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Abstract

Nondeterministic classifiers are defined as those allowgulgdict more than one class for some
entries from an input space. Given that the true class shmilishcluded in predictions and the
number of classes predicted should be as small as possibke kind of classifiers can be con-
sidered as Information Retrieval (IR) procedures. In ttdpgy, we propose a family of IR loss
functions to measure the performance of nondeterministicniers. After discussing such mea-
sures, we derive an algorithm for learning optimal nondeieistic hypotheses. Given an entry
from the input space, the algorithm requires the posteniobgbilities to compute the subset of
classes with the lowest expected loss. From a general pbinew, nondeterministic classifiers
provide an improvement in the proportion of predictionst halude the true class compared to
their deterministic counterparts; the price to be paid ffig tncrease is usually a tiny proportion
of predictions with more than one class. The paper includesxtensive experimental study using
three deterministic learners to estimate posterior priiiiab: a multiclass Support Vector Machine
(SVM), a Logistic Regression, and a Na Bayes. The data sets considered comprise both UCI
multi-class learning tasks and microarray expressiongffafrdnt kinds of cancer. We successfully
compare nondeterministic classifiers with other altemeatipproaches. Additionally, we shall see
how the quality of posterior probabilities (measured byBhier score) determines the goodness of
nondeterministic predictions.

Keywords: nondeterministic, multiclassification, reject option, Itislabel classification, poste-
rior probabilities

1. Introduction

There are several learners that successfully solve classificatiaitaskich the number of classes
is higher than two; see for instance Wu et al. (2004) and Lin et al. (20@8)ever, for each class
C most classification errors frequently occur between small subsets gkslésat are somehow
similar toC, regardless of the approach used. This fact suggests that multiclasifiedasvould
increase in reliability if they were allowed to express their doubts wheneegrulere asked to
classify some entries.

In this paper we explore how to learn classifiers with multiple outcomes, likeaterdinistic
automata; we shall call themondeterministic classifiersSince they return a set of values, these
classifiers could be calleset-valuedtlassifiers. To fix ideas, let us consider a screening for a set
of medical diseases (or other diagnostic situations); for some inputs,det@oministic classifier
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would be able to predict not just one single disease, but a set of oplibase multiple predictions
will be provided to domain experts when the classifier is not sure enouglr@éaginique class.
Thus nondeterministic predictions may discard some options and allow domanexp make

practical decisions. Even when the nondeterministic classifier returns bt available classes
for the representation of an entry, we can read that the learned hgoteeacknowledging its
ignorance about how to deal with that entry.

It is evident that nondeterministic classifiers will inclulee classes in their predictions more
frequently than deterministic hypotheses: they only have one possibility tighie m this sense,
nondeterministic predictions are backed by greater reliability. To be usefiwever, nondetermin-
istic classifiers should not only predict a set of classes containing tihectar true one, but their
prediction sets should also be as small as possible. Notice that these meznisere common in
algorithms designed fdnformation Retrieval In this case, the queries are the entries to be classi-
fied and theRecallandPrecisionare then applied to each prediction. Hence, the loss functions for
nondeterministic classifiers can be built as combinations of IR measurgsfuasctions are.

Starting from the distribution of posterior probabilities of classes, giveneoriry, we present
an algorithm that computes the subset of classes with the lowest expedethltise experiments
reported at the end of the paper, we employed three deterministic learaergdkide posterior
probabilities: Support Vector MachingSVM) Logistic RegressiofLR), and Ndve Bayes(NB).
We successfully compared the achievements of our nondeterministic classitiethose obtained
by other alternative approaches.

The paper is organized as follows. In the next section, we presenteamiew of related work
on classifiers that return subsets of classes instead of a single clasg$oriital settings both for
nondeterministic classifiers and their loss functions are presented in thesélaiidn. After that,
in Section 4, we derive an algorithm to learn nondeterministic hypotheses, We conclude the
paper with a section in which we report an experimental study of their fegioce. In addition
to the comparison mentioned above, we discuss the role played by the detgentéaisier that
provides posterior probabilities. We see that the quality of posterior pilities determines the
goodness of nondeterministic predictions. The data sets used are puldithpke and, in addition
to a group of data sets from the UCI Repository (Asuncion and Newmdl¥)2€they include a
group of classification tasks of cancer patients from gene expressapiigred by microarrays.

2. Related Work

Nondeterministic classifiers are somehow related to classifiersgyéht option(Chow, 1970). In
this approach, the entries that are likely to be misclassified are rejectedrthapt classified and
can be handled by more sophisticated procedures: a manual classififiatioatance. The core as-
sumption is that the cost of making a wrong decision is 1, while the cost of tisérgject option is
given by somal, 0 < d < 1. In this context, provided that posterior probabilities are exactly known,
an optimal rejection rule can be devised (Chow, 1970; Bartlett and Wegk200g8): an entry is
rejected if the maximum posterior probability is less than a threshold. Noticeldssifeers with
reject option are a relaxed version of nondeterministic classifiers. Rejasteanondeterministic
classification that includes the complete set of classes. On the other hsteddiof avoiding dif-
ficult classifications, for each entry, nondeterministic classifers adneataet of possible classes,
not necessarily the complete set.
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However, predictors of more than one class are not completely new.n @ive € [0, 1], the
so-called confidence machines makamformal predictiongShafer and Vovk, 2008): they produce
a set of labels containing the true class with a probability greater tham 1

To the best of our knowledge, the most directly related work to the appro@sented in this
paper is that of Zaffalon (2002) and Corani and Zaffalon (2008djbthese papers, the authors
describe thé&\aive Credal Classifigra set-valued classifier which is an extension of thevBlBayes
classifier to imprecise probabilities. TheiMa Credal Classifier models prior ignorance about the
distribution of classes by means of a set of prior densities (also calledithemdal se}, which is
turned into a set of posterior probabilities by element-wise application ofBaye. The classifier
returns all the classes that aren-dominatedy any other class according to the posterior credal
set.

Another learning task that is related to this paper is multi-label classificationets, training
instances in multi-label tasks can belong to more than one class, while nonohétéc training
sets are the same as those of standard classification. In Tsoumakastakid K207), the au-
thors provide an in-depth description of multi-label classification, enumeesteral methods and
compare their performance using Information Retrieval measures. Sqiieatipns have likewise
arisen within the context of hierarchical organization of biological objegtedicting gene func-
tions (Clare and King, 2003), or mapping biological entities into ontologieg{¢t et al., 2004).

The formal setting presented in this paper was previously introduced irsédlehal. (2008).
There, we dealt with an interesting application of nondeterministic classifiershich classes
(or ranks in that context) are linearly ordered. The aim was to predict the rankn(iordered
scale) of carcasses of beef cattle. This value determines, on the ahel@prices to be obtained
by carcasses and, on the other, the genetic value of animals in orderdbstalis for the next
generation. In this application, nondeterministic classifiers return an ihtefvanks. Interval
predictions are useful even when the intervals comprise more than oke Fan instance, it is
possible to reject an animal as a stud for the next generation when atjmediterval is included
in the lowest part of the scale. However, if we need a unigue rank, wedegige to appeal to an
actualexpert to resolve the ambiguity, an expensive classification procedtuadways available in
practice.

The novelty of this paper is that now we deal with a standard classificatibngsdhat is, the
sets of classes are not ordered. This fact is very important as thehdeathe optimal prediction
leads to a dramatic difference in complexity. Thusk i§ the number of classes, the search in the
ordinal case is just of ordd?, while in the unordered case, at a first glance, the search is of drder 2
However, the Theorem of Correctness of Algorithm 1 proves that thichecan be accomplished
in polynomial time.

Additionally, this paper reports an extensive experimental study. Firstestewhether non-
deterministic classifiers outperforieive Credal Classifierand other alternative approaches. We
then investigate the role played by the ingredients of nondeterministic classifier

3. Formal Presentation and Notation

Let X be aninput space armd = {C;, ...,Ck} a finite set of classes. We consider a multiclassification
task given by a training s&= {(x1,Y1), ..., (Xn,¥n) } drawn from an unknown distributid®r(X,Y)
from the productx x 9. Within this context, we define
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Definition 1 A nondeterministic hypothesis a function h from the input space to the set of non-
empty subsets of; in symbols, ifZ2(9) is the set of all subsets of,

h: X — 2(9)\{)}.

The aim of such a learning task is to find a nondeterministic hypothesisn a space# that
optimizes theexpected prediction performance (or rigk) sample§S independently and identically
distributed (i.i.d.) according to the distributi®(X,Y)

RA() = [ B((x.y) d(Pr(xy).

whereA(h(x),y) is a loss function that measures the penalty due to the prediotiorwhen the
true value isy.

In nondeterministic classification, we would like to favor those decisiortstbt contain the
true classes, and a smaller rather than a larger number of classes. rfnwotls, we interpret
the outputh(x) as an imprecise answer to a query about the right class of aneatry. Thus,
nondeterministic classification can be seen as a kind of Information Retr@skalor each entry.

Performance in Information Retrieval is compared using different measuiorder to consider
different perspectives. The most frequently used measureRexrall (proportion of all relevant
documents that are found by a search) &nelcision(proportion of retrieved documents that are
relevant). The harmonic average of the two amounts is used to capturedithesss of a hypothesis
in a single measure. In the weighted case, the measure is Egllétie idea is to measure a tradeoff
betweerRecallandPrecision

For further reference, let us recall the formal definitions of thesainétion Retrieval measures.
Thus, for a prediction of a nondeterministic hypothdsgis) with x € X, and a clasy € 9, we can
compute the following contingency matrix, where ¢,

| y=2z y#z
ze h(x) a b 1)
z¢ h(x) c d

in which each entryd, b, c,d) is the number of times that the corresponding combination of mem-
berships occurs. Notice thatcan only be 1 or 0, depending on whether the classincluded in
the predictiorh(x) or not; b is the number of classes different fromncluded inh(x); c=1—&;
andd is the number of classes different frgnthat are not included ih(x).

According to the matrix, Equation (1), fifis a nondeterministic hypothesis afidy) € X x 9,
we thus have the following definitions.

Definition 2 TheRecallin a query(i.e., an entry x) is defined as the proportion of relevant classes

(y) included in fix): .

R(NG).Y) = - = a= Lyengy,

Definition 3 ThePrecisions defined as the proportion of retrieved classes(x) that are relevant

v):
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h(x) Precision Recall I F
[1,2,3] 0.33 1 Q50 071
[1,2] 0.50 1 Q67 083

[1] 1 1 1 1

[2,3,4] 0 0 0 0

Table 1: ThePrecision Recall F1, andF; for different predictions of a nondeterministic classifier
h for an entryx with class 1,y = 1)

In other words, given a hypothesisthePrecisionfor an entryx, thatis,P(h(x),y), is the probability
of finding the true classy/j of the entry k) by randomly choosing one of the classe$0f).
Finally, the tradeoff is formalized by

Definition 4 The kg is defined, in general, by

_ (1+BA)PR_ (1+P?a
Fa(h(x).y) = B?P+R  (1+P?a+b+p%c @)

Thus, for a nondeterministic classifier h and a pairy),

14-p2 if h
Fa(h(x).y) = 4 el T Y EhK)
p(h(x).y) { 0 otherwise.

3
The most frequently used F-measuré&isFor ease of reference, let us state that

2yeh(x)

Notice that for deterministic classifiers, the accuracy is equktoall Precision andFg given
that|h(x)| = 1.

To illustrate the use of the F-measures of an entry, let us consider an lexdfmge assume that
the true class of an entryis 1, (y = 1), then, depending on the valuelgf), Table 1 reports the
Recall Precision F;, andF,. We observe that the reward attached to a prediction containing the
true class with another extra class ranges fro660 for F; to 0.833 for F; whereas the amounts
are lower when the prediction includes 2 extra classes.

Once we have the definition &% for individual entries, it is straightforward to extend it to a
test set. Hence, whei is a test set of sizm, the average loss on it will be computed by

R°hs) - 3 84(04).5,) = ij;(l— Fo(h(x).})) @
1 1+p?

The averag®ecallandPrecisioncan be similarly defined. For ease of reference, let us remark
that theRecallis the proportion of times that(x') includesy and is thus a generalization of the
deterministic accuracy
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Figure 1: Conditional probabilities of classl given the discriminant value (horizontal axis) of
entriesx € X. Vertical bars separate the region where both clagsels+1} have a
probability of over ¥3

3.1 Nondeterministic Classification in a Binary Task

To complete this section, let us show what nondeterministic classifiers look like Bimplest case,
which will be further developed in the following sections. Let us assumertabinary classifica-
tion task (the classes are codified b and-+1) we have a loss 1 for each false classification. On
the other hand, we are allowed to predict both classes, in which case sheilldse 1/3: theF; for

a classification of 2 classes containing the true one; see Table 1. Theiertéar dealing withg,
with 3 # 1, is straightforward.

The optimum classifier will return only one class when it is sufficiently sureldubtful situa-
tions, however, the nondeterministic classifier should opt for predicting thasses. This will be
the case whenever the probability of error for both classes is highedf&rsince this is the loss
for predictions of two classes; see Figure 1. Therefore, if we havedhditional probabilities of
classes given the entries, the optimum classifier will be given by

{-1} if n(x)<1/3
hno(x) =< {—1,+1} if 1/3<n(x) <2/3 (5)
{+1} if 2/3<n(x),

where we are representing hyx) the posterior probability:
n(x) = Pr(class= +1|x).

Notice that Equation (5) is equivalent to the generalized Bayes discrimfimaction described
in Bartlett and Wegkamp (2008) when the cost of using the reject optionidslated using thé&;
loss function.
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Algorithm 1 The nondeterministic classifiexd®, an algorithm for computing the prediction with
one or more classes for an enkprovided that the posterior probabilities of classes are given
Input: {C;j: j =1,..,ksorted by P(Cj|x) }
Input: B: trade-off betweemRecallandPrecision
Initializei =0,Ag =1
repeat
i=i+1 ,
A=1— };—EI 541 Pr(Cjlx)
until ((i==Kk) or (Ai_1 <4)
if (Aj—1 <4y)then

return {C;:j=1,..,i—1}
else

return {C;:j=1,..k}
end if

4. Nondeterministic Classification Using Multiclass Postaor Probabilities

In the general multiclass setting presented at the beginning of SectionxX3bdéein entry of the
input spacex and let us now assume that we know the conditional probabilities of clagsss g
the entry,Pr(Cj|x). Additionally, we shall assume that the classes are ordered accordings® th
probabilities. In this context, we wish to define the

h(x)=Z2c 9 ={Cy,...,C

that minimizes the risk defined in Equation (1) when we use the nondeterministigil@s byrs,
(Equations 2, 3, and 4). We shall prove that sucl@) can be computed by Algorithm 1, which
does not need to search through all non-empty subseYs of

Theorem 1 (Correctness). If the conditional probabilities @;|x) are known, Algorithm 1 returns
the nondeterministic prediction for(k) that minimizes the risk given by the ldss Fp.

Proof To minimize the risk, Equation (1), it suffices to compute

D(Z) =y BNP(Z,y)Pr(y]x), 6)
yey

with Z C {Cy,...,Ck}. Then, we only have to define
h(x) = argmin{Ax(Z) : Z C {Cq,...,Ci}}.

The proof has two parts. First, we shall see thatx) hasr classes, then those are thelasses
with the highest probabilities; bearing in mind that classes are ordgped= Z, = {C;: j=1,..,r}.
For this purpose, we need to see that any other subgetlagses will increase the loss duego
This is a consequence of the following.

The value of Equation (6) faZ; is A, in Algorithm 1. In fact, with the complementary proba-
bility of 3}_; Pr(Cj|x), we expect a loss of 1. theue class will not be one of thefirst classes. On
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the other hand, with this sum of probabilities, tinee class will be inh(x), and therefore the loss
will be 1 minus theRg of the predictiorh(x) = {Cj : j =1,..,r}:

. r 4 1 ?
ACiij=1,.,1) = (1— lepr(CjIX)> + (lePr(Cj\x)> <1— [;JPV>
1 2T
- 1- I;Jf’rj_lPr(C”x)

— Ar.

Notice that for any other subset ofclasses, we could achieve a similar expression simply by
modifying the set of posterior probabilities of the last sum. Therefore, to mieitthie value of
Equation (6) withr classes, we need those with the highest probability.

In the second step, we only have to show that the indeaturned by the Algorithm is the
right one. We shall see that the search for the bestn be accomplished in linear time, as in the
Algorithm. In fact, we shall establish that when the Algorithm reaches the aupfttlasses with
which the loss increases, adding further classes will only increase the llosymbols, we shall
prove that

A <Arip= Dryg <Aryo.

To do so, we shall next express the exit condition of the ldpg: Ar+1 when(r +1) <kina
different way. The following expressions are equivalent:

Ar < Ar+1 (7)
14+p2 J 14p2 4L |
@J Pr(Cjlx) > B rril le"(CJ|X)

r r+1
Bz+r+1z r(Cilx) > Bz+rZPrCJ]x)

Z Pr(Cj|x) > (B*+1)Pr(Cr11]%).
=1

Therefore, ifAy < Ar1q and(r +1) <k, then

r

Pr(Cri1x) + 3 Pr(Cjlx) = (B* +r)Pr(Cri1[X) + Pr(Crra/x).

=1

However, bearing in mind that the classes are ordered, we havBri{@t 1|x) > Pr(C;.2|X),
and using Equation (7), we conclude that

r+1
ZPr (Cj|x) > (B?+r1+1)Pr(Criz/X) < Arp1 < Arpo.
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4.1 Corollaries

In order to draw some practical consequences, let us reword thiegselkheorem. It states that the
optimum classification for an inputis the set of classes with the highest posterior probabilities,
wherer is the lowest integer that fulfills

r

3 PrCib) > (B+T)Pr(Craabd), (8)

or the set of all classes when this condition is not fulfilled by anfgxpressed in this way, it is
straightforward to see that for two classes, vfdth 1, Algorithm 1 coincides with the rule defined
in Equation (5).

Additionally, we would like to underscore that Equation (8) hinders the tiseive thresholds
to compute nondeterministic predictions. Thus, a nondeterministic classifiealtiets predicts
the topr classes for a constant valués not a correct option. Equation (8) shows thaat least,
depends on the input

Moreover, we should not search for a threshdltb return, for all inputs, the first classes
whose sum of probabilities is aboxe

2PI’(CJ'|X) > A (9)
=

Note that given & value in[0, 1], Equation (9) straightforwardly gives rise to a nondeterministic
classifier as follows. For each inputif the set of classes is ordered according to their posterior
probabilities, we define

hA(x):{Cl, C: ZPrCJ\x)>)\ & rZlF>rC,x)<>\} (10)

Again, the right-hand side of Equation (8) shows that the threshiglavould depend on the
number of classes predicted, the probability of the first class excludedtfre prediction, and the
parametef: the trade-off betweeRrecisionandRecall The idea behind Equation (8) is that, once
we have decided to include the togtlasses, to add th@ + 1)™" class we should guarantee that
Pr(Cr1/x) is not much smaller than the sum of probabilities of thertafasses.

However, it may be argued that the inaccuracy of posterior probabilibegdrpartially invali-
date the preceding theoretical discussion. In fact, posterior probabéitesot known in practice:
they are estimated by algorithms that frequently try to optimize the classificatiamaagcof a
hypothesis that returns the class with the highest probability. In othersyprdbabilities are dis-
criminant values instead of thorough descriptions of the distribution ofedassa learning task.
Therefore, in the experiments reported at the end of the paper, wecenaiider the classifiers
defined by Equation (10) as a possible alternative method to the nondetéicilaissifier of Algo-
rithm 1.

5. Experimental Results

In this section we report the results of a set of experiments conductectigagy the proposals
of this paper. The next subsection describes the settings used in th@rexus: deterministic
learners, data sets, procedures to set parameters, and methods to ¢istireatees.
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Data sets #classes #samples #features
z00 7 101 16
iris 3 150 4
glass 6 214 9
ecoli 8 336 7
balance scale 3 625 4
vehicle 4 846 18
vowel 11 990 11
contraceptive 3 1473 9
yeast 10 1484 8
car 4 1728 6
image 7 2310 19
waveform 3 5000 40
landsat 6 6435 36
letter recognition 26 20000 16

Table 2: Description of the data sets downloaded from the UCI reposifiing classes are not
linearly separable

We have two goals here. On the one hand, we compare our approach withtesnative
methods. The comparison will first be established with a state-of-thetarakeed algorithm, the
Naive Credal ClassifigfNCC)(Zaffalon, 2002; Corani and Zaffalon, 2008a,b). This algorithm is an
extension of the traditional Nize Bayes classifier towards imprecise probabilities and is designed
to return robust set-valued (nondeterministic) classifications. We showuhenethod can improve
the performance oNCC. We then contrast our method with an implementation of Equation (10);
once again our proposals outperform this alternative way to learn temaaistic classifiers.

On the other hand, we analyze the influence of a number of factors rédatehdeterministic
learners. We accordingly discuss how the scores of a nondeterministeleae affected by the
quality of posterior probabilities. We see that the performance of a nandeistic classifier is
highly correlated with the accuracy of its deterministic counterpart. The seetids with a study
of the meaning of the paramet@r

5.1 Experimental Settings

We used three different methods for learning posterior probabilities iardad build nondeter-
ministic classifiers. First, we employed theiMa Bayes(NB) used byNCC as its deterministic
counterpart (Corani and Zaffalon, 2008b). The second determiteéstiner was a multiclasSVM

the implementation used wibsvm(Wu et al., 2004) with the linear kernel. Last, we employed the
logistic regression (LR)f Lin et al. (2008). It should be noted that we are not only using the multi-
class classifiers learned I8vMor LR. Primarily, we apply the mechanisms that provide posterior
probabilities from their outputs.

For each of these learners, we buitt", whered stands for the name of the deterministic coun-
terpart,nb, svmor Ir. Recall thand? is the implementation of Algorithm 1 that aims to optimize
Fp; thatis,f = 1.
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Datasets  #classes #samples #features Original source Used in
brain 5 42 5597 Pomeroy et al. (2002) [1]

nci 9 60 7131 Ross et al. (2000) [1, 3, 4]
lung 6 6 70 16387 Tamayo et al. (2007)

leukemia 3 3 72 12582 Armstrong et al. (2002) [2]

lung 4 4 82 9036 Tamayo et al. (2007)

lung 11 11 89 4459 Tamayo et al. (2007)

tumors 11 11 174 12533 Suetal. (2001) [1, 2]
tumors 14 14 190 16063 Ramaswamy etal. (2001) [1, 2, 4]
lung 16 16 201 493 Tamayo et al. (2007)

leukemia 7 7 327 12558 Yeoh et al. (2002) [2]

Table 3: Description of cancer microarray data sets used in the experimelniging the original
sources and papers from which they are taken. For the sake of brgeityave denoted
the papers as follows: [1] Tibshirani and Hastie (2007), [2] Tan €2805), [3] Staunton
et al. (2001), [4] Yeung and Bumgarner (2003)

In the experiments that follow, we used two kinds of data sets. First, wadawad data sets
downloaded from the UCI repository (Asuncion and Newman, 2007xfalthich have more ex-
amples than attributes. We included all the data sets that fulfill the following: rateginuous or
ordinal attribute values, no more than 40 attributes and no more than 20a0pks. The inten-
tion was to consider small data sets that are not linearly separable. Adtijtioveexcluded those
learning tasks with missing values or in which every deterministic learner arnesitNB, SVM,
LR) achieves a proportion of successful classifications of over 95%ywaittee nondeterministic
learners would be too similar to their deterministic counterpart. A descriptioreafribup of data
sets considered can be found in Table 2.

We then evaluated the performance on learning tasks in which the aim wassdyckzancer
patients from gene expressions captured by microarrays. Unlike theditkage of data sets, all
the classes are now linearly separable given the dimensions of the irgmat apd the number of
entries. Table 3 shows the details of these data sets.

Every table of scores (Tables 4, 5, 6, 7, 8) is devoted to reporting tperiexental results
achieved in one of the kinds of data sets by one of the deterministic leamgkts/dwo nondeter-
ministic algorithms that are to be compared. All the tables have a similar layout.tRégt;ontain
the scores of the deterministic learmkrthe F; (or accuracy oRecal), and the Brier score, a mea-
sure for the quality of posterior probabilities (Brier, 1950; Yeung et 805), computed by means

of
n

k
35= 503, 3. (1 =Cil~Pr(Ci))*

Then we report, for each nondeterministic learnerRherecision Recall and the average number
of classes predictedh(x)|). All the scores were estimated by means of a 5-fold cross validation
repeated 2 times. We did not use the 10-fold procedure, since in certaiseta there are too few
examples in some of the classes.

Following Densar (2006), we used the Wilcoxon signed ranks test to compare therparfoe
of two classifiers when the measurementsRrePrecision Recal| or the averagéh(x)|. Unless
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NB NCC nd"®
Data set F1 BS | P R lh(x)| | F P R |h(X)]
z00 95.0 0.03/92.3 90.5 100.0 1.49695.2 943 97.0 1.055
iris 93.3 0.05/929 925 940 1.037939 935 947 1.023
glass 68.0 0.22|/ 692 665 76.6 1.32170.7 676 776 1.253
ecoli 83.5 0.12| 82.0 81.0 857 1.24084.4 822 88.7 1.136

balance | 73.9 0.16] 76.0 74.2 79.7 1132799 749 90.1 1.370
vehicle 60.8 0.30| 609 59.8 634 1103633 60.2 69.6 1241

vowel 62.1 0.25| 646 62.6 69.8 1.296¢655 60.9 755 1429
contra 50.0 0.30| 50.3 50.1 50.6 1.01356.6 479 746 1.670
yeast 58.1 0.28| 584 58.2 59.0 1.03760.8 544 743 1.500
car 86.8 0.11| 87.3 87.0 87.8 1.017 834 76.6 98.0 1.487

image 90.9 0.08/ 91.4 905 948 1.195 91.2 90.9 92.0 1.026
waveform| 80.1 0.17| 80.1 80.0 80.4 1.00780.9 80.0 825 1.051
landsat 82.0 0.17/ 820 816 831 1.05882.1 819 824 1.011
letter 739 0.19| 746 742 758 1.081748 73.3 78.0 1.166

Table 4. Scores obtained by Na Bayes, the Na&e Credal Classifier and nondeterministic classi-
fiers on UCI data sets using a 5-fold cross validation repeated 2 timesas@péreading,
F1, Precision P), and Recall R) are expressed as percentages. The best nondeterministic
F; for each data set is boldfaced

explicitly stated, we use the expression statisticaifnificant differenceto mean thaip < 0.01.
Additionally, in order to provide a quick view of the order of magnitude of tberss, we have
boldfaced the best nondeterminisicscore for each data set.

To select the regularization parameter,for SVMandLR, we used a 2-fold cross validation
repeated 5 times performed on training sets. We searched W@ithifi02,...,107.

5.2 Nondeterministic Classifiers vs. Nave Credal Classifiers

In this subsection, we compare our nondeterministic learneMi@& (Corani and Zaffalon, 2008b),
a state-of-the-art set-valued (nondeterministic) algorithm. In order taressfair comparison, our
approach uses the N& Bayes(NB) employed byNCC as its deterministic counterpart. Table 4
reports the scores &§B, NCCand our algorithrmd™.

The nondeterministiad™ is significantly (remember that we are using Wilcoxon tests) better
than NCC both in RecallandF;. Moreover,nd™ wins in 12 out of 14 data sets i, and in 11
out of 14 inRecall However, the scores iRrecisionand size of predictions are more balanced;
the differences are not significant. Rrecision NCCwins in 5 cases, loses in 8, and there is 1 tie
situation. The size scores are favorabl®\teCin 8 out of 14 data sets.

To complete the comparison, we should discuss the results achieved orimigisinal data
sets (Table 3). Nevertheless, we do not show the scores on eachetlafthe characteristics of
these tasks are not appropriate forivéaBayes (a large number of attributes with a small number
of examples); therefore, the posterior probabilitiedl8fare poor (they are significantly worse than
those achieved b§VMandLR) and this affects the performance of our nondeterministic algorithm
andNCC. Our method tends to be almost deterministic, the average value for the sizslwitions
is [h(x)| = 1.008. This is not optimal, as we shall see later, but it is acceptable behawiweudr,
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SVM nayV™ ndsvm
Data set Fi BS | k P R lh(x)| | F P R  |h(xX)]
z00 94.0 0.08/ 38.9 24.6 1000 4.39094.2 924 98.0 1.134
iris 96.0 0.02| 83.2 74.8 1000 1.51097.6 96.7 99.3 1.053
glass 61.7 0.26]| 63.7 53.3 850 1.711 63.0 559 77.3 1484
ecoli 86.5 0.11] 751 66.3 97.2 1854874 850 923 1152

balance | 91.7 0.06/ 83.8 775 98.7 1528 91.3 89.0 98.1 1.272
vehicle 79.8 0.13| 79.6 710 978 1576825 779 920 1.297
vowel 82.0 0.15|66.3 55.0 975 2313829 788 915 1.288
contra 51.3 0.29| 559 483 713 159957.7 46.7 831 1.960
yeast 59.0 0.27| 60.6 504 822 1817624 534 816 1.706
car 853 0.11| 828 76.1 973 1475856 83.0 90.8 1.169
image 959 0.03| 84.8 79.1 998 1.57996.1 953 979 1.058
waveform| 86.4 0.10| 85.7 80.0 971 1343876 815 918 1.126
landsat 86.8 0.09| 844 784 976 1453878 857 919 1139
letter 85.8 0.11| 71.0 643 98.2 294986.3 76.7 91.0 1.186

Table 5: Scores obtained I8vMlearners on UCI data sets using a 5-fold cross validation repeated
2 times. For ease of readinfg,, Precision P), and RecallR) are expressed as percentages.
The best nondeterministlg for each data set is boldfaced

LR nd nd"
Data set Fr BS | kK P R lh(x)| | F P R |h(X)]
z00 95.0 0.04/ 91.0 884 97.0 1252954 950 96.0 1.045
iris 96.7 0.05| 744 617 100.0 1.76794.4 922 99.0 1.137
glass 60.3 0.27| 615 493 86.0 1.84463.0 51.8 855 1.774
ecoli 875 011|769 683 96.1 1668 87.0 844 921 1.173

balance | 86.7 0.11| 889 874 92.6 1.185 88.7 87.7 909 1.136
vehicle 77.0 0.16| 748 649 953 1.67479.2 741 89.7 1.342

vowel 579 0.30| 54.1 415 835 2.22657.8 48.6 79.7 1.908
contra 50.8 0.29| 55.9 47.7 723 1.64458.0 47.4 825 1.928
yeast 58.4 0.28| 59.4 49.0 809 1.81861.0 52.2 799 1.713
car 80.9 0.13| 80.7 741 950 1482820 789 885 1215

image 88.4 0.11| 723 60.9 98.7 1.91%88.0 851 938 1.196
waveform| 86.5 0.10| 81.8 72.8 99.6 1536 87.4 829 96.4 1.272
landsat 777 0.18| 68.6 581 938 194076.6 71.7 869 1.387
letter 71.8 0.24| 493 365 90.7 3.25370.3 649 825 1.556

Table 6: Scores obtained IR learners on UCI data sets using a 5-fold cross validation repeated 2
times. For ease of reading,, Precision P), and Recall R) are expressed as percentages.
The best nondeterministl; for each data set is boldfaced

the scores oNCCon these data sets are inadmissible; their classifiers predict almost alkdiasse
every example, their average values &g= 25.73,P = 15.39,R= 100, andh(x)| = 8.58.

In fact, the behavior oNCCis difficult to predict, sometimes it is almost a deterministic clas-
sifier, whereas in other tasks the number of classes predict®Ci@/is very high. Moreover, its
degree of nondeterminism is not related to the difficulty of the learning taslkerithe accuracy of
the deterministic classifiers decreases, the average number of clasdieseprwould be expected
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SVM naV™ ngsvm
Data set Ft BS | K P R lh(x)| | F1 P R  |h(X)]
brain 81.8 0.15/59.2 449 975 2504829 78.0 938 1.401
nci 483 0.35/ 429 332 683 2492477 414 650 2167
lung 6 72.1 0.21| 657 579 857 190773.0 704 786 1221
leukemia 3| 94.5 0.04| 75.1 645 100.0 1.86295.7 949 97.3 1.049
lung 4 87.1 0.11) 73.9 63.0 969 1.74387.3 853 914 1.122

lung 11 58.4 0.31] 493 365 842 2656604 53.8 78.0 1.903
tumors 11 | 89.6 0.13| 30.6 19.1 99.7 6.13588.9 87.1 928 1.199
tumors 14 | 70.0 0.26| 45.0 353 95.0 4.55066.5 60.2 84.7 2.021
lung 16 84.8 0.17| 25.0 145 100.0 7.44087.3 83.1 958 1.266
leukemia 7| 92.0 0.07| 70.1 59.9 994 21216 92.1 90.6 951 1.090

Table 7: Scores obtained I8¥Mlearners on cancer microarray data sets using a 5-fold cross vali-
dation repeated 2 times. For ease of readigPrecision P), and RecallR) are expressed
as percentages. The best nondeterminigtior each data set is boldfaced

LR ndyf nd"
Dataset | i, BS| HR P R |h®|| R P R |hx)
brain 86.8 0.11| 86.3 82.7 940 1.274 86.1 84.5 89.2 1.106
nci 55.8 0.33| 56.7 55.8 583 1.14257.8 56.7 60.0 1.158
lung 6 70.7 0.22| 743 725 779 1.150 73.3 72.1 75.7 1.107
leukemia 3| 97.3 0.02| 92.2 88.8 100.0 1.258 97.7 97.3 98.7 1.028
lung 4 88.9 0.10] 889 86.4 939 1.153 88.8 87.8 90.8 1.061

lung 11 69.0 0.24/69.1 652 775 1354689 657 759 1316
tumors 11 | 94.8 0.05| 89.5 859 991 1.42193.7 93.0 951 1.057
tumors 14 | 75.3 0.18| 76.8 73.9 83.2 1.337 76.8 75.2 803 1.145
lung 16 88.1 0.10| 88.3 86.0 93.0 1.15788.4 87.4 90.3 1.060
leukemia 7| 91.9 0.07| 90.6 87.9 96.3 1202919 914 93.1 1.040

Table 8: Scores obtained hyR learners on cancer microarray data sets using a 5-fold cross valida-
tion repeated 2 times. For ease of readifg,Precision P), and Recall R) are expressed
as percentages. The best nondeterministior each data set is boldfaced

to increase. However the correlation between the accuras§Baind |h(x)| of NCCis 0.24. In the
case oind™, this correlation is-0.75: negative and quite high.

5.3 Comparing nd with Another Alternative Method

In accordance with the discussion in Section 4.1, we shall now comparetideterministic clas-
sifiers learned by Algorithm 1 with the alternative classifier defined in Equdfi@) that uses a
thresholdA for the sum of posterior probabilities. The comparison will be established paith
terior probabilities provided b$VMandLR given that both outperform the accuracy achieved by
Naive Bayes classifiers in the data sets used in these experiments nbhdeterministic classifiers
will be denoted b)nd‘f, whered stands for the deterministic counterpart.

To select the parametar we use a grid search employing a 2-fold cross validation repeated 5
times, aiming to optimiz&;. The searching space depends on the learning3al$kthe proportion
of successful classifications for deterministic classifiers, the accusaythen we search within
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A € [ag,ay,...,as); six options distribute fronato 0.99. In symbolsay = a,as = 0.99, anda;+1 —
0.99-a
g ="5.

In UCI data sets, Tables 5 and g™ and nd" win the correspondinad, in 13 out of 14
data sets i, andPrecision In Recallwe have the opposite situatiok;classifiers win in 13 out
of 14 cases. Moreovel classifiers always predict more classes thd®™andnd". In other
words,A classifiers predict more classes than necessary. All differencesgamificant. Thus, our
nd classifiers are better than those computed with\tparameter.

In cancer microarray data, Tables 7 andn8V™ always wins inF;, Precision and average
Ih(x)|; while nd>*™ always loses irRecall All differences are again significant. However, when
posterior probabilities are provided R, the differences are not significant i, althoughnd”
has 5 wins, 1 tie and 4 losses; Rrecisionand average size of predictions the differences are
significant in favor ofd" . Furthermore, as usual, tRecallis significantly higher foi classifiers.

The conclusion is thak classifiers seem to need more classes in their predictionsithalas-
sifiers. In fact, Equation (9) only considers tRecall In practice, this means moRecall but
lessPrecisionand F;. Therefore, to optimize th&; measure, in an experimental environment,
Equation (8) is more adequate than Equation (9), as we have conjecteardtibally in Section
4.1.

5.4 The Importance of Posterior Probabilities

The objective of this subsection is to experimentally investigate the degrepehdency between
nondeterministic scores and the accuracy of posterior probabilities. Isttidg we again employ
SVMandLR with the collection of data sets detailed in Tables 2 and 3.

Let us first consider the set of UCI data sets. Comparing the results iasTatand 6, it can
be seen that the scoresmd” are significantly worse than those mf*'™in F, Precision Recall
(p < 0.03), and in average size of predictions. The general message igtthitclude unnecessary
classes in their predictions. The base posterior probabilities seem to baeutbe af this behavior:
the Brier score oLR s significantly worse than that &vM

On the other hand, the scores obtained with cancer microarray dataesstsoam in Tables 7
and 8. The characteristics of UCI and microarray data sets are quiteediffeand this affects
the performance of classifiers. The main difference is tiahow has a significantly better Brier
score tharSVM Moreover, thend" algorithm achieves better results thad®'™ The differences
are significant irF, Precision Recall(p < 0.02), and averaggh(x)|. Yet again, inferior posterior
probabilities seem to be responsible for the inclusion of unnecessasgeslas nondeterministic
predictions.

In the preceding discussion of the scores achieved by nondeterministielgawe found sig-
nificant differences when the Brier scores of the deterministic counterpeesented significant
differences. In fact, the scores of a learner built with Algorithm 1 ddpmmthe quality of the pos-
terior probabilities supplied by the corresponding deterministic learneeeihs plausible to draw
the conclusion that the better the posterior probabilities, the better the nomaestic scores. In
order to quantify this statement, we compared deterministic Brier scores witletesministicF,
Recall andPrecisionvalues; see Figure 2. We separated the scores achieved by UCIrared ca
data sets and included the scoresid? in UCI data sets. Similar results would be achieved if we
compared nondeterministic scores with deterministic accuracy.
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Figure 2: Correlation between Brier scores &dRecall andPrecision The left column shows
the results with UCI data sets, while the right column uses cancer data setsr Sisuilés
would be achieved if we compared nondeterministic scores with deterministicaagc

We observed that the correlations between the Brier scores of determie@stiers and non-
deterministic scored, Recall andPrecision are very high: their absolute values are in all cases
greater than @9. Therefore, in order to choose a nondeterministic approach in tgateappli-
cation, given a data set, it would be recommendable to first analyze thedBoes of different
deterministic learners.
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Figure 3: Evolution off, F, Precisionand Recallon two UCI data setsygéastand vowe) for
differentf3 values and for the nondeterministic learners generate&aMi LR, andNB

5.5 The Meaning off3

In this subsection, we analyze from the point of view of the user the rojeglay the parametrin
Algorithm 1. Its theoretical aim is to control the size of predictions: agthalue increases, the size
of predictions will become bigger and therefore Becallscores will be higher; see Equation (8).
The problem is that it is not always of interest to increBeeallvalues, since that would worsén
scores: adding more classes in predictions increases incorrectranswe
In Figure 3 we show the evolution &%, F, PrecisionandRecallon two UCI data setsygast
andvowe) for different3 values and for the nondeterministic learners generateésMiyl LR, and
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NB. Quite similar graphs could have been generated for the other data setis tise experiments
reported in this section.

Initially, B = 0 makes the nondeterministic classifiers deterministic. Therefore, the sepres
resented in the left-hand side of all the graphs in Figure 3 are all the saenacdhracy of the de-
terministic classifier. A§ values become higher, tiitecallincreases and therecisiondecreases.
The main goal of the learning method proposed here is to look for a tragietb#se measures that
is determined by, a user-modifiable parameter.

In practice, the value 8 that the classifier must aim to optimize should be fixed by an expert
in the field of application in which the classifier is going to be employed. The Kidécisions that
one would like to take from nondeterministic classifications must be considered

It can be observed in the graphs in Figure 3 that the best scofgsaire not always achieved
for B = 1. With small values of3, F; increases. However, when some point near 1 is exceeded,
the F; score of the nondeterministic learner typically falls below the accuracy afdiresponding
deterministic learner. Nonetheless, optimal values are frequently reaot@td thenominalvalue:
B =1 (or 2 respectively). Slightimprovements can be achievéd (im generakF) if we use a grid
search foi} values to be used in Algorithm 1.

6. Conclusions

We have studied classifiers that are allowed to predict more than oneala&sgries from an input
space: nondeterministic or set-valued classifiers. Using a clear anaititgifermation Retrieval,

we have proposed a family of loss functions base&pmeasures. After discussing such measures,
we derived an algorithm to learn optimal nondeterministic hypothesis. Gimesnary from the
input space, the algorithm requires the posterior probabilities to computalibetof classes with
the lowest expected loss.

The paper includes a set of experiments carried out on two collectiorsta@gdts. The first one
was downloaded from the UCI repository, the classes of which are narlngeparable. The sec-
ond group is formed by data sets whose input spaces represent magregpressions of different
kinds of cancer, the classes of which are separable.

Using these benchmarks, we first compared nondeterministic learnemnseabfeom a Nave
Bayes with those learned by a state-of-the-art set-valued (nhondetdi)iaigorithm, the Nae
Credal Classifie(NCC) (Zaffalon, 2002; Corani and Zaffalon, 2008a,b), an extensionefrdudi-
tional Ndve Bayes classifier designed to return robust set-valued classificatmshowed that,
using the loss measures defined in this paper, our method can improve fibrenpeice ofNCC.
Additionally, an important advantage of our nondeterministic classifiers W@ is that we can
control the degree of nondeterministic behavior. We can regulate the nofridasses predicted by
fixing the Fg to be optimized: aB is higher (the weight oRecallis increased in the harmonic aver-
ageRp), the size of our predictions grows (see Section 5.5). However thestermaiinistic behavior
of NCCis quite difficult to predict.

In addition to Né@ve Bayes, we used a multiclaS8/Mand a Logistic Regression. With the
posterior probabilities provided by these deterministic learners, we buthanalternative method
to predict more than one class: the set of classes which the highesiqgrgstebabilities summing
more than a thresholl We also found that the classifiers built with our algorithm outperform this
option based on a threshold.
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On the other hand, in the experiments reported in this paper, we studieditioé ttee determin-
istic learners that explicitly provide posterior probabilities. We found thab#teer the posterior
probabilities, the better the nondeterministic classifiers. In fact we obtaimgdigh correlations
between the Brier scores of deterministic probabilities and=ih&recisionand Recallvalues of
their nondeterministic counterparts.
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