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Abstract
We start by showing that in an active learning setting, the Perceptron algorithm needsΩ( 1

ε2 ) labels
to learn linear separators within generalization errorε. We then present a simple active learning
algorithm for this problem, which combines a modification ofthe Perceptron update with an adap-
tive filtering rule for deciding which points to query. For data distributed uniformly over the unit
sphere, we show that our algorithm reaches generalization error ε after asking for justÕ(d log 1

ε )
labels. This exponential improvement over the usual samplecomplexity of supervised learning had
previously been demonstrated only for the computationallymore complex query-by-committee al-
gorithm.
Keywords: active learning, perceptron, label complexity bounds, online learning

1. Introduction

In many machine learning applications, unlabeled data is abundant but labeling is expensive. This
distinction is not captured in standard models of supervised learning, and has motivated the field
of active learning, in which the labels of data points are initially hidden, and the learner must pay
for each label it wishes revealed. If query points are chosen randomly, the number of labels needed
to reach a target generalization errorε, at a target confidence level 1− δ, is similar to the sample
complexity of supervised learning. The hope is that there are alternative querying strategies which
require significantly fewer labels.

An early dramatic demonstration of the potential of active learning was Freund et al.’s analysis
of the query-by-committee (QBC) learning algorithm (Freund et al., 1997).The analysis is with
respect to theselective samplingmodel: the learner observes a stream of unlabeled data and makes
spot decisions about whether or not to ask for each point’s label. The paper showed that if the data
is drawn uniformly from the surface of the unit sphere inR

d, and the hidden labels correspond
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perfectly to a homogeneous (i.e., through the origin) linear separator fromthis same distribution,
then it is possible to achieve generalization errorε after seeingÕ(d

ε log 1
ε ) points and requesting just

Õ(d log 1
ε ) labels:1 an exponential improvement over the usualÕ(d

ε ) sample complexity of learning
linear separators in a supervised setting. (AnΩ(d log 1

ε ) label complexity can be seen to be optimal
by counting the number of spherical caps of radiusε that can be packed onto the surface of the
unit sphere inRd.) This remarkable result is tempered somewhat by the complexity of the QBC
algorithm, which involves random sampling from intermediate version spaces;the complexity of
the update step scales (polynomially) with the number of updates performed.

In this paper, we show how a simple modification of the perceptron update can be used to
achieve the same sample complexity bounds (withinÕ factors), under the same streaming model
and the same uniform input distribution. Unlike QBC, we do not assume a distribution over target
hypotheses, and our algorithm does not need to store previously seen data points, only its current
hypothesis. Moreover, in addition to requiring only one-at-a-time access toexamples (as opposed
to batch data access), neither our algorithm’s memory usage, nor its computation time per example,
scales with the number of seen examples.2

Our algorithm has the following structure.

Set initial hypothesis v0 ∈ R
d.

For t = 0,1,2, . . ..
Receive unlabeled point xt.
Make a prediction SGN(vt ·xt).
Filtering step: Decide whether to ask for xt’s label.
If label yt is requested:

Update step: Set vt+1 based on vt ,xt ,yt.
Adjust filtering rule.

else: vt+1 = vt.

UPDATE STEP.

The regular perceptron update, whose convergence behavior was first analyzed by Rosenblatt (1958),
consists of the following simple rule:

if (xt ,yt) is misclassified, thenvt+1 = vt +ytxt .

It turns out that this update cannot yield an error rate better thanΩ(1/
√

lt), wherelt is the number
of labels queried up to timet, no matter what filtering scheme is used.

Theorem 1 Consider any sequence of data points x0,x1,x2, . . .∈R
d which is perfectly classified by

some linear separator u∈ R
d. Suppose that perceptron updates are used, starting with an initial

hypothesis v0. Let kt be the number of updates performed upto time t, let vt be the hypothesis at
time t, and letθt be the angle between u and vt . Then for any t≥ 0, if θt+1 ≤ θt thensinθt ≥
1/(5

√

kt +‖v0‖2).

This holds regardless of how the data is produced. When the points are distributed uniformly over
the unit sphere,θt ≥ sinθt (for θt ≤ π

2) is proportional to the error rate ofvt . In other words, the

1. In this paper, thẽO notation is used to suppress multiplicative terms in logd, log log 1
ε and log1

δ .
2. See Monteleoni (2006) for an extended discussion of learning with online constraints.
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error rate isΩ(1/
√

kt), which in turn isΩ(1/
√

lt), since each update must be triggered by a label.
As we will shortly see, the reason for this slow rate is that the magnitude of the perceptron update
is too large for points near the decision boundary of the current hypothesis.

So instead we use avariantof the update rule, originally due to Motzkin and Schoenberg (1954):

if (xt ,yt) is misclassified, thenvt+1 = vt −2(vt ·xt)xt

(where xt is assumed normalized to unit length). Note that the update can also be written as
vt+1 = vt + 2yt |vt · xt |xt , since updates are only made on mistakes, in which caseyt 6= SGN(vt · xt),
by definition. Thus we are scaling the standard perceptron’s additive update by a factor of 2|vt ·xt |
to avoid oscillations caused by points close to the half-space represented by the current hypothesis.
Motzkin and Schoenberg (1954) introduced this rule, in the context of solving linear inequalities,
and called it the “Reflexion” method, due to certain geometric properties it has, which we will dis-
cuss later. Hampson and Kibler (1999) subsequently applied it to learning linear separators, in an
analysis framework that differs from ours. The same rule, but without the factor of two, has been
used in previous work (Blum et al., 1996) on learning linear classifiers from noisy data, in a batch
setting. We are able to show that our formulation has the following generalization performance in a
supervised (non-active) setting.

Theorem 2 Pick anyδ,ε > 0. Consider a stream of data points xt drawn uniformly at random from
the surface of the unit sphere inRd, and corresponding labels yt that are consistent with some linear
separator. When the modified Perceptron algorithm (Figure 2) is applied tothis stream of data, then
with probability1−δ, after O(d(log 1

ε + log 1
δ)) mistakes, its generalization error is at mostε.

This contrasts favorably with thẽO( d
ε2 ) mistake bound of the Perceptron algorithm, and a more

recent variant, on the same distribution (Baum, 1997; Servedio, 1999). Meanwhile, in terms of
lower bounds, Theorem 1 also applies in the supervised case, and gives a lower bound on the
number of mistakes (updates) made by the standard perceptron. Finally, there is the question of
how many samples are needed in the supervised setting (as opposed to the number of mistakes). For
data distributed uniformly over the unit sphere, this is known to beΘ̃(d

ε ) (lower bound, Long, 1995,
and upper bound, Long, 2003).

FILTERING STEP.

Given the limited information the algorithm keeps, a natural filtering rule is to query pointsxt when
|vt · xt | is less than some thresholdst . The choice ofst is crucial. If it is too large, then only a
miniscule fraction of the points queried will actually be misclassified (and thus trigger updates)—
almost all labels will be wasted. On the other hand, ifst is too small, then the waiting time for
a query might be prohibitive, and when an update is actually made, the magnitude of this update
might be tiny.

Therefore, we set the threshold adaptively: we startst high, and keep dividing it by two until we
reach a level where there are enough misclassifications amongst the points queried. By wrapping
this filtering strategy around the modified Perceptron update, we get an active learning algorithm
(Figure 4) with the following label complexity guarantee.

Theorem 3 Pick anyδ,ε > 0. Consider a stream of data points xt drawn uniformly at random from
the surface of the unit sphere inRd, and corresponding labels yt that are consistent with some linear
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separator. With probability1− δ, if the active modified Perceptron algorithm (Figure 4) is given a
stream ofÕ(d

ε log 1
ε ) such unlabeled points, it will requestÕ(d log 1

ε ) labels, makeÕ(d log 1
ε ) errors

(on all points, labeled or not), and have final error≤ ε.

The proofs of Theorems 1 through 3 are in Sections 4 through 6, respectively.

2. Related Work

Much of the early theory work on active learning was in thequery learningmodel, in which the
learner has the ability to synthesize arbitrary data points and request their labels. See Angluin
(2001) for an excellent survey of this area. In this paper, we consider a different setting, in which
(1) there is an underlying joint distribution over data points and labels, (2) the learner has access to
(unlabeled) data points drawn at random from this distribution, and (3) thelearner is able to request
labels only for points obtained in this way, not for arbitrary points. This framework for active
learning was originally introduced by Cohn, Atlas, and Ladner (1994),3 along with a simple and
elegant querying algorithm. Unless we specify otherwise, we will use the term selective sampling
to denote the framework. In this work, we focus on therealizablesetting: the hypothesis class
which we consider for learning contains a classifier with zero error on thedata distribution.4 Our
contribution to active learning is for online learning of linear separators through the origin, under
the uniform distribution.

Several methods for learning linear separators (or their probabilistic analogues) in the selective
sampling framework, have been proposed in the literature. Some have beenshown to work rea-
sonably well in practice, for example Lewis and Gale’s sequential algorithmfor text classification
(Lewis and Gale, 1994), which has batch access to the remaining unlabeleddata points at each it-
eration. Several of these are similar in spirit to our approach, in that they query points with small
margins, such as Tong and Koller’s active learning algorithms that use a support vector machine
(SVM) as the underlying classifier (Tong and Koller, 2001).

On the theoretical side, there have been some encouraging upper bounds on label complexity;
however, some of the schemes achieving them have not yet been provenefficient. Dasgupta (2005)
provided a result for learning general hypothesis classes, in a non-Bayesian, realizable setting. For
homogeneous half-spaces with data distributed uniformly on the sphere, thisresult implies an upper
bound on label complexity of̃O(d log2(1

ε )). Balcan, Beygelzimer, and Langford (2006) provided
a technique for learning general hypothesis classes, in a non-Bayesian, agnostic setting, for which
they showed a label complexity upper bound ofÕ(d2 log 1

ε ) for learning linear separators under
the uniform input distribution.5 Both of these results rely on schemes that are computationally
prohibitive, requiring exponential storage and/or computation.

The literature contains several active learning algorithms that are both feasible to implement
(at least in special cases) and have label complexity guarantees, although none of them is quite as
simple as the algorithm we present in this paper. We have already discussedthe label complexity
upper bound attained by Freund et al. (1997) for the Query By Committee algorithm of Seung et al.
(1992). More recently, it was shown how to efficiently implement this scheme for linear separators
under certain prior distributions, and the empirical results were encouraging (Gilad-Bachrach et al.,

3. The conference version dates back to NIPS 1989, with a superset of the coauthors.
4. Theagnosticsetting removes this assumption.
5. This bound was further tightened tõO(d1.5 log 1

ε ), in Balcan et al. (2007), and this scheme has also been analyzed by
Hanneke (2007), who introduced a new label complexity measure.
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2005). Cesa-Bianchi et al. (2003) provided regret bounds on a selective sampling algorithm for
learning linear thresholds from a stream of iid examples corrupted by random class noise whose
rate scales with the examples’ margins. For half-spaces under the uniforminput distribution, in
the realizable setting, the algorithm of Balcan et al. (2006) can be implementatedefficiently, as
shown by Balcan et al. (2007), which analyzed various margin-based techniques for active learning,
matching our label complexity bound in the same setting. Dasgupta, Hsu, and Monteleoni (2007)
recently gave an active learning algorithm for general concept classes in the non-Bayesian, agnostic
setting (a generalization of the original selective sampling algorithm of Cohn et al. 1994) which, for
half-spaces under the uniform input distribution, in the realizable case, has a label complexity upper
bound ofÕ(d1.5 log 1

ε ).
Cesa-Bianchi et al. (2004) analyzed an algorithm which conforms to roughly the same template

as ours but differs in both the update and filtering rule—it uses the regularperceptron update and
it queries pointsxt according to a fixed, randomized rule which favors small|vt · xt |. The authors
make no distributional assumptions on the input and they show that in terms of worst-case hinge-
loss bounds, their algorithm does about as well as one which queriesall labels. The actual fraction
of points queried varies from data set to data set. In contrast, our objective is to achieve a target
generalization error with minimum label complexity, although we also obtain a mistakebound (on
both labeled and unlabeled points) under our distributional assumption.

It is known that active learning does not always give a large improvement in the sample complex-
ity of learning linear separators. For instance, in our setting, in which data isdistributed uniformly
over the unit sphere, Dasgupta (2004) showed that if the target linear separator is allowed to be non-
homogeneous, then the number of labels required to reach errorε is Ω(1

ε ), no matter what active
learning scheme is used. This lower bound also applies to learning homogeneous linear separators
with respect to an arbitrary distribution. In the fully agnostic setting, Kääriäinen (2006) provided a

lower bound ofΩ(η2

ε2 ), whereη is the error rate of the best hypothesis in the concept class.

3. Preliminaries

In our model, all dataxt lie on the surface of the unit ball inRd, which we denote byS:

S=
{

x∈ R
d
∣

∣ ‖x‖ = 1
}

.

Their labelsyt are either−1 or +1, and the target function is a half-spaceu ·x≥ 0 represented
by a unit vectoru ∈ R

d which classifies all points perfectly, that is,yt(u · xt) > 0 for all t, with
probability one.

For any vectorv∈ R
d, we define ˆv = v

‖v‖ to be the corresponding unit vector.
Our lower bound (Theorem 1) is distribution-free; thereafter we will assume that the data points

xt are drawn independently from the uniform distribution overS.
Under the uniform input distribution, any hypothesisv∈ R

d has error

ε(v) = Px∈S[SGN(v·x) 6= SGN(u·x)] = arccos(u· v̂)
π

.

We will refer to the error rate of a hypothesisv as itsgeneralization error, since in the realizable
case the target itself has zero error.
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Figure 1: The projection of the error regionξt onto the plane defined byu andvt .

For a hypothesisvt , we will denote the angle betweenu andvt by θt , and we will define the error
region ofvt asξt = {x∈ S|SGN(vt ·x) 6= SGN(u·x)}. Figure 1 provides a schematic of the projection
of the error region onto the plane defined byu andvt .

We will use the termmargin, in the context of learning half-spaces, to denote simply the distance
from an example to the separator in question, as opposed to the standard use of this term (as the
minimum over examples of this distance with respect to the target separator). For example, we will
denote the margin ofx with respect tov as|x ·v|.

We will use a few useful inequalities forθ on the interval(0, π
2 ].

4
π2 ≤ 1−cosθ

θ2 ≤ 1
2
, (1)

2
π

θ ≤ sinθ ≤ θ. (2)

Equation (1) can be verified by checking that forθ in this interval,1−cosθ
θ2 is a decreasing function,

and evaluating it at the endpoints.
We will also make use of the following lemma.

Lemma 4 For any fixed unit vector a and anyγ ≤ 1,

γ
4
≤ Px∈S

[

|a·x| ≤ γ√
d

]

≤ γ.

The proof is deferred to the appendix.

4. A Lower Bound for the Perceptron Update

Consider an algorithm of the following form:
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Pick some v0 ∈ R
d.

Repeat for t = 0,1,2, . . .:
Get some (x,y) for which y(vt ·x) ≤ 0.
vt+1 = vt +yx

On any update,
vt+1 ·u = vt ·u+y(x ·u). (3)

Thus, if we assume for simplicity thatv0 · u ≥ 0 (we can always just start count when this first
occurs) thenvt ·u≥ 0 always, andθt , the angle betweenu andvt is always acute. Since‖u‖ = 1,
the following holds:

‖vt‖cosθt = vt ·u.

The update rule also implies

‖vt+1‖2 = ‖vt‖2 +1+2y(vt ·x). (4)

Thus‖vt‖2 ≤ t + ‖v0‖2 for all t. In particular, this means that Theorem 1 is an immediate conse-
quence of the following lemma.

Lemma 5 Assume v0 ·u≥ 0 (i.e., start count when this first occurs). Then

θt+1 ≤ θt ⇒ sinθt ≥ min

{

1
3
,

1
5‖vt‖

}

.

Proof Figure 1 shows the unit circle in the plane defined byu andvt . The dot product of any
point x∈ R

d with eitheru or vt depends only upon the projection ofx into this plane. The point is
misclassified when its projection lies in the shaded region. For such points,y(u ·x) is at most sinθt

(point (i)) andy(vt ·x) is at least−‖vt‖sinθt (point (ii)).
Combining this with Equations (3) and (4), we get

vt+1 ·u ≤ vt ·u+sinθt ,

‖vt+1‖2 ≥ ‖vt‖2 +1−2‖vt‖sinθt .

To establish the lemma, we first assumeθt+1 ≤ θt and sinθt ≤ 1
5‖vt‖ , and then conclude that sinθt ≥

1
3.

θt+1 ≤ θt implies

cos2 θt ≤ cos2 θt+1 =
(u·vt+1)

2

‖vt+1‖2 ≤ (u·vt +sinθt)
2

‖vt‖2 +1−2‖vt‖sinθt
.

The final denominator is positive since sinθt ≤ 1
5‖vt‖ . Rearranging,

(‖vt‖2 +1−2‖vt‖sinθt)cos2 θt ≤ (u·vt)
2 +sin2 θt +2(u·vt)sinθt ,

and using‖vt‖cosθt = (u·vt):

(1−2‖vt‖sinθt)cos2 θt ≤ sin2 θt +2‖vt‖sinθt cosθt .
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Inputs: dimensionality d and budget on number of updates
(mistakes) M.

Let v1 = x1y1 for the first example (x1,y1).
For t = 1 to M:
Let (xt ,yt) be the next example with y(x ·vt) < 0.
vt+1 = vt −2(vt ·xt)xt

Figure 2: The (non-active) modified Perceptron algorithm. The standardPerceptron update,vt+1 =
vt +ytxt , is in the same direction (noteyt = −SGN(vt ·xt)) but different magnitude (scaled
by a factor of 2|vt ·xt |).

Again, since sinθt ≤ 1
5‖vt‖ , it follows that(1−2‖vt‖sinθt)≥ 3

5 and that 2‖vt‖sinθt cosθt ≤ 2
5. Using

cos2 = 1−sin2, we then get
3
5
(1−sin2 θt) ≤ sin2 θt +

2
5
,

which works out to sin2 θt ≥ 1
8, implying sinθt > 1

3.

The problem is that the perceptron update can be too large. InR
2 (e.g., Figure 1), whenθt is

tiny, the update will causevt+1 to overshoot the mark and swing too far to the other side ofu, unless
‖vt‖ is very large: to be precise, we need‖vt‖ = Ω( 1

sinθt
). But ‖vt‖ grows slowly, at best at a rate

of
√

t. If sinθt is proportional to the error ofvt , as in the case of data distributed uniformly over
the unit sphere, this means that the perceptron update cannot stably maintainan error rate≤ ε until
t = Ω( 1

ε2 ).

5. The Modified Perceptron Update

We now describe a modified Perceptron algorithm. Unlike the standard Perceptron, it ensures that
vt ·u is increasing, that is, the error ofvt is monotonically decreasing. Another difference from the
standard update (and other versions) is that the magnitude of the currenthypothesis,‖vt‖, is always
1, which is convenient for the analysis.

The modified Perceptron algorithm is shown in Figure 2. We now show that thenorm ofvt stays
at one. Note that‖v1‖ = 1 and

‖vt+1‖2 = ‖vt‖2 +4(vt ·xt)
2‖xt‖2−4(vt ·xt)

2 = 1

by induction. In contrast, for the standard perceptron update, the magnitude ofvt increases steadily.
With the modified update, the error can only decrease, becausevt ·u only increases:

vt+1 ·u = vt ·u−2(vt ·xt)(xt ·u) = vt ·u+2|vt ·xt ||xt ·u|. (5)

The second equality follows from the fact thatvt misclassifiedxt . Thusvt · u is increasing, and
the increase can be bounded from below by showing that|vt · xt ||xt ·u| is large. This is a different
approach from previous analyses.
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Hampson and Kibler (1999) previously used this update for learning linearseparators, calling it
the “Reflection” method, based on the “Reflexion” method due to Motzkin and Schoenberg (1954).
These names are likely due to the following geometric property of this update:

xt ·vt+1 = xt ·vt −2(xt ·vt)(xt ·xt) = −(xt ·vt).

In general, one can consider modified updates of the formvt+1 = vt −α(vt ·xt)xt , which corresponds
to the “Relaxation” method of solving linear inequalities (Agmon, 1954; Motzkin and Schoenberg,
1954). Whenα 6= 2, the vectorsvt no longer remain of fixed length; however, one can verify that
their corresponding unit vectors ˆvt satisfy

v̂t+1 ·u = (v̂t ·u+α|v̂t ·xt ||xt ·u|)/
√

1−α(2−α)(v̂t ·xt)2,

and thus any choice ofα ∈ [0,2] guarantees non-increasing error. Blum et al. (1996) usedα = 1 to
guarantee progress in the denominator (their analysis did not rely on progress in the numerator) as
long as ˆvt ·u and(v̂t · xt)

2 were bounded away from 0. Their approach was used in a batch setting
as one piece of a more complex algorithm for noise-tolerant learning. In our sequential framework,
we can bound|v̂t · xt ||xt ·u| away from 0 in expectation, under the uniform distribution, and hence
the choice ofα = 2 is most convenient, butα = 1 would work as well. Although we do not further
optimize our choice of the constantα, this choice itself may yield interesting future work, perhaps
by allowing it to be a function of the dimension.

5.1 Analysis of (Non-Active) Modified Perceptron

How large do we expect|vt ·xt | and|u·xt | to be for an error(xt ,yt)? As we shall see, ind dimensions,
one expects each of these terms to be on the order ofd−1/2sinθt , where sinθt =

√

1− (vt ·u)2.
Hence, we might expect their product to be about(1− (vt · u)2)/d, which is how we prove the
following lemma.

Note, we have made little effort to optimize constant factors.

Lemma 6 For any vt , with probability at least13,

1−vt+1 ·u≤ (1−vt ·u)

(

1− 1
50d

)

.

There exists a constant c> 0, such that with probability at least63
64, for any vt ,

1−vt+1 ·u≤ (1−vt ·u)
(

1− c
d

)

.

Proof We show only the first part of the lemma. The second part is quite similar. We willargue
that each of|vt ·xt |,|u ·xt | is “small” with probability at most 1/3. This means, by the union bound,
that with probability at least 1/3, they are both sufficiently large.

The error rate ofvt is θt/π, where cosθt = vt · u. Also define the error regionξt =
{x∈ S|SGN(vt ·x) 6= SGN(u·x)}. By Lemma 4, for anx drawn uniformly from the sphere,

Px∈S

[

|vt ·x| ≤
θt

3π
√

d

]

≤ θt

3π
.
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UsingP[A|B] ≤ P[A]/P[B], we have,

Px∈S

[

|vt ·x| ≤
θt

3π
√

d

∣

∣

∣

∣

x∈ ξt

]

≤
Px∈S[|vt ·x| ≤ θt

3π
√

d
]

Px∈S[x∈ ξt ]
≤ θt/(3π)

θt/π
=

1
3
.

Similarly for |u · x|, and by the union bound the probability thatx∈ ξt is within margin θ
3π

√
d

from

eitheru or v is at most23. Since the updates only occur ifx is in the error region, we now have a
lower bound on the expected magnitude of|vt ·x||u·x|:

Px∈S

[

|vt ·x||u·x| ≥
θ2

t

(3π
√

d)2

∣

∣

∣

∣

x∈ ξt

]

≥ 1
3
.

Hence, we know that with probability at least 1/3, |vt · x||u · x| ≥ 1−(vt ·u)2

100d , sinceθ2
t ≥ sin2 θt =

1− (vt ·u)2 and(3π)2 < 100. In this case,

1−vt+1 ·u ≤ 1−vt ·u−2|vt ·xt ||u·xt |

≤ 1−vt ·u−
1− (vt ·u)2

50d

= (1−vt ·u)

(

1− 1+vt ·u
50d

)

,

where the first inequality is by application of (5).

Finally, we give a high-probability bound, that is, Theorem 2, stated herewith proof.

Theorem 7 With probability1−δ with respect to the uniform distribution on the unit sphere, in the
supervised, realizable setting, after M= O(d(log 1

ε + log 1
δ)) mistakes, the generalization error of

the modified Perceptron algorithm is at mostε.

Proof By the above lemma, we can conclude that, for any vectorvt ,

E[1−vt+1 ·u] ≤ (1−vt ·u)

(

1− 1
3(50d)

)

.

This is because with≥ 1/3 probability it goes down by a factor of 1− 1
50d and with the remaining

≤ 2/3 probability it does not increase. Hence, afterM mistakes,

E[1−vM ·u] ≤ (1−v1 ·u)

(

1− 1
150d

)M

≤
(

1− 1
150d

)M

,

sincev1 ·u≥ 0. By Markov’s inequality,

P

[

1−vM ·u≥
(

1− 1
150d

)M

δ−1

]

≤ δ.

Finally, using (1) and cosθM = vM ·u, we seeP[ 4
π2 θ2

M ≥ (1− 1
150d)Mδ−1]≤ δ. UsingM = 150d log 1

εδ
givesP[θM

π ≥ ε] ≤ δ, as required.

The additional factor of1ε in the bound on unlabeled samples (Õ(d
ε log 1

ε )) follows by upper
bounding the number of unlabeled samples until an update: when the hypothesis has error rateε,
the waiting time (in samples) until an update is1

ε , in expectation.
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Figure 3: The active learning rule is to query for labels on pointsx in L which is defined by the
thresholdst on |vt ·x|.

6. An Active Modified Perceptron

The ideal objective in designing an active learning rule that minimizes label complexity would
be to query for labels only on points in the error region,ξt . However without knowledge ofu,
the algorithm is unaware of the location ofξt . The intuition behind our active learning rule is
to approximate the error region, given the information the algorithm does have: vt . As shown in
Figure 3, the labeling regionL is simply formed by thresholding the margin of a candidate example
with respect tovt .

The active version of the modified Perceptron algorithm is shown in Figure 4. The algorithm is
similar to the algorithm of the previous section, in its update step. For its filtering rule, we maintain
a thresholdst and we only ask for labels of examples with|vt · x| ≤ st . Approximating the error
region is achieved by choosing the threshold,st , adaptively, so as to manage the tradeoff between
L being too large, causing many labels to be wasted without hittingξt (and thus yielding updates),
andL only containing points with very small margins with respect tovt , since our update step will
make very small updates on such points. We decrease the threshold adaptively over time, starting at
s1 = 1/

√
d and reducing it by a factor of two whenever we have a run of labeled examples on which

we are correct.
For Theorem 3, we select values ofR,L that yieldε error with probability at least 1− δ. The

idea of the analysis is as follows:

Definition 7 We say the tth update is “good” if,

1−vt+1 ·u≤ (1−vt ·u)
(

1− c
d

)

.

(The constant c is from Lemma 6.)

1. (Lemma 8) First, we argue thatst is not too small (we do not decreasest too quickly). As-
suming this is the case, then 2 and 3 hold.

2. (Lemma 10) We query for labels on at least an expected 1/32 of allerrors. In other words,
some errors may go undetected because we do not ask for their labels, but the number of
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Inputs: Dimensionality d, maximum number of labels L,
and patience R.

v1 = x1y1 for the first example (x1,y1).
s1 = 1/

√
d

For t = 1 to L:
Wait for the next example x : |x ·vt | ≤ st and query its label.
Call this labeled example (xt ,yt).
If (xt ·vt)yt < 0, then:

vt+1 = vt −2(vt ·xt)xt

st+1 = st

else:
vt+1 = vt

If predictions were correct on R consecutive labeled
examples (i.e., (xi ·vi)yi ≥ 0 ∀i ∈ {t −R+1, t −R+2, . . . , t}),
then set st+1 = st/2, else st+1 = st.

Figure 4: An active version of the modified Perceptron algorithm.

mistakes total should not be much more than 32 times the number of updates we actually
perform.

3. (Lemma 11) Each update isgood(Definition 7) with probability at least 1/2.

4. (Theorem 3) Finally, we conclude that we cannot have too many label queries, updates, or
total errors, because half of our updates are good, 1/32 of our errors are updates, and about
1/R of our labels are updates.

We first lower-boundst with respect to our error, showing that, with high probability, the thresh-
old st is never too small.

Lemma 8 With probability at least1−L
(

3
4

)R
, we have:

st ≥
√

1− (u·vt)2

16d
for t = 1,2, . . . ,L, simultaneously. (6)

Before proving this lemma, it will be helpful to show the following lemma. As before, let us define
ξt = {x∈ S|(x ·vt)(x ·u) < 0}.

Lemma 9 For anyγ ∈
(

0,

√

1−(u·vt)2

4d

]

,

Pxt∈S
[

xt ∈ ξt
∣

∣ |xt ·vt | < γ
]

≥ 1
4
.

Proof Let x be a random example fromS such that|x · vt | < γ and, without loss of generality,
suppose that 0≤ x · vt ≤ γ. Then we want to calculate the probability we err, that is,u · x < 0. We
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can decomposex= x′+(x·vt)vt wherex′ = x− (x·vt)vt is the component ofx orthogonal tovt , that
is, x′ ·vt = 0. Similarly foru′ = u− (u·vt)vt . Hence,

u·x = (u′ +(u·vt)vt) · (x′ +(x ·vt)vt) = u′ ·x′ +(u·vt)(x ·vt).

In other words, we err iffu′ · x′ < −(u · vt)(x · vt). Using u · vt ∈ [0,1] and sincex · vt ∈
[0,
√

(1− (u·vt)2)/(4d)], we conclude that if

u′ ·x′ < −
√

1− (u·vt)2

4d
, (7)

then we must err. Also, let ˆx′ = x′
‖x′‖ be the unit vector in the direction ofx′. It is straightforward

to check that‖x′‖ =
√

1− (x ·vt)2. Similarly, for u we define ˆu′ = u′√
1−(u·vt)2

. Substituting these

into (7), we must err if, ˆu′ · x̂′ < −1/
√

4d(1− (x ·vt))2, and since
√

1− (x ·vt)2 ≥
√

1−1/(4d), it
suffices to show that,

Px∈S

[

û′ · x̂′ < −1
√

4d(1−1/(4d))

∣

∣

∣

∣

∣

0≤ x ·vt ≤ γ

]

≥ 1
4
.

What is the probability that this happens? Well, one way to pickx∈ Swould be to first pickx · vt

and then to pick ˆx′ uniformly at random from the setS′ = {x̂′ ∈ S|x̂′ ·vt = 0}, which is a unit sphere
in one fewer dimensions. Hence the above probability does not depend onthe conditioning. By
Lemma 4, for any unit vectora ∈ S′, the probability that|û′ · a| ≤ 1/

√

4(d−1) is at most 1/2,
so with probability at least 1/4 (since the distribution is symmetric), the signed quantity ˆu′ · x̂′ <
−1/

√

4(d−1) < −1/
√

4d(1−1/(4d)).

We are now ready to prove Lemma 8.
Proof [of Lemma 8] Suppose that condition (6) fails to hold for somet ’s. Let t be the smallest
number such that (6) fails. By our choice ofs1, clearlyt > 1. Moreover, sincet is the smallest such
number, andu · vt is increasing, it must be the case thatst = st−1/2, that is we just saw a run ofR
labeled examples(xi ,yi), for i = t −R, . . . , t −1, with no mistakes,vi = vt , and

si = 2st <

√

1− (u·vt)2

4d
=

√

1− (u·vi)2

4d
. (8)

Such an event is highly unlikely, however, for anyt. In particular, from Lemma 9, we know that the
probability of (8) holding for any particulari and the algorithm not erring is at most 3/4. Thus the
chance of having any such run of lengthR is at mostL(3/4)R.

Lemma 9 also tells us something interesting about the fraction of errors that we are missing
because we do not ask for labels. In particular,

Lemma 10 Given that st ≥
√

(1− (u·vt)2)/(16d), upon the tth update, each erroneous example
is queried with probability at least 1/32, that is,

Px∈S
[

|x ·vt | ≤ st
∣

∣x∈ ξt
]

≥ 1
32

.
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Proof Using Lemmas 9 and 4, we have

Px∈S[x∈ ξt ∧|x ·vt | ≤ st ] ≥ Px∈S

[

x∈ ξt ∧|x ·vt | ≤
√

1− (u·vt)2

16d

]

≥ 1
4

Px∈S

[

|x ·vt | ≤
√

1− (u·vt)2

16d

]

≥ 1
64

√

1− (u·vt)2 =
1
64

sinθt

≥ θt

32π
.

For the last inequality, we have used (2). However,Px∈S[x∈ ξt ] = θt/π, so we are querying an error
x∈ ξt with probability at least 1/32, that is, the above inequality implies,

Px∈S
[

|x ·vt | ≤ st
∣

∣ x∈ ξt
]

=
Px∈S[x∈ ξt ∧|x ·vt | ≤ st ]

Px∈S[x∈ ξt ]
≥ θt/(32π)

θt/π
=

1
32

.

Next, we show that the updates are likely to make progress.

Lemma 11 Assuming that st ≥
√

(1− (u·vt)2)/(16d), a random update is good with probability
at least1/2, that is,

Pxt∈S

[

(1−vt+1 ·u) ≤ (1−vt ·u)
(

1− c
d

) ∣

∣

∣
|x ·vt | ≤ st ∧xt ∈ ξt

]

≥ 1
2
.

Proof By Lemma 10, each error is queried with probability 1/32. On the other hand, by Lemma 6
of the previous section, 63/64 of all errors are good. Since we are querying at least 2/64 fraction of
all errors, at least half of our queried errors must be good.

We now have the pieces to guarantee the convergence rate of the active algorithm, thereby proving
Theorem 3. This involves bounding both the number of labels that we queryas well as the number
of total errors, which includes updates as well as errors that were never detected.

Theorem 3 With probability1−δ with respect to the uniform distribution on the unit sphere, in the
realizable setting, using L= O

(

d log
(

1
εδ
)

(log d
δ + log log1

ε )
)

labels and making a total number of
errors of O

(

d log
(

1
εδ
)

(log d
δ + log log1

ε )
)

, the final error of the active modified Perceptron algorithm
will be ε, when run with the above L and R= O(log d

δ + log log1
ε ).

Proof Let U be the number of updates performed. We know, by Lemma 8 that with probability
1−L(3

4)R,

st ≥
sinθt

4
√

d
≥ θt

2π
√

d
(9)

for all t. Again, we have used (2). By Lemma 11, we know that for eacht which is an update, either
(9) fails or

E[1−u·vt+1|vt ] ≤ (1−u·vt)
(

1− c
2d

)

.
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Hence, afterU updates, using Markov’s inequality,

P

[

1−u·vL ≥
4
δ

(

1− c
2d

)U
]

≤ δ
4

+L

(

3
4

)R

.

In other words, with probability 1− δ
4 −L(3

4)R, we also have

U ≤ 2d
c

log
4

δ(1−u·vL)
≤ 2d

c
log

π2

δθ2
L

= O

(

d log
1
δε

)

,

where for the last inequality we used (1). In total,L ≤ R
(

U + log2
1
sL

)

. This is because once

everyR labels we either have at least one update or we decreasesL by a factor of 2. Equivalently,
sL ≤ 2U−L/R. Hence, with probability 1− δ

4 −L(3
4)R,

θL

2π
√

d
≤ sL ≤ 2O(d log 1

δε )−L/R.

Working backwards, we chooseL/R= Θ(d log 1
εδ) so that the above expression impliesθL

π ≤ ε, as
required. We choose

R= 10log
2L
δR

= Θ

(

log
d log 1

εδ
δ

)

= O

(

log
d
δ

+ log log
1
ε

)

.

The first equality ensures thatL(3
4)R ≤ δ

4. Hence, for theL and R chosen in the theorem, with
probability 1− 3

4δ, we have errorθL
π < ε. Finally, either condition (9) fails or each error is queried

with probability at least132. By the multiplicative Chernoff bound, if there were a total ofE > 64U
errors, with probability≥ 1− δ

4, at leastE/64> U would have been caught and used as updates.
Hence, with probability at most 1−δ, we have achieved the target error using the specified number
of labels and observing the specified number of errors.

7. Discussion and Conclusions

In the evolving theory of active learning, the most concrete, nontrivial scenario in which active
learning has been shown to give an exponential improvement in sample complexity is that of learn-
ing a linear separator for data distributed uniformly over the unit sphere. In this paper, we have
demonstrated that this particular case can be solved by a much simpler algorithmthan was pre-
viously known. Table 1 summarizes our contributions in context. We report bounds for all the
algorithms with respect to our setting: learning homogeneous half-spaces when the data distribu-
tion is uniform on the unit sphere and separable through the origin, although a few of the algorithms
were designed for more general distributions. This paper gives the lower bounds stated for Percep-
tron, and provides an algorithm that attains the upper bounds in the bottom row. While we list a
host of results for comparison, it is important to note that the algorithm of Dasgupta (2005) has not
shown to be efficiently implementable, and that we state bounds for this realizable problem, even
though the algorithm of Balcan et al. (2007) can handle certain types of noise, andA2 (Balcan et al.,
2006) and the algorithm of Dasgupta et al. (2007) were designed to handle the agnostic setting.

295



DASGUPTA, KALAI AND MONTELEONI

Samples Mistakes Labels Noise tolerance

PAC bounds Õ(d
ε ), Ω(d

ε )

Perceptron Õ( d
ε3 ), Ω( 1

ε2 ) Õ( d
ε2 ), Ω( 1

ε2 ) Ω( 1
ε2 ) Unknown

D’05 Õ(d
ε log2 1

ε ) Õ(d log2 1
ε ) Õ(d log2 1

ε ) No

A2 Õ(d1.5

ε log 1
ε ) Õ(d1.5 log 1

ε ) Õ(d1.5 log 1
ε ) Yes

DHM’07 Õ(d1.5

ε log 1
ε ) Õ(d1.5 log 1

ε ) Õ(d1.5 log 1
ε ) Yes

QBC Õ(d
ε log 1

ε ) Õ(d log 1
ε ) Õ(d log 1

ε ) No

BBZ’07 Õ(d
ε log 1

ε ) Õ(d log 1
ε ) Õ(d log 1

ε ) Yes

Our algorithm Õ(d
ε log 1

ε ) Õ(d log 1
ε ) Õ(d log 1

ε ) Unknown

Table 1: Results in context, for learning half-spaces through the origin. The last column indicates
whether each algorithm has been proved to exhibit some noise tolerance when used for
active learning.
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In all these papers, the uniform distribution of data has consistently proved amenable to analysis.
This is an impressive distribution to learn against because it is difficult in someways—most of the
data is close to the decision boundary, for instance—but a more common assumption would be to
make the two classes Gaussian, or to merely stipulate that they are separated by a margin. As a
modest step towards relaxing this distributional assumption, we can show an (at most) polynomial
dependence of the label complexity onλ (Monteleoni, 2006), when the input distribution isλ-similar
to uniform, a setting studied in Freund et al. (1997).

Our algorithm is in some ways fine-tuned for linearly-separable data that are distributed uni-
formly; for instance, in the choice of the parametersR and s1. An immediate open problem is
therefore the following:

1. Design a version of the algorithm that is sensible for general data distributions which may not
be linearly separable.

2. What types of noise can be tolerated by this scheme?

3. For what distributions can its label complexity be analyzed?

A step towards the practical realization of our algorithm is the work of Monteleoni and K̈aäriäinen
(2007), which applies a version of it to an optical character recognition problem.
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Appendix A. Proof of Lemma 4

Proof [Lemma 4] Letr = γ/
√

d and letAd be the area of ad-dimensional unit sphere, that is, the
surface of a(d+1)-dimensional unit ball. Then

Px [|a·x| ≤ r] =

R r
−r Ad−2(1−z2)

d−2
2 (1−z2)−1/2dz

Ad−1
=

2Ad−2

Ad−1

Z r

0
(1−z2)(d−3)/2dz.

First observe,

r(1− r2)(d−3)/2 ≤
Z r

0
(1−z2)(d−3)/2dz≤ r. (10)

Forx∈ [0,0.5], 1−x≥ 4−x. Hence, for 0≤ r ≤ 2−1/2,

(1− r2)(d−3)/2 ≥ 4−r2((d−3)/2) ≥ 2−r2d.
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So we can conclude that the integral of (10) is in[r/2, r] for r ∈ [0,1/
√

d]. The ratio 2Ad−2/Ad−1

can be shown to be in the range[
√

d/3,
√

d] by straightforward induction ond, using the definition
of theΓ function, and the fact thatAd−1 = 2πd/2/Γ(d/2).
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