
Journal of Machine Learning Research 10 (2009) 1989-2012 Submitted 7/08; Revised 11/08; Published 9/09

Fast Approximate kNN Graph Construction for High Dimensional
Data via Recursive Lanczos Bisection

Jie Chen JCHEN@CS.UMN .EDU

Department of Computer Science and Engineering
University of Minnesota
Minneapolis, MN 55455, USA

Haw-ren Fang HRFANG@MCS.ANL .GOV

Mathematics and Computer Science Division
Argonne National Laboratory
Argonne, IL 60439, USA

Yousef Saad SAAD@CS.UMN .EDU

Department of Computer Science and Engineering
University of Minnesota
Minneapolis, MN 55455, USA

Editor: Sanjoy Dasgupta

Abstract

Nearest neighbor graphs are widely used in data mining and machine learning. A brute-force
method to compute the exactkNN graph takesΘ(dn2) time for n data points in thed dimensional
Euclidean space. We propose two divide and conquer methods for computing an approximatekNN
graph inΘ(dnt) time for high dimensional data (larged). The exponentt ∈ (1,2) is an increasing
function of an internal parameterα which governs the size of the common region in the divide step.
Experiments show that a high quality graph can usually be obtained with small overlaps, that is, for
small values oft. A few of the practical details of the algorithms are as follows. First, the divide step
uses an inexpensive Lanczos procedure to perform recursivespectral bisection. After each conquer
step, an additional refinement step is performed to improve the accuracy of the graph. Finally, a
hash table is used to avoid repeating distance calculationsduring the divide and conquer process.
The combination of these techniques is shown to yield quite effective algorithms for buildingkNN
graphs.

Keywords: nearest neighbors graph, high dimensional data, divide andconquer, Lanczos algo-
rithm, spectral method

1. Introduction

Building nearest neighbor graphs is often a necessary step when dealing with problems arising from
applications in such areas as data mining (Brito et al., 1997; Dasarathy, 2002), manifold learning
(Belkin and Niyogi, 2003; Roweis and Saul, 2000; Saul and Roweis, 2003; Tenenbaum et al., 2000),
robot motion planning (Choset et al., 2005), and computer graphics (Sankaranarayanan et al., 2007).
Given a set ofn data pointsX = {x1, . . . ,xn}, a nearest neighbor graph consists of the vertex setX
and an edge set which is a subset ofX×X. The edges are defined based on aproximity measure
ρ(xi ,x j) between two data pointsxi andx j , where a smallρ value means that the two points are

c©2009 Jie Chen, Haw-ren Fang and Yousef Saad.

CHEN, FANG AND SAAD

close. Two types of nearest neighbor graphs (Belkin and Niyogi, 2003; He and Niyogi, 2004) are
often used:

1. ε-graph: This is an undirected graph whose edge set consists of pairs(xi ,x j) such thatρ(xi ,x j)
is less than some pre-defined thresholdε ∈ R

+.

2. kNN graph: This is a directed graph (in general). There is an edge fromxi to x j if and only if
ρ(xi ,x j) is among thek smallest elements of the set{ρ(xi ,xℓ) | ℓ = 1, . . . , i−1, i +1, . . . ,n}.

Theε-graph is geometrically motivated, and many efficient algorithms have been proposed for com-
puting it (see, e.g., Bentley et al., 1977; Chazelle, 1983). However, theε-graph easily results in dis-
connected components (Belkin and Niyogi, 2003) and it is difficult to find a good value ofε which
yields graphs with an appropriate number of edges. Hence, they are notsuitable in many situations.
On the other hand,kNN graphs have been shown to be especially useful in practice. Therefore,
this paper will focus on the construction ofkNN graphs, for the case whenρ(·, ·) is the Euclidean
distance between two points in theR

d.
Whenk = 1, only the nearest neighbor for each data point is considered. This particular case,

the all nearest neighborsproblem, has been extensively studied in the literature. To compute the
1NN graph, Bentley (1980) proposed a multidimensional divide-and-conquer method that takes
O(nlogd−1n) time, Clarkson (1983) presented a randomized algorithm with expectedO(cdnlogn)
time (for some constantc), and Vaidya (1989) introduced a deterministic worst-caseO((c′d)dnlogn)
time algorithm (for some constantc′). These algorithms are generally adaptable tok > 1. Thus,
Paredes et al. (2006) presented a method to build akNN graph, which was empirically studied and
reported to requireO(n1.27) distance calculations for low dimensional data andO(n1.90) calculations
for high dimensional data. Meanwhile, several parallel algorithms have also been developed (Calla-
han, 1993; Callahan and Rao Kosaraju, 1995; Plaku and Kavraki, 2007). Despite a rich existing
literature, efficient algorithms for high dimensional data are still under-explored. In this paper we
propose two methods that are especially effective in dealing with high dimensional data.

Note that the problem of constructing akNN graph is different from the problem ofnearest
neighbor(s) search(see, e.g., Indyk, 2004; Shakhnarovich et al., 2006, and references therein),
where given a set of data points, the task is to find thek nearest points for any query point. Usually,
the nearest neighbors search problem is handled by first building a datastructure (such as a search
tree) for the given points in a preprocessing phase. Then, queries can be answered efficiently by ex-
ploiting the search structure. Of course, the construction of akNN graph can be viewed as a nearest
neighbors search problem where each data point itself is a query. However, existing search methods
in general suffer from an unfavorable trade-off between the complexity of the search structure and
the accuracy of the query retrieval: either the construction of the searchstructure is expensive, or
accurate searches are costly. The spill-tree (sp-tree) data structure (Liu et al., 2004) is shown to be
empirically effective in answering queries, but since some heuristics (such as the hybrid scheme)
are introduced to ensure search accuracy, the construction time cost is difficult to theoretically ana-
lyze. On the other hand, many(1+ ε) nearest neighbor search methods1 have been proposed with
guaranteed complexity bounds (Indyk, 2004). These methods report apoint within(1+ε) times the
distance from the query to the actual nearest neighbor. Kleinberg (1997) presented two algorithms.
The first one has aO((d log2d)(d+ logn)) query time complexity but requires a data structure of

1. Theε parameter here is different from that in the “ε-graph”.

1990

FAST kNN GRAPH CONSTRUCTION FORHIGH DIMENSIONAL DATA

sizeO(nlogd)2d, whereas the second algorithm uses a nearly linear (todn) data structure and re-
sponds to a query inO(n+d log3n) time. By using locality sensitive hashing, Indyk and Motwani
(1998) gave an algorithm that usesO(n1+1/(1+ε) +dn) preprocessing time and requiresO(dn1/(1+ε))
query time. Another algorithm given in Indyk and Motwani (1998) is aO(dpoly log(dn)) search al-
gorithm that uses aO(n(1/ε)O(d) poly log(dn)) data structure. Kushilevitza et al. (2000) proposed a
O((dn)2(nlog(d logn/ε))O(ε−2) poly(1/ε)poly log(dn/ε)) data structure that can answer a query in
O(d2poly(1/ε)poly log(dn/ε)) time. In general, most of the given bounds are theoretical, and have
an inverse dependence onε, indicating expensive costs whenε is small. Some of these methods
can potentially be applied for the purpose of efficientkNN graph construction, but many aspects,
such as appropriate choices of the parameters that controlε, need to be carefully considered before
a practically effective algorithm is derived. Considerations of this naturewill not be explored in the
present paper.

The rest of the paper is organized as follows. Section 2 proposes two methods for computing
approximatekNN graphs, and Section 3 analyzes their time complexities. Then, we show a few ex-
periments to demonstrate the effectiveness of the methods in Section 4, and discuss two applications
in Section 5. Finally, conclusions are given in Section 6.

2. Divide and ConquerkNN

Our general framework for computing an approximatekNN graph is as follows: We divide the set of
data points into subsets (possibly with overlaps), recursively compute the (approximate)kNN graphs
for the subsets, then conquer the results into a finalkNN graph. This divide and conquer framework
can clearly be separated in two distinct sub-problems: how to divide and how to conquer. The
conquer step is simple: If a data point belongs to more than one subsets, thenits k nearest neighbors
are selected from its neighbors in each subset. However, the divide stepcan be implemented in many
different ways, resulting in different qualities of graphs. In what follows two methods are proposed
which are based on a spectral bisection (Boley, 1998; Juhász and Mályusz, 1980; Tritchler et al.,
2005) of the graph obtained from an inexpensive Lanczos procedure (Lanczos, 1950).

2.1 Spectral Bisection

Consider the data matrix
X = [x1, . . . ,xn] ∈ R

d×n

where each columnxi represents a data point inRd. When the context is clear, we will use the same
symbolX to also denote the set of data points. The data matrixX is centered to yield the matrix:

X̂ = [x̂1, . . . , x̂n] = X−ceT ,

wherec is the centroid ande is a column of all ones. A typical spectral bisection technique splitsX̂
into halves using a hyperplane. Let(σ,u,v) denote the largest singular triplet ofX̂ with

uTX̂ = σvT . (1)

Then, the hyperplane is defined as〈u,x−c〉 = 0, that is, it splits the set of data points into two
subsets:

X+ = {xi | uT x̂i ≥ 0} and X− = {xi | uT x̂i < 0}.

1991

CHEN, FANG AND SAAD

This hyperplane maximizes the sum of squared distances between the centered points ˆxi to the
hyperplane that passes through the centroid. This is because for any hyperplane〈w,x−c〉 = 0,
wherew is a unit vector, the squared sum is

n

∑
i=1

(wT x̂i)
2 =

∥

∥wTX̂
∥

∥

2
2≤

∥

∥X̂
∥

∥

2
2 = σ2,

while w = u achieves the equality.
By a standard property of the SVD (Equation 1), this bisection technique is equivalent to split-

ting the set by the following criterion:

X+ = {xi | vi ≥ 0} and X− = {xi | vi < 0}, (2)

wherevi is the i-th entry of the right singular vectorv. If it is preferred that the sizes of the two
subsets be balanced, an alternative is to replace the above criterion by

X+ = {xi | vi ≥m(v)} and X− = {xi | vi < m(v)}, (3)

where m(v) represents the median of the entries ofv.
The largest singular triplet(σ,u,v) of X̂ can be computed using the Lanczos algorithm (Lanc-

zos, 1950; Berry, 1992). In short, we first compute an orthonormal basis of the Krylov subspace
span{q1,(X̂TX̂)q1, . . . ,(X̂TX̂)s−1q1} for an arbitrary initial unit vectorq1 and a small integers. Let
the basis vectors form an orthogonal matrix

Qs = [q1, . . . ,qs].

An equality resulting from this computation is

QT
s (X̂TX̂)Qs = Ts,

whereTs is a symmetric tridiagonal matrix of sizes× s. Then we compute the largest eigenvalue
θ(s) and corresponding eigenvectorys of Ts:

Tsys = θ(s)ys.

Therefore,θ(s) is an approximation to the square of the largest singular valueσ, while the vector
ṽs≡Qsys is an approximation of the right singular vectorv of X̂. The acute angle∠(ṽs,v), between
ṽs andv decays rapidly withs, as is shown in an error bound established in Saad (1980):

sin∠(ṽs,v)≤
K

Cs−1(1+ γ1)

whereK is a constant,Ck denotes the Chebyshev polynomial of degreek of the first kind, andγ1 =
(λ1−λ2)/(λ2−λn) in which theλi ’s denote the eigenvalues ofX̂TX̂, that is, the squared singular
values ofX̂, ordered decreasingly. Note that we haveCs−1(1+ γ1) = cosh[(s−1)cosh−1(1+ γ1)],
in which cosh is the hyperbolic cosine. Therefore, a small value ofs will generally suffice to yield
an accurate approximation. Note that an exact singular vector is not needed to perform a bisection,
so we usually set a fixed value, says= 5, for this purpose. The computation of the orthonormal
basis takes timeΘ(sdn), while the time to computeθ(s) andys is negligible, sinceTs is symmetric
tridiagonal ands is very small. Hence the time for computing the largest singular triplet ofX̂ is
bounded byO(sdn).

1992

FAST kNN GRAPH CONSTRUCTION FORHIGH DIMENSIONAL DATA

2.2 The Divide Step: Two Methods

Based on the above general bisection technique, we propose two ways toperform the divide step for
computing an approximatekNN graph. The first, called theoverlapmethod, divides the current set
into two overlapping subsets. The second, called thegluemethod, divides the current set into two
disjoint subsets, and uses a third set called the gluing set to help merge the tworesulting disjoint
kNN graphs in the conquer phase. See Figure 1. Both methods create a common region, whose size
is anα-portion of that of the current set, surrounding the dividing hyperplane. Details are given
next.

hyperplane

X1 X2

(a) The overlap method.

hyperplane

X1 X2X3

(b) The glue method.

Figure 1: Two methods to divide a setX into subsets. The size of the common region in the middle
surrounding the hyperplane is anα-portion of the size ofX.

2.2.1 THE OVERLAP METHOD

In this method, we divide the setX into two overlapping subsetsX1 andX2:

{

X1∪X2 = X,

X1∩X2 6= /0.

Sinceσvi is the signed distance from ˆxi to the hyperplane, let the setV be defined as

V = {|vi | | i = 1,2, . . . ,n}.

Then we use the following criterion to formX1 andX2:

X1 = {xi | vi ≥−hα(V)} and X2 = {xi | vi < hα(V)}, (4)

wherehα(·) is a function which returns the element that is only larger than(100α)% of the elements
in the input set. The purpose of criterion (4) is to ensure that the overlap of the two subsets consists
of (100α)% of all the data, that is, that2

|X1∩X2|= ⌈α|X|⌉ .

2. Here, we assume that the distances between points and the hyperplaneare all different. Ties are broken arbitrarily.
The same is done for the glue method.

1993

CHEN, FANG AND SAAD

2.2.2 THE GLUE METHOD

In this method, we divide the setX into two disjoint subsetsX1 andX2 with a gluing subsetX3:



















X1∪X2 = X,

X1∩X2 = /0,

X1∩X3 6= /0,

X2∩X3 6= /0.

The criterion to build these subsets is as follows:

X1 = {xi | vi ≥ 0}, X2 = {xi | vi < 0},
X3 = {xi | −hα(V)≤ vi < hα(V)}.

Note that the gluing subsetX3 in this method is exactly the intersection of the two subsets in the
overlap method. Hence,X3 also contains(100α)% of the data.

2.3 Refinement

In order to improve the quality of the resulting graph, during each recursion after the conquer step,
the graph can be refined at a small cost. The idea is to update thek nearest neighbors for each point
by selecting from a pool consisting of its neighbors and the neighbors of itsneighbors. Formally,
if N(x) is the set of current nearest neighbors ofx before refinement, then, for each pointx, we
re-select itsk nearest neighbors from

N(x)∪





[

z∈N(x)

N(z)



 .

2.4 The Algorithms

We are ready to present the complete algorithms for both methods; see Algorithms 1 and 2. These
algorithms share many similarities: They both fall in the framework of divide andconquer; they
both call the brute-force procedurekNN-BRUTEFORCE to compute the graph when the size of
the set is smaller than a threshold (nk); they both recursively call themselves on smaller subsets;
and they both employ a CONQUER procedure to merge the graphs computed for the subsets and
a REFINE procedure to refine the graph during each recursion. The difference is that Algorithm 1
calls DIVIDE -OVERLAP to divide the set into two subsets (Section 2.2.1), while Algorithm 2 calls
DIVIDE -GLUE to divide the set into three subsets (Section 2.2.2). For the sake of completeness,
pseudocodes of all the mentioned procedures are given in Appendix A.

2.5 Storing Computed Distances in a Hash Table

The brute-force method computesΘ(n2) pairs of distances, each of which takesΘ(d) time. One
advantage of the methods presented in this paper over brute-force methods is that the distance cal-
culations can be significantly reduced thanks to the divide and conquer approach. The distances
are needed/computed in: (1) thekNN-BRUTEFORCE procedure which computes all the pairwise
distances and selects thek smallest ones for each point, (2) the CONQUERprocedure which selects

1994

FAST kNN GRAPH CONSTRUCTION FORHIGH DIMENSIONAL DATA

Algorithm 1 ApproximatekNN Graph Construction: The Overlap Method
1: function G = kNN-OVERLAP(X, k, α)
2: if |X|< nk then
3: G← kNN-BRUTEFORCE(X, k)
4: else
5: (X1,X2)← DIVIDE -OVERLAP(X, α) ⊲ Section 2.2.1
6: G1← kNN-OVERLAP(X1, k, α)
7: G2← kNN-OVERLAP(X2, k, α)
8: G← CONQUER(G1, G2, k) ⊲ Section 2, beginning
9: REFINE(G, k) ⊲ Section 2.3

10: end if
11: end function

Algorithm 2 ApproximatekNN Graph Construction: The Glue Method
1: function G = kNN-GLUE(X, k, α)
2: if |X|< nk then
3: G← kNN-BRUTEFORCE(X, k)
4: else
5: (X1,X2,X3)← DIVIDE -GLUE(X, α) ⊲ Section 2.2.2
6: G1← kNN-GLUE(X1, k, α)
7: G2← kNN-GLUE(X2, k, α)
8: G3← kNN-GLUE(X3, k, α)
9: G← CONQUER(G1, G2, G3, k) ⊲ Section 2, beginning

10: REFINE(G, k) ⊲ Section 2.3
11: end if
12: end function

k smallest distances from at most 2k candidates for each point, and (3) the REFINE procedure which
selects thek smallest distances from at mostk+ k2 candidates for each point. Many of the dis-
tances computed fromkNN-BRUTEFORCEand REFINE are reused in CONQUERand REFINE, with
probably more than once for some pairs. A naive way is to allocate memory foran n×n matrix
that stores all the computed distances to avoid duplicate calculations. However this consumes too
much memory and is not necessary. A better approach is to use a hash table tostore the computed
distances. This will save a significant amount of memory, as a later experiment shows that only a
small portion of then2 pairs are actually computed. Furthermore the computational time will not
be affected since hash tables are efficient for both retrieving wanted itemsfrom and inserting new
items into the table (we do not need the delete operation).

The ideal hash function maps (the distance between) a pair of data points(xi ,x j) to a bucket
such that the probability of collision is low. For simplicity of implementations, we use ahash func-
tion that maps the key(xi ,x j) to i (and at the same time toj). Collisions easily occur since many
distances between the pointxi and other points are computed during the whole process. However,
this naive hashing has already shown rather appealing results in run time. More elaborate imple-
mentations should consider more effective hashing (e.g., double hashing)schemes.

1995

CHEN, FANG AND SAAD

3. Complexity Analysis

A thorough analysis shows that the time complexities for the overlap method and the glue method
are sub-quadratic (inn), and the glue method is always asymptotically faster than the overlap
method. To this end we assume that in each divide step the subsetsX1 andX2 (in both methods) are
balanced. This assumption can always be satisfied by using the Equation (3) to bisect the data set,
instead of the criterion (2). Hence, the time complexityTo for the overlap method andTg for the
glue method satisfy the following recurrence relations:

To(n) = 2To((1+α)n/2)+ f (n), (5)

Tg(n) = 2Tg(n/2)+Tg(αn)+ f (n), (6)

where f (n) is the combined time for the divide, conquer, and refine steps.

3.1 The Complexity of f

The functionf (n) consists of the following three components.

3.1.1 THE TIME FOR THE DIVIDE STEP

This includes the time to compute the largest right singular vectorv of the centered matrix̂X, and
the time to divide points into subsetsX1 andX2 (in the overlap method) or subsetsX1, X2 andX3

(in the glue method). The former has been shown to beO(sdn) in Section 2.1, where the number
of Lanczos stepss= 5 is fixed in the implementation, while for the latter we can use a linear time
selection method to find the valuehα(V). Therefore the overall time for this step isO(dn).

3.1.2 THE TIME FOR THE CONQUERSTEP

This step only involves the points inX1∩X2 in the overlap method orX3 in the glue method. For
each of theαn points in these subsets,k nearest neighbors are chosen from at most 2k candidates.
Therefore the time isO(kαn).

3.1.3 THE TIME FOR THE REFINE STEP

For each point,k nearest neighbors are chosen from at mostk+k2 candidates. If all these distances
need to be computed, the overall time isO(k2dn). To the other extreme, if none of them are com-
puted, the factord can be omitted, which results inO(k2n). In practice, by using a hash table, only
a very small fraction of thek+ k2 distances are actually computed in this step; see also Table 3.
Hence, the best cost estimate for this step isO(k2n).

Indeed, the ultimate useful information from this estimate is that the time for the refinement is
much less than that for the division (which has aO(dn) cost), or at best is of the same order as
the latter. This can be seen from another perspective: Let the number ofneighborsk be a constant.
Then even if all the distances are computed, the time isO(k2dn) = O(dn).

From the above three components and the fact that the dimensiond dominatesk, we conclude
that f (n) is bounded byO(dn).

1996

FAST kNN GRAPH CONSTRUCTION FORHIGH DIMENSIONAL DATA

3.2 The Complexities ofTo and Tg

By substituting f (n) = O(dn) into (5) and (6), we derive the closed form solutions toTo(n) and
Tg(n), which are stated in the following two theorems.

Theorem 1 The time complexity for the overlap method is

To(n) = Θ(dnto),

where

to = log2/(1+α) 2 =
1

1− log2(1+α)
.

Theorem 2 The time complexity for the glue method is

Tg(n) = Θ(dntg/α),

where tg is the solution to the equation

2
2t +αt = 1.

The proofs will be given in Appendix B. Figure 2 plots the two curves ofto andtg as functions
of α, together with a table that lists some of their values. Figure 2 suggests that the glue method is
asymptotically faster than the overlap method. Indeed, this is true for any choice of α.

0 0.1 0.2 0.3 0.4
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

α

t
o

t
g

α 0.05 0.10 0.15 0.20 0.25 0.30
to 1.08 1.16 1.25 1.36 1.47 1.61
tg 1.06 1.12 1.17 1.22 1.27 1.33

Figure 2: The exponentsto andtg as functions ofα.

Theorem 3 When0< α < 1, the exponents to in Theorem 1 and tg in Theorem 2 obey the following
relation:

1 < tg < to. (7)

The proof of the above theorem will be given in Appendix B. We remark that whenα >
√

2−
1≈ 0.41,to > 2. In this situation the overlap method becomes asymptotically slower than the brute-
force method. Similarly, whenα > 1/

√
2≈ 0.71, tg > 2. Hence, a largeα (> 0.41) is not useful in

practice.

1997

CHEN, FANG AND SAAD

4. Experiments

In this section we show a few experimental results to illustrate the running times ofthe two proposed
methods compared with the brute-force method, and the qualities of the resultinggraphs. The
experiments were performed under a Linux workstation with two P4 3.20GHz CPUs and 2GB
memory. The algorithms were all implemented using C/C++, and the programs werecompiled using
g++ with -O2 level optimization. The divide and conquer methods were implemented according to
Algorithms 1 and 2, and the brute-force method was exactly as in the procedurekNN-BRUTEFORCE

given in Appendix A.

4.1 Running Time

Figure 3 plots the running times versus the dimensiond and the number of data pointsn on a syn-
thetic data set. Since the distribution of the data should have little impact on the running times of
the methods, we used random data (drawn from the uniform distribution over [0,1]d) for this exper-
iment. From Figure 3(a), it is clear that the running time is linear with respect to the dimensiond.
This is expected from the complexity analysis. In Figure 3(b), we usedα = 0.2, which corresponds
to the theoretical valuesto = 1.36 andtg = 1.22. We used curves in the formc1n1.36+c2n+c3 and
c4n1.22+c5n+c6 to fit the running times of the overlap method and the glue method, respectively.
The fitted curves are also shown in Figure 3. It can be seen that the experimental results match the
theoretical analysis quite well.

200 400 600 800 1000
0

5

10

15

20

25

30

d

T
im

e
(s

ec
on

ds
)

kNN−overlap
kNN−glue

(a) n = 10000,α = 0.2, d varying

1 2 3 4 5

x 10
4

0

50

100

150

200

n

T
im

e
(s

ec
on

ds
)

kNN−overlap
kNN−glue

(b) d = 500,α = 0.2, n varying

Figure 3: The running times for randomly generated data.

4.2 Quality

In another experiment, we used four real-life data sets to test the qualities ofthe resultingkNN
graphs: The FREY3 face video frames (Roweis and Saul, 2000), the extYaleB4 database (Lee et al.,

3. FREY can be found athttp://www.cs.toronto.edu/~roweis/data.html.
4. extYaleB can be found athttp://vision.ucsd.edu/~leekc/ExtYaleDatabase/ExtYaleB.html.

1998

FAST kNN GRAPH CONSTRUCTION FORHIGH DIMENSIONAL DATA

2005), the MNIST5 digit images (LeCun et al., 1998), and the PIE6 face database (Sim et al.,
2003). These data sets are all image sets that are widely used in the literaturein the areas of face
recognition, dimensionality reduction, etc. For MNIST, we used only the testset. Table 1 gives
some characteristics of the data. The number of images is equal ton and the size of each image,
that is, the total number of pixels for each image, is the dimensiond. The dimensions vary from
about 500 to 10,000. Since some of these data sets were also used later to illustrate the practical
usefulness of our methods in real applications, for each one we used a specifick value that was used
in the experiments of past publications. These values are typically around 10.

FREY extYaleB MNIST PIE
imgs (n) 1,965 2,414 10,000 11,554
img size (d) 20×28 84×96 28×28 32×32

Table 1: Image data sets.

The qualities of the resulting graphs versus the running times are plotted in Figure 4. Each
plotted point in the figure corresponds to a choice ofα (= 0.05,0.10,0.15,0.20,0.25,0.30). The
running times of the brute-force method are also indicated. We use two quality criteria: accuracy
andaverage rank. Theaccuracyof an approximatekNN graphG′ (with regard to the exact graph
G) is defined as

accuracy(G′) =
|E(G′)∩E(G)|
|E(G)| ,

whereE(·) means the set of directed edges in the graph. Thus, the accuracy is within the range
[0,1], and higher accuracy means better quality. The rankru(v) of a vertexv with regard to a vertex
u is the position ofv in the vertex list sorted in ascending order of the distance tou. (By default, the
rank of the nearest neighbor ofu is 1.) Thus, theaverage rankis defined as

ave-rank(G′) =
1
kn∑

u
∑

v∈N(u)

ru(v),

whereN(u) means the neighborhood ofu in the graphG′. The exactkNN graph has the average
rank(1+k)/2.

It can be seen from Figure 4 that the qualities of the resulting graphs exhibit similar trends by
using both measures. Take the graph accuracy for example. The largerα, the more accurate the
resulting graph. However, larger values ofα lead to more time-consuming runs. In addition, the
glue method is much faster than the overlap method for the sameα, while the latter yields more
accurate graphs than the former. The two methods are both significantly faster than the brute-force
method when an appropriateα is chosen, and they can yield high quality graphs even whenα is
small.

It is interesting to note that in all the plots, the red circle-curve and the blue plus-curve roughly
overlap. This similar quality-time trade-off seems to suggest that neither of themethod is superior
to the other one; the only difference is theα value used to achieve the desired quality. However,
we note that different approximate graphs can yield the same accuracy value or average rank value,
hence the actual quality of the graph depends on real applications.

5. MNIST can be found athttp://yann.lecun.com/exdb/mnist.
6. PIE can be found athttp://www.cs.uiuc.edu/homes/dengcai2/Data/FaceData.html.

1999

CHEN, FANG AND SAAD

0 0.5 1 1.5 2 2.5
0

0.05

0.1

FREY, k = 12

CPU time (seconds)

1
−

 a
cc

ur
ac

y

brute−force method ↓

kNN−overlap
kNN−glue

0 0.5 1 1.5 2 2.5
6.5

7

7.5

8

FREY, k = 12

CPU time (seconds)

av
er

ag
e

ra
nk

brute−force method ↓

kNN−overlap
kNN−glue

0 20 40 60
0

0.05

0.1

0.15

0.2

0.25

extYaleB, k = 10

CPU time (seconds)

1
−

 a
cc

ur
ac

y

brute−force method ↓

kNN−overlap
kNN−glue

0 20 40 60
5.5

6

6.5

7

7.5

8
extYaleB, k = 10

CPU time (seconds)

av
er

ag
e

ra
nk

brute−force method ↓

kNN−overlap
kNN−glue

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

MNIST, k = 8

CPU time (seconds)

1
−

 a
cc

ur
ac

y

brute−force method ↓

kNN−overlap
kNN−glue

0 20 40 60 80 100

5

6

7

8

9

10

11

MNIST, k = 8

CPU time (seconds)

av
er

ag
e

ra
nk

brute−force method ↓

kNN−overlap
kNN−glue

0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

PIE, k = 5

CPU time (seconds)

1
−

 a
cc

ur
ac

y

brute−force method ↓

kNN−overlap
kNN−glue

0 50 100 150
3

4

5

6

7

8

9

PIE, k = 5

CPU time (seconds)

av
er

ag
e

ra
nk

brute−force method ↓

kNN−overlap
kNN−glue

Figure 4: Graph quality versus running time for different data sets. Eachrow of the plots cor-
responds to one data set. The left column of plots shows the 1−accuracy measure. The
right column shows the average-rank measure. Each plotted point corresponds to a choice
of α. From left to right on each curve, theα values are 0.05, 0.10, 0.15, 0.20, 0.25, 0.30,
respectively.

2000

FAST kNN GRAPH CONSTRUCTION FORHIGH DIMENSIONAL DATA

4.3 Distance Calculations and Refinements

We also report the percentage of the distance calculations, which is one ofthe dominant costs of
the graph construction. The superior efficiency of our methods lies in two facts. First, forn data
points, the brute-force method must compute distances betweenn(n−1)/2 pairs of points, while
our methods compute only a small fraction of this number. Second, the use of a(hash) table brings
the benefit of avoiding repeating distance calculations if the evaluations of the same distance are
required multiple times. Tables 2 and 3 confirm these two claims. As expected, thelarger the
common region (α) is, the more distances need to be calculated, while the benefit of the hashing
becomes more significant. It can also be seen that the savings in distance calculations are more
remarkable whenn becomes larger andk becomes smaller, for example,k = 5 for the data set PIE.

FREY (k = 12) extYaleB (k = 10) MNIST (k = 8) PIE (k = 5)
α overlap glue overlap glue overlap glue overlap glue

0.05 6.07% 5.10% 5.13% 4.42% 1.19% 0.94% 0.45% 0.35%
0.10 6.55% 5.80% 5.58% 5.08% 1.42% 1.22% 0.60% 0.47%
0.15 7.48% 6.35% 6.05% 5.46% 1.74% 1.36% 0.78% 0.56%
0.20 8.28% 6.57% 6.66% 5.66% 2.20% 1.52% 1.06% 0.66%
0.25 9.69% 7.00% 7.36% 6.02% 2.92% 1.71% 1.48% 0.77%
0.30 11.48% 7.46% 8.34% 6.26% 4.04% 1.91% 2.07% 0.90%

Table 2: Percentages of distance calculations (with respect ton(n−1)/2), for different data sets,
different methods, and differentα’s.

FREY (k = 12) extYaleB (k = 10) MNIST (k = 8) PIE (k = 5)
α overlap glue overlap glue overlap glue overlap glue

0.05 9.44% 12.15% 11.46% 14.80% 9.56% 11.55% 6.85% 7.01%
0.10 7.07% 12.09% 8.46% 14.36% 6.82% 11.76% 5.27% 8.14%
0.05 5.18% 10.81% 6.25% 12.79% 4.66% 10.17% 3.52% 7.55%
0.20 3.65% 9.12% 4.35% 11.04% 2.98% 8.49% 2.15% 6.40%
0.05 2.62% 7.52% 2.90% 9.55% 1.77% 6.85% 1.23% 5.19%
0.30 1.83% 6.44% 1.88% 7.89% 0.96% 5.41% 0.62% 4.13%

Table 3: Percentages of actual distance calculations with respect to the total number of needed
distances in the refine step, for different data sets, different methods,and differentα’s.
This is equivalent to the failure rate of hash table lookups.

The final experiment illustrates the importance of the refine step. Figure 5 shows the decrease
in quality if the REFINE procedure is not invoked. The refinement greatly improves the accuracy of
the approximate graph (especially forα less than 0.2) at some additional cost in the execution time.
This additional expense is worthwhile if the goal is to compute a high qualitykNN graph.

5. Applications

kNN graphs have been widely used in various data mining and machine learningapplications. This
section discusses two scenarios where the approximatekNN graphs resulting from our proposed
techniques can provide an effective replacement for the exactkNN graph.

2001

CHEN, FANG AND SAAD

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

MNIST, k = 8

CPU time (seconds)

1
−

 a
cc

ur
ac

y

brute−force method ↓

kNN−overlap
kNN−glue
kNN−overlap, no refine
kNN−glue, no refine

Figure 5: The refine step boosts the accuracy of the graph at some additional computational cost.
Data set: MNIST. The settings are the same as in Figure 4.

5.1 Agglomerative Clustering

Agglomerative clustering (Ward, 1963) is a clustering method which exploits ahierarchy for a set
of data points. Initially each point belongs to a separate cluster. Then, the algorithm iteratively
merges a pair of clusters that has the lowest merge cost, and updates the merge costs between the
newly merged cluster and the rest of the clusters. This process terminates when the desired number
of clusters is reached (or when all the points belong to the single final cluster). A straightforward
implementation of the method takesO(n3) time, since there areO(n) iterations, each of which takes
O(n2) time to find the pair with the lowest merge cost (Shanbehzadeh and Ogunbona, 1997). Fränti
et al. (2006) proposed, at each iteration, to maintain thekNN graph of the clusters, and merge two
clusters that are the nearest neighbors in the graph. Let the number of clusters at the present iteration
bem. Then this method takesO(km) time to find the closest clusters, compared with theO(m2) cost
of finding the pair with the lowest merge cost. With a delicate implementation using a doubly linked
list, they showed that the overall running time of the clustering process reduces toO(τnlogn), where
τ is the number of nearest neighbor updates at each iteration. Their method greatly speeds up the
clustering process, while the clustering quality is not much degraded.

However, the quadratic time to create the initialkNN graph eclipses the improvement in the
clustering time. One solution is to use an approximatekNN graph that can be inexpensively created.
Virmajoki and Fränti (2004) proposed a divide-and-conquer algorithm to create an approximate
kNN graph, but their time complexity was overestimated. Our approach also follows the common
framework of divide and conquer. However, we bring three improvements over previous work: (1)
Two methods to perform the divide step are proposed, (2) an efficient way to compute the separating
hyperplane is described, and (3) a detailed and rigorous analysis on thetime complexity is provided.
This analysis in particular makes the proposed algorithms practical, especiallyin the presence of
high dimensional data (e.g., whend is in the order of hundreds or thousands).

We performed an experiment on the data set PIE with 68 classes (see Figure 6). Since class
labels are known, we used the purity and the entropy (Zhao and Karypis,2004) as quality measures.

2002

FAST kNN GRAPH CONSTRUCTION FORHIGH DIMENSIONAL DATA

0.05 0.1 0.15 0.2 0.25 0.3
0.2

0.4

0.6

0.8

1
k = 5

α

pu
rit

y

exact kNN
kNN−overlap
kNN−glue

(a) Purity.

0.05 0.1 0.15 0.2 0.25 0.3
0

0.1

0.2

0.3

0.4
k = 5

α

en
tr

op
y

exact kNN
kNN−overlap
kNN−glue

(b) Entropy.

0.05 0.1 0.15 0.2 0.25 0.3
4.2

4.3

4.4

4.5

4.6

4.7x 10
5 k = 5

α

S
S

E

exact kNN
kNN−overlap
kNN−glue

(c) Sum of squared errors.

Figure 6: Agglomerative clustering usingkNN graphs on the image data set PIE (68 human sub-
jects).

They are defined as

Purity=
q

∑
i=1

ni

n
Purity(i), where Purity(i) =

1
ni

max
j

(

n j
i

)

,

and

Entropy=
q

∑
i=1

ni

n
Entropy(i), where Entropy(i) =−

q

∑
j=1

n j
i

ni
logq

n j
i

ni
.

Here,q is the number of classes/clusters,ni is the size of clusteri, andn j
i is the number of class

j data that are assigned to thei-th cluster. The purity and the entropy both range from 0 to 1. In
Figure 6 we show the purities, the entropies, and the values of the objectivefunction for a general
purpose clustering (sum of squared errors, SSE), for different methods and differentα’s. In general,

2003

CHEN, FANG AND SAAD

a higher purity, a lower entropy, and/or a lower SSE means a better clustering quality. As can be
seen the qualities of the clusterings obtained from the approximatekNN graphs are very close to
those resulting from the exact graph, with a few being even much better. Itis interesting to note that
the clustering results seem to have little correlation with the qualities of the graphsgoverned by the
valueα.

5.2 Dimensionality Reduction

Many dimensionality reduction methods, for example, locally linear embedding (LLE) (Roweis and
Saul, 2000), Laplacian eigenmaps (Belkin and Niyogi, 2003), locality preserving projections (LPP)
(He and Niyogi, 2004), and orthogonal neighborhood preserving projections (ONPP) (Kokiopoulou
and Saad, 2007), compute a low dimensional embedding of the data by preserving the local neigh-
borhoods for each point. For example, in LLE, a weighted adjacency matrixW is first computed to
minimize the following objective:

E(W) = ∑
i

∥

∥

∥xi−∑x j∈N(xi)Wi j x j

∥

∥

∥

2
, subject to∑

j

Wi j = 1, ∀i,

whereN(·) means the neighborhood of a point. Then, a low dimensional embeddingY = [y1, . . . ,yn]
is computed such that it minimizes the objective:

Φ(Y) = ∑
i

∥

∥

∥
yi−∑y j∈N(yi)Wi j y j

∥

∥

∥

2
, subject toYYT = I .

The final solution,Y, is the matrix whose column-vectors are ther bottom right singular vectors of
the Laplacian matrixLLLE = I −W. As another example, in Laplacian eigenmaps, the low dimen-
sional embeddingY = [y1, . . . ,yn] is computed so as to minimize the cost function:

Ψ(Y) = ∑
i, j

Wi j
∥

∥yi−y j
∥

∥

2
, subject toYDYT = I ,

whereD is the diagonal degree matrix. Here, the weighted adjacency matrixW is defined in a
number of ways, one of the most popular being the weights of the heat kernel

Wi j =

{

exp(−
∥

∥xi−x j
∥

∥

2
/σ2) if xi ∈ N(x j) or x j ∈ N(xi),

0 otherwise.

The solution,Y, is simply the matrix ofr bottom eigenvectors of the normalized Laplacian matrix
Leigenmaps= I −D−1/2WD−1/2 (subject to scaling).

A thorn in the nicely motivated formulations for the above approaches, is thatthey all begin
with a rather expensive computation to obtain the neighborhood graph of thedata. On the other
hand, the cost of computing the solutionY via, for example, the Lanczos algorithm, is relatively
inexpensive, and can be summarized as7 O(rkn), which is independent of the dimensiond. The
methods discussed in this paper are suitable alternatives to the expensive brute-force approach to

7. To be more exact, the dominant cost of computingr singular vectors/eigenvectors of a sparse matrix by the Lanczos
method isO(r ′ ·nnz), wherer ′ is the number of Lanczos steps and nnz is the number of nonzeros in the matrix. The
valuer ′ is in practice a few times ofr, and in our situation, the matrix is the (normalized) graph Laplacian, hence
nnz= O(kn).

2004

FAST kNN GRAPH CONSTRUCTION FORHIGH DIMENSIONAL DATA

−2 −1 0 1 2 3 4
−3

−2

−1

0

1

2

3

4
Using exact kNN

(a)

−2 −1 0 1 2 3 4
−3

−2

−1

0

1

2

3

4

Using kNN−overlap, α = 0.30

(b)

−1 −0.5 0 0.5 1 1.5 2 2.5
−3

−2

−1

0

1

2

3

4

Using kNN−glue, α = 0.15

(c)

−2 −1 0 1 2 3 4 5
−4

−3

−2

−1

0

1

2

3

4

Using kNN−glue, α = 0.30

(d)

(e) Images on the circle path. Facial expressions gradually
change.

Figure 7: Dimensionality reduction on the data set FREY by LLE.

extract the exactkNN graph, since the approximate graphs are accurate enough for the purpose of
dimensionality reduction, while the time costs are significantly smaller. Figures 7 and 8 provide two
illustrations of this.

In Figure 7 are the plots of the dimensionality reduction results of LLE applied tothe data set
FREY, where we usedk = 12 as that in Roweis and Saul (2000, Figure 3). Figure 7(a) shows
the result when using the exactkNN graph, while Figure 7(b) shows the result when using the
approximatekNN graph by the overlap method withα = 0.30. It is clear that the two results are
almost identical. Figures 7(c) and 7(d) give two plots when the glue method is used. Although the

2005

CHEN, FANG AND SAAD

−8 −6 −4 −2 0 2 4 6 8

x 10
−3

−4

−2

0

2

4

6

8

10
x 10

−3 Using exact kNN

0

1

2
3

4

5

6

7

8
9

(a)

−8 −6 −4 −2 0 2 4 6 8

x 10
−3

−4

−2

0

2

4

6

8

10
x 10

−3 Using kNN−overlap, α = 0.30

(b)

−8 −6 −4 −2 0 2 4 6

x 10
−3

−4

−2

0

2

4

6

8

10
x 10

−3 Using kNN−glue, α = 0.15

(c)

−8 −6 −4 −2 0 2 4 6

x 10
−3

−4

−2

0

2

4

6

8

10
x 10

−3 Using kNN−glue, α = 0.30

(d)

Figure 8: Dimensionality reduction on the data set MNIST by Laplacian eigenmaps.

embeddings are different from those of the exactkNN graph in Figure 7(a), they also represent the
original data manifold quite well. This can be seen by tracking the relative locations of the sequence
of images (as shown in 7(e)) in the two dimensional space.

Figure 8 shows the plots of the dimensionality reduction results of Laplacian eigenmaps applied
to the data set MNIST, where we usedk= 5. Figure 8(a) shows the original result by using the exact
kNN graph, while 8(b), 8(c) and 8(d) show the results by using the overlap method withα = 0.30,
the glue method withα = 0.15, and the glue method withα = 0.30, respectively. The four plots
all show clear clusterings of the ten classes (digits from 0 to 9), and the localization patterns of the
clusterings are very similar.

2006

FAST kNN GRAPH CONSTRUCTION FORHIGH DIMENSIONAL DATA

6. Conclusions

We have proposed two sub-quadratic time methods under the framework of divide and conquer for
computing approximatekNN graphs for high dimensional data. The running times of the methods,
as well as the qualities of the resulting graphs, depend on an internal parameter that controls the
overlap size of the subsets in the divide step. Experiments show that in order to obtain a high
quality graph, a small overlap size is usually sufficient and this leads to a smallexponent in the
time complexity. An avenue of future research is to theoretically analyze the quality of the resulting
graphs in relation to the overlap size. The resulting approximate graphs have a wide range of
applications as they can be safely used as alternatives to the exactkNN graph. We have shown two
such examples: one in agglomerative clustering and the other in dimensionality reduction. Thus,
replacing the exactkNN graph construction with one produced by the methods proposed here,can
significantly alleviate what currently constitutes a major bottleneck in these applications.

Acknowledgments

This research was supported by the National Science Foundation (grant DMS-0810938) and by the
Minnesota Supercomputer Institute. The authors would like to thank the anonymous referees who
made many valuable suggestions.

Appendix A. Pseudocodes of Procedures

1: function G = kNN-BRUTEFORCE(X, k)
2: for i← 1, . . . ,n do
3: for j ← i +1, . . . ,n do
4: Computeρ(xi ,x j) =

∥

∥xi−x j
∥

∥

5: ρ(x j ,xi) = ρ(xi ,x j)
6: end for
7: SetN(xi) = {x j | ρ(xi ,x j) is among thek smallest elements for allj 6= i}
8: end for
9: end function

1: function (X1,X2) = DIVIDE -OVERLAP(X, α)
2: Compute the largest right singular vectorv of X̂ = X−ceT

3: Let V = {|vi | | i = 1,2, . . . ,n}
4: Findhα(V) ⊲ See Section 2.2.1 for the definition
5: SetX1 = {xi | vi ≥−hα(V)}
6: SetX2 = {xi | vi < hα(V)}
7: end function

2007

CHEN, FANG AND SAAD

1: function (X1,X2,X3) = DIVIDE -GLUE(X, α)
2: Compute the largest right singular vectorv of X̂ = X−ceT

3: Let V = {|vi | | i = 1,2, . . . ,n}
4: Findhα(V)
5: SetX1 = {xi | vi ≥ 0}
6: SetX2 = {xi | vi < 0}
7: SetX3 = {xi | −hα(V)≤ vi < hα(V)}
8: end function

1: function G = CONQUER(G1, G2, k)
2: G = G1∪G2

3: for all x∈V(G1)∩V(G2) do ⊲ V(·) denotes the vertex set of the graph
4: UpdateN(x)←{y | ρ(x,y) is among thek smallest elements for ally∈ N(x)}
5: end for
6: end function

1: function G = CONQUER(G1, G2, G3, k)
2: G = G1∪G2∪G3

3: for all x∈V(G3) do
4: UpdateN(x)←{y | ρ(x,y) is among thek smallest elements for ally∈ N(x)}
5: end for
6: end function

1: function REFINE(G, k)
2: for all x∈V(G) do
3: UpdateN(x)←{y | ρ(x,y) is among thek smallest elements for all

y∈ N(x)∪
(

S

z∈N(x) N(z)
)

}
4: end for
5: end function

Appendix B. Proofs

Theorem 1 follows from the Master Theorem (Cormen et al., 2001, Chapter4.3). Theorem 2 is an
immediate consequence of the following lemma, which is straightforward to verify.

Lemma 4 The recurrence relation

T(n) = 2T(n/2)+T(αn)+n

with T(1) = 1 has a solution

T(n) =

(

1+
1
α

)

nt − n
α

where t is the solution to the equation
2
2t +αt = 1.

The proof of Theorem 3 requires two lemmas.

2008

FAST kNN GRAPH CONSTRUCTION FORHIGH DIMENSIONAL DATA

Lemma 5 When0 < x < 1,

log2(1−x2) >
(

log2(1−x)
)(

log2(1+x)
)

.

Proof By Taylor expansion,
(

ln(1−x)
)(

ln(1+x)
)

=

(

−
∞

∑
n=1

xn

n

)(

∞

∑
n=1

(−1)n+1xn

n

)

=−
∞

∑
n=1

(

2n−1

∑
m=1

(−1)m−1

m(2n−m)

)

x2n

=−
∞

∑
n=1

(

1
2n

(

1
1

+
1

2n−1

)

− 1
2n

(

1
2

+
1

2n−2

)

+ · · ·+ (−1)n−1

n2

+ · · ·− 1
2n

(

1
2n−2

+
1
2

)

+
1
2n

(

1
2n−1

+
1
1

))

x2n

=−
∞

∑
n=1

(

1
n

(

1− 1
2

+
1
3

+ · · ·+ 1
2n−1

))

x2n

<−
∞

∑
n=1

(

ln2
n

)

x2n

= (ln2) · ln(1−x2).

The inequality in the lemma follows by changing the bases of the logarithms.

Lemma 6 The following inequality

log2(ab) > (log2a)(log2b)

holds whenever0 < a < 1 < b < 2 and a+b≥ 2.

Proof By usingb≥ 2−a, we have the following two inequalities

log2(ab)≥ log2(a(2−a)) = log2(1− (1−a))(1+(1−a)) = log2(1− (1−a)2)

and
(log2a)(log2b)≤ (log2a)(log2(2−a)) = log2(1− (1−a))× log2(1+(1−a)).

Then by applying Lemma 5 with 1−a = x, we have

log2(1− (1−a)2) > log2(1− (1−a))× log2(1+(1−a)).

Thus, the inequality of the lemma holds.

2009

CHEN, FANG AND SAAD

Proof of Theorem 3 From Theorem 2 we have

tg = 1− log2(1−αtg) > 1.

Then

to− tg =
1

1− log2(1+α)
−1+ log2(1−αtg)

=
log2(1+α)+ log2(1−αtg)− log2(1+α)× log2(1−αtg)

1− log2(1+α)
.

Since 0< α < 1, the denominator 1− log2(1+ α) is positive. By Lemma 6 the numerator is also
positive. Henceto > tg.

References

M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction anddata representation.
Neural Computatioin, 16(6):1373–1396, 2003.

J. Bentley. Multidimensional divide-and-conquer.Communications of the ACM, 23:214–229, 1980.

J. Bentley, D. Stanat, and E. Williams. The complexity of finding fixed-radius near neighbors.
Information Processing Letters, 6:209–213, 1977.

M. W. Berry. Large scale sparse singular value computations.International Journal of Supercom-
puter Applications, 6(1):13–49, 1992.

D. L. Boley. Principal direction divisive partitioning.Data Mining and Knowledge Discovery, 2(4):
324–344, 1998.

M. Brito, E. Chávez, A. Quiroz, and J. Yukich. Connectivity of the mutualk-nearest neighbor graph
in clustering and outlier detection.Statistics & Probability Letters, 35:33–42, 1997.

P. B. Callahan. Optimal parallel all-nearest-neighbors using the well-separated pair decomposition.
In Proceedings of the 34th IEEE Symposium on Foundations of Computer Science, 1993.

P. B. Callahan and S. Rao Kosaraju. A decomposition of multidimensional pointsets with appli-
cations tok-nearest-neighbors andn-body potential fields.Journal of the ACM, 42(1):67–90,
1995.

B. Chazelle. An improved algorithm for the fixed-radius neighbor problem.Information Processing
Letters, 16:193–198, 1983.

H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. E.Kavraki, and S. Thrun.
Principles of Robot Motion: Theory, Algorithms, and Implementations. The MIT Press, 2005.

K. L. Clarkson. Fast algorithms for the all nearest neighbors problem. In Proceedings of the 24th
Annual IEEE Symposium on the Foundations of Computer Science, pages 226–232, 1983.

2010

FAST kNN GRAPH CONSTRUCTION FORHIGH DIMENSIONAL DATA

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.Introduction to Algorithms. The MIT
Press, 2nd edition, 2001.

B. V. Dasarathy. Nearest-neighbor approaches. In Willi Klosgen, Jan M. Zytkow, and Jan Zyt,
editors,Handbook of Data Mining and Knowledge Discovery, pages 88–298. Oxford University
Press, 2002.

P. Fränti, O. Virmajoki, and V. Hautamäki. Fast agglomerative clustering using ak-nearest neighbor
graph.IEEE Transactions on Pattern Analysis & Machine Intelligence, 28(11):1875–1881, 2006.

X. He and P. Niyogi. Locality preserving projections. InAdvances in Neural Information Processing
Systems 16 (NIPS 2004), 2004.

P. Indyk. Nearest neighbors in high-dimensional spaces. In J. E. Goodman and J. O’Rourke, editors,
Handbook of Discrete and Computational Geometry. CRC Press LLC, 2nd edition, 2004.

P. Indyk and R. Motwani. Approximate nearest neighbors: towards removing the curse of dimen-
sionality. In Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing,
1998.

F. Juhász and K. Mályusz.Problems of cluster analysis from the viewpoint of numerical analysis,
volume 22 ofColloquia Mathematica Societatis Janos Bolyai. North-Holland, Amsterdam, 1980.

J. M. Kleinberg. Two algorithms for nearest-neighbor search in high dimensions. InProceedings of
the Twenty-Ninth Annual ACM Symposium on Theory of Computing, 1997.

E. Kokiopoulou and Y. Saad. Orthogonal neighborhood preserving projections: A projection-based
dimensionality reduction technique.IEEE Transactions on Pattern Analysis & Machine Intelli-
gence, 29(12):2143–2156, 2007.

E. Kushilevitza, R. Ostrovsky, and Y. Rabani. Efficient search for approximate nearest neighbor in
high dimensional spaces.SIAM Journal on Computing, 30(2):457–474, 2000.

C. Lanczos. An iteration method for the solution of the eigenvalue problem oflinear differential and
integral operators.Journal of Research of the National Bureau of Standards, 45:255–282, 1950.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition.Proceedings of the IEEE, 86(11):2278–2324, 1998.

K.C. Lee, J. Ho, and D. Kriegman. Acquiring linear subspaces for facerecognition under variable
lighting. IEEE Transactions on Pattern Analysis & Machine Intelligence, 27(5):684–698, 2005.

T. Liu, A. W. Moore, A. Gray, and K. Yang. An investigation of practicalapproximate nearest
neighbor algorithms. InProceedings of Neural Information Processing Systems (NIPS 2004),
2004.

R. Paredes, E. Chávez, K. Figueroa, and G. Navarro. Practical construction ofk-nearest neighbor
graphs in metric spaces. InProceedings of the 5th Workshop on Efficient and Experimental
Algorithms (WEA’06), 2006.

2011

CHEN, FANG AND SAAD

E. Plaku and L. E. Kavraki. Distributed computation of theknn graph for large high-dimensional
point sets.Journal of Parallel and Distributed Computing, 67(3):346–359, 2007.

S. T. Roweis and L. K. Saul. Nonlinear dimensionality reduction by locally linear embedding.
Science, 290:2323–2326, 2000.

Y. Saad. On the rates of convergence of the Lanczos and the block-Lanczos methods.SIAM Journal
on Numerical Analysis, 17(5):687–706, 1980.

J. Sankaranarayanan, H. Samet, and A. Varshney. A fast all nearest neighbor algorithm for applica-
tions involving large point-clouds.Computers and Graphics, 31(2):157–174, 2007.

L. K. Saul and S. T. Roweis. Think globally, fit locally: unsupervised learning of low dimensional
manifolds.Journal of Machine Learning Research, 4:119–155, 2003.

G. Shakhnarovich, T. Darrell, and P. Indyk, editors.Nearest-Neighbor Methods in Learning and
Vision: Theory and Practice. The MIT Press, 2006.

J. Shanbehzadeh and P. O. Ogunbona. On the computational complexity ofthe LBG and PNN
algorithms.IEEE Transactions on Image Processing, 6(4):614–616, 1997.

T. Sim, S. Baker, and M. Bsat. The CMU pose, illumination, and expression database. IEEE
Transactions on Pattern Analysis & Machine Intelligence, 25(12):1615–1618, 2003.

J. B. Tenenbaum, V. de Silva, and J. C. Langford. A global geometric framework for nonlinear
dimensionality reduction.Science, 290(5500):2319–2323, 2000.

D. Tritchler, S. Fallah, and J. Beyene. A spectral clustering method for microarray data.Computa-
tional Statistics & Data Analysis, 49:63–76, 2005.

P. M. Vaidya. AnO(nlogn) algorithm for the all-nearest-neighbors problem.Discrete Computa-
tional Geometry, 4:101–115, 1989.

O. Virmajoki and P. Fränti. Divide-and-conquer algorithm for creating neighborhood graph for clus-
tering. InProceedings of the 17th International Conference on Pattern Recognition(ICPR’04),
2004.

J. H. Ward. Hierarchical grouping to optimize an objective function.Journal of the American
Statistical Association, 58(301):236–244, 1963.

Y. Zhao and G. Karypis. Empirical and theoretical comparisons of selected criterion functions for
document clustering.Machine Learning, 55(3):311–331, 2004.

2012

