the optimal value ob

is 1 and@(wt 1) < @(w*) +LD?/2. Therefore, we will never encounter again this case invéuiterations.
The second occurs whegtw) — @(w*) < LD?, so we havex = (@(w) — @(w*))/LD? € [0,1], which yields

2

oo 2wy O 20

To obtain the form of the convergence rate let us define therdmresidual valug: = 1/ (@(wt) — @(w™)).
By analysing the rate at whigh tends to infinity we obtain our desired convergence ratemiiee definition
of p; and the bound of Eq. (42) we get that

1 - 1 _ Qw) — @(w*) — @(wy1) + Qw?)

Qwir1) —Qw*)  Qwr) —Qw*)  (Qwira) — w*))(P(wr) — Pw*))

(®w) —Q(w"))® _ pprs 1
2LD2 2pfLD2 ~ LD? ’

Pt+1— Pt

= ptPr+1(@wr) — @wi1)) > PrPr+1

where the last inequality is due to the fact tpat; > p; and thereforgypy. 1/p? > 1. Summing the differ-
encegy 1 — pr fromt = 0 throughT — 1, we getpr > T /2LD?. Thus, fort > 1 we have

2LD?

O(wr) —Q(w*) =1/pt <

To recap, by setting = 1/L while relaying on the fact thaft has Lipschitz continuous gradient with constant
L, we obtain a IT rate of convergence
2LD?

T

f(wr) +r(wr) < fw”) +r(w*) +
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