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Abstract

Nondeterministic classifiers are defined as those allowed topredict more than one class for some
entries from an input space. Given that the true class shouldbe included in predictions and the
number of classes predicted should be as small as possible, these kind of classifiers can be con-
sidered as Information Retrieval (IR) procedures. In this paper, we propose a family of IR loss
functions to measure the performance of nondeterministic learners. After discussing such mea-
sures, we derive an algorithm for learning optimal nondeterministic hypotheses. Given an entry
from the input space, the algorithm requires the posterior probabilities to compute the subset of
classes with the lowest expected loss. From a general point of view, nondeterministic classifiers
provide an improvement in the proportion of predictions that include the true class compared to
their deterministic counterparts; the price to be paid for this increase is usually a tiny proportion
of predictions with more than one class. The paper includes an extensive experimental study using
three deterministic learners to estimate posterior probabilities: a multiclass Support Vector Machine
(SVM), a Logistic Regression, and a Naı̈ve Bayes. The data sets considered comprise both UCI
multi-class learning tasks and microarray expressions of different kinds of cancer. We successfully
compare nondeterministic classifiers with other alternative approaches. Additionally, we shall see
how the quality of posterior probabilities (measured by theBrier score) determines the goodness of
nondeterministic predictions.

Keywords: nondeterministic, multiclassification, reject option, multi-label classification, poste-
rior probabilities

1. Introduction

There are several learners that successfully solve classification tasks in which the number of classes
is higher than two; see for instance Wu et al. (2004) and Lin et al. (2008). However, for each class
C most classification errors frequently occur between small subsets of classes that are somehow
similar toC, regardless of the approach used. This fact suggests that multiclass classifiers would
increase in reliability if they were allowed to express their doubts whenever they were asked to
classify some entries.

In this paper we explore how to learn classifiers with multiple outcomes, like nondeterministic
automata; we shall call themnondeterministic classifiers. Since they return a set of values, these
classifiers could be calledset-valuedclassifiers. To fix ideas, let us consider a screening for a set
of medical diseases (or other diagnostic situations); for some inputs, a nondeterministic classifier
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would be able to predict not just one single disease, but a set of options.These multiple predictions
will be provided to domain experts when the classifier is not sure enough to give a unique class.
Thus nondeterministic predictions may discard some options and allow domain experts to make
practical decisions. Even when the nondeterministic classifier returns most of the available classes
for the representation of an entry, we can read that the learned hypothesis is acknowledging its
ignorance about how to deal with that entry.

It is evident that nondeterministic classifiers will includetrue classes in their predictions more
frequently than deterministic hypotheses: they only have one possibility to be right. In this sense,
nondeterministic predictions are backed by greater reliability. To be useful,however, nondetermin-
istic classifiers should not only predict a set of classes containing the correct or true one, but their
prediction sets should also be as small as possible. Notice that these requirements are common in
algorithms designed forInformation Retrieval. In this case, the queries are the entries to be classi-
fied and theRecallandPrecisionare then applied to each prediction. Hence, the loss functions for
nondeterministic classifiers can be built as combinations of IR measures, asFβ functions are.

Starting from the distribution of posterior probabilities of classes, given one entry, we present
an algorithm that computes the subset of classes with the lowest expected loss. In the experiments
reported at the end of the paper, we employed three deterministic learners that provide posterior
probabilities: Support Vector Machines(SVM), Logistic Regression(LR), and Näıve Bayes(NB).
We successfully compared the achievements of our nondeterministic classifiers with those obtained
by other alternative approaches.

The paper is organized as follows. In the next section, we present an overview of related work
on classifiers that return subsets of classes instead of a single class. The formal settings both for
nondeterministic classifiers and their loss functions are presented in the thirdsection. After that,
in Section 4, we derive an algorithm to learn nondeterministic hypotheses. Then, we conclude the
paper with a section in which we report an experimental study of their performance. In addition
to the comparison mentioned above, we discuss the role played by the deterministic learner that
provides posterior probabilities. We see that the quality of posterior probabilities determines the
goodness of nondeterministic predictions. The data sets used are publicly available and, in addition
to a group of data sets from the UCI Repository (Asuncion and Newman, 2007), they include a
group of classification tasks of cancer patients from gene expressionscaptured by microarrays.

2. Related Work

Nondeterministic classifiers are somehow related to classifiers withreject option(Chow, 1970). In
this approach, the entries that are likely to be misclassified are rejected, theyare not classified and
can be handled by more sophisticated procedures: a manual classification, for instance. The core as-
sumption is that the cost of making a wrong decision is 1, while the cost of usingthe reject option is
given by somed, 0< d < 1. In this context, provided that posterior probabilities are exactly known,
an optimal rejection rule can be devised (Chow, 1970; Bartlett and Wegkamp, 2008): an entry is
rejected if the maximum posterior probability is less than a threshold. Notice that classifiers with
reject option are a relaxed version of nondeterministic classifiers. Rejection is a nondeterministic
classification that includes the complete set of classes. On the other hand, instead of avoiding dif-
ficult classifications, for each entry, nondeterministic classifers adventure a set of possible classes,
not necessarily the complete set.
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However, predictors of more than one class are not completely new. Given anε ∈ [0,1], the
so-called confidence machines makeconformal predictions(Shafer and Vovk, 2008): they produce
a set of labels containing the true class with a probability greater than 1− ε.

To the best of our knowledge, the most directly related work to the approach presented in this
paper is that of Zaffalon (2002) and Corani and Zaffalon (2008a,b). In these papers, the authors
describe theNäıve Credal Classifier, a set-valued classifier which is an extension of the Naı̈ve Bayes
classifier to imprecise probabilities. The Naı̈ve Credal Classifier models prior ignorance about the
distribution of classes by means of a set of prior densities (also called the prior credal set), which is
turned into a set of posterior probabilities by element-wise application of Bayes’ rule. The classifier
returns all the classes that arenon-dominatedby any other class according to the posterior credal
set.

Another learning task that is related to this paper is multi-label classification. However, training
instances in multi-label tasks can belong to more than one class, while nondeterministic training
sets are the same as those of standard classification. In Tsoumakas and Katakis (2007), the au-
thors provide an in-depth description of multi-label classification, enumerateseveral methods and
compare their performance using Information Retrieval measures. Some applications have likewise
arisen within the context of hierarchical organization of biological objects: predicting gene func-
tions (Clare and King, 2003), or mapping biological entities into ontologies (Kriegel et al., 2004).

The formal setting presented in this paper was previously introduced in Alonso et al. (2008).
There, we dealt with an interesting application of nondeterministic classifiers,in which classes
(or ranks, in that context) are linearly ordered. The aim was to predict the rank (in an ordered
scale) of carcasses of beef cattle. This value determines, on the one hand, the prices to be obtained
by carcasses and, on the other, the genetic value of animals in order to select studs for the next
generation. In this application, nondeterministic classifiers return an interval of ranks. Interval
predictions are useful even when the intervals comprise more than one rank. For instance, it is
possible to reject an animal as a stud for the next generation when a prediction interval is included
in the lowest part of the scale. However, if we need a unique rank, we maydecide to appeal to an
actualexpert to resolve the ambiguity, an expensive classification procedure not always available in
practice.

The novelty of this paper is that now we deal with a standard classification setting; that is, the
sets of classes are not ordered. This fact is very important as the search for the optimal prediction
leads to a dramatic difference in complexity. Thus, ifk is the number of classes, the search in the
ordinal case is just of orderk2, while in the unordered case, at a first glance, the search is of order 2k.
However, the Theorem of Correctness of Algorithm 1 proves that this search can be accomplished
in polynomial time.

Additionally, this paper reports an extensive experimental study. First, wetest whether non-
deterministic classifiers outperformNäıve Credal Classifiersand other alternative approaches. We
then investigate the role played by the ingredients of nondeterministic classifiers.

3. Formal Presentation and Notation

LetX be an input space andY = {C1, ...,Ck} a finite set of classes. We consider a multiclassification
task given by a training setS= {(x1,y1), . . . ,(xn,yn)} drawn from an unknown distributionPr(X,Y)
from the productX ×Y . Within this context, we define
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Definition 1 A nondeterministic hypothesisis a function h from the input space to the set of non-
empty subsets ofY ; in symbols, ifP(Y ) is the set of all subsets ofY ,

h : X −→ P(Y )\{∅}.

The aim of such a learning task is to find a nondeterministic hypothesish from a spaceH that
optimizes theexpected prediction performance (or risk)on samplesS′ independently and identically
distributed (i.i.d.) according to the distributionPr(X,Y)

R∆(h) =
Z

∆(h(x),y) d(Pr(x,y)),

where∆(h(x),y) is a loss function that measures the penalty due to the predictionh(x) when the
true value isy.

In nondeterministic classification, we would like to favor those decisions ofh that contain the
true classes, and a smaller rather than a larger number of classes. In other words, we interpret
the outputh(x) as an imprecise answer to a query about the right class of an entryx ∈ X . Thus,
nondeterministic classification can be seen as a kind of Information Retrievaltask for each entry.

Performance in Information Retrieval is compared using different measures in order to consider
different perspectives. The most frequently used measures areRecall (proportion of all relevant
documents that are found by a search) andPrecision(proportion of retrieved documents that are
relevant). The harmonic average of the two amounts is used to capture the goodness of a hypothesis
in a single measure. In the weighted case, the measure is calledFβ. The idea is to measure a tradeoff
betweenRecallandPrecision.

For further reference, let us recall the formal definitions of these Information Retrieval measures.
Thus, for a prediction of a nondeterministic hypothesish(x) with x∈ X , and a classy∈ Y , we can
compute the following contingency matrix, wherez∈ Y ,

y = z y 6= z
z∈ h(x) a b
z /∈ h(x) c d

(1)

in which each entry (a,b,c,d) is the number of times that the corresponding combination of mem-
berships occurs. Notice thata can only be 1 or 0, depending on whether the classy is included in
the predictionh(x) or not; b is the number of classes different fromy included inh(x); c = 1−a;
andd is the number of classes different fromy that are not included inh(x).

According to the matrix, Equation (1), ifh is a nondeterministic hypothesis and(x,y) ∈ X ×Y ,
we thus have the following definitions.

Definition 2 TheRecallin a query(i.e., an entry x) is defined as the proportion of relevant classes
(y) included in h(x):

R(h(x),y) =
a

a+c
= a = 1y∈h(x).

Definition 3 ThePrecisionis defined as the proportion of retrieved classes in h(x) that are relevant
(y):

P(h(x),y) =
a

a+b
=

1y∈h(x)

|h(x)|
.
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h(x) Precision Recall F1 F2

[1,2,3] 0.33 1 0.50 0.71
[1,2] 0.50 1 0.67 0.83
[1] 1 1 1 1

[2,3,4] 0 0 0 0

Table 1: ThePrecision, Recall, F1, andF2 for different predictions of a nondeterministic classifier
h for an entryx with class 1, (y = 1)

In other words, given a hypothesish, thePrecisionfor an entryx, that is,P(h(x),y), is the probability
of finding the true class (y) of the entry (x) by randomly choosing one of the classes ofh(x).

Finally, the tradeoff is formalized by

Definition 4 The Fβ is defined, in general, by

Fβ(h(x),y) =
(1+β2)PR

β2P+R
=

(1+β2)a
(1+β2)a+b+β2c

. (2)

Thus, for a nondeterministic classifier h and a pair(x,y),

Fβ(h(x),y) =

{

1+β2

β2+|h(x)| if y ∈ h(x)

0 otherwise.
(3)

The most frequently used F-measure isF1. For ease of reference, let us state that

F1(h(x),y) =
2y∈h(x)

1+ |h(x)|
.

Notice that for deterministic classifiers, the accuracy is equal toRecall, Precision, andFβ given
that|h(x)| = 1.

To illustrate the use of the F-measures of an entry, let us consider an example. If we assume that
the true class of an entryx is 1, (y = 1), then, depending on the value ofh(x), Table 1 reports the
Recall, Precision, F1, andF2. We observe that the reward attached to a prediction containing the
true class with another extra class ranges from 0.667 forF1 to 0.833 forF2; whereas the amounts
are lower when the prediction includes 2 extra classes.

Once we have the definition ofFβ for individual entries, it is straightforward to extend it to a
test set. Hence, whenS′ is a test set of sizen, the average loss on it will be computed by

R∆ND
(h,S′) =

1
n

n

∑
j=1

∆ND(h(x′j),y
′
j) =

1
n

n

∑
j=1

(

1−Fβ(h(x′j),y
′
j)
)

(4)

=
1
n

n

∑
j=1

(

1−
1+β2

β2 + |h(x′j)|
1y′j∈h(x′j )

)

.

The averageRecallandPrecisioncan be similarly defined. For ease of reference, let us remark
that theRecall is the proportion of times thath(x′) includesy′ and is thus a generalization of the
deterministic accuracy.
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Figure 1: Conditional probabilities of class+1 given the discriminant value (horizontal axis) of
entriesx ∈ X . Vertical bars separate the region where both classes{−1,+1} have a
probability of over 1/3

3.1 Nondeterministic Classification in a Binary Task

To complete this section, let us show what nondeterministic classifiers look like inthe simplest case,
which will be further developed in the following sections. Let us assume thatin a binary classifica-
tion task (the classes are codified by−1 and+1) we have a loss 1 for each false classification. On
the other hand, we are allowed to predict both classes, in which case the loss will be 1/3: theF1 for
a classification of 2 classes containing the true one; see Table 1. The extension for dealing withFβ,
with β 6= 1, is straightforward.

The optimum classifier will return only one class when it is sufficiently sure. In doubtful situa-
tions, however, the nondeterministic classifier should opt for predicting the2 classes. This will be
the case whenever the probability of error for both classes is higher than1/3, since this is the loss
for predictions of two classes; see Figure 1. Therefore, if we have theconditional probabilities of
classes given the entries, the optimum classifier will be given by

hND(x) =







{−1} i f η(x) < 1/3
{−1,+1} i f 1/3≤ η(x) < 2/3
{+1} i f 2/3≤ η(x),

(5)

where we are representing byη(x) the posterior probability:

η(x) = Pr(class= +1|x).

Notice that Equation (5) is equivalent to the generalized Bayes discriminantfunction described
in Bartlett and Wegkamp (2008) when the cost of using the reject option is calculated using theF1

loss function.
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Algorithm 1 The nondeterministic classifiernd•, an algorithm for computing the prediction with
one or more classes for an entryx provided that the posterior probabilities of classes are given

Input:
{

Cj : j = 1, ..,ksorted byPr(Cj |x)
}

Input: β: trade-off betweenRecallandPrecision
Initialize i = 0, ∆0 = 1
repeat

i = i +1
∆i = 1− 1+β2

β2+i ∑i
j=1Pr(Cj |x)

until ((i == k) or (∆i−1 ≤ ∆i)
if (∆i−1 ≤ ∆i) then

return {Cj : j = 1, .., i−1}
else

return {Cj : j = 1, ..,k}
end if

4. Nondeterministic Classification Using Multiclass Posterior Probabilities

In the general multiclass setting presented at the beginning of Section 3, letx be an entry of the
input spaceX and let us now assume that we know the conditional probabilities of classes given
the entry,Pr(Cj |x). Additionally, we shall assume that the classes are ordered according to these
probabilities. In this context, we wish to define the

h(x) = Z ⊂ Y = {C1, . . . ,Ck}

that minimizes the risk defined in Equation (1) when we use the nondeterministic loss given byFβ,
(Equations 2, 3, and 4). We shall prove that such anh(x) can be computed by Algorithm 1, which
does not need to search through all non-empty subsets ofY .

Theorem 1 (Correctness). If the conditional probabilities Pr(Cj |x) are known, Algorithm 1 returns
the nondeterministic prediction for h(x) that minimizes the risk given by the loss1−Fβ.

Proof To minimize the risk, Equation (1), it suffices to compute

∆x(Z) = ∑
y∈Y

∆ND(Z,y)Pr(y|x), (6)

with Z ⊂ {C1, . . . ,Ck}. Then, we only have to define

h(x) = argmin{∆x(Z) : Z ⊂ {C1, . . . ,Ck}}.

The proof has two parts. First, we shall see that ifh(x) hasr classes, then those are ther classes
with the highest probabilities; bearing in mind that classes are ordered,h(x) = Zr = {Cj : j = 1, .., r}.
For this purpose, we need to see that any other subset ofr classes will increase the loss due toZr .
This is a consequence of the following.

The value of Equation (6) forZr is ∆r in Algorithm 1. In fact, with the complementary proba-
bility of ∑r

j=1Pr(Cj |x), we expect a loss of 1: thetrueclass will not be one of ther first classes. On
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the other hand, with this sum of probabilities, thetrue class will be inh(x), and therefore the loss
will be 1 minus theFβ of the predictionh(x) = {Cj : j = 1, .., r}:

∆x (Cj : j = 1, .., r) =

(

1−
r

∑
j=1

Pr(Cj |x)

)

+

(

r

∑
j=1

Pr(Cj |x)

)

(

1−
1+β2

β2 + r

)

= 1−
1+β2

β2 + r

r

∑
j=1

Pr(Cj |x)

= ∆r .

Notice that for any other subset ofr classes, we could achieve a similar expression simply by
modifying the set of posterior probabilities of the last sum. Therefore, to minimize the value of
Equation (6) withr classes, we need those with the highest probability.

In the second step, we only have to show that the indexr returned by the Algorithm is the
right one. We shall see that the search for the bestr can be accomplished in linear time, as in the
Algorithm. In fact, we shall establish that when the Algorithm reaches the number of classes with
which the loss increases, adding further classes will only increase the loss. In symbols, we shall
prove that

∆r ≤ ∆r+1 ⇒ ∆r+1 ≤ ∆r+2.

To do so, we shall next express the exit condition of the loop∆r ≤ ∆r+1 when(r +1) ≤ k in a
different way. The following expressions are equivalent:

∆r ≤ ∆r+1 (7)

1+β2

β2 + r

r

∑
j=1

Pr(Cj |x) ≥
1+β2

β2 + r +1

r+1

∑
j=1

Pr(Cj |x)

(β2 + r +1)
r

∑
j=1

Pr(Cj |x) ≥ (β2 + r)
r+1

∑
j=1

Pr(Cj |x)

r

∑
j=1

Pr(Cj |x) ≥ (β2 + r)Pr(Cr+1|x).

Therefore, if∆r ≤ ∆r+1 and(r +1) ≤ k, then

Pr(Cr+1|x)+
r

∑
j=1

Pr(Cj |x) ≥ (β2 + r)Pr(Cr+1|x)+Pr(Cr+1|x).

However, bearing in mind that the classes are ordered, we have thatPr(Cr+1|x) ≥ Pr(Cr+2|x),
and using Equation (7), we conclude that

r+1

∑
j=1

Pr(Cj |x) ≥ (β2 + r +1)Pr(Cr+2|x) ⇔ ∆r+1 ≤ ∆r+2.
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4.1 Corollaries

In order to draw some practical consequences, let us reword the previous Theorem. It states that the
optimum classification for an inputx is the set ofr classes with the highest posterior probabilities,
wherer is the lowest integer that fulfills

r

∑
j=1

Pr(Cj |x) ≥ (β2 + r)Pr(Cr+1|x), (8)

or the set of all classes when this condition is not fulfilled by anyr. Expressed in this way, it is
straightforward to see that for two classes, withβ = 1, Algorithm 1 coincides with the rule defined
in Equation (5).

Additionally, we would like to underscore that Equation (8) hinders the use of näıve thresholds
to compute nondeterministic predictions. Thus, a nondeterministic classifier thatalways predicts
the topr classes for a constant valuer is not a correct option. Equation (8) shows thatr, at least,
depends on the inputx.

Moreover, we should not search for a thresholdλ to return, for all inputs, the firstr classes
whose sum of probabilities is aboveλ:

r

∑
j=1

Pr(Cj |x) ≥ λ. (9)

Note that given aλ value in[0,1], Equation (9) straightforwardly gives rise to a nondeterministic
classifier as follows. For each inputx, if the set of classes is ordered according to their posterior
probabilities, we define

hλ(x) =

{

C1, . . . ,Cr :
r

∑
j=1

Pr(Cj |x) ≥ λ &
r−1

∑
j=1

Pr(Cj |x) < λ

}

. (10)

Again, the right-hand side of Equation (8) shows that the threshold (λ) would depend on the
number of classes predicted, the probability of the first class excluded from the prediction, and the
parameterβ: the trade-off betweenPrecisionandRecall. The idea behind Equation (8) is that, once
we have decided to include the topr classes, to add the(r + 1)th class we should guarantee that
Pr(Cr+1|x) is not much smaller than the sum of probabilities of the topr classes.

However, it may be argued that the inaccuracy of posterior probabilities would partially invali-
date the preceding theoretical discussion. In fact, posterior probabilitiesare not known in practice:
they are estimated by algorithms that frequently try to optimize the classification accuracy of a
hypothesis that returns the class with the highest probability. In other words, probabilities are dis-
criminant values instead of thorough descriptions of the distribution of classes in a learning task.
Therefore, in the experiments reported at the end of the paper, we shallconsider the classifiers
defined by Equation (10) as a possible alternative method to the nondeterministic classifier of Algo-
rithm 1.

5. Experimental Results

In this section we report the results of a set of experiments conducted to evaluate the proposals
of this paper. The next subsection describes the settings used in the experiments: deterministic
learners, data sets, procedures to set parameters, and methods to estimatethe scores.
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Data sets #classes #samples #features
zoo 7 101 16
iris 3 150 4
glass 6 214 9
ecoli 8 336 7
balance scale 3 625 4
vehicle 4 846 18
vowel 11 990 11
contraceptive 3 1473 9
yeast 10 1484 8
car 4 1728 6
image 7 2310 19
waveform 3 5000 40
landsat 6 6435 36
letter recognition 26 20000 16

Table 2: Description of the data sets downloaded from the UCI repository.The classes are not
linearly separable

We have two goals here. On the one hand, we compare our approach with two alternative
methods. The comparison will first be established with a state-of-the-art set-valued algorithm, the
Näıve Credal Classifier(NCC)(Zaffalon, 2002; Corani and Zaffalon, 2008a,b). This algorithm is an
extension of the traditional Naı̈ve Bayes classifier towards imprecise probabilities and is designed
to return robust set-valued (nondeterministic) classifications. We show that our method can improve
the performance ofNCC. We then contrast our method with an implementation of Equation (10);
once again our proposals outperform this alternative way to learn nondeterministic classifiers.

On the other hand, we analyze the influence of a number of factors relatedto nondeterministic
learners. We accordingly discuss how the scores of a nondeterministic learner are affected by the
quality of posterior probabilities. We see that the performance of a nondeterministic classifier is
highly correlated with the accuracy of its deterministic counterpart. The section ends with a study
of the meaning of the parameterβ.

5.1 Experimental Settings

We used three different methods for learning posterior probabilities in order to build nondeter-
ministic classifiers. First, we employed the Naı̈ve Bayes(NB) used byNCC as its deterministic
counterpart (Corani and Zaffalon, 2008b). The second deterministiclearner was a multiclassSVM;
the implementation used waslibsvm(Wu et al., 2004) with the linear kernel. Last, we employed the
logistic regression (LR)of Lin et al. (2008). It should be noted that we are not only using the multi-
class classifiers learned bySVMor LR. Primarily, we apply the mechanisms that provide posterior
probabilities from their outputs.

For each of these learners, we builtndd, whered stands for the name of the deterministic coun-
terpart,nb, svmor lr . Recall thatndd is the implementation of Algorithm 1 that aims to optimize
F1; that is,β = 1.
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Data sets #classes #samples #features Original source Used in
brain 5 42 5597 Pomeroy et al. (2002) [1]
nci 9 60 7131 Ross et al. (2000) [1, 3, 4]
lung 6 6 70 16387 Tamayo et al. (2007)
leukemia 3 3 72 12582 Armstrong et al. (2002) [2]
lung 4 4 82 9036 Tamayo et al. (2007)
lung 11 11 89 4459 Tamayo et al. (2007)
tumors 11 11 174 12533 Su et al. (2001) [1, 2]
tumors 14 14 190 16063 Ramaswamy et al. (2001) [1, 2, 4]
lung 16 16 201 493 Tamayo et al. (2007)
leukemia 7 7 327 12558 Yeoh et al. (2002) [2]

Table 3: Description of cancer microarray data sets used in the experimentsincluding the original
sources and papers from which they are taken. For the sake of brevity, we have denoted
the papers as follows: [1] Tibshirani and Hastie (2007), [2] Tan et al.(2005), [3] Staunton
et al. (2001), [4] Yeung and Bumgarner (2003)

In the experiments that follow, we used two kinds of data sets. First, we considered data sets
downloaded from the UCI repository (Asuncion and Newman, 2007), allof which have more ex-
amples than attributes. We included all the data sets that fulfill the following rules: continuous or
ordinal attribute values, no more than 40 attributes and no more than 20000 examples. The inten-
tion was to consider small data sets that are not linearly separable. Additionally, we excluded those
learning tasks with missing values or in which every deterministic learner considered(NB, SVM,
LR) achieves a proportion of successful classifications of over 95%; otherwise nondeterministic
learners would be too similar to their deterministic counterpart. A description of the group of data
sets considered can be found in Table 2.

We then evaluated the performance on learning tasks in which the aim was to classify cancer
patients from gene expressions captured by microarrays. Unlike the first package of data sets, all
the classes are now linearly separable given the dimensions of the input space and the number of
entries. Table 3 shows the details of these data sets.

Every table of scores (Tables 4, 5, 6, 7, 8) is devoted to reporting the experimental results
achieved in one of the kinds of data sets by one of the deterministic learners and by two nondeter-
ministic algorithms that are to be compared. All the tables have a similar layout. First,they contain
the scores of the deterministic learnerd: theF1 (or accuracy orRecall), and the Brier score, a mea-
sure for the quality of posterior probabilities (Brier, 1950; Yeung et al., 2005), computed by means
of

BS=
1
2n

n

∑
i=1

k

∑
j=1

([yi = Cj ]−Pr(Cj |xi))
2 .

Then we report, for each nondeterministic learner, theF1, Precision, Recall, and the average number
of classes predicted (|h(x)|). All the scores were estimated by means of a 5-fold cross validation
repeated 2 times. We did not use the 10-fold procedure, since in certain data sets there are too few
examples in some of the classes.

Following Dem̌sar (2006), we used the Wilcoxon signed ranks test to compare the performance
of two classifiers when the measurements areF1, Precision, Recall, or the average|h(x)|. Unless
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NB NCC ndnb

Data set F1 BS F1 P R |h(x)| F1 P R |h(x)|
zoo 95.0 0.03 92.3 90.5 100.0 1.496 95.2 94.3 97.0 1.055
iris 93.3 0.05 92.9 92.5 94.0 1.037 93.9 93.5 94.7 1.023
glass 68.0 0.22 69.2 66.5 76.6 1.321 70.7 67.6 77.6 1.253
ecoli 83.5 0.12 82.0 81.0 85.7 1.240 84.4 82.2 88.7 1.136
balance 73.9 0.16 76.0 74.2 79.7 1.132 79.9 74.9 90.1 1.370
vehicle 60.8 0.30 60.9 59.8 63.4 1.103 63.3 60.2 69.6 1.241
vowel 62.1 0.25 64.6 62.6 69.8 1.296 65.5 60.9 75.5 1.429
contra 50.0 0.30 50.3 50.1 50.6 1.013 56.6 47.9 74.6 1.670
yeast 58.1 0.28 58.4 58.2 59.0 1.037 60.8 54.4 74.3 1.500
car 86.8 0.11 87.3 87.0 87.8 1.017 83.4 76.6 98.0 1.487
image 90.9 0.08 91.4 90.5 94.8 1.195 91.2 90.9 92.0 1.026
waveform 80.1 0.17 80.1 80.0 80.4 1.007 80.9 80.0 82.5 1.051
landsat 82.0 0.17 82.0 81.6 83.1 1.058 82.1 81.9 82.4 1.011
letter 73.9 0.19 74.6 74.2 75.8 1.081 74.8 73.3 78.0 1.166

Table 4: Scores obtained by Naı̈ve Bayes, the Näıve Credal Classifier and nondeterministic classi-
fiers on UCI data sets using a 5-fold cross validation repeated 2 times. For ease of reading,
F1, Precision (P), and Recall (R) are expressed as percentages. The best nondeterministic
F1 for each data set is boldfaced

explicitly stated, we use the expression statisticallysignificant differencesto mean thatp < 0.01.
Additionally, in order to provide a quick view of the order of magnitude of the scores, we have
boldfaced the best nondeterministicF1 score for each data set.

To select the regularization parameter,C, for SVMandLR, we used a 2-fold cross validation
repeated 5 times performed on training sets. We searched withinC∈ [10−2, . . . ,102].

5.2 Nondeterministic Classifiers vs. Näıve Credal Classifiers

In this subsection, we compare our nondeterministic learner withNCC(Corani and Zaffalon, 2008b),
a state-of-the-art set-valued (nondeterministic) algorithm. In order to ensure a fair comparison, our
approach uses the Naı̈ve Bayes(NB) employed byNCC as its deterministic counterpart. Table 4
reports the scores ofNB, NCCand our algorithmndnb.

The nondeterministicndnb is significantly (remember that we are using Wilcoxon tests) better
thanNCC both in RecallandF1. Moreover,ndnb wins in 12 out of 14 data sets inF1, and in 11
out of 14 inRecall. However, the scores inPrecisionand size of predictions are more balanced;
the differences are not significant. InPrecision, NCCwins in 5 cases, loses in 8, and there is 1 tie
situation. The size scores are favorable toNCC in 8 out of 14 data sets.

To complete the comparison, we should discuss the results achieved on high dimensional data
sets (Table 3). Nevertheless, we do not show the scores on each data set. The characteristics of
these tasks are not appropriate for Naı̈ve Bayes (a large number of attributes with a small number
of examples); therefore, the posterior probabilities ofNBare poor (they are significantly worse than
those achieved bySVMandLR) and this affects the performance of our nondeterministic algorithm
andNCC. Our method tends to be almost deterministic, the average value for the size of predictions
is |h(x)| = 1.008. This is not optimal, as we shall see later, but it is acceptable behavior. However,
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SVM ndsvm
λ ndsvm

Data set F1 BS F1 P R |h(x)| F1 P R |h(x)|
zoo 94.0 0.08 38.9 24.6 100.0 4.390 94.2 92.4 98.0 1.134
iris 96.0 0.02 83.2 74.8 100.0 1.510 97.6 96.7 99.3 1.053
glass 61.7 0.26 63.7 53.3 85.0 1.711 63.0 55.9 77.3 1.484
ecoli 86.5 0.11 75.1 66.3 97.2 1.854 87.4 85.0 92.3 1.152
balance 91.7 0.06 83.8 77.5 98.7 1.528 91.3 89.0 98.1 1.272
vehicle 79.8 0.13 79.6 71.0 97.8 1.576 82.5 77.9 92.0 1.297
vowel 82.0 0.15 66.3 55.0 97.5 2.313 82.9 78.8 91.5 1.288
contra 51.3 0.29 55.9 48.3 71.3 1.599 57.7 46.7 83.1 1.960
yeast 59.0 0.27 60.6 50.4 82.2 1.817 62.4 53.4 81.6 1.706
car 85.3 0.11 82.8 76.1 97.3 1.475 85.6 83.0 90.8 1.169
image 95.9 0.03 84.8 79.1 99.8 1.579 96.1 95.3 97.9 1.058
waveform 86.4 0.10 85.7 80.0 97.1 1.343 87.6 81.5 91.8 1.126
landsat 86.8 0.09 84.4 78.4 97.6 1.453 87.8 85.7 91.9 1.139
letter 85.8 0.11 71.0 64.3 98.2 2.949 86.3 76.7 91.0 1.186

Table 5: Scores obtained bySVMlearners on UCI data sets using a 5-fold cross validation repeated
2 times. For ease of reading,F1, Precision (P), and Recall (R) are expressed as percentages.
The best nondeterministicF1 for each data set is boldfaced

LR ndlr
λ ndlr

Data set F1 BS F1 P R |h(x)| F1 P R |h(x)|
zoo 95.0 0.04 91.0 88.4 97.0 1.252 95.4 95.0 96.0 1.045
iris 96.7 0.05 74.4 61.7 100.0 1.767 94.4 92.2 99.0 1.137
glass 60.3 0.27 61.5 49.3 86.0 1.844 63.0 51.8 85.5 1.774
ecoli 87.5 0.11 76.9 68.3 96.1 1.668 87.0 84.4 92.1 1.173
balance 86.7 0.11 88.9 87.4 92.6 1.185 88.7 87.7 90.9 1.136
vehicle 77.0 0.16 74.8 64.9 95.3 1.674 79.2 74.1 89.7 1.342
vowel 57.9 0.30 54.1 41.5 83.5 2.226 57.8 48.6 79.7 1.908
contra 50.8 0.29 55.9 47.7 72.3 1.644 58.0 47.4 82.5 1.928
yeast 58.4 0.28 59.4 49.0 80.9 1.818 61.0 52.2 79.9 1.713
car 80.9 0.13 80.7 74.1 95.0 1.482 82.0 78.9 88.5 1.215
image 88.4 0.11 72.3 60.9 98.7 1.915 88.0 85.1 93.8 1.196
waveform 86.5 0.10 81.8 72.8 99.6 1.536 87.4 82.9 96.4 1.272
landsat 77.7 0.18 68.6 58.1 93.8 1.940 76.6 71.7 86.9 1.387
letter 71.8 0.24 49.3 36.5 90.7 3.253 70.3 64.9 82.5 1.556

Table 6: Scores obtained byLR learners on UCI data sets using a 5-fold cross validation repeated 2
times. For ease of reading,F1, Precision (P), and Recall (R) are expressed as percentages.
The best nondeterministicF1 for each data set is boldfaced

the scores ofNCCon these data sets are inadmissible; their classifiers predict almost all classes for
every example, their average values are:F1 = 25.73,P = 15.39,R= 100, and|h(x)| = 8.58.

In fact, the behavior ofNCC is difficult to predict, sometimes it is almost a deterministic clas-
sifier, whereas in other tasks the number of classes predicted byNCC is very high. Moreover, its
degree of nondeterminism is not related to the difficulty of the learning task. When the accuracy of
the deterministic classifiers decreases, the average number of classes predicted would be expected
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SVM ndsvm
λ ndsvm

Data set F1 BS F1 P R |h(x)| F1 P R |h(x)|
brain 81.8 0.15 59.2 44.9 97.5 2.504 82.9 78.0 93.8 1.401
nci 48.3 0.35 42.9 33.2 68.3 2.492 47.7 41.4 65.0 2.167
lung 6 72.1 0.21 65.7 57.9 85.7 1.907 73.0 70.4 78.6 1.221
leukemia 3 94.5 0.04 75.1 64.5 100.0 1.862 95.7 94.9 97.3 1.049
lung 4 87.1 0.11 73.9 63.0 96.9 1.743 87.3 85.3 91.4 1.122
lung 11 58.4 0.31 49.3 36.5 84.2 2.656 60.4 53.8 78.0 1.903
tumors 11 89.6 0.13 30.6 19.1 99.7 6.135 88.9 87.1 92.8 1.199
tumors 14 70.0 0.26 45.0 35.3 95.0 4.550 66.5 60.2 84.7 2.021
lung 16 84.8 0.17 25.0 14.5 100.0 7.440 87.3 83.1 95.8 1.266
leukemia 7 92.0 0.07 70.1 59.9 99.4 2.216 92.1 90.6 95.1 1.090

Table 7: Scores obtained bySVMlearners on cancer microarray data sets using a 5-fold cross vali-
dation repeated 2 times. For ease of reading,F1, Precision (P), and Recall (R) are expressed
as percentages. The best nondeterministicF1 for each data set is boldfaced

LR ndlr
λ ndlr

Data set F1 BS F1 P R |h(x)| F1 P R |h(x)|
brain 86.8 0.11 86.3 82.7 94.0 1.274 86.1 84.5 89.2 1.106
nci 55.8 0.33 56.7 55.8 58.3 1.142 57.8 56.7 60.0 1.158
lung 6 70.7 0.22 74.3 72.5 77.9 1.150 73.3 72.1 75.7 1.107
leukemia 3 97.3 0.02 92.2 88.8 100.0 1.258 97.7 97.3 98.7 1.028
lung 4 88.9 0.10 88.9 86.4 93.9 1.153 88.8 87.8 90.8 1.061
lung 11 69.0 0.24 69.1 65.2 77.5 1.354 68.9 65.7 75.9 1.316
tumors 11 94.8 0.05 89.5 85.9 99.1 1.421 93.7 93.0 95.1 1.057
tumors 14 75.3 0.18 76.8 73.9 83.2 1.337 76.8 75.2 80.3 1.145
lung 16 88.1 0.10 88.3 86.0 93.0 1.157 88.4 87.4 90.3 1.060
leukemia 7 91.9 0.07 90.6 87.9 96.3 1.202 91.9 91.4 93.1 1.040

Table 8: Scores obtained byLR learners on cancer microarray data sets using a 5-fold cross valida-
tion repeated 2 times. For ease of reading,F1, Precision (P), and Recall (R) are expressed
as percentages. The best nondeterministicF1 for each data set is boldfaced

to increase. However the correlation between the accuracy ofNB and|h(x)| of NCC is 0.24. In the
case ofndnb, this correlation is−0.75: negative and quite high.

5.3 Comparing nd with Another Alternative Method

In accordance with the discussion in Section 4.1, we shall now compare the nondeterministic clas-
sifiers learned by Algorithm 1 with the alternative classifier defined in Equation (10) that uses a
thresholdλ for the sum of posterior probabilities. The comparison will be established withpos-
terior probabilities provided bySVMandLR given that both outperform the accuracy achieved by
Näıve Bayes classifiers in the data sets used in these experiments. Theλ nondeterministic classifiers
will be denoted byndd

λ , whered stands for the deterministic counterpart.

To select the parameterλ, we use a grid search employing a 2-fold cross validation repeated 5
times, aiming to optimizeF1. The searching space depends on the learning taskS. If the proportion
of successful classifications for deterministic classifiers, the accuracy, is a, then we search within

2286



LEARNING NONDETERMINISTIC CLASSIFIERS

λ ∈ [a0,a1, . . . ,a5]; six options distribute froma to 0.99. In symbols,a0 = a,a5 = 0.99, andai+1−
ai = 0.99−a

5 .

In UCI data sets, Tables 5 and 6,ndsvm andndlr win the correspondingndλ in 13 out of 14
data sets inF1 andPrecision. In Recallwe have the opposite situation;λ classifiers win in 13 out
of 14 cases. Moreover,λ classifiers always predict more classes thanndsvm and ndlr . In other
words,λ classifiers predict more classes than necessary. All differences aresignificant. Thus, our
nd classifiers are better than those computed with theλ parameter.

In cancer microarray data, Tables 7 and 8,ndsvm always wins inF1, Precision, and average
|h(x)|; while ndsvm always loses inRecall. All differences are again significant. However, when
posterior probabilities are provided byLR, the differences are not significant inF1, althoughndlr

has 5 wins, 1 tie and 4 losses; inPrecisionand average size of predictions the differences are
significant in favor ofndlr . Furthermore, as usual, theRecallis significantly higher forλ classifiers.

The conclusion is thatλ classifiers seem to need more classes in their predictions thannd clas-
sifiers. In fact, Equation (9) only considers theRecall. In practice, this means moreRecall, but
lessPrecisionand F1. Therefore, to optimize theF1 measure, in an experimental environment,
Equation (8) is more adequate than Equation (9), as we have conjectured theoretically in Section
4.1.

5.4 The Importance of Posterior Probabilities

The objective of this subsection is to experimentally investigate the degree of dependency between
nondeterministic scores and the accuracy of posterior probabilities. In thisstudy we again employ
SVMandLRwith the collection of data sets detailed in Tables 2 and 3.

Let us first consider the set of UCI data sets. Comparing the results in Tables 5 and 6, it can
be seen that the scores ofndlr are significantly worse than those ofndsvm in F1, Precision, Recall
(p< 0.03), and in average size of predictions. The general message is thatndlr include unnecessary
classes in their predictions. The base posterior probabilities seem to be the cause of this behavior:
the Brier score ofLR is significantly worse than that ofSVM.

On the other hand, the scores obtained with cancer microarray data sets are shown in Tables 7
and 8. The characteristics of UCI and microarray data sets are quite different, and this affects
the performance of classifiers. The main difference is thatLR now has a significantly better Brier
score thanSVM. Moreover, thendlr algorithm achieves better results thanndsvm. The differences
are significant inF1, Precision, Recall(p < 0.02), and average|h(x)|. Yet again, inferior posterior
probabilities seem to be responsible for the inclusion of unnecessary classes in nondeterministic
predictions.

In the preceding discussion of the scores achieved by nondeterministic learners, we found sig-
nificant differences when the Brier scores of the deterministic counterparts presented significant
differences. In fact, the scores of a learner built with Algorithm 1 depend on the quality of the pos-
terior probabilities supplied by the corresponding deterministic learner. It seems plausible to draw
the conclusion that the better the posterior probabilities, the better the nondeterministic scores. In
order to quantify this statement, we compared deterministic Brier scores with nondeterministicF1,
Recall, andPrecisionvalues; see Figure 2. We separated the scores achieved by UCI and cancer
data sets and included the scores ofndnb in UCI data sets. Similar results would be achieved if we
compared nondeterministic scores with deterministic accuracy.
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Figure 2: Correlation between Brier scores andF1, Recall, andPrecision. The left column shows
the results with UCI data sets, while the right column uses cancer data sets. Similar results
would be achieved if we compared nondeterministic scores with deterministic accuracy

We observed that the correlations between the Brier scores of deterministiclearners and non-
deterministic scores (F1, Recall, andPrecision) are very high: their absolute values are in all cases
greater than 0.89. Therefore, in order to choose a nondeterministic approach in a practical appli-
cation, given a data set, it would be recommendable to first analyze the Brierscore of different
deterministic learners.
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Figure 3: Evolution ofF1, F2, Precisionand Recall on two UCI data sets (yeastandvowel) for
differentβ values and for the nondeterministic learners generated bySVM, LR, andNB

5.5 The Meaning ofβ

In this subsection, we analyze from the point of view of the user the role played by the parameterβ in
Algorithm 1. Its theoretical aim is to control the size of predictions: as theβ value increases, the size
of predictions will become bigger and therefore theRecallscores will be higher; see Equation (8).
The problem is that it is not always of interest to increaseRecallvalues, since that would worsenF1

scores: adding more classes in predictions increases incorrect answers.
In Figure 3 we show the evolution ofF1, F2, PrecisionandRecallon two UCI data sets (yeast

andvowel) for differentβ values and for the nondeterministic learners generated bySVM, LR, and
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NB. Quite similar graphs could have been generated for the other data sets used in the experiments
reported in this section.

Initially, β = 0 makes the nondeterministic classifiers deterministic. Therefore, the scoresrep-
resented in the left-hand side of all the graphs in Figure 3 are all the same: the accuracy of the de-
terministic classifier. Asβ values become higher, theRecallincreases and thePrecisiondecreases.
The main goal of the learning method proposed here is to look for a tradeoffof these measures that
is determined byβ, a user-modifiable parameter.

In practice, the value ofβ that the classifier must aim to optimize should be fixed by an expert
in the field of application in which the classifier is going to be employed. The kind of decisions that
one would like to take from nondeterministic classifications must be considered.

It can be observed in the graphs in Figure 3 that the best scores inF1 are not always achieved
for β = 1. With small values ofβ, F1 increases. However, when some point near 1 is exceeded,
theF1 score of the nondeterministic learner typically falls below the accuracy of thecorresponding
deterministic learner. Nonetheless, optimal values are frequently reachedaround thenominalvalue:
β = 1 (or 2 respectively). Slight improvements can be achieved inF1 (in generalFβ) if we use a grid
search forβ values to be used in Algorithm 1.

6. Conclusions

We have studied classifiers that are allowed to predict more than one class for entries from an input
space: nondeterministic or set-valued classifiers. Using a clear analogy with Information Retrieval,
we have proposed a family of loss functions based onFβ measures. After discussing such measures,
we derived an algorithm to learn optimal nondeterministic hypothesis. Given an entry from the
input space, the algorithm requires the posterior probabilities to compute the subset of classes with
the lowest expected loss.

The paper includes a set of experiments carried out on two collections of data sets. The first one
was downloaded from the UCI repository, the classes of which are not linearly separable. The sec-
ond group is formed by data sets whose input spaces represent microarray expressions of different
kinds of cancer, the classes of which are separable.

Using these benchmarks, we first compared nondeterministic learners obtained from a Näıve
Bayes with those learned by a state-of-the-art set-valued (nondeterministic) algorithm, the Näıve
Credal Classifier(NCC) (Zaffalon, 2002; Corani and Zaffalon, 2008a,b), an extension of the tradi-
tional Näıve Bayes classifier designed to return robust set-valued classifications. We showed that,
using the loss measures defined in this paper, our method can improve the performance ofNCC.
Additionally, an important advantage of our nondeterministic classifiers overNCC is that we can
control the degree of nondeterministic behavior. We can regulate the number of classes predicted by
fixing theFβ to be optimized: asβ is higher (the weight ofRecallis increased in the harmonic aver-
ageFβ), the size of our predictions grows (see Section 5.5). However the nondeterministic behavior
of NCC is quite difficult to predict.

In addition to Näıve Bayes, we used a multiclassSVMand a Logistic Regression. With the
posterior probabilities provided by these deterministic learners, we built another alternative method
to predict more than one class: the set of classes which the highest posterior probabilities summing
more than a thresholdλ. We also found that the classifiers built with our algorithm outperform this
option based on a threshold.
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On the other hand, in the experiments reported in this paper, we studied the role of the determin-
istic learners that explicitly provide posterior probabilities. We found that thebetter the posterior
probabilities, the better the nondeterministic classifiers. In fact we obtained very high correlations
between the Brier scores of deterministic probabilities and theF1, PrecisionandRecallvalues of
their nondeterministic counterparts.
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