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Abstract

In recursive linear models, the multivariate normal joirgtdbution of all variables exhibits a de-
pendence structure induced by a recursive (or acyclicesysf linear structural equations. These
linear models have a long tradition and appear in seeminulglated regressions, structural equa-
tion modelling, and approaches to causal inference. Theyko related to Gaussian graphical
models via a classical representation known as a path diaddaspite the models’ long history, a
number of problems remain open. In this paper, we addregsrtiiem of computing maximum
likelihood estimates in the subclass of ‘bow-free’ reckgdinear models. The term ‘bow-free’
refers to the condition that the errors for variablesd j be uncorrelated if variablieoccurs in the
structural equation for variable We introduce a new algorithm, termed Residual Iterativadio
tional Fitting (RICF), that can be implemented using onbsiesquares computations. In contrast to
existing algorithms, RICF has clear convergence propeaiel yields exact maximum likelihood
estimates after the first iteration whenever the MLE is aldd in closed form.

Keywords: linear regression, maximum likelihood estimation, patgdam, structural equation
model, recursive semi-Markov model, residual iterativeditional fitting

1. Introduction

A system of linear structural equations determines a linear model for & gatiables by dictating
that, up to a random error term, each variable is equal to a linear combinatsame of the re-
maining variables. Traditionally the errors are assumed to have a centeremdtivariate normal
distribution. Presenting a formalism for simultaneously representing candaitatistical hypothe-
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ses (Pearl, 2000; Spirtes et al., 2000), these normal linear models, argietiso calledtructural
equation modelsare widely used in the social sciences (Bollen, 1989) and many othxtsn

In seminal work, Wright (1921, 1934) introducgdth diagramswhich are useful graphical
representations of structural equations. A path diagram is a graph vathestex for each variable
and directed and/or bi-directed edges. A directed édgej indicates that variable appears as
covariate in the equation for variabje The directed edges are thus in correspondence with the
path coefficientsthat is, the coefficients appearing in the linear structural equations.didited
edgei < j indicates correlation between the errors in the equations for variables$j. Graphs
of this kind are also considered by Shpitser and Pearl (2006), whotethem as recursive semi-
Markovian causal models.

1.1 A Motivating Example

We motivate the normal linear models analyzed here with the following exampiehwhadapted
from a more complex longitudinal study considered in Robins (2008).

Consider a two-phase sequential intervention study examining the effegercise and diet
on diabetes. In the first phase patients are randomly assigned to a nuinftoer® of exercise
per week (Ex) drawn from a log-normal distribution. At the end of thissehislood pressure (BP)
levels are measured. In the second phase patients are randomly assigséttt calorie controlled
diet that produces a change in body-mass ind&Ml). The assigned change in BMI, though
still randomized, is drawn, by design, from a normal distribution with mearwidipg linearly on
X =log(Ex) and BP. The dependence here is due to practical and ethical cotisider&inally at
the end of the second phase, triglyceride levE€lsiidicating diabetic status are measured.

A question of interest is whether or not there is an effecKafn the outcomé’ that is not
mediated through the dependenceA#MI on X and BP. In other words, if there had been no
ethical or practical restrictions, and the assignm&®M]I) in the second phase was completely
randomized and thus independent of BP Xnevould there still be any dependence betwiesnd
Y? Note that due to underlying confounding factors such as life historganetic background, we
would expect to observe dependence between BFYaagen if the null hypothesis of no effect of
X onY was true and the second treatmekBiI) was completely randomized.

Our model consists of two pieces. First, the design of the study dictates that

X = Op + €x, (l)
ABMI = yo+ Y1 X + V2 BP+ €aguis 2)

whereex ~ A((O, 05() andepgy ~ N (O, ciBMl) are independent. This assignment model is comple-
mented by a model describing how BP andespond to the prior treatments:

BP= BO+BlX+SBP7 (3)

Y = 8p+ 01X + & ABMI + ¢y, 4
where(ggp, &)t are centered bivariate normal and independesk&ndeng,, . We denote the vari-
ances okg, ande, by 02, anda?, respectively, and writesy for the possibly non-zero covariance
of €ge andey. Figure 1 shows the path diagram for this structural equation model.

Equations (1), (2) and (3) simply specify conditional expectations thabeaestimated in re-
gressions. However, this is not the case in general with (4). Instead,

E[Y | X,ABMI] = 8o+ 81X + 3, ABMI
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Figure 1: Path diagram illustrating a two-phase trial with two treatmefitand ABMI) and two
responses (BP ari). The treatmenX is randomly assigned, asBMI is randomized
conditional on BP anX. The bi-directed edge indicates possible dependence due to
unmeasured factors (genetic or environmental).

with
s Y20gey (B1Y2 + Y1)
VEGBP + GABMI
< Y20gpy
H=0+55—3—,
y%cjgp + OgBMI

anddp = &+ (81 — 01) E[X]+ (82 — &2) E[ABMI]. We see thab; andd, would have an interpretation
as regression coefficients if: (i) the assignmenfABMI did not depend on BP (i.ey, = 0) and
thus both treatments were completely randomized, or (ii) there were no dapEnetween, and
gsp (i.€.,0spy = 0). Similarly, in E[Y | X,BP,ABMI], the coefficient oABMI is equal tod, but the
coefficient forX is 8; — B10gpy /02

In this paper we consider likelihood-based methods for fitting a large dagsiotural equation
models that includes the one given by (1)-(4) and can be used fastemtestimation of parameters
such as;. For alternative semi-parametric methods, see Robins (1999) and Gillamdsg2001).

1.2 Challenges in Structural Equation Modelling

A number of mathematical and statistical problems arise in the normal linear ma3elsiated
with systems of structural equations:

1. Different path diagrams may induce the same statistical model, that is, fanilylt¥ariate
normal distributions. Sucimodel equivalenceccurs, for example, for the two path diagrams
1— 2 and 1< 2, which differ substantively by the direction of the cause-effect raiati@.
The two associated statistical models, however, are identical, both allowiraprieelation
between the two variables.

2. In many important special cases the path coefficient associated wittctediedgé— j has
a population interpretation as a regression coefficient in a regressjarncd set of variables
includingi. However, as seen already in 81.1, this interpretation is not valid in denera

3. The parameters of the model may not be identifiable, so two differerafgesameter values
may lead to the same population distribution; for an early review of this probdent-sher
(1966).
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4. The set of parameterized covariance matrices may contain ‘singulaatiediich it cannot
be approximated locally by a linear space. At ‘singular’ poigtsand normal approximation
to the distribution of likelihood ratio tests and maximum likelihood estimators (MLE) may
not be valid; see, for instance, Drton (2009).

5. Iterative procedures are typically required for maximization of the likelihfoinction, which
for some models can be multimodal (Drton and Richardson, 2004). Such mustiiydgip-
ically occurs in small samples or under model misspecification.

The problems listed may arise in models without unobserved variables aohbenly more
acute in latent variable models. They are challenging in full generality,igpuifisant progress has
been made in special cases such as recursive linear models with latearerrors, which are also
known as directed acyclic graph (DAG) models or ‘Bayesian’ netwollesijitzen, 1996; Pearl,
1988). A normal DAG model is equivalent to a series of linear regressismalways identified and
has standard asymptotics. Under simple sample size conditions, the MLE éxis$s surely and is
a rational function of the data. Graphical modelling theory also solvederob by characterizing
all DAGs that induce the same statistical model (Andersson et al., 1997ndte recent progress
on the general equivalence problem see Ali et al. (2009, 2005) hadgzand Spirtes (2005).

1.3 Contribution of This Work

The requirement of uncorrelated errors may be overly restrictive in reattings. While arbitrary
correlation patterns over the errors may yield rather ill-behaved statisticd¢ls)adhere are sub-
classes of models with correlated errors in which some of the nice propefti®sG models are
preserved; compare McDonald (2002). In this paper we considedpgghams in which there are
no directed cycles and no ‘double’ edges of the form j (compare Def. 2 and 3). Since such
double edges have been called ‘bows’, we call this diemss-free acyclic path diagram®APS).
An example of a BAP arose in our motivating example in 81.1; see Figure 1. \Mbtimmental
variable models, which are much studied in economics, contain bows, most nrod&ier social
sciences are based on BAPs. For instance, all path diagrams in BolR9) @reé BAPSs.

Bow-free acyclic path diagrams were also considered by Brito and 26&2) who showed that
the associated normal linear models are almost everywhere identifiabB2.2e®r the definition.
This result and other identification properties of BAP models are review8dation 2. In Section
3 we give details on likelihood equations and Fisher-information of normadtsiral equation mod-
els. This sets the scene for our main contribution:Rlsidual Iterative Conditional FittingRICF)
algorithm for maximization of the likelihood function of BAP models, which is presd in Section
4. Standard software for structural equation modelling currently empkaysrgl-purpose optimiza-
tion routines for this task (Bollen, 1989, Appendix 4C). Many of theserélyas, however, neglect
constraints of positive definiteness on the covariance matrix and suffier donvergence prob-
lems. According to Steiger (2001), failure to converge is ‘not uncommod’@esents significant
challenges to novice users of existing software. In contrast, our Rigefitam produces positive
definite covariance matrix estimates during all its iterations and has goodrgence properties,
as illustrated in the simulations in Section 5. Further discussion of RICF is maudSection 6.
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2. Normal Linear Models and Path Diagrams

LetY = (Y;|i €V) € RY be a random vector, indexed by the finite éethat follows a multivariate
normal distributionA’(0,%) with positive definite covariance matrix. A zero mean vector is
assumed merely to avoid notational overhead. The models we considegsahtly are induced
by linear structural equations as follows.

2.1 Systems of Structural Equations and Path Diagrams

Let{pa(i) |i € V} and{sp(i) | i € V} be two families of index sets. For reasons explained below, we
refer to these index sets as sets of parents and spouses, respedté/etyuire thait & pa(i) Usp(i)

for all i € V; moreover, let the second family satisfy the symmetry condition jlasp(i) if and
only if i € sp(j). These two families determine a system of structural equations

Yi = Yjepai) Bij Yj +&, i€V, (5)

whose zero-mean erroes andg; are uncorrelated if ¢ sp(j), or equivalently,j ¢ sp(i). The
equations in (5) correspond tgath diagramthat is, a mixed grap@ featuring bottdirected(—)
andbi-directed(«) edges but no edges from a verieto itself (see Figures 1 and 2). The vertex
set of G is the index seV, andG contains the edg¢ — i if and only if j € pa(i), and the edge
j —iifandonlyif j € sp(i) (or equivalentlyj € sp(j)). Subsequently, we exploit the path diagram
representation of (5). if— j is an edge irG, then we cali aparentof j, and ifi < j is in G then
i is referred to as apouseof j. Thus, as remarked above,(pasp(i) are, respectively, the sets of
parents and spousesiof

Let G be a path diagram and defiB¢G) to be the collection of alV x V matricesB = ([3;)
that satisfy

Bij =0 whenevelj — i is not an edge iiG, (6)

and are such that— B is invertible. LetP(V) be the cone of positive definité x V matrices and
O(G) C P(V) the set of matrice® = (wjj) € P(V) that satisfy

wij =0 whenever # j andj < i isnotinG. @)

(Here and in the sequel, a symbol sucagenotes both a finite set and its cardinality.) The system
(5) associated with the path diagr&rcan be written compactly &= BY + €. If we assume that
B € B(G) and that the error covariance matrix W&r= Q is in O(G), then (5) has a unique solution
Y that is a multivariate normal random vector with covariance m&rix (I — B)~1Q(l — B)~".
Here,| is the identity matrix and the superscripit’ stands for transposition and inversion.

The above considerations lead to the following definition of a linear modeteded with a
path diagram (or equivalently, a system of structural equations).

Definition 1 The normal linear model(G) associated with a path diagram G is the family of mul-
tivariate normal distributions A((0,%) with covariance matrix in the setP(G) =
{(1-B)™1Q(1—B)™' |B€ B(G), Q € O(G)}. We call the magbs : B(G) x O(G) — P(G) given
by

®6(B,Q)=(1-B) 'Q(I-B)"

the parameterization map of(G).

2333



DRTON, EICHLER AND RICHARDSON

(@) ® @—@ O
—® OSNO ©

Figure 2: Path diagrams that are (a) cyclic, (b) acyclic but not bow/-{@ acyclic and bow-free.
Only path diagram (c) yields a curved exponential family.

Example 1 The path diagran® in Figure 2(a) depicts the equation system

Y1 = €1, Y2 = Bo1Y1 + B24Ys + €2,
Y3 = B31Y1 + Ba2Y2 + €3, Ys = BasYs + €4,

whereegs, €2,€3,€4 are pairwise uncorrelated, that is, the matri€es O(G) are diagonal. This
system exhibits a circular covariate-response structure as the pathardiagntains the directed
cycle 2— 3 — 4 — 2. This feedback loop is reflected in the fact that(HetB) = 1 — B24B43B32

for B € B(G). Therefore, the path coefficients need to sat&fyB43Bs2 # 1 in order to lead to a
positive definite covariance matrix I(G). This example is considered in more detail in Drton
(2009), where it is shown that the parameter sg(€®) has singularities that lead to non-standard
behavior of likelihood ratio tests.

The models considered in the remainder of this paper do not have arpafdelbops, that is,
they have the following structure.

Definition 2 A path diagram G and its associated normal linear moNéG) are recursiveor
acyclicif G does not contain directed cycles, that is, there do not eist.i.,ix € V such that
G features the edges+ iy — i, — -+ — i — .

We use the ternacyclic rather tharrecursive as some authors have used the term ‘recursive
for path diagrams that are acychadcontain no bi-directed edges.®&is acyclic, then the vertices
inV can be ordered such that a matixhat satisfies (6) is lower-triangular. It follows that

detl —B) = 1. (8)

In particular,| — B is invertible for any choice of the path coefficiefig, | — i in G, and the
parameterization ma@g is a polynomial map.

2.2 Bow-free Acyclic Path Diagrams (BAPS)

The normal linear model(G) associated with a path diagrais everywhere identifiabld the
parameterization mafg is one-to-one, that is, for alBy € B(G) andQq € O(G) it holds that

CDG(B, Q) = CDG(B(),Q()) = B=DB andQ = Qo. (9)

If there exists a Lebesgue null 3¢t C B(G) x O(G) such that (9) holds for a(iBp, Qo) ¢ Ng, then
we say thatN(G) is almost everywhere identifiable
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Acyclic path diagrams may contdows that is, double edgész j. Itis easy to see that normal
linear models associated with path diagrams with bows are never everyidietiiable. However,
they may sometimes be almost everywhere identifiable as is the case for thexaexile. This
example illustrates that almost everywhere identifiability is not enough to @negular behavior
of statistical procedures.

Example 2 The path diagran® in Figure 2(b) features the bow34. The associated normal linear
modelN(G) is also known as an instrumental variable model. The 9-dimensional parasspater
P(G) is part of the hypersurface defined by the vanishing of the so-ctateal] 013024 — 014023.

It follows that the modeN(G) lacks regularity because the tetrad hypersurface has singularities at
pointsX € P(G) with 013 = 014 = 023 = 024 = 0. These singularities occur if and onlyf§; =

Bs2 = 0, and correspond to points at which the identifiability property in (9) failsotd.hThis lack

of smoothness expresses itself statistically, for example, when testing totbgj#331 = B3> =0

in modelN(G). Using the techniques in Drton (2009), the likelihood ratio statistic for thislprob
can be shown to have non-standard behavior with a large-sample limiting distmilbhat is given
by the larger of the two eigenvalues of a«2-Wishart matrix with 2 degrees of freedom and the
identity matrix as scale parameter.

Definition 3 A path diagram G and its associated normal linear moNéG) are bow-freeif G
contains at most one edge between any pair of vertices. If G is bovetfice@cyclic, we call it a
bow-free acyclic path diagram (BAP).

As stressed in the introduction, BAPs are widespread in applications. Hssmape shown
in Figures 1, 2(c) and 6. Contrary to some path diagrams with bows, the hiea models
associated with BAPs are always at least almost everywhere identifiable.

Theorem 4 (Brito and Pearl, 2002) If G is a BAP, then the normal linear modilG) is almost
everywhere identifiable.

Many BAP models are in fact everywhere identifiable.

Theorem 5 (Richardson and Spirtes, 2002)Suppose G is an ancestral BAP, that is, G does not
contain an edge+4- j such that there is a directed path+ i; — --- — ix — i that leads from vertex
j to vertex i. Then the normal linear mod¥(G) is everywhere identifiable.

The next example shows that the condition in Theorem 5 is sufficient hutewessary for
identification. The characterization of the class of BAPs whose assodiatetl linear models are
everywhere identifiable remains an open problem.

Example 3 The BAPG in Figure 2(c) is not ancestral because it contains the edge2 4> 3 — 4.
Nevertheless, the associated normal linear mdt@) is everywhere identifiable, which can be
shown by identifying the parameters Band Q row-by-row following the order k 2 < 3 < 4.

It is noteworthy that the modell(G) in this example is not a Markov model, that is, a generic
multivariate normal distribution itN(G) exhibits no conditional independence relations. Instead,
the entries of covariance matricEs= (gj;) € P(G) satisfy

(011022 — 075) (014033 — 013034) = (013024 — 014023) (012013 — 011023). (10)
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Figure 3: Bow-free acyclic path diagram whose associated normal imedel is almost, but not
everywhere, identifiable. The model is not a curved exponential family.

The constraint in (10) has a nice interpretation. (4t ...,Ys) have (positive definite) covariance
matrix > = (0jj), and defines, = Y> — 021/011Y1 to be the residual in the regressionYefon Y.
Then (10) holds foZ if and only if Y; andY, are conditionally independent givep andYs.

The above-stated Theorem 4 was proved in Brito and Pearl (200@)aramspection of their
proof reveals the following fact.

Lemma 6 If the normal linear modeN(G) associated with a BAP G is everywhere identifiable,
then the (bijective) parameterization mdyg has an inverse that is a rational map with no pole on
P(G).

By (8), the parameterization mapg for a BAP G is polynomial and thus smooth. tbgl
is rational and without pole, then the image®g, that is,P(G) is a smooth manifold (see, e.g.,
Edwards, 1994, 11.4). This has an important consequence.

Corollary 7 If the normal linear modeN(G) associated with a BAP G is everywhere identifiable,
thenN(G) is a curved exponential family.

The theory of curved exponential families is discussed by Kass andl'983). It implies in par-
ticular that maximum likelihood estimators in curved exponential families are astiogip nor-
mal, and that likelihood ratio statistics comparing two such families are asymptotitalbgaare
regardless of where in the null hypothesis a true parameter is locatedrthdtely, however,
Lemma 6 and Corollary 7 do not hold for every BAP.

Example 4 The normal linear model associated with the B&mn Figure 3 is not a curved expo-
nential family. In this model the identifiability property in (9) breaks down if amdy if (B,Q)
satisfy

B21014004 — W + W3, = 0,  BaaPazwp + wpg = 0.

It can be shown that the covariance matridegB, Q) associated with this set of parameters yield
points at which the 13-dimensional $8(G) has more than 13 linearly independent tangent direc-
tions. HenceP(G) is singular at these covariance matrices.
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3. Likelihood Inference

Suppose a sample of sidkis drawn from a multivariate normal distributiok((0, %) in the linear
modelN(G) associated with a BAB = (V,E). We group the observed random vectors as columns
in theV x N matrix Y such thatyi, represents the observation of variablen subjectn. Having
assumed a zero mean vector, we define the empirical covariance matrix as

1
S=(sj) = NYYt e RV,

AssumingN >V, the matrixSis positive definite with probability one. (As befor¢, here also
denotes the cardinality of the set.) Models with unknown mean veatdRY can be treated by es-
timatingu by the empirical mean vector and adjusting the empirical covariance matrixtéogly;

N >V + 1 then ensures almost sure positive definiteness of the empirical caariaatrix.

3.1 Likelihood Function and Likelihood Equations

Given observation¥ with empirical covariance matri®, the log-likelihood functior? : B(G) x
O(G) — R of the modeN(G) takes the form

—glogde(Q) — gtr[(l -B)'Q7Y(1-B)g. (11)
Here we ignored an additive constant and used thdt daB) = 1 if B € B(G); compare (8). Let
B=(Bij|ieV, jepai)) andw= (wj |i <], jespi)ori=j)be the vectors of unconstrained
elements iB andQ. LetP andQ be the matrices with entries {©, 1} that satisfy ve(B) = Pp and
ved Q) = Quw, respectively, where véa) refers to stacking of the columns of the mattixTaking
the first derivatives of (B, Q) with respect td3 andw we obtain the likelihood equations.

/(B,Q) =

Proposition 8 The likelihood equations of the normal linear mobtlK(G) associated with a BAP G
can be written as

P'vec(Q (1 - B)S) = P'vec(Q'S) - P'(S® Q 1)PB =0, (12)
Qvec(Q - 1(1-B)SI-B)'Q ) =0, (13)
where® denotes the Kronecker product.

In general, the likelihood equations need to be solved iteratively. Onébpmsapproach pro-
ceeds by alternately solving (12) and (13) foand w, respectively. For fixedo, (12) is a linear
equation inf3 and easily solved. For fixefd, (13) constitutes the likelihood equations of a mul-
tivariate normal covariance model fer= (I — B)Y, which is specified by requiring th&;; = 0
whenever the edge— j is notinG. The solution of (13), witlf8 fixed, requires, in general, another
iterative method. As an alternative to this nesting of two iterative methods,ap®ge in Section 4
a method that solves (12) and (13) in joint updateB ahdw.

Remark 9 When proving their identifiability result for BAP models, Brito and Pearl @0§ave
an algorithm for recovering the parametBandw from a population covariance matrix. Applied to
the empirical covariance matr this algorithm produces consistent estimfiemd. However,
these are generally not the maximum likelihood estimators (MLE) and the @wvariance matrix
corresponding téo may fail to be positive definite.
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3.2 Fisher-Information

Large-sample confidence intervals @, w) can be obtained by approximating the distribution of
the MLE (B, &) by the normal distribution with mean vect@, w) and covariance matri | (B, 0) 2.
Here,| (B, w) denotes the Fisher-information, which, as shown in Appendix A, is of thewing
form.

Proposition 10 The (expected) Fisher-information of the normal linear madéG) associated
with a BAP G is

P(ZeQ )P P[1-B) o0 1Q
I(va) = <Qt [(| EB)t®321]P %[Qt(Q]-@Ql)(% )

The Fisher-information in Proposition 10 need not be block-diagonal, ishwtese the esti-
mation of the covariances affects the asymptotic variance of the MIBE However, this does not
happen forbi-directed chain graphswhich form one of the model classes discussed by Wermuth
and Cox (2004). A path diagrafais a bi-directed chain graph if its vertex &&tan be partitioned
into disjoint subsets,,...,Tr, known aschain componentssuch that all edges in each subgraph
G, are bi-directed and edges between two subseisT; are directed, pointing froms to T, if
s < t. Since bi-directed chain graphs are ancestral graphs the asso@atea finear models are
everywhere identifiable.

Proposition 11 For a BAP G, the following two statements are equivalent:

(i) For all underlying covariance matrices € P(G), the MLEs of the parameter vectddsand
w of the normal linear mode\(G) are asymptotically independent.

(i) The path diagram G is a bi-directed chain graph.

A proof of Proposition 11 is given in Appendix A. This result is an instaoicthe asymptotic
independence of mean and natural parameters in mixed parameterizatexpgooéntial families
(Barndorff-Nielsen, 1978).

4. Residual Iterative Conditional Fitting

We now present an algorithm for computing the MLE in the normal linear md@@l) associated
with a BAP. The algorithm extends thikerative conditional fitting(ICF) procedure of Chaudhuri
et al. (2007), which is for path diagrams with exclusively bi-directed sdge

LetY; € RN denote tha-th row of the observation matrix andY_; = ¥\ iy the (V\ {i}) x N
submatrix ofY. The ICF algorithm proceeds by repeatedly iterating through all veriicés and
carrying out three steps: (i) fix the marginal distributionYaf, (ii) fit the conditional distribution
of Y; givenY_; under the constraints implied by the mod&IG), and (iii) obtain a new estimate of
> by combining the estimated conditional distributiof| Y_;) with the fixed marginal distribution
of Y_j. The crucial point is then that for path diagrams containing only bi-direethgks, the
problem of fitting the conditional distribution f@¥; | Y_;) under the constraints of the model can be
rephrased as a least squares regression problem. Unfortunatelgntideration of the conditional
distribution of (Y; | Y_;) is complicated for path diagrams that contain also directed edges. However,
as we show below, the directed edges can be ‘removed’ by consideoftiesiduals which here
refers to estimates of the error terms- (I — B)Y. Since it is based on this idea, we give our new
extended algorithm the nankesidual Iterative Conditional Fittin¢RICF).
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4.1 The RICF Algorithm

The main building block of the new algorithm is the following decomposition of thdiladihood
function. We adopt the shorthand notatiggfor theC x N submatrix of aD x N matrix X, where
CCD.

Theorem 12 Let G be a BAP andé V. Let||x||? = xX'x and define
Wi i = Wj — Qi,—iQ:%,iQ-i,i (14)

to be the conditional variance & givene_j; recall that Q~ 1 = (Q_j, .)‘1. Then the log-
likelihood function?(B, Q) of the modeN(G) can be decomposed as

N 1 _ 2
((B,Q) =~ logwi —i — 5 ——||¥ — Bi pati) Yoati) — i sp(i) (A7 €1 )spt |
2 2035 i
N 1
-5 logde(Q i i) — étr(Q:ﬁfis,ist_i). (15)
Proof Forminge = (I —B)Y, we rewrite (11) as

((B,Q) = —g logde{Q) — %tr(Qflsst) =:14(Q¢). (16)

Using the inverse variance lemma (Whittaker, 1990, Prop. 5.7.3), we pa@itidmas
( Wi Qi i >1 < w|?£| —0y. 7|Q| |Qfl —i >
Q*i:i Q—i,—i Q- 1 Q ;:I;I Q:l +Q—|1 |Q 0. —|QI IQ—| —i '

We obtain that the Iog-IikeIihood function in (16) equals

1 —
mHS‘ —o 0 el

N 1
~ - logde(Qi i) - Etr(Q:ﬁ_is_isﬂi).

N
(@ |e) =— > loge i -

By definition, & =Y — B; pai)Ypai)- Moreover, under the restrictions (7),

Qi Q7 & = Qi pi) (i €-i)spi)s

which yields the claimed decomposition. |

The log-likelihood decomposition (15) is essentially based on the decompogttitve joint
distribution ofe into the marginal distribution af_; and the conditional distributiofg; | €_;). This
leads to the idea of building an iterative algorithm whose steps are basexiraptfie marginal
distribution ofe_; and estimating a conditional distribution. In order to fix the marginal distribution
€_i we need to fix the submatr®_; _j comprising all but the-th row and column of2 as well as
the submatrixB_; v, which comprises all but thieth row of B. With Q_; _j andB_;y fixed we can
computee_; as well as thggseudo-variablesgdefined by

Zi=Q}

(17)
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Figure 4: lllustration of the RICF update steps in Example 5. The structueaaf least squares
regression is indicated by directed edges pointing from the predictoblesito the re-
sponse variable depicted by a square node. (See text for details.)

[i=2] ———@ @—- [i=4] @___

From (15), it now becomes apparent that, for fixed _j andB_;y, the maximization of the log-
likelihood function/(B, Q) can be solved by maximizing the function

((Bi) jepai)» (0 )kespiy, Wi.—i) —

N 1 2
— 5 logwi i — 5 —|¥i — BijYj — wiZk|” (18)
2 o Zw"v—iH | je;(i) Y keszp(i) |

overRPal) » RS  (0,00). The maximizers of (18), however, are the least squares estimates in the
regression o¥; on both(Y; | j € pa(i)) and(Z | k € sp(i)).

Employing the above observations, tRECF algorithmfor computing the MLE(B Q) repeats
the following steps for eache V:

1. FixQ_jjandB_jy, and compute residuats; and pseudo-variableg;

2. Obtain least squares estimateBipf j € pa(i), wi, k € sp(i), andw; ;i by regressing response
variableY; on the covariates;, j € pa(i) andzy, k € sp(i);

3. Compute an estimate af; = wji _i + Q;. _.Q _iQ_j using the new estimates and the fixed
parameters; compare (14).

After steps 1 to 3, we move on to the next verte¥ inAfter the last vertex iv we return to consider
the first vertex. The procedure is continued until convergence.

Example 5 For illustration of the regressions performed in RICF, we consider thenadinear
model associated with the BAB in Figure 2(c). The parameters to be estimated in this model are
B21, Ba1, Bs2, Baz andwy 1, G2, Waa, L4a, G4

Vertex 1 in Figure 2(c) has no parents or spouses, and its RICF ugdpteansists of a trivial
regression. In other words, the varianeg is the unconditional variance ¥ with MLE (1 = S11.
For the remaining vertices, the corresponding RICF update steps areatiaksin Figure 4, where
the response variablg in the i-th update step is shown as a square node while the remaining
variables are depicted as circles. Directed edges indicate variables astiogariates in the least
squares regression. These covariates are labelled according tewthetitandom variablg;, or
the pseudo-variablg; defined in (17), is used in the regression. Note that sint® sp0, repetition
of steps 1-3in §4.1 is required only foe {2,4}.
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In RICF, the log-likelihood functiori(B, Q) from (11) is repeatedly maximized over sections in
the parameter space defined by fixing the paramélers, andB_jy. RICF thus is an iterative
partial maximization algorithm and has the following convergence properties.

Theorem 13 If G is a BAP and the empirical covariance matrix S is positive definite, then the
following holds:

(i) For any starting valug(B°, Q%) € B(G) x O(G), RICF constructs a sequence of estimates
(B3, Q%) in B(G) x O(G) whose accumulation points are local maxima or saddle points
of the log-likelihood functior(B,Q). Moreover, evaluating the log-likelihood function at
different accumulation points yields the same value.

(i) If the normal linear modeN(G) is everywhere identifiable and the likelihood equations have
only finitely many solutions then the seque(i8e Q°)s converges to one of these solutions.

Proof Let/(X) be the log-likelihood function for the model of all centered multivariate noaisal
tributions onRY. If Sis positive definite then the s€tthat comprises all positive definite matrices
3 e RV*V at which((Z) > £(B°,Q°) is compact. In particular, the log-likelihood function in (11) is
bounded, and claim (i) can be derived from general results aboatitepartial maximization al-
gorithms; see for example, Drton and Eichler (2006). For claim (ii) notettN(G) is everywhere
identifiable, then the compact $&has compact preimag%l((:) under the model parameterization
map; recall Lemma 6. |

Remark 14 If the normal linear modelN(G) associated with a BAR is not everywhere identifi-
able, then it is possible that a sequence of estin(ﬁ"ef)s)s produced by RICF diverges and does
not have any accumulation points. In these cases, however, thepmrdésg sequence of covari-
ance matriceQDG(éS, fzS)s still has at least one accumulation point because it ranges in the compact
setC exhibited in the proof of Theorem 13. Divergence(B¥, QS)S occurs in two instances in the
simulations in 85; compare Table 1. In both cases, the sequlag(c@, f)s)s converges to a positive
definite covariance matrix.

4.2 Computational Savings in RICF

If Gis a DAG, that is, an acyclic path diagram without bi-directed edges, thelldlltl&(é,f)) in
N(G) can be found in a finite number of regressions (e.g., Wermuth, 1980)eV#mywve can also
run RICF. Since in a DAG, gp) = 0 for all i € V, step 2 of RICF regresses variabesolely on
its parentsy;, j € pa(i). Not involving pseudo-variables that could change from one iteratioreto th
other, this regression remains the same throughout different iteratinth&I&€F converges in one
step.

Similarly, for a general BARG, if vertexi € V has no spouses, @p = 0, then the MLE of
Bi pai) @nd wij can be determined by a single iteration of the algorithm. In other words, RICF
reveals these parameters as being estimable in closed form, namely as fatiotiahs of the data.
(This occurred for vertek= 3 in Example 5.) It follows that, to estimate the remaining parameters,
the iterations need only be continued over vertigesth sp(j) # 0.
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For further computational savings note i) v\ disi)ugiy) = 0, where digi) = {j | j < -+ <
i,j #i} is the district ofi € V. Hence, since gp) C dis(i),

(Q:il,—isfi)sp(i) = (Q&i(i),dis(i)sdiS(i))Sp(i);

see Koster (1999, Lemma 3.1.6) and Richardson and Spirtes (2002, Lerh@)a 8incegigi) =
Yais(i) — Bdis(i),pacdis(i)) Yoadis(i))» It follows that in the RICF update step for verteattention can be
restricted to the variables i} Upa(i) Udis(i) Upa(dis(i)).

Finally, note that while the RICF algorithm is described in terms of the entire dataniathe
least squares estimates computed in its iterations are clearly functions of theehtpvariance
matrix, which is a sufficient statistic.

5. Simulation Studies

In order to evaluate the performance of the RICF algorithm we considesdeimarios. First, we fit
linear models based on randomly generated BAPs to gene expressiomtdatscenario is relevant
for model selection tasks, and we compare RICF’s performance in thisgpndo that of algorithms
implemented in software for structural equation modelling. Second, we stma\RICF behaves
when it is used to fit larger models to data simulated from the respective modadntrast to the
first scenario, the second scenario involves models that generally iotisédered data well.

5.1 Gene Expression Data

We consider data on gene expressiorabidopsis thaliandrom Wille et al. (2004). We restrict
attention to 13 genes that belong to one pathway: DXPS1-3, DXR, MCT, ONIKCPS, HDS,
HDR, IPPI1, GPPS, PPDS1-2. Data fram= 118 microarray experiments are available. We fit
randomly generated BAP models to these data using RICF and two alternathadse

The BAP models are generated as follows. For each of the 78 possibdegbaierticesi <
jinVv={1,...,13} we draw from a multinomial distribution to generate a possible edge. The
probability for drawing the edge— | is d, and the probability for drawing« j is b so that with
probability 1— d — b there is no edge betweémnd j. We then apply a random permutation to the
vertices to obtain the final BAP. For each of twelve combinati@h®) with d = 0.05,0.1,0.2,0.3
andb = 0.05,0.1,0.2, we simulate 1000 BAPs. The expected number of edges thus varieehetwe
7.8 and 39.

For fitting the simulated BAPs to the gene expression data, we implemented RIGFstatis-
tical programming environment R (R Development Core Team, 2007). Asatiegs, we consider
the R package ‘sem’ (Fox, 2006) and the widely used software LISR&legkog and &bom,
1997) in its student version 8.7 for Linux (student versions are frédifited to 15 variables).
Both these programs employ general purpose optimizers, for examptg,rsakes a call to the R
function ‘nim’.

Our simulation results are summarized in Table 1. Each row in the table condssfma choice
of the edge probabilitied andb. The first three columns count how often, in 1000 simulations, the
three considered fitting routines failed to converge. The starting valudSBEL and ‘sem’ were
set according to program defaults, and RICF was started by sé(ﬁhgndf)(m equal to the MLE
in the DAG model associated with the DAG obtained by removing all bi-directgdsttom the
considered BAP.
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No convergence All All Running time
d b RICF LIS SEM converge agree RICF LIS SEM
0.05 005 0 36 47 941 940 0.03 0.02 1.15
0.1 0 177 221 746 739 0.09 0.03 1.58
0.2 0 499 599 347 333 0.21 0.04 271
01 005 0 32 36 951 949 0.04 0.03 1.58
0.1 0 137 193 786 780 0.09 0.03 2.09
0.2 0 440 610 364 354 0.25 0.04 343
0.2 005 0 19 39 958 954 0.05 0.03 2.67
0.1 0 91 176 815 808 0.13 0.04 3.34
0.2 1 326 520 461 452 0.33 0.05 5.03
03 005 0 16 38 960 957 0.06 0.04 4.04
0.1 0 59 136 859 850 0.17 0.04 4.96
0.2 1 225 471 519 490 0.40 0.06 6.97

Table 1: Fitting simulated BAPs to gene expression data using RICF, LISRé&lseam’. Each row
is based on 1000 simulations. Running time is average CPU time (in sec.) forstgeina
which all three algorithms converged. (See text for details.)

LISREL and ‘sem’ failed to converge for a rather large number of moddis.LTSREL output
explained why convergence failed, and virtually all failures were duegogtimizer converging to
matrices that were not positive definite. The remedy would be to try new stasdines but doing
this successfully in an automated fashion is a challenging problem in itselRIE#t convergence
failure arose in only two cases. In both cases the RICF estirfélés had some diverging entries.
Despite the divergence ifB, Q)-space, the sequence of associated covariance matigds Q)
computed by RICF converged, albeit very slowly. Recall that this phenomis possible in models
that are almost, but not everywhere, identifiable (Remark 14). In thesepmes LISREL produced
similarly divergent sequences with approximately the same likelihood, and teported conver-
gence in one case but gave an estimate whose likelihood was nearly 40 goaiter than the
intermediate estimates computed by LISREL and RICF.

The columns labelled ‘All converge’ and ‘All agree’ in Table 1 show hoiteo all methods
converged, and when this occurred, how often the three computed makithe log-likelihood
function were the same up to one decimal place. Since all methods are fomimdanization, sub-
stantial disagreements in the computed maxima can occur if the likelihood functiantisnodal.

Finally, the last three columns give average CPU time use for the cases ih athtbree al-
gorithms converge. These are quoted to show that RICF is competitive in éércosputational
efficiency, but for the following reasons the precise times should nosed for a formal compar-
ison. On the one hand, LISREL is fast because it is compiled code. Thi ih@ case for the
R-based ‘sem’ and RICF. On the other hand, the fitting routines in LISREL'sem’ not only
compute the MLE but also produce various other derived quantities oéstterhis is in contrast
to our RICF routine, which only computes the MLE.
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Figure 5: Boxplots of CPU times (in sec. on lgescale) used by RICF when fitting BAP models
to simulated data. Each boxplot summarizes 500 simulations. The number dlesi@
denoted byp, the sample size is, and the parametel determines the expected number
of edges of the simulated BAPs (see text for details).

5.2 Simulated Data

In order to demonstrate how RICF behaves when fitting larger models wthessgorithm on
simulated data. We consider different choices for the number of varipdes generate random
BAPs according to the procedure used in 85.1. We limit ourselves to twaatiffesettings for
the expected number of edges, choosihg 0.1 or d = 0.2 and settingo = d/2 in each case.
For each BAPG, we simulate a covariance matri= (I — B)~1Q(I — B)~ € P(G) as follows.
The free entries iB € B(G) and the free off-diagonal entries @ € O(G) are drawn from a
A((0,1) distribution. The diagonal entries; are obtained by adding a draw frorrx%»distribution
to the sum of the absolute values of the off-diagonal entries in-therow of Q. This makes
Q diagonally dominant and thus positive definite. Finally, we draw a sample @ihsicom the
resulting multivariate normal distributidd(G). For each distribution two cases, namely 3p/2
andn = 10p, are considered to illustrate sample size effects. For each combinatmrdaindn,
we simulate 500 BAPs and associated data sets.

Figure 5 summarizes the results of our simulations in boxplots. As could betedpdhe
running time for RICF increases with the number of varialfjesd the expected number of edges
in the BAP (determined by). Moreover, the running time decreases for increased sampla,size
which is plausible because the empirical covariance matrix of a larger sample tie be closer
to the underlying parameter spaeéG). The boxplots show that even with= 50 variables the
majority of the RICF computations terminate within a few seconds. However #rer also a
number of computations in which the running time is considerably longer, thdiighnsler two
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Figure 6: Path diagram for seemingly unrelated regressions.

minutes. This occurs in particular for the denser case with smaller sampledsiz6.2 andn =
3p/2).

6. Discussion

As mentioned in the introduction, normal linear models associated with path tliagra employed
in many applied disciplines. The models, also known as structural equatioelsnbadve a long
tradition but remain of current interest in particular due to the more recertafaments in causal
inference; compare, for example, Pearl (2000) and Spirtes et 80)2Despite their long tradition,
however, many mathematical, statistical and computational problems abouinbesés remain
open.

The new contribution of this paper is the Residual Iterative Conditional FigRhgF) algorithm
for maximum likelihood estimation in BAP models. Software for computation of MLEsrunctural
equation models often employs optimization methods that are not designed twitfepbsitive
definiteness constraints on covariance matrices. This can be seen imlpaiticTable 1 which
shows that two available programs, LISREDbK@skog and &bom, 1997) and the R package ‘sem
(Fox, 2006), fail to converge in a rather large number of problems. ihis line with previous
experience by other authors; see, for example, Steiger (2001). @uRNCF algorithm, on the
other hand, does not suffer from these problems. It has clear gnaee properties (Theorem 13)
and can handle problems with several tens of variables (see Figura &yidition, RICF has the
desirable feature that it estimates parameters in closed form (in a singletitsléerations) if this
is possible. If applied to a model based on a directed acyclic graph (DA&algorithm converges
in a single cycle and performs exactly the regressions commonly used fay fittitivariate normal
DAG models. This feature and the fact that RICF can be implemented usingnadiht least
squares computations make it an attractive alternative to less specialized apiminethods.

In another special case, namely seemingly unrelated regressionsr&i@ies to the algorithm
of Telser (1964). A path diagram representing seemingly unrelatedssigns is shown in Figure
6. The variable%1, Y, andYs; are then commonly thought of as covariates. Since they have no
spouses, the MLEs of the varianaeg,, w2 andwgs are equal to the empirical variancgs, $2
andszs. For the remaining variablés, i = 4,5, RICF performs regressions on both the “covariates”
Yoai) @nd the residua, j € {4,5}\ {i}. These are precisely the steps performed by Telser.

Existing structural equation modelling software also fits models with latent Vesialvhereas
the RICF algorithm applies only to BAP models without latent variables. How@&IE€F could
be used to implement the M-step in the EM algorithm (Kiiveri, 1987) in order fatént variable
models. This EM-RICF approach would yield an algorithm with theoreticalemence properties.

Finally, we emphasize that the RICF algorithm is determined by the path diagramevdr,
different path diagrams may induce the same statistical model; recall point§1)2nn the intro-
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duction. This model equivalence of path diagrams may be exploited to findyeadiaor which

the running time of RICF is short. For example, for every BAP that is etpmtdo a DAG model,
parameter estimates could be computed in closed form and hence in finitely tepay Relevant
graphical constructions for this problem are described in Drton andaRisbn (2008) and Ali et al.
(2005).
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Appendix A. Proofs

Proof [Proof of Proposition 10] Lep andw be the vectors of unconstrained elementB andQ,
respectively. The second derivatives of the log-likelihood function véfipect td3 andw are:

azaig'z’;) — —N-P(SeQ Y)P, (19)
a?ﬁ(g’f) =-N-P[51-B'Q e Q (20)
OZ(EZ?) = —th{[Q*1®Q*1(| ~B)S(I -B)'Q™ 1] (21)
+[Q Y1 -B)Si-BQ e !}Q
ReplacingSby E[S = (I —B)~1Q(I — B)'in (19)-(21) yields the claim. |

Proof [Proof of Proposition 11] IfG is a bi-directed chain graph, then the submalBix, = 0 for
all t, while for s#t we haveQ. , = 0. In this case the second derivative of the log-likelihood
function with respect t@j; and wy is equal t0d?¢(B,Q)/0Bi; 0w = [(I —B) ;i (Q1)ik. Now
[(1 —B)~1]; may only be non-zero if =1 or | is an ancestor of, that is, if there exists a directed
pathl — j; — --- — jm — j in G. On the other handQ 1) = 0 whenevei andk are not in the
same chain component. Therefore, the second derivative in (20)as$ ecgero.

Conversely, it follows that the second derivative in (20) vanishealiggarameters only if the
graph belongs to the class of bi-directed chain graphs. |
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