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Abstract

Nearest neighbor graphs are widely used in data mining archima learning. A brute-force
method to compute the exadN graph take®(dr?) time for n data points in thel dimensional
Euclidean space. We propose two divide and conquer metbodsimputing an approximatéNN
graph in@(drf) time for high dimensional data (largd. The exponert € (1,2) is an increasing
function of an internal parametarwhich governs the size of the common region in the divide.step
Experiments show that a high quality graph can usually baioéd with small overlaps, that is, for
small values of. A few of the practical details of the algorithms are as falo First, the divide step
uses an inexpensive Lanczos procedure to perform recugpaaral bisection. After each conquer
step, an additional refinement step is performed to imprbeeatcuracy of the graph. Finally, a
hash table is used to avoid repeating distance calculatiorisg the divide and conquer process.
The combination of these techniques is shown to yield gdiiéstve algorithms for buildindkNN
graphs.

Keywords: nearest neighbors graph, high dimensional data, dividecanduer, Lanczos algo-
rithm, spectral method

1. Introduction

Building nearest neighbor graphs is often a necessary step whengedhrproblems arising from
applications in such areas as data mining (Brito et al., 1997; Dasaratt®), 208nifold learning
(Belkin and Niyogi, 2003; Roweis and Saul, 2000; Saul and Roweis3;Zhenbaum et al., 2000),
robot motion planning (Choset et al., 2005), and computer graphickdéBararayanan et al., 2007).
Given a set oh data pointsX = {xy,...,X,}, @ nearest neighbor graph consists of the verteXset
and an edge set which is a subseXok X. The edges are defined based gor@ximity measure
p(xi,x;) between two data points andx;, where a smalp value means that the two points are
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close. Two types of nearest neighbor graphs (Belkin and Niyogi, ;2863nd Niyogi, 2004) are
often used:

1. e-graph: This is an undirected graph whose edge set consists ofyaxg such thap(x;, Xj)
is less than some pre-defined thresholR*.

2. kNN graph: This is a directed graph (in general). There is an edgexrew; if and only if
p(xi,Xj) is among thé& smallest elements of the sgi(x,x/) [/ =1,...,i—1i+1,...,n}.

Thee-graph is geometrically motivated, and many efficient algorithms have beeoged for com-
puting it (see, e.g., Bentley et al., 1977; Chazelle, 1983). Howeveg;ghaph easily results in dis-
connected components (Belkin and Niyogi, 2003) and it is difficult to find@dgralue of which
yields graphs with an appropriate number of edges. Hence, they asaitadile in many situations.
On the other handkNN graphs have been shown to be especially useful in practice. Dheref
this paper will focus on the construction kiXIN graphs, for the case wheat-, -) is the Euclidean
distance between two points in 8.

Whenk = 1, only the nearest neighbor for each data point is considered. Thisytar case,
the all nearest neighborproblem, has been extensively studied in the literature. To compute the
INN graph, Bentley (1980) proposed a multidimensional divide-andpoenmethod that takes
O(nlog®1n) time, Clarkson (1983) presented a randomized algorithm with exp&xiefthlogn)
time (for some constai), and Vaidya (1989) introduced a deterministic worst-cge’d)%nlogn)
time algorithm (for some constant). These algorithms are generally adaptabl& to 1. Thus,
Paredes et al. (2006) presented a method to buidMygraph, which was empirically studied and
reported to requir®(n'?7) distance calculations for low dimensional data &{d*°°) calculations
for high dimensional data. Meanwhile, several parallel algorithms hawéaksn developed (Calla-
han, 1993; Callahan and Rao Kosaraju, 1995; Plaku and Kavrakr,) 2@espite a rich existing
literature, efficient algorithms for high dimensional data are still undeteegg. In this paper we
propose two methods that are especially effective in dealing with high dinredslata.

Note that the problem of constructingkbiN graph is different from the problem aofearest
neighbor(s) searcl{see, e.g., Indyk, 2004; Shakhnarovich et al., 2006, and refesetherein),
where given a set of data points, the task is to findkthearest points for any query point. Usually,
the nearest neighbors search problem is handled by first building atdatéure (such as a search
tree) for the given points in a preprocessing phase. Then, querideeanswered efficiently by ex-
ploiting the search structure. Of course, the constructionkdifd graph can be viewed as a nearest
neighbors search problem where each data point itself is a query.Mdoweaisting search methods
in general suffer from an unfavorable trade-off between the contplekthe search structure and
the accuracy of the query retrieval: either the construction of the sstmatture is expensive, or
accurate searches are costly. The spill-tree (sp-tree) data strudtueg él., 2004) is shown to be
empirically effective in answering queries, but since some heuristic @si¢he hybrid scheme)
are introduced to ensure search accuracy, the construction time cifitigtdo theoretically ana-
lyze. On the other hand, marig + €) nearest neighbor search methbtave been proposed with
guaranteed complexity bounds (Indyk, 2004). These methods repoiitawithin (1+€) times the
distance from the query to the actual nearest neighbor. Kleinberg@)®8sented two algorithms.
The first one has &((dlog?d)(d + logn)) query time complexity but requires a data structure of

1. Thee parameter here is different from that in thedraph”.
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sizeO(nlogd)??, whereas the second algorithm uses a nearly lineadr{faata structure and re-
sponds to a query i®(n+d log® n) time. By using locality sensitive hashing, Indyk and Motwani
(1998) gave an algorithm that us@én**%/(1+¢) - dn) preprocessing time and requi@gdnt/ (1+¢))
query time. Another algorithm given in Indyk and Motwani (1998) (3(a polylog(dn)) search al-
gorithm that uses @(n(1/€)°@ polylog(dn)) data structure. Kushilevitza et al. (2000) proposed a
O((dn)?(nlog(dlog n/s))o(e_z) poly(1/€)polylog(dn/g)) data structure that can answer a query in
O(d?poly(1/¢) polylog(dn/e)) time. In general, most of the given bounds are theoretical, and have
an inverse dependence enindicating expensive costs wheris small. Some of these methods
can potentially be applied for the purpose of efficieNIN graph construction, but many aspects,
such as appropriate choices of the parameters that centrekd to be carefully considered before
a practically effective algorithm is derived. Considerations of this natilf@ot be explored in the
present paper.

The rest of the paper is organized as follows. Section 2 proposes twodseitr computing
approximatekNN graphs, and Section 3 analyzes their time complexities. Then, we shawexfe
periments to demonstrate the effectiveness of the methods in Section 4, assdigo applications
in Section 5. Finally, conclusions are given in Section 6.

2. Divide and ConquerkNN

Our general framework for computing an approximdtN graph is as follows: We divide the set of
data points into subsets (possibly with overlaps), recursively computapheokimatekNN graphs
for the subsets, then conquer the results into a KR& graph. This divide and conquer framework
can clearly be separated in two distinct sub-problems: how to divide awdidv@onquer. The
conquer step is simple: If a data point belongs to more than one subsetis theearest neighbors
are selected from its neighbors in each subset. However, the dividesstéye implemented in many
different ways, resulting in different qualities of graphs. In what foédwo methods are proposed
which are based on a spectral bisection (Boley, 1998; Juhasz andis#aliQ80; Tritchler et al.,
2005) of the graph obtained from an inexpensive Lanczos proedgtanczos, 1950).

2.1 Spectral Bisection

Consider the data matrix
X =[Xg,...,%)] € RN

where each columg represents a data pointRf. When the context is clear, we will use the same
symbolX to also denote the set of data points. The data m&tixcentered to yield the matrix:

~

X =[R1,...,%] = X —ce',

wherec is the centroid ane is a column of all ones. A typical spectral bisection technique sKlits
into halves using a hyperplane. Lt u,v) denote the largest singular triplet ¥fwith

u'xX =ov'. 1)

Then, the hyperplane is defined asx—c) = 0, that is, it splits the set of data points into two
subsets:
X, ={x|u"% >0} and X_ ={x|u"% <0}
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This hyperplane maximizes the sum of squared distances between thedqyagrts to the
hyperplane that passes through the centroid. This is because folypegplane(w,x—c) = 0,
wherew is a unit vector, the squared sum is

. . B2 o2
3 W)= WX < X3 =%
1=
while w = u achieves the equality.

By a standard property of the SVD (Equation 1), this bisection techniquguisaent to split-
ting the set by the following criterion:

Xe={x|vi>0} and X_={x|v <0}, (2)

wherevy; is thei-th entry of the right singular vector. If it is preferred that the sizes of the two
subsets be balanced, an alternative is to replace the above criterion by

Xp={x|v>m(v)} and X_={x|vi<m(v)}, (3)

where niv) represents the median of the entries.of

The largest singular triplgio, u, v) of X can be computed using the Lanczos algorithm (Lanc-
zos, 1950; Berry, 1992). In short, we first compute an orthonormasilstof the Krylov subspace
spar{qy, (XTX)qy,. .., (XTX)S1q,} for an arbitrary initial unit vectog; and a small integes. Let
the basis vectors form an orthogonal matrix

QS: [Q1a~-7QS]~

An equality resulting from this computation is
QI (XTX)Qs =T,

whereTs is a symmetric tridiagonal matrix of sizex s. Then we compute the largest eigenvalue
89 and corresponding eigenvectgrof Ts:

Tsys == e(s)ys

Therefore, 8 is an approximation to the square of the largest singular vajughile the vector
Vs = Qsys is an approximation of the right singular vectoof X. The acute angle (Vs,v), between
Vs andv decays rapidly witls, as is shown in an error bound established in Saad (1980):

sinZ(Vs,v) < ST

whereK is a constaniCy denotes the Chebyshev polynomial of degced the first kind, and, =

(A1 —A2)/(A2—An) in which the);’s denote the eigenvalues B X, that is, the squared singular
values ofX, ordered decreasingly. Note that we h&e;(1+y1) = cosH(s— 1) cosh™* (14 y1)],

in which cosh is the hyperbolic cosine. Therefore, a small valuewill generally suffice to yield
an accurate approximation. Note that an exact singular vector is naeasémgerform a bisection,
so we usually set a fixed value, say= 5, for this purpose. The computation of the orthonormal
basis takes tim®(sdn), while the time to computé® andys is negligible, sincdls is symmetric
tridiagonal ands is very small. Hence the time for computing the largest singular triplé¢ &f
bounded byO(sdn).
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2.2 The Divide Step: Two Methods

Based on the above general bisection technique, we propose two wagrédom the divide step for
computing an approximateéNN graph. The first, called theverlapmethod, divides the current set
into two overlapping subsets. The second, calledgiie method, divides the current set into two
disjoint subsets, and uses a third set called the gluing set to help merge thestiting disjoint
kNN graphs in the conquer phase. See Figure 1. Both methods create acoegion, whose size
is ana-portion of that of the current set, surrounding the dividing hypemplaDetails are given
next.

: <— hyperplane : <— hyperplane

X; X,

i
I
I
I
I
(a) The overlap method. (b) The glue method.

Figure 1: Two methods to divide a sétinto subsets. The size of the common region in the middle
surrounding the hyperplane is arportion of the size oK.

2.2.1 THE OVERLAP METHOD

In this method, we divide the s#tinto two overlapping subse} andXs:

XpUXo =X,
X]_ﬂXg;ﬁ(D.

Sinceov; is the signed distance from to the hyperplane, let the sétbe defined as
V=A{vl|i=12,...,n}.
Then we use the following criterion to fordy andXs:
Xi={x%|vi>—-hy(V)} and Xo={x|vi<hq(V)}, 4

wherehy () is a function which returns the element that is only larger tti&@0 )% of the elements
in the input set. The purpose of criterion (4) is to ensure that the ovefrlfye two subsets consists
of (1000)% of all the data, that is, théat

[XeNXe| = [alX[].

2. Here, we assume that the distances between points and the hypemgaledifferent. Ties are broken arbitrarily.
The same is done for the glue method.

1993



CHEN, FANG AND SAAD

2.2.2 THE GLUE METHOD

In this method, we divide the stinto two disjoint subsetX; andX, with a gluing subseXs:

XpUXo =X,
X]_ﬂXZZQ),
X]_ﬂXg#@,
XoN Xz # 0.

The criterion to build these subsets is as follows:

Xe={x|vi>0}, Xo={x|wv <0},
Xz={% | —ha(V) <v;i <hg(V)}.

Note that the gluing subseg in this method is exactly the intersection of the two subsets in the
overlap method. Hencé;g also containg1000)% of the data.

2.3 Refinement

In order to improve the quality of the resulting graph, during each requetdier the conquer step,
the graph can be refined at a small cost. The idea is to updakengerest neighbors for each point
by selecting from a pool consisting of its neighbors and the neighbors péighbors. Formally,
if N(x) is the set of current nearest neighborsxdiefore refinement, then, for each poigtwe
re-select itk nearest neighbors from

N(x) U ( U N(z)) :
zeN(x)

We are ready to present the complete algorithms for both methods; see Algofitand 2. These
algorithms share many similarities: They both fall in the framework of divide @muer; they
both call the brute-force proceduk®N-BRUTEFORCE to compute the graph when the size of
the set is smaller than a threshofg)( they both recursively call themselves on smaller subsets;
and they both employ a @\QUER procedure to merge the graphs computed for the subsets and
a ReFINE procedure to refine the graph during each recursion. The differisribat Algorithm 1

calls DIivIDE-OVERLAP to divide the set into two subsets (Section 2.2.1), while Algorithm 2 calls
DiviDE-GLUE to divide the set into three subsets (Section 2.2.2). For the sake of conggigten
pseudocodes of all the mentioned procedures are given in Appendix A.

2.4 The Algorithms

2.5 Storing Computed Distances in a Hash Table

The brute-force method comput€n?) pairs of distances, each of which take&l) time. One
advantage of the methods presented in this paper over brute-force méthbdt the distance cal-
culations can be significantly reduced thanks to the divide and congpevaaglh. The distances
are needed/computed in: (1) tkBN-BRUTEFORCE procedure which computes all the pairwise
distances and selects thkemallest ones for each point, (2) th@ @QUERprocedure which selects
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Algorithm 1 ApproximatekNN Graph Construction: The Overlap Method
1: function G = KNN-OVERLAP(X, k, a)

if |X| < ng then
G «— kNN-BRUTEFORCHX, k)

else
(X1,X2) < DIVIDE-OVERLAP(X, O) > Section 2.2.1
G1 < KNN-OVERLAP(X1, k, a)
Gy — KNN-OVERLAP(Xz, k, O)
G «+— CONQUER(G1, Gy, k) > Section 2, beginning
REFINE(G, k) > Section 2.3

10: end if

11: end function

N

Algorithm 2 ApproximatekNN Graph Construction: The Glue Method
1: function G = KNN-GLUE(X, k, a)
if |X| < ngthen
G < kNN-BRUTEFORCHX, k)
else
(X1,X2,X3) < DIVIDE-GLUE(X, O) > Section 2.2.2
G1 <+ KNN-GLUE(Xg, k, a)
Gz « KNN-GLUE(X2, k, )
Gz — KNN-GLUE(X3, k, a)
G «— CONQUERGq, Gy, G3, k) > Section 2, beginning
10: REFINE(G, k) > Section 2.3
11: end if
12: end function

N

k smallest distances from at most@andidates for each point, and (3) thefRE procedure which
selects thek smallest distances from at mdst- k? candidates for each point. Many of the dis-
tances computed frokNN-BRUTEFORCEand REFINE are reused in GNQUERand REFINE, with
probably more than once for some pairs. A naive way is to allocate memoanfoix n matrix

that stores all the computed distances to avoid duplicate calculations. Hailvesveonsumes too
much memory and is not necessary. A better approach is to use a hash blke tine computed
distances. This will save a significant amount of memory, as a later expérainenws that only a
small portion of then? pairs are actually computed. Furthermore the computational time will not
be affected since hash tables are efficient for both retrieving wanted ftemsand inserting new
items into the table (we do not need the delete operation).

The ideal hash function maps (the distance between) a pair of data pqinig to a bucket
such that the probability of collision is low. For simplicity of implementations, we usash func-
tion that maps the kegx;,x;) to i (and at the same time t. Collisions easily occur since many
distances between the poigtand other points are computed during the whole process. However,
this naive hashing has already shown rather appealing results in run tioe éddborate imple-
mentations should consider more effective hashing (e.g., double hashhaghes.
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3. Complexity Analysis

A thorough analysis shows that the time complexities for the overlap method amgieh method

are sub-quadratic (im), and the glue method is always asymptotically faster than the overlap
method. To this end we assume that in each divide step the suasats X, (in both methods) are
balanced. This assumption can always be satisfied by using the Equattorb{8ect the data set,
instead of the criterion (2). Hence, the time compleXigyfor the overlap method and for the

glue method satisfy the following recurrence relations:

To(n) =2To((1+a)n/2) + f(n), (5)
Tg(n) = 2Ty(n/2) + Ty(an) + f(n), (6)

wheref (n) is the combined time for the divide, conquer, and refine steps.

3.1 The Complexity of f

The functionf (n) consists of the following three components.

3.1.1 THE TIME FOR THE DIVIDE STEP

This includes the time to compute the largest right singular vectdithe centered matriX, and

the time to divide points into subseXg and X, (in the overlap method) or subsexs, X, and X3

(in the glue method). The former has been shown t@t&n) in Section 2.1, where the number
of Lanczos steps= 5 is fixed in the implementation, while for the latter we can use a linear time
selection method to find the valig (V). Therefore the overall time for this step@gdn).

3.1.2 THE TIME FOR THE CONQUERSTEP

This step only involves the points i N X, in the overlap method oXs in the glue method. For
each of thean points in these subsetshearest neighbors are chosen from at méstahdidates.
Therefore the time i©(kan).

3.1.3 THE TIME FOR THE REFINE STEP

For each pointk nearest neighbors are chosen from at nkesk? candidates. If all these distances
need to be computed, the overall timed&2dn). To the other extreme, if none of them are com-
puted, the factod can be omitted, which results @(k?n). In practice, by using a hash table, only

a very small fraction of thé+ k? distances are actually computed in this step; see also Table 3.
Hence, the best cost estimate for this steP(i’n).

Indeed, the ultimate useful information from this estimate is that the time for thenedint is
much less than that for the division (which ha®©&dn) cost), or at best is of the same order as
the latter. This can be seen from another perspective: Let the numbeigbiborsk be a constant.
Then even if all the distances are computed, the tin@(i€dn) = O(dn).

From the above three components and the fact that the dimethislominatexk, we conclude
that f (n) is bounded byD(dn).
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3.2 The Complexities ofT, and Ty

By substitutingf(n) = O(dn) into (5) and (6), we derive the closed form solutionsTgon) and
Tg(n), which are stated in the following two theorems.

Theorem 1 The time complexity for the overlap method is
To(n) = ©(dr),

where
1

o =100/ 2= 1 "og, (11 a)

Theorem 2 The time complexity for the glue method is
Tg(n) = ©(drfs/a),

where § is the solution to the equation
2 t

The proofs will be given in Appendix B. Figure 2 plots the two curveg @ndty as functions
of a, together with a table that lists some of their values. Figure 2 suggests that¢hmethod is
asymptotically faster than the overlap method. Indeed, this is true for amyecbi.

1.9r ‘
1.8
171
1.6¢
Lal | o 005 010 015 0.20 0.25 0.30
iy 1 t, 1.08 1.16 125 1.36 147 1.61
L | t; 1.06 1.12 117 122 127 1.33
1.2r j |
.~ -
(RS ol
‘ 9
% 0.1 0.2 0.3 0.4

a

Figure 2: The exponents andty as functions ofr.

Theorem 3 When0 < a < 1, the exponentg in Theorem 1 andjtin Theorem 2 obey the following
relation:
1<ty <to. (7

The proof of the above theorem will be given in Appendix B. We remarkweena > /2 —
1~0.41,t, > 2. In this situation the overlap method becomes asymptotically slower than the brute
force method. Similarly, whea > 1/v/2~0.71,t; > 2. Hence, a large (> 0.41) is not useful in
practice.
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4. Experiments

In this section we show a few experimental results to illustrate the running tintles tvfio proposed
methods compared with the brute-force method, and the qualities of the resydéipgs. The
experiments were performed under a Linux workstation with two P4 3.20GPi2sCand 2GB
memory. The algorithms were all implemented using C/C++, and the programsevepded using
g++ with -O2 level optimization. The divide and conquer methods were implemented acgaodin
Algorithms 1 and 2, and the brute-force method was exactly as in the pradeédiN-BRUTEFORCE
given in Appendix A.

4.1 Running Time

Figure 3 plots the running times versus the dimensi@nd the number of data pointson a syn-
thetic data set. Since the distribution of the data should have little impact on thagumes of

the methods, we used random data (drawn from the uniform distributiori@é) for this exper-
iment. From Figure 3(a), it is clear that the running time is linear with respecttdithensiord.

This is expected from the complexity analysis. In Figure 3(b), we ased.2, which corresponds

to the theoretical valuets = 1.36 andty = 1.22. We used curves in the forean'*6+ c,n+ c3 and
can'?? + csn 4+ ¢ to fit the running times of the overlap method and the glue method, respectively.
The fitted curves are also shown in Figure 3. It can be seen that theregpéal results match the
theoretical analysis quite well.

200

30 : : : .
+ kNN-overlap + kNN-overlap
O kNN-glue s O kNN-glue |
25¢ 1
150
g2 Z
c c
s 8
157 $§ 100}
Q
E £
F 10F M) [
-{P/ M 50r
5;/9/9/6/ |
q
0 Il Il Il L L L L
200 400 600 800 1000 1 2 3 4 5
d n x 10*
(@) n=10000,0 = 0.2,d varying (b) d =500,a = 0.2, nvarying

Figure 3: The running times for randomly generated data.

4.2 Quality

In another experiment, we used four real-life data sets to test the qualittes oésultingkNN
graphs: The FRE¥face video frames (Roweis and Saul, 2000), the extYatRabase (Lee et al.,

3. FREY can be found dtt t p: / / www. cs. t or ont 0. edu/ ~r owei s/ data. htm .
4. extYaleB can be found at t p: / / vi si on. ucsd. edu/ ~| eekc/ Ext Yal eDat abase/ Ext Yal eB. ht ni .
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2005), the MNIST digit images (LeCun et al., 1998), and the Place database (Sim et al.,
2003). These data sets are all image sets that are widely used in the liténatheereas of face
recognition, dimensionality reduction, etc. For MNIST, we used only theskst Table 1 gives
some characteristics of the data. The number of images is equand the size of each image,

that is, the total number of pixels for each image, is the dimendiofhe dimensions vary from
about 500 to 1M00. Since some of these data sets were also used later to illustrate the practica
usefulness of our methods in real applications, for each one we ugedifick value that was used

in the experiments of past publications. These values are typically ar@und 1

FREY extYaleB MNIST PIE
#imgs ) 1,065 2,414 10,000 11,554
img size ) 20x28 84x 96 28x28 32x 32

Table 1: Image data sets.

The qualities of the resulting graphs versus the running times are plotted ireFlguEach
plotted point in the figure corresponds to a choicexgf= 0.05,0.10,0.15,0.20,0.25,0.30). The
running times of the brute-force method are also indicated. We use two qudtiiyiac accuracy
andaverage rank Theaccuracyof an approximat&NN graphG’ (with regard to the exact graph
G) is defined as
[E(G)NE(G)]

E(G)
whereE(-) means the set of directed edges in the graph. Thus, the accuracy is wéhiantde
[0,1], and higher accuracy means better quality. The rg0k of a vertexv with regard to a vertex
uis the position ofs in the vertex list sorted in ascending order of the distanee {8y default, the
rank of the nearest neighbor ofs 1.) Thus, thewverage ranks defined as

accuracyG') =

1
ave-rankG') = — ru(v
C) = 3
whereN(u) means the neighborhood ofin the graphG'. The exackNN graph has the average
rank (1+K)/2.

It can be seen from Figure 4 that the qualities of the resulting graphsiesimitilar trends by
using both measures. Take the graph accuracy for example. The éartexr more accurate the
resulting graph. However, larger valuesmfead to more time-consuming runs. In addition, the
glue method is much faster than the overlap method for the sgrile the latter yields more
accurate graphs than the former. The two methods are both significatéy ttasn the brute-force
method when an appropriateis chosen, and they can yield high quality graphs even vehen
small.

It is interesting to note that in all the plots, the red circle-curve and the blgequitve roughly
overlap. This similar quality-time trade-off seems to suggest that neither ofi¢tieod is superior
to the other one; the only difference is thevalue used to achieve the desired quality. However,
we note that different approximate graphs can yield the same acculaeyoraverage rank value,
hence the actual quality of the graph depends on real applications.

5. MNIST can be found dtt t p: / / yann. | ecun. conf exdb/ mi st .
6. PIE can be found 4t t p: / / www. ¢s. ui uc. edu/ honmes/ dengcai 2/ Dat a/ FaceDat a. ht m
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Figure 4: Graph quality versus running time for different data sets. Eawshof the plots cor-
responds to one data set. The left column of plots shows-ttseduracy measure. The
right column shows the average-rank measure. Each plotted poinspgongs to a choice
of a. From left to right on each curve, tlevalues are @5, 010, 015, 020, 025, 030,
respectively.
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4.3 Distance Calculations and Refinements

We also report the percentage of the distance calculations, which is dhe dbminant costs of

the graph construction. The superior efficiency of our methods lies in dets.f First, fom data
points, the brute-force method must compute distances beta(@enl)/2 pairs of points, while

our methods compute only a small fraction of this number. Second, the ugbadla table brings

the benefit of avoiding repeating distance calculations if the evaluation® cfatime distance are
required multiple times. Tables 2 and 3 confirm these two claims. As expectetirgee the
common regiond) is, the more distances need to be calculated, while the benefit of the hashing
becomes more significant. It can also be seen that the savings in distdnidatmns are more
remarkable when becomes larger arldbecomes smaller, for example= 5 for the data set PIE.

FREY k=12) extYaleBk=10) MNIST k=38) PIE k=D5)

a overlap glue overlap glue overlap glue overlap glue
005 607% 510% 513% 442% 119% 094% Q45% Q35%
0.10 655% 580% 558% 508% 142% 122% Q60% Q47%
015 748% 635% 605% 546% 174% 136% Q78% Q56%
020 828% 657% 666% 566% 220% 152% 106% Q66%
025 969% 700% 736% 602% 292% 171% 148% Q77%
0.30 1148% 746% 834% 626% 404% 191% 207% Q90%

Table 2: Percentages of distance calculations (with respaginte 1)/2), for different data sets,
different methods, and differents.

FREY k=12) extYaleBk=10) MNIST (k=38) PIE k=05)

a overlap glue overlap glue overlap glue overlap  glue
005 944% 1215% 1146% 1480% 956% 1155% 685% 701%
0.10 707% 1209% 846% 1436% 682% 1176% 527% 814%
005 518% 1081% 625% 1279% 466% 1017% 352% 755%
020 365% 912% 435% 1104% 298% 849% 215% 640%
005 262% 752% 290% 955% 177% 685% 123% 519%
030 183% 644% 188% 789% Q096% 541% 062% 413%

Table 3: Percentages of actual distance calculations with respect to theuotber of needed
distances in the refine step, for different data sets, different methodsdifferenta’s.
This is equivalent to the failure rate of hash table lookups.

The final experiment illustrates the importance of the refine step. Figurevisshe decrease
in quality if the REFINE procedure is not invoked. The refinement greatly improves the agcafac
the approximate graph (especially fiofess than ®) at some additional cost in the execution time.
This additional expense is worthwhile if the goal is to compute a high quaiity graph.

5. Applications

kNN graphs have been widely used in various data mining and machine leappfigations. This
section discusses two scenarios where the approxikiltegraphs resulting from our proposed
techniques can provide an effective replacement for the d&kidtgraph.
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Figure 5: The refine step boosts the accuracy of the graph at some add@tmnputational cost.
Data set: MNIST. The settings are the same as in Figure 4.

5.1 Agglomerative Clustering

Agglomerative clustering (Ward, 1963) is a clustering method which explditsrarchy for a set
of data points. Initially each point belongs to a separate cluster. Then|gbettam iteratively
merges a pair of clusters that has the lowest merge cost, and updates gleccosts between the
newly merged cluster and the rest of the clusters. This process termirtadadive desired number
of clusters is reached (or when all the points belong to the single final Qlustestraightforward
implementation of the method tak€$n?) time, since there af®(n) iterations, each of which takes
O(r?) time to find the pair with the lowest merge cost (Shanbehzadeh and Ogyrii8®T. Franti
et al. (2006) proposed, at each iteration, to maintairkiiid graph of the clusters, and merge two
clusters that are the nearest neighbors in the graph. Let the numlbestefs at the present iteration
bem. Then this method take3(km) time to find the closest clusters, compared with@ia?) cost
of finding the pair with the lowest merge cost. With a delicate implementation usingtdydonked
list, they showed that the overall running time of the clustering processesdaO(tnlogn), where

T is the number of nearest neighbor updates at each iteration. Their metaity gpeeds up the
clustering process, while the clustering quality is not much degraded.

However, the quadratic time to create the inikAIN graph eclipses the improvement in the
clustering time. One solution is to use an approxink&tBl graph that can be inexpensively created.
Virmajoki and Frénti (2004) proposed a divide-and-conquer algorith create an approximate
kNN graph, but their time complexity was overestimated. Our approach alsevfotlee common
framework of divide and conquer. However, we bring three improvesnaver previous work: (1)
Two methods to perform the divide step are proposed, (2) an efficegntaxcompute the separating
hyperplane is described, and (3) a detailed and rigorous analysis timéheomplexity is provided.
This analysis in particular makes the proposed algorithms practical, espégitily presence of
high dimensional data (e.g., whdrs in the order of hundreds or thousands).

We performed an experiment on the data set PIE with 68 classes (see B)gusince class
labels are known, we used the purity and the entropy (Zhao and Ka@fi4) as quality measures.
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Figure 6: Agglomerative clustering usiiNN graphs on the image data set PIE (68 human sub-
jects).

They are defined as

. d N; . . 1 j
Purity = i;ﬁ Purity(i), where Purityi) = o mjax(ni) ,

and . .
a J

dn n
Entropy= $§ — Entropy(i), where Entropyi) = —$ —log,—.
i; n jZl nooon

Here,q is the number of classes/clustens,s the size of cluster, andniJ is the number of class

j data that are assigned to thth cluster. The purity and the entropy both range from 0 to 1. In
Figure 6 we show the purities, the entropies, and the values of the obj&atistion for a general
purpose clustering (sum of squared errors, SSE), for differetiiode and different’s. In general,
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a higher purity, a lower entropy, and/or a lower SSE means a better clgstpradity. As can be

seen the qualities of the clusterings obtained from the approxikiNlfegraphs are very close to
those resulting from the exact graph, with a few being even much betiemiéresting to note that
the clustering results seem to have little correlation with the qualities of the ggapbsned by the

valuea.

5.2 Dimensionality Reduction

Many dimensionality reduction methods, for example, locally linear embeddig)((Roweis and
Saul, 2000), Laplacian eigenmaps (Belkin and Niyogi, 2003), localityepvésy projections (LPP)
(He and Niyogi, 2004), and orthogonal neighborhood preservioggions (ONPP) (Kokiopoulou
and Saad, 2007), compute a low dimensional embedding of the data byvprggke local neigh-
borhoods for each point. For example, in LLE, a weighted adjacency nvtisxfirst computed to
minimize the following objective:

2

EW) =¥ X~ SaenWixj| . subjecttay Wy =1, vi,
1 J

whereN(-) means the neighborhood of a point. Then, a low dimensional embeddings, . . ., yn|
is computed such that it minimizes the objective:

2 _ -
, subjecttoyY' =1.

D(Y) = IZ Hyi — Yy;eN(y) W] yi‘

The final solutiony, is the matrix whose column-vectors are thgottom right singular vectors of
the Laplacian matrix, . g =1 —W. As another example, in Laplacian eigenmaps, the low dimen-
sional embeddind = [y1,...,Yn| is computed so as to minimize the cost function:

2 subject toY DY' =1,

W(Y) =3 W [|yi — ]
1)

whereD is the diagonal degree matrix. Here, the weighted adjacency métiix defined in a
number of ways, one of the most popular being the weights of the headlkern

W, {exp(— | —XjHZ/O'Z) if X € N(xj) orx; € N(x),
0 otherwise

The solution)Y, is simply the matrix of bottom eigenvectors of the normalized Laplacian matrix

Leigenmaps= | — D~%2W D~%/2 (subject to scaling).

A thorn in the nicely motivated formulations for the above approaches, ighbgtall begin
with a rather expensive computation to obtain the neighborhood graph ofathe On the other
hand, the cost of computing the solutignvia, for example, the Lanczos algorithm, is relatively
inexpensive, and can be summarized @¢rkn), which is independent of the dimensidn The
methods discussed in this paper are suitable alternatives to the expemnsetobce approach to

7. To be more exact, the dominant cost of computisghgular vectors/eigenvectors of a sparse matrix by the Lanczos
method isO(r’ - nnz), wherer’ is the number of Lanczos steps and nnz is the number of nonzeros irathig.rifhe
valuer’ is in practice a few times af, and in our situation, the matrix is the (normalized) graph Laplacian, hence
nnz= O(kn).
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Using exact kNN Using kNN-overlap, a = 0.30
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(e) Images on the circle path. Facial expressions gradually
change.

Figure 7: Dimensionality reduction on the data set FREY by LLE.

extract the exadtNN graph, since the approximate graphs are accurate enough forrfhaspLof
dimensionality reduction, while the time costs are significantly smaller. Figures 8 provide two
illustrations of this.

In Figure 7 are the plots of the dimensionality reduction results of LLE appli¢detaata set
FREY, where we uselt = 12 as that in Roweis and Saul (2000, Figure 3). Figure 7(a) shows
the result when using the exakdiN graph, while Figure 7(b) shows the result when using the
approximatekNN graph by the overlap method with= 0.30. It is clear that the two results are
almost identical. Figures 7(c) and 7(d) give two plots when the glue methoéds Bdthough the
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5 Using kNN-overlap, a = 0.30

Using exact KNN

x10°
X 10X

(a) (b)
” . Using kNN—glue, a = 0.30

(© (d)

Figure 8: Dimensionality reduction on the data set MNIST by Laplacian eiggsima

embeddings are different from those of the exatiN graph in Figure 7(a), they also represent the
original data manifold quite well. This can be seen by tracking the relativéidmssof the sequence
of images (as shown in 7(e)) in the two dimensional space.

Figure 8 shows the plots of the dimensionality reduction results of Laplacianmigps applied
to the data set MNIST, where we udeg: 5. Figure 8(a) shows the original result by using the exact
kNN graph, while 8(b), 8(c) and 8(d) show the results by using the qvenkethod witha = 0.30,
the glue method witlm = 0.15, and the glue method witth = 0.30, respectively. The four plots
all show clear clusterings of the ten classes (digits from 0 to 9), and thizlatien patterns of the
clusterings are very similar.
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6. Conclusions

We have proposed two sub-quadratic time methods under the framewakkdsf dnd conquer for
computing approximatkeNN graphs for high dimensional data. The running times of the methods,
as well as the qualities of the resulting graphs, depend on an internahg@rathat controls the
overlap size of the subsets in the divide step. Experiments show that intordétain a high
quality graph, a small overlap size is usually sufficient and this leads to a srmdhent in the
time complexity. An avenue of future research is to theoretically analyze tidéygof the resulting
graphs in relation to the overlap size. The resulting approximate graplesehawde range of
applications as they can be safely used as alternatives to thekéldgraph. We have shown two
such examples: one in agglomerative clustering and the other in dimensioedlitgtion. Thus,
replacing the exadtNN graph construction with one produced by the methods proposeddaare,
significantly alleviate what currently constitutes a major bottleneck in these applis.
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Appendix A. Pseudocodes of Procedures

1: function G = KNN-BRUTEFORCHX, k)
2: fori—1,...,ndo

3 for j«—i+1,...,ndo

4 Computep(x;,Xj) = ||%; — X;|

5: P(Xj,Xi) = P(Xi, X))

6: end for

7 SetN(x) = {X;j | p(xi,x;) is among the& smallest elements for ajl# i}
8 end for

9: end function

1: function (X1,X2) = DIVIDE-OVERLAP(X, Q)

2: Compute the largest right singular vectonf X = X — ce’

3: LetV ={|v||i=1,2,...,n}

4 Find hy (V) > See Section 2.2.1 for the definition
5 SetX; ={x |vi>—hq(V)}

6: SetXo = {X | vi <hq(V)}

7: end function
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1: function (Xg, X2, X3) = DIVIDE-GLUE(X, o)
2: Compute the largest right singular vectoof X = X — ce'
3: LetV ={|v||i=1,2,...,n}
4 Find hy (V)
5: SetX; = {x | vi > 0}
6: SetXy = {x | vi < 0}
7: SetXz = {X | —ha(V) <vi <hy(V)}
8: end function
1: function G = CONQUERG1, Gy, K)
2: G=G1UGy
3: forall xeV(G1)NV(Gy) do >V(-) denotes the vertex set of the graph
4 UpdateN(x) < {y| p(X,y) is among th& smallest elements for afic N(x)}
5: end for
6: end function
1: function G = CONQUERG3, Gy, G3, k)
2: G=G1UGUG3
3  forall xeV(G3) do
4 UpdateN(x) < {y| p(x,y) is among th& smallest elements for afic N(x)}
5: end for
6: end function
1: function REFINE(G, k)
2: forall xeV(G) do
3 UpdateN(x) < {y | p(x,y) is among th& smallest elements for all
Y ENK)U (Uzenig N2 ) }
4 end for

5: end function

Appendix B. Proofs

Theorem 1 follows from the Master Theorem (Cormen et al., 2001, Chd@erTheorem 2 is an
immediate consequence of the following lemma, which is straightforward to verify

Lemma 4 The recurrence relation
T(n)=2T(n/2)+T(an)+n

with T(1) = 1 has a solution

T(n) = <1+;L> -

a
where t is the solution to the equation

2 t
E—Fa =1.

The proof of Theorem 3 requires two lemmas.
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Lemma5 When0 < x < 1,
log,(1—x?) > (Iogz(l—x)> (Iog2(1+x)).

Proof By Taylor expansion,

CSUE S D (S S PP
1 2n-1 n\2 2n-2 n2
e (A D R ) ) e
2n\2n-2 2 2n\2n-1 1
2N 11 1 o
- n§<n<l 23t ) )X
<—z<

n=1
=(In2)-In(1—x3).

The inequality in the lemma follows by changing the bases of the logarithms.

Lemma 6 The following inequality
log,(ab) > (log, a)(log, b)
holds wheneved <a<l<b<2andat+b> 2.
Proof By usingb > 2 —a, we have the following two inequalities
log,(ab) > log,(a(2— a)) = log,(1— (1—a)) (1+ (1)) =logy(1— (1 a)?)

and
(logy ) (log, b) < (log,a)(I0gy(2— @) = log,(1— (1)) x logy(1+ (1 - a)).

Then by applying Lemma 5 with-X a = x, we have
log,(1— (1—a)?) > log,(1— (1—a)) x log,(1+ (1—a)).

Thus, the inequality of the lemma holds.
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Proof of Theorem 3 From Theorem 2 we have
tg=1—log,(1—a's) > 1.

Then

N S

97 1-log,(1+a)
_log,(1+a)+log,(1—a's) —log,(1+a) x logy(1—o's)

to — —1+4log,(1—a')

1-log,(1+a)
Since 0< a < 1, the denominator 4 log,(1+ a) is positive. By Lemma 6 the numerator is also
positive. Hence, > tg. [ |
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