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Abstract

We start by showing that in an active learning setting, threégron algorithm neec@(e—lz) labels

to learn linear separators within generalization ee:ofVe then present a simple active learning
algorithm for this problem, which combines a modificatiortted Perceptron update with an adap-
tive filtering rule for deciding which points to query. Fortdalistributed uniformly over the unit
sphere, we show that our algorithm reaches generalization after asking for jusﬁ(dlog%)
labels. This exponential improvement over the usual saogpiglexity of supervised learning had
previously been demonstrated only for the computatiormaltye complex query-by-committee al-
gorithm.

Keywords: active learning, perceptron, label complexity boundsinenlearning

1. Introduction

In many machine learning applications, unlabeled data is abundant but tatseérpensive. This
distinction is not captured in standard models of supervised learning, anohbtivated the field
of active learning in which the labels of data points are initially hidden, and the learner must pay
for each label it wishes revealed. If query points are chosen randtmelpumber of labels needed
to reach a target generalization ergprat a target confidence level1d, is similar to the sample
complexity of supervised learning. The hope is that there are alternataryigg strategies which
require significantly fewer labels.

An early dramatic demonstration of the potential of active learning was Breual.'s analysis
of the query-by-committee (QBC) learning algorithm (Freund et al., 199#g analysis is with
respect to thaelective samplinghodel: the learner observes a stream of unlabeled data and makes
spot decisions about whether or not to ask for each point’s label. dperghowed that if the data
is drawn uniformly from the surface of the unit sphereRifi, and the hidden labels correspond
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perfectly to a homogeneous (i.e., through the origin) linear separatortfrisnsame distribution,
then it is possible to achieve generalization egrafter seein@(% Iog%) points and requesting just
G(d Iog%) labels? an exponential improvement over the us@ag) sample complexity of learning
linear separators in a supervised setting. (Al Iog%) label complexity can be seen to be optimal
by counting the number of spherical caps of radiubat can be packed onto the surface of the
unit sphere inR9.) This remarkable result is tempered somewhat by the complexity of the QBC
algorithm, which involves random sampling from intermediate version sp#tes,omplexity of

the update step scales (polynomially) with the number of updates performed.

In this paper, we show how a simple modification of the perceptron updateecaisdal to
achieve the same sample complexity bounds (wihifactors), under the same streaming model
and the same uniform input distribution. Unlike QBC, we do not assume a disbmbover target
hypotheses, and our algorithm does not need to store previously atepaints, only its current
hypothesis. Moreover, in addition to requiring only one-at-a-time accessaimples (as opposed
to batch data access), neither our algorithm’s memory usage, nor its comptitagger example,
scales with the number of seen examgles.

Our algorithm has the following structure.

Set initial hypothesis vpeRY.
For t=0,1,2,....
Recei ve unl abel ed point Xx.
Make a prediction SGN(\ -X).
Filtering step: Deci de whether to ask for x's |abel.
If label y; is requested:
Update step: Set vi.1 based on v, X, V.
Adjust filtering rule.
el se: Virl = V.

UPDATE STEP.

The regular perceptron update, whose convergence behaviorstasfilyzed by Rosenblatt (1958),
consists of the following simple rule:

if (X,Yt) is misclassified, them_1 = + yiX.

It turns out that this update cannot yield an error rate better &@/I;), wherel; is the number
of labels queried up to timg no matter what filtering scheme is used.

Theorem 1 Consider any sequence of data poirgsx, X, . .. € RY which is perfectly classified by
some linear separator & RY. Suppose that perceptron updates are used, starting with an initial
hypothesis ¢ Let k be the number of updates performed upto time t, {dtevthe hypothesis at
time t, and letd; be the angle between u and vlrhen for any £ 0, if 6,1 < 6; thensing; >

1/(5v/k + [|vol|?).

This holds regardless of how the data is produced. When the points &ribudédd uniformly over
the unit spheref; > sing; (for 8; < T) is proportional to the error rate of. In other words, the

1. In this paper, th® notation is used to suppress multiplicative terms imldgglog% and Iog%.
2. See Monteleoni (2006) for an extended discussion of learning wiitheoconstraints.
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error rate isQ(1/+/k ), which in turn isQ(1/+/1;), since each update must be triggered by a label.
As we will shortly see, the reason for this slow rate is that the magnitude ofettoeptron update
is too large for points near the decision boundary of the current hygisthe

So instead we usevariantof the update rule, originally due to Motzkin and Schoenberg (1954):

if (%,Yt) is misclassified, thew1 =W — 2(W - % )%

(wherex; is assumed normalized to unit length). Note that the update can also be written as
Vit1 = Wt + 2yt |\t - %%, Since updates are only made on mistakes, in which gageSGN(v; - %),
by definition. Thus we are scaling the standard perceptron’s additilateby a factor of [2; - x|

to avoid oscillations caused by points close to the half-space represaniteal durrent hypothesis.
Motzkin and Schoenberg (1954) introduced this rule, in the contextleingplinear inequalities,
and called it the “Reflexion” method, due to certain geometric properties,itNtash we will dis-
cuss later. Hampson and Kibler (1999) subsequently applied it to learniay lseparators, in an
analysis framework that differs from ours. The same rule, but withaufabtor of two, has been
used in previous work (Blum et al., 1996) on learning linear classifiers fnoisy data, in a batch
setting. We are able to show that our formulation has the following generafiza¢idormance in a
supervised (non-active) setting.

Theorem 2 Pick anyd, € > 0. Consider a stream of data pointsdcawn uniformly at random from
the surface of the unit spherelRf!, and corresponding labels that are consistent with some linear
separator. When the modified Perceptron algorithm (Figure 2) is appli¢tiscstream of data, then
with probability1 — o, after O(d(log% +log %)) mistakes, its generalization error is at mast

This contrasts favorably with thé(g) mistake bound of the Perceptron algorithm, and a more
recent variant, on the same distribution (Baum, 1997; Servedio, 199@anWwhile, in terms of
lower bounds, Theorem 1 also applies in the supervised case, arglggiesver bound on the
number of mistakes (updates) made by the standard perceptron. Finalyighbe question of
how many samples are needed in the supervised setting (as opposed tmbae afimistakes). For
data distributed uniformly over the unit sphere, this is known téb%) (lower bound, Long, 1995,
and upper bound, Long, 2003).

FILTERING STEPR

Given the limited information the algorithm keeps, a natural filtering rule is toygo@ntsx; when
[Vt - %| is less than some threshadd The choice ofg is crucial. If it is too large, then only a
miniscule fraction of the points queried will actually be misclassified (and thugetrigpdates)—
almost all labels will be wasted. On the other hands ifs too small, then the waiting time for
a query might be prohibitive, and when an update is actually made, the maguoittiis update
might be tiny.

Therefore, we set the threshold adaptively: we sdrigh, and keep dividing it by two until we
reach a level where there are enough misclassifications amongst the penesq By wrapping
this filtering strategy around the modified Perceptron update, we get ae &drning algorithm
(Figure 4) with the following label complexity guarantee.

Theorem 3 Pick anyd, e > 0. Consider a stream of data pointsdrawn uniformly at random from
the surface of the unit spherelRf, and corresponding labels that are consistent with some linear
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separator. With probabilityl — 9, if the active modified Perceptron algorithm (Figure 4) is given a
stream 0fO(£ log 1) such unlabeled points, it will reque(dlog 1) labels, mak&(dlog ) errors
(on all points, labeled or not), and have final errgre.

The proofs of Theorems 1 through 3 are in Sections 4 through 6, risgec

2. Related Work

Much of the early theory work on active learning was in thwery learningmodel, in which the
learner has the ability to synthesize arbitrary data points and request thels.[aSee Angluin
(2001) for an excellent survey of this area. In this paper, we conaidéferent setting, in which
(1) there is an underlying joint distribution over data points and labels, €letirner has access to
(unlabeled) data points drawn at random from this distribution, and (3g¢#neer is able to request
labels only for points obtained in this way, not for arbitrary points. Thisnfaork for active
learning was originally introduced by Cohn, Atlas, and Ladner (18%#%ng with a simple and
elegant querying algorithm. Unless we specify otherwise, we will use thegelective sampling
to denote the framework. In this work, we focus on tkalizablesetting: the hypothesis class
which we consider for learning contains a classifier with zero error owlahe distributiorf. Our
contribution to active learning is for online learning of linear separatoutiir the origin, under
the uniform distribution.

Several methods for learning linear separators (or their probabilistiogues) in the selective
sampling framework, have been proposed in the literature. Some haveshesn to work rea-
sonably well in practice, for example Lewis and Gale’s sequential algofibirtext classification
(Lewis and Gale, 1994), which has batch access to the remaining unlalaéegoints at each it-
eration. Several of these are similar in spirit to our approach, in that thesy gpoints with small
margins, such as Tong and Koller’'s active learning algorithms that usppgwector machine
(SVM) as the underlying classifier (Tong and Koller, 2001).

On the theoretical side, there have been some encouraging uppeshwutabel complexity;
however, some of the schemes achieving them have not yet been gfticent. Dasgupta (2005)
provided a result for learning general hypothesis classes, in a agasin, realizable setting. For
homogeneous half-spaces with data distributed uniformly on the spheneghisimplies an upper
bound on label complexity df)(dlogz(%)). Balcan, Beygelzimer, and Langford (2006) provided
a technique for learning general hypothesis classes, in a non-Bayagizostic setting, for which
they showed a label complexity upper boundfh(ﬂzlog%) for learning linear separators under
the uniform input distributioR. Both of these results rely on schemes that are computationally
prohibitive, requiring exponential storage and/or computation.

The literature contains several active learning algorithms that are batiblie@o implement
(at least in special cases) and have label complexity guarantees,ghlithone of them is quite as
simple as the algorithm we present in this paper. We have already disdhssiadbel complexity
upper bound attained by Freund et al. (1997) for the Query By Committeathly of Seung et al.
(1992). More recently, it was shown how to efficiently implement this schemlnear separators
under certain prior distributions, and the empirical results were enciogrégilad-Bachrach et al.,

3. The conference version dates back to NIPS 1989, with a supétketaauthors.

4. Theagnosticsetting removes this assumption.

5. This bound was further tightened(flﬁd1~5log %), in Balcan et al. (2007), and this scheme has also been analyzed by
Hanneke (2007), who introduced a new label complexity measure.
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2005). Cesa-Bianchi et al. (2003) provided regret bounds oreatse sampling algorithm for
learning linear thresholds from a stream of iid examples corrupted bynamthss noise whose
rate scales with the examples’ margins. For half-spaces under the unifpundistribution, in
the realizable setting, the algorithm of Balcan et al. (2006) can be implememriidntly, as
shown by Balcan et al. (2007), which analyzed various margin-basbditpies for active learning,
matching our label complexity bound in the same setting. Dasgupta, Hsu, amelistni (2007)
recently gave an active learning algorithm for general concept d@s$iee non-Bayesian, agnostic
setting (a generalization of the original selective sampling algorithm of Coaln £994) which, for
half-spaces under the uniform input distribution, in the realizable casea fabel complexity upper
bound ofO(d*®log?).

Cesa-Bianchi et al. (2004) analyzed an algorithm which conforms ghiguhe same template
as ours but differs in both the update and filtering rule—it uses the regataeptron update and
it queries points¢ according to a fixed, randomized rule which favors smallx|. The authors
make no distributional assumptions on the input and they show that in termssiff@ase hinge-
loss bounds, their algorithm does about as well as one which gudriebels. The actual fraction
of points queried varies from data set to data set. In contrast, our olejéstio achieve a target
generalization error with minimum label complexity, although we also obtain a mibtaked (on
both labeled and unlabeled points) under our distributional assumption.

Itis known that active learning does not always give a large improveméme sample complex-
ity of learning linear separators. For instance, in our setting, in which ddiatiibuted uniformly
over the unit sphere, Dasgupta (2004) showed that if the target liaparator is allowed to be non-
homogeneous, then the number of labels required to reachseis@(%), no matter what active
learning scheme is used. This lower bound also applies to learning honoagdimear separators
with respect to an arbitrary distribution. In the fully agnostic settingaf&inen (2006) provided a

lower bound on(Q—zz), wheren is the error rate of the best hypothesis in the concept class.

3. Preliminaries

In our model, all data; lie on the surface of the unit ball iR®, which we denote b
S= {xeRd e 1}.

Their labelsy; are either—1 or +1, and the target function is a half-spacex > 0 represented
by a unit vectoru € RY which classifies all points perfectly, that i,(u-x) > 0 for all t, with
probability one.

For any vector € RY, we definev= ﬁ to be the corresponding unit vector.

Our lower bound (Theorem 1) is distribution-free; thereafter we williagsthat the data points
¥ are drawn independently from the uniform distribution cSer

Under the uniform input distribution, any hypothesis RY has error

arccosu- V)

€(V) = Pres[SAN(V- X) # SGN(U- X)] = >

We will refer to the error rate of a hypothesisas itsgeneralization erroy since in the realizable
case the target itself has zero error.
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Figure 1: The projection of the error regignonto the plane defined hyandv;.

For a hypothesig, we will denote the angle betweerandv; by 6;, and we will define the error
region ofv; as; = {x € S|SG\(v - x) # SG\(u-x) }. Figure 1 provides a schematic of the projection
of the error region onto the plane definedbgndy;.

We will use the ternmargin in the context of learning half-spaces, to denote simply the distance
from an example to the separator in question, as opposed to the standafithis term (as the
minimum over examples of this distance with respect to the target separatpexample, we will
denote the margin of with respect tos as|x- v).

We will use a few useful inequalities féron the interval0, 7].

4 1—cosB
2T e =

2 .
—-0<sind <
]

(1)
(2)

D NIk

1-cosf
92

Equation (1) can be verified by checking that @oin this interval,
and evaluating it at the endpoints.
We will also make use of the following lemma.

is a decreasing function,

Lemma 4 For any fixed unit vector a and ary< 1,

< Pes [ra'xr < V] <v.

vd

INES

The proof is deferred to the appendix.

4. A Lower Bound for the Perceptron Update

Consider an algorithm of the following form:
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Pi ck some vp e RY.

Repeat for t=0,1,2,....
Get sone (x,y) for which y(v-x) <O0.
Vir1 =W +YX

On any update,
Viel- U=V -Uu+y(X-u). (3)
Thus, if we assume for simplicity thay -u > 0 (we can always just start count when this first
occurs) then, - u > 0 always, and;, the angle between andv; is always acute. Sincgu|| = 1,
the following holds:
|It|| cOSBy = v - u.

The update rule also implies
Ve al|? = e 1+ 1+ 2y( - ). (4)

Thus ||w||? <t + ||vo|/? for all t. In particular, this means that Theorem 1 is an immediate conse-
guence of the following lemma.

Lemma5 Assumey-u > 0 (i.e., start count when this first occurs). Then

6.1 <6 = sinG > min{;’5\|1\/t||}'
Proof Figure 1 shows the unit circle in the plane definedubgndv;. The dot product of any
pointx € RY with eitheru or v depends only upon the projectionsinto this plane. The point is
misclassified when its projection lies in the shaded region. For such pgints) is at most sii;
(point (i)) andy(v - x) is at least-||w || sin6; (point (ii)).
Combining this with Equations (3) and (4), we get

Vi - U+ SinG,
[V]|? +1— 2||w]| sin6y.

Vir1-U

<
Vel >

To establish the lemma, we first assuag; < 6; and sirB; < ﬁ and then conclude that 9pn>
1

B;.1 < 6; implies

(U-Vey1)? (U- v +SinB)?
co$ 6 < co$6q = < .
T weall? T w2+ 12w singy
The final denominator is positive since 8jr< ﬁ Rearranging,

(|[v]|? +1—2||w ]| sinB;) cogB, < (u-w)2+Sir? 6+ 2(u- ) sindy,

and using|v|| cosB; = (uU-w):

(1—2||w|sin6;) co$ B, < sir?6; + 2||v|| sin6; cosh.
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Inputs: dimensionality d and budget on nunber of updates
(m stakes) M.
Let vi=x3y1 for the first example (x1,y1).
For t=1to M:
Let (x,y:) be the next exanple with y(x-v) <O.
Vi1 = Vi — 2(V - %)%

Figure 2: The (non-active) modified Perceptron algorithm. The starRienckptron update;, 1 =
Vi + i X, is in the same direction (noye = —SGN(V; - X)) but different magnitude (scaled
by a factor of 2v; - ).

Again, since sif < g1, it follows that(1 2] siné) > £ and that 2v; | siné; cosd; < Z. Using

cof = 1—sir?, we then get

3 . . 2
g(l—smzet) < S|n26t+g,

which works out to sif6; > 1, implying sing; > 1. [ |

The problem is that the perceptron update can be too largR? (e.g., Figure 1), whe# is
tiny, the update will cause . ; to overshoot the mark and swing too far to the other side ahless
|Ivt|| is very large: to be precise, we nefd| = Q<si%el)- But ||v|| grows slowly, at best at a rate
of \/t. If sin is proportional to the error of, as in the case of data distributed uniformly over
the unit sphere, this means that the perceptron update cannot stably maimésior rate< € until
t=0(3).

B2

5. The Modified Perceptron Update

We now describe a modified Perceptron algorithm. Unlike the standard@®enteit ensures that
\; - U is increasing, that is, the error afis monotonically decreasing. Another difference from the
standard update (and other versions) is that the magnitude of the duyperthesis||v||, is always
1, which is convenient for the analysis.

The modified Perceptron algorithm is shown in Figure 2. We now show thatiime ofv; stays
at one. Note thaftv|| = 1 and

IVesal? = Ivell? + 4(ve -x) %1% )17 — 40w - %) = 1

by induction. In contrast, for the standard perceptron update, the mdgmitw increases steadily.
With the modified update, the error can only decrease, besausenly increases:

Vg1 U=V -U—2(Vt - %) (% -U) = Ve - U+ 2|Ve - X | % - U (5)
The second equality follows from the fact thatmisclassifiedx,. Thusv; - u is increasing, and

the increase can be bounded from below by showing|thak||x - u| is large. This is a different
approach from previous analyses.
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Hampson and Kibler (1999) previously used this update for learning Isegaarators, calling it
the “Reflection” method, based on the “Reflexion” method due to Motzkin @hdé&hberg (1954).
These names are likely due to the following geometric property of this update:

X Vi1 =XVt —20% V) (% %) = — (% - W)

In general, one can consider modified updates of the fgrin=v; — o (v - % )%, which corresponds

to the “Relaxation” method of solving linear inequalities (Agmon, 1954; Motzkith &choenberg,
1954). Wher # 2, the vectors; no longer remain of fixed length; however, one can verify that
their corresponding unit vectovs Satisfy

Vip1-U= (\7t'u+0(\\7t~xt|]xt~u|)/\/1—0((2—0()(\7t~xt)2,

and thus any choice af € [0, 2] guarantees non-increasing error. Blum et al. (1996) asedl to
guarantee progress in the denominator (their analysis did not rely oregeoigp the numerator) as
long asv; - u and (% - % )*> were bounded away from 0. Their approach was used in a batch setting
as one piece of a more complex algorithm for noise-tolerant learning.risemuential framework,

we can boundv; - % ||% - u] away from O in expectation, under the uniform distribution, and hence
the choice ofr = 2 is most convenient, but = 1 would work as well. Although we do not further
optimize our choice of the constami this choice itself may yield interesting future work, perhaps
by allowing it to be a function of the dimension.

5.1 Analysis of (Non-Active) Modified Perceptron

How large do we expedt; - x| and|u- x| to be for an errofx, y;)? As we shall see, id dimensions,
one expects each of these terms to be on the orddr B£sin6;, where sif; = /1 — (V -u)2.
Hence, we might expect their product to be ab@ut- (v - u)?)/d, which is how we prove the
following lemma.

Note, we have made little effort to optimize constant factors.

Lemma 6 For any y, with probability at Ieas%,

1
— u<(l—v- S
1-vii1-u<(1—v-u) (1 50d>

There exists a constante0, such that with probability at Iea%%, for any v,
c
— u< — V- —— .
1-Vii1-u<(l1—v-u) (1 d)

Proof We show only the first part of the lemma. The second part is quite similar. Wengille
that each ofv; - x/,|u- %] is “small” with probability at most 1/3. This means, by the union bound,
that with probability at least 1/3, they are both sufficiently large.

The error rate ofw is 6;/1, where co$; = v -u. Also define the error regio; =
{x € S|SAN(\ - x) # SGN(u- x) }. By Lemma 4, for anx drawn uniformly from the sphere,

Pres | vt -X| < & | &
XeS t _3Tl'\ﬂ _31_[-
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Using P[A|B] < P[A]/P[B], we have,

o } Besllve-X < 55l ey/(3m) 1
R Vi-X < Xe < =,
es o< g et < e < S -
Similarly for |u- x|, and by the union bound the probability that &; is within margin—~ from

f
eitheru orvis at mostz. Since the updates only occunxfis in the error region, we now have a

lower bound on the expected magnitudewpf x||u- x|:
2

6
(3mv/d)?
Hence, we know that with probability at least3l |v - x||u- x| > 1(0(11) since®? > sirf g, =
1— (v -u)? and(3m)? < 100 In this case,

1
Pucs | 10X > .

Xe Et:|

1—Vvii1-u < 1—vi-u—2|v-X||u-X|

1—(%-u)?
< 1-v-u———_—~—
= 2T TRy
_ 1+vi-u
= (1-w-u) (1 =od >,
where the first inequality is by application of (5). |

Finally, we give a high-probability bound, that is, Theorem 2, stated\wiheproof.

Theorem 7 With probabilityl — & with respect to the uniform distribution on the unit sphere, in the
supervised, realizable setting, afterMO(d(Iog% + Iog%)) mistakes, the generalization error of
the modified Perceptron algorithm is at mast

Proof By the above lemma, we can conclude that, for any vegtor

E[l—viy1-U < (1—v-u) (1_3(510d)>'

This is because witk> 1/3 probability it goes down by a factor of—lﬁ and with the remaining
< 2/3 probability it does not increase. Hence, afiemistakes,

E[l-vm-u<(1—vi-u )<1—1510j>M§<1—151m>M7

sincev; -u > 0. By Markov’s inequality,

1\M_,;
_ yu> [ ] <O0.
P[l VM u_(l 15 > 0 ]_6

Finally, using (1) and cdy = v - U, we seeP[ %682 > (1— 1a5)d Y] < 8. UsingM = 150dlog %
glvesP[BT“p > €] < 9, as required. [ |

The additional factor o% in the bound on unlabeled sampleé(glog%)) follows by upper
bounding the number of unlabeled samples until an update: when the hsgisdilas error rate,
the waiting time (in samples) until an update%i,sin expectation.
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A

Figure 3: The active learning rule is to query for labels on poinits I which is defined by the
thresholds on |v; - X|.

6. An Active Modified Perceptron

The ideal objective in designing an active learning rule that minimizes labeplexity would
be to query for labels only on points in the error regign, However without knowledge aof,
the algorithm is unaware of the location &f. The intuition behind our active learning rule is
to approximate the error region, given the information the algorithm does lwvavAs shown in
Figure 3, the labeling regioh is simply formed by thresholding the margin of a candidate example
with respect toy.

The active version of the modified Perceptron algorithm is shown in Figuféd algorithm is
similar to the algorithm of the previous section, in its update step. For its filterlagwe maintain
a thresholds and we only ask for labels of examples wijth- x| < s. Approximating the error
region is achieved by choosing the threshaldadaptively, so as to manage the tradeoff between
L being too large, causing many labels to be wasted without hi&irignd thus yielding updates),
andL only containing points with very small margins with respecttcsince our update step will
make very small updates on such points. We decrease the thresholdelgapter time, starting at
s1 = 1/+/d and reducing it by a factor of two whenever we have a run of labeleahebes on which
we are correct.

For Theorem 3, we select valuesRfL that yielde error with probability at least £ 8. The
idea of the analysis is as follows:

Definition 7 We say the tth update is “good” if,
c
1-Vir1-u<(l—w-u) <1— a) .

(The constant c is from Lemma 6.)

1. (Lemma 8) First, we argue thatis not too small (we do not decreasetoo quickly). As-
suming this is the case, then 2 and 3 hold.

2. (Lemma 10) We query for labels on at least an expected 1/32 efralis. In other words,
some errors may go undetected because we do not ask for their lakelse mumber of
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Inputs: Dinensionality d, maximum nurmber of |abels L,
and patience R
vi =Xy for the first exanple (x1,y1).

s =1/vd
For t=1to L:
VWit for the next exanple x: |x-w|<s and query its |abel.

Call this |abeled example (X,W).
If (X%-w)y: <O, then:
Vi1 = Vi — 2(Ve - %)%

S+1=$S
else
Vi+1 =M

If predictions were correct on R consecutive |abel ed
exanples (i.e., (X-v)yi>0Vie{t—R+1t—R+2,...,t}),
then set s:1=5/2, elses;1=5.

Figure 4: An active version of the modified Perceptron algorithm.

mistakes total should not be much more than 32 times the number of updates aiyactu
perform.

3. (Lemma 11) Each updateg®od(Definition 7) with probability at least /2.

4. (Theorem 3) Finally, we conclude that we cannot have too many laleglasg, updates, or
total errors, because half of our updates are good, 1/32 of ousearerupdates, and about
1/R of our labels are updates.

We first lower-boundy with respect to our error, showing that, with high probability, the thresh-
old 5 is never too small.

Lemma 8 With probability at leastl — L(%)R, we have:

1—(u-w)?

fort =1,2.....L, simultaneously. 6
1&:' ) i ) y ( )

§ 2>

Before proving this lemma, it will be helpful to show the following lemma. As beftet us define

& = {x€ §(x-w)(x-u) < 0}.

Lemma 9 For anyy e (0, l%’t)z]

1
Px(es[xt €& ‘ % - Vi | <y] > 7

Proof Let x be a random example froi@ such that|x- v| < y and, without loss of generality,
suppose that & x-v <y. Then we want to calculate the probability we err, thauisg < 0. We
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can decompose= X + (X- )y wherex' = x— (X- ) v is the component of orthogonal tox, that
is,X v = 0. Similarly foru’ = u— (u-w)w. Hence,

u-x= (U + (U- Vo)) - (X + (X V)vp) = U X+ (U= ) (X v).

In other Words we err iffi - X < —(u-w)(X-w%). Usingu-w € [0,1] and sincex-w €
[0,/(1— (u-w)?)/(4d)], we conclude that if

1—(u-w)?

/ [e—
u-x < d

(7)
then we must err. Also, let = HX’H be the unit vector in the dlrectlon aof. It is straightforward

V1= ( uw)?’
into (7), we must err ify” X < —1/,/4d(1— (x-w))2, and since,/1— (x-%)2 > y/1—1/(4d), it

suffices to show that,

to check that|X|| = /1 — (x-w)2. Similarly, for u we defineu” = Substituting these

~1
4d(1—1/(4d))

What is the probability that this happens? Well, one way to giekSwould be to first pickx - v
and then to pick/"uniformly at random from the s& = {X € SX' - v = 0}, which is a unit sphere
in one fewer dimensions. Hence the above probability does not depetitk @monditioning. By
Lemma 4, for any unit vectoa € S, the probability thatd’ -a| < 1/,/4(d—1) is at most ¥2,
so with probability at least M (since the distribution is symmetric), the signed quantityr"<

~1/\/4d—1) < —1/,/4d(1— 1/(4d)). m

We are now ready to prove Lemma 8.

Proof [of Lemma 8] Suppose that condition (6) fails to hold for sotise Lett be the smallest
number such that (6) fails. By our choicesf clearlyt > 1. Moreover, sinceis the smallest such
number, andi- v is increasing, it must be the case that 5_1/2, that is we just saw a run &
labeled example§s,yi), fori=t—R ... ,t — 1, with no mistakesy; = v, and

3_ZSK\/1_(4:;"Vt)2‘\/1_(zlf.|ﬁvi)2- )

Such an event is highly unlikely, however, for anyn particular, from Lemma 9, we know that the
probability of (8) holding for any particuldrand the algorithm not erring is at most8 Thus the
chance of having any such run of lengRlis at mostL (3/4)R. [ |

=

PXGS [U\,)?, <

OSX'VtSV] > .

I

Lemma 9 also tells us something interesting about the fraction of errors thatewmissing
because we do not ask for labels. In particular,

Lemma 10 Given that > /(1 — (u-w)2)/(16d), upon the tth update, each erroneous example
is queried with probability at Ieast 1/32, that is,
Res[[x-vi| <8 [x€&] > =,
32
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Proof Using Lemmas 9 and 4, we have

1—(u-v)2
Pesxe&Alx-w| <s] > PXES[XEEI/\|X'Vt|§ j<L6dt)]
1 1—(u-w 2
Z ZPXES [|X'Vt| S :(L&jt)]
1 1
> . /1—(u-w)2= —si
2 64m 64S|n9t
Ot
> .
- 32

For the last inequality, we have used (2). Howe®Rsg|x € &;| = 6; /T, SO we are querying an error
x € & with probability at least 132, that is, the above inequality implies,
Peslxe&nx-w|<s] 6/(32m 1

W< = > ~ 39
Pes[x-w| <s | x€&] PesX € & AL 32

Next, we show that the updates are likely to make progress.

Lemma 11 Assuming that;s> 1/(1— (u-w)2)/(16d), a random update is good with probability
at leastl/2, that is,

c 1
thes[(l—vtﬂ-u)g(l—vt-u) <1—a> ‘ IX-%| <sAX €& 25.

Proof By Lemma 10, each error is queried with probability 1/32. On the other hanidetmma 6
of the previous section, 63/64 of all errors are good. Since we amyiqgeat least 2/64 fraction of
all errors, at least half of our queried errors must be good. |

We now have the pieces to guarantee the convergence rate of the &gptiithe, thereby proving
Theorem 3. This involves bounding both the number of labels that we qsenell as the number
of total errors, which includes updates as well as errors that wess detected.

Theorem 3 With probabilityl — o with respect to the uniform distribution on the unit sphere, in the
realizable setting, using k= O(dlog(%)(log$ +loglogl)) labels and making a total number of
errors of O(dlog(%) (log 4 +loglog?)), the final error of the active modified Perceptron algorithm
will be €, when run with the above L anddRO(Iog% +log Iog%).

Proof LetU be the number of updates performed. We know, by Lemma 8 that with probability
1-L(DR,
5 Sinet > 6
~ 4/d " 2m/d

for allt. Again, we have used (2). By Lemma 11, we know that for @aghich is an update, either
(9) fails or

(9)

c
E[l-u-viriu] < (1—u-w) (1— %> .
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Hence, aftetJ updates, using Markov’s inequality,

4 c\V ) 3\

In other words, with probability + % - L(%)R, we also have

2d 4 2d ™® 1
<7 7<7 _— —_
U< c Iogé(l—u-vl_) < Ioga_)eE O<d|ogae>,

where for the last inequality we used (1). In tothl< R(U +log, é) This is because once

everyR labels we either have at least one update or we decgedsea factor of 2. Equivalently,
s. < 2U~Y/R. Hence, with probability + ¢ —L(3)R,

2m/d ~

Working backwards, we choo$e R = ©(dlog %) so that the above expression impI%sg €, as
required. We choose

2L dlog & d 1
R= 10Iogaq_@ <Iog 5 _O<Iogé+loglogs).

The first equality ensures tha(3)R < %. Hence, for thel andR chosen in the theorem, with
probability 1— %6, we have erro% < &. Finally, either condition (9) fails or each error is queried
with probability at Ieastsl—z. By the multiplicative Chernoff bound, if there were a totakof- 64U
errors, with probability > 1 — j—?, at leaste /64 > U would have been caught and used as updates.
Hence, with probability at most-1 o, we have achieved the target error using the specified number
of labels and observing the specified number of errors. |

7. Discussion and Conclusions

In the evolving theory of active learning, the most concrete, nontriiahario in which active
learning has been shown to give an exponential improvement in sample sitgn@ehat of learn-
ing a linear separator for data distributed uniformly over the unit spherehis paper, we have
demonstrated that this particular case can be solved by a much simpler algtivéhrwas pre-
viously known. Table 1 summarizes our contributions in context. We remanmds for all the
algorithms with respect to our setting: learning homogeneous half-spduwsstive data distribu-
tion is uniform on the unit sphere and separable through the origin, atireteyv of the algorithms
were designed for more general distributions. This paper gives the mumds stated for Percep-
tron, and provides an algorithm that attains the upper bounds in the bottmmWabile we list a
host of results for comparison, it is important to note that the algorithm ofjaa (2005) has not
shown to be efficiently implementable, and that we state bounds for this rdalizaiblem, even
though the algorithm of Balcan et al. (2007) can handle certain typesss,randA? (Balcan et al.,
2006) and the algorithm of Dasgupta et al. (2007) were designed téehtaecagnostic setting.
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Samples Mistakes Labels Noise tolerance
PAC bounds | O(¢), Q(9)
(4. 1 (4 1 1
Perceptron O(z) Q%) | O(2). Qz) | Qz) Unknown
D'05 O(¢log?l) | O(dlog?i) | O(dlog?l) | No
A? 6(¢logl) | 6(d*Plogl) | O(d Blogl) | Yes
DHM'07 6(£logl) | O(d*®logl) | O(d Blogl) | Yes
QBC O(¢log?) O(dlog?) O(dlogl) | No
BBZ'07 O(¢log?) O(dlog?) O(dlogl) | Yes
Our algoritm| O(%log?) O(dlog?) O(dlogl) | Unknown

Table 1: Results in context, for learning half-spaces through the oridig.last column indicates
whether each algorithm has been proved to exhibit some noise tolerameceusbd for
active learning.
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In all these papers, the uniform distribution of data has consistently gggomenable to analysis.
This is an impressive distribution to learn against because it is difficult in seege—most of the
data is close to the decision boundary, for instance—but a more commangssuwould be to
make the two classes Gaussian, or to merely stipulate that they are separatedabgin. As a
modest step towards relaxing this distributional assumption, we can shat ao$t) polynomial
dependence of the label complexity o(Monteleoni, 2006), when the input distributior\issimilar
to uniform, a setting studied in Freund et al. (1997).

Our algorithm is in some ways fine-tuned for linearly-separable data thalistributed uni-
formly; for instance, in the choice of the paramet®ands;. An immediate open problem is
therefore the following:

1. Design a version of the algorithm that is sensible for general data disrils which may not
be linearly separable.

2. What types of noise can be tolerated by this scheme?
3. For what distributions can its label complexity be analyzed?

A step towards the practical realization of our algorithm is the work of Moatéland Kaariainen
(2007), which applies a version of it to an optical character recognitiobl@m.
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Appendix A. Proof of Lemma 4

Proof [Lemma 4] Letr = y/+/d and letA4 be the area of d-dimensional unit sphere, that is, the
surface of gd + 1)-dimensional unit ball. Then

Pla-x| <r]

LA (1-A) T (1-A) Yz 28, 7 -3)/2
_ A -2 /0 (1-2)@3/2gz

First observe,

r
F(1—r2)d-3/2 < / (1—2)@3/2dz< . (10)
0

Forx e [0,0.5], 1—x > 4. Hence, for 0< r < 27%/2,

(1— r2)((173)/2 > 4fr2((df3)/2) > 27r2d.

297



DASGUPTA, KALAI AND MONTELEONI

So we can conclude that the integral of (10) igrif2,r] for r € [0,1/1/d]. The ratio 24 »/Aq_1
can be shown to be in the ranW, \/d] by straightforward induction od, using the definition
of theT function, and the fact thay_, = 2r/2/I (d/2). u
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