
Journal of Machine Learning Research 10 (2009) 1367-1385 Submitted 1/09; Revised 4/09; Published 7/09

A Parameter-Free Classification Method for Large Scale Learning

Marc Boull é MARC.BOULLE@ORANGE-FTGROUP.COM

Orange Labs
2, avenue Pierre Marzin
22300 Lannion, France

Editor: Soeren Sonnenburg

Abstract
With the rapid growth of computer storage capacities, available data and demand for scoring models
both follow an increasing trend, sharper than that of the processing power. However, the main
limitation to a wide spread of data mining solutions is the non-increasing availability of skilled data
analysts, which play a key role in data preparation and modelselection.

In this paper, we present a parameter-free scalable classification method, which is a step to-
wards fully automatic data mining. The method is based on Bayes optimal univariate conditional
density estimators, naive Bayes classification enhanced with a Bayesian variable selection scheme,
and averaging of models using a logarithmic smoothing of theposterior distribution. We focus on
the complexity of the algorithms and show how they can cope with data sets that are far larger
than the available central memory. We finally report resultson the Large Scale Learning challenge,
where our method obtains state of the art performance withinpracticable computation time.

Keywords: large scale learning, naive Bayes, Bayesianism, model selection, model averaging

1. Introduction

Data mining is “the non-trivial process of identifying valid, novel , potentiallyuseful, and ultimately
understandable patterns in data” (Fayyad et al., 1996). Several industrial partners have proposed to
formalize this process using a methodological guide named CRISP-DM, for CRoss Industry Stan-
dard Process for Data Mining (Chapman et al., 2000). The CRISP-DM model provides an overview
of the life cycle of a data mining project, which consists in the following phases:business un-
derstanding, data understanding, data preparation, modeling, evaluationand deployment. Practical
data mining projects involve a large variety of constraints, like scalable trainingalgorithms, under-
standable models, easy and fast deployment. In a large telecommunication companies like France
Telecom, data mining applies to many domains: marketing, text mining, web mining, traffic classifi-
cation, sociology, ergonomics. The available data is heterogeneous, with numerical and categorical
variables, target variables with multiple classes, missing values, noisy unbalanced distributions, and
with numbers of instances or variables which can vary over several orders of magnitude. The most
limiting factor which slows down the spread of data mining solutions is the data preparation phase,
which consumes 80% of the process (Pyle, 1999; Mamdouh, 2006) and requires skilled data an-
alysts. In this paper, we present a method1 (Boullé, 2007) which aims at automatizing the data
preparation and modeling phases of a data mining project, and which performs well on a large vari-
ety of problems. The interest of the paper, which extends the workshop abstract (Boulĺe, 2008), is

1. The method is available as a shareware, downloadable athttp://perso.rd.francetelecom.fr/boulle/.

c©2009 Marc Boulĺe.



MARC BOULLÉ

to introduce the algorithmic extensions of the method to large scale learning, when data does not fit
into memory, and to evaluate them in an international challenge.

The paper is organized as follows. Section 2 summarizes the principles of our method and
Section 3 focuses on its computational complexity, with a detailed description of the extensions in-
troduced for large scale learning. Section 4 reports the results obtained on the Large Scale Learning
challenge (Sonnenburg et al., 2008). Finally, Section 5 gives a summary and discusses future work.

2. A Parameter-Free Classifier

Our method, introduced in Boullé (2007), extends the naive Bayes classifier owing to an optimal
estimation of the class conditional probabilities, a Bayesian variable selection and a compression-
based model averaging.

2.1 Optimal Discretization

The naive Bayes classifier has proved to be very effective on many real data applications (Langley
et al., 1992; Hand and Yu, 2001). It is based on the assumption that the variables are independent
within each output class, and solely relies on the estimation of univariate conditional probabili-
ties. The evaluation of these probabilities for numerical variables has already been discussed in the
literature (Dougherty et al., 1995; Liu et al., 2002). Experiments demonstratethat even a simple
equal width discretization brings superior performance compared to the assumption using a Gaus-
sian distribution. In the MODL approach (Boullé, 2006), the discretization is turned into a model
selection problem and solved in a Bayesian way. First, a space of discretization models is defined.
The parameters of a specific discretization are the number of intervals, the bounds of the intervals
and the output frequencies in each interval. Then, a prior distribution is proposed on this model
space. This prior exploits the hierarchy of the parameters: the number of intervals is first chosen,
then the bounds of the intervals and finally the output frequencies. The choice is uniform at each
stage of the hierarchy. Finally, the multinomial distributions of the output values ineach interval
are assumed to be independent from each other. A Bayesian approachis applied to select the best
discretization model, which is found by maximizing the probabilityp(Model|Data) of the model
given the data. Owing to the definition of the model space and its prior distribution, the Bayes
formula is applicable to derive an exact analytical criterion to evaluate the posterior probability of a
discretization model. Efficient search heuristics allow to find the most probable discretization given
the data sample. Extensive comparative experiments report high performance.

The case of categorical variables is treated with the same approach in Boullé (2005), using a
family of conditional density estimators which partition the input values into groups of values.

2.2 Bayesian Approach for Variable Selection

The naive independence assumption can harm the performance when violated. In order to better
deal with highly correlated variables, the selective naive Bayes approach (Langley and Sage, 1994)
exploits a wrapper approach (Kohavi and John, 1997) to select the subset of variables which opti-
mizes the classification accuracy. Although the selective naive Bayes approach performs quite well
on data sets with a reasonable number of variables, it does not scale on very large data sets with
hundreds of thousands of instances and thousands of variables, such as in marketing applications
or text mining. The problem comes both from the search algorithm, whose complexity is quadratic

1368



A PARAMETER-FREE CLASSIFICATION METHOD FORLARGE SCALE LEARNING

in the number of variables, and from the selection process which is prone tooverfitting. In Boulĺe
(2007), the overfitting problem is tackled by relying on a Bayesian approach, where the best model
is found by maximizing the probability of the model given the data. The parameters of a variable
selection model are the number of selected variables and the subset of variables. A hierarchic prior
is considered, by first choosing the number of selected variables and second choosing the subset of
selected variables. The conditional likelihood of the models exploits the naiveBayes assumption,
which directly provides the conditional probability of each label. This allows an exact calculation
of the posterior probability of the models. Efficient search heuristic with super-linear computation
time are proposed, on the basis of greedy forward addition and backward elimination of variables.

2.3 Compression-Based Model Averaging

Model averaging has been successfully exploited in Bagging (Breiman, 1996) using multiple clas-
sifiers trained from re-sampled data sets. In this approach, the averaged classifier uses a voting
rule to classify new instances. Unlike this approach, where each classifier has the same weight, the
Bayesian Model Averaging (BMA) approach (Hoeting et al., 1999) weights the classifiers accord-
ing to their posterior probability. In the case of the selective naive Bayes classifier, an inspection
of the optimized models reveals that their posterior distribution is so sharply peaked that averaging
them according to the BMA approach almost reduces to the maximum a posteriori (MAP) model.
In this situation, averaging is useless. In order to find a trade-off between equal weights as in bag-
ging and extremely unbalanced weights as in the BMA approach, a logarithmic smoothing of the
posterior distribution, called compression-based model averaging (CMA), is introduced in Boulĺe
(2007). Extensive experiments demonstrate that the resulting compression-based model averaging
scheme clearly outperforms the Bayesian model averaging scheme.

3. Complexity Analysis

In this section, we first recall the algorithmic complexity of the algorithms detailed inBoullé (2005,
2006, 2007) in the case where all the data fits in central memory, then introduce the extension of the
algorithms when data exceeds the central memory.

3.1 When Data Fits into Central Memory

The algorithm consists in three phases: data preprocessing using discretization or value grouping,
variable selection and model averaging.

3.1.1 PREPROCESSING

In the case of numerical variables, the discretization Algorithm 1 exploits a greedy-heuristic. It first
sorts the input values, then starts with initial single value intervals and searches for the best merge
between adjacent intervals. This merge is performed if the cost (evaluation) of the discretization
decreases after the merge and the process is reiterated until no further merge can decrease the dis-
cretization cost. With a straightforward implementation of the algorithm, the method runs in O(N3)
time, whereN is the number of instances. However, the method can be optimized in O(N logN) time
owing to the additivity of the discretization cost with respect to the intervals andusing a maintained
sorted list of the evaluated merges (such as an AVL binary search tree for example).

1369



MARC BOULLÉ

Algorithm 1 Discretization
Input: Xk // Numerical input variable
Output: D // Best discretization

1: // Initialization
2: Sort the input values
3: D = Elementary discretization with one interval per value value
4: // Optimization
5: costbest= cost(D),mbest= /0
6: repeat
7: for all mergembetween adjacent intervalsdo
8: if (cost(D∪m) < costbest) then
9: costbest= cost(D∪m),mbest= m

10: end if
11: end for
12: if (costbest= cost(D)) then
13: D = D∪mbest

14: end if
15: until no improvement

The case of categorical variables is handled using a similar greedy heuristic. Overall, the pre-
processing phase is super-linear in time and requires O(KN logN) time, whereK is the number of
variables andN the number of instances.

3.1.2 VARIABLE SELECTION

In the variable selection Algorithm 2, the method alternates fast forward andbackward variable
selection steps based on randomized reorderings of the variables, and repeats the process several
times in order to better explore the search space and reduce the variance caused by the dependence
over the order of the variables.

Evaluating one variable selection for the naive Bayes classifier requiresO(KN) time, since
the conditional probabilities, which are linear in the number of variables, require O(K) time per
instance. Updating the evaluation of a variable subset by adding or dropping one single variable
requires only O(1) time per instance and thus O(N) time for all the instances. Therefore, one loop
of fast forward or backward variable selection, which involves O(K) adds or drops of variables, can
be evaluated in O(KN) time.

In order to bound the time complexity, each succession of fast forward and backward variable
selection is repeated only twice (MaxIter = 2 in algorithm 2), which is sufficient in practice to be
close to convergence within a small computation time.

The number of repeats of the outer loop is fixed to log2N + log2K, so that the overall time
complexity of the variable selection algorithm is O(KN(logK + logN)), which is comparable to
that of the preprocessing phase.

1370



A PARAMETER-FREE CLASSIFICATION METHOD FORLARGE SCALE LEARNING

Algorithm 2 Variable Selection
Input: X = (X1,X2, . . .XK) // Set of input variables
Output: B // Best subset of variables

1: B = /0 // Start with an empty subset of variables
2: for Step=1 to log2KN do
3: // Fast forward backward selection
4: S= /0 // Initialize an empty subset of variables
5: Iter = 0
6: repeat
7: Iter = Iter +1
8: X′ = Shuffle(X) // Randomly reorder the variables to add
9: // Fast forward selection

10: for Xk ∈ X′ do
11: if (cost(S∪{Xk}) < cost(S)) then
12: S= S∪{Xk}
13: end if
14: end for
15: X′ = Shuffle(X) // Randomly reorder the variables to remove
16: // Fast backward selection
17: for Xk ∈ X′ do
18: if (cost(S−{Xk}) < cost(S)) then
19: S= S−{Xk}
20: end if
21: end for
22: until no improvement orIter ≥ MaxIter
23: // Update best subset of variables
24: if (cost(S) < cost(B)) then
25: B = S
26: end if
27: end for

3.1.3 MODEL AVERAGING

The model averaging algorithm consists in collecting all the models evaluated in the variable selec-
tion phase and averaging then according to a logarithmic smoothing of their posterior probability,
with no overhead on the time complexity.

Overall, the preprocessing, variable selection and model averaging have a time complexity of
O(KN(logK + logN)) and a space complexity of O(KN).

3.2 When Data Exceeds Central Memory

Whereas standard scalable approaches, such as data sampling or onlinelearning, cannot process
all the data simultaneously and have to consider simpler models, our objective isto enhance the
scalability of our algorithm without sacrificing the quality of the results.

1371



MARC BOULLÉ

With the O(KN) space complexity, large data sets cannot fit into central memory and training
time becomes impracticable as soon as memory pages have to be swapped between disk and central
memory.2 To avoid this strong limitation, we enhance our algorithm with a specially designed
chunking strategy.

3.2.1 CHUNKING STRATEGY

First of all, let us consider the access time from centralmemory (tm) and from sequentialread (tr )
or random diskaccess (ta). In modern personal computers (year 2008),tm is in the order of 10
nanoseconds. Sequential read from disk is so fast (based on 100 Mb/s transfer rates) thattr is in
the same order astm: CPU is sometimes a limiting factor, when parsing operations are involved.
Random disk accessta is in the order of 10 milliseconds, one million times slower thantm or tr .
Therefore, the only way to manage very large amounts of memory space is to exploit disk in a
sequential manner.

Let S=O(KN) be the size of the data set andM the size of the central memory. Our chunking
strategy consists in minimizing the number of exchanges between disk and central memory. The
overhead of the scalable version of the algorithms will be expressed in termsof sequential disk read
time tr .

3.2.2 PREPROCESSING

For the preprocessing phase of our method, each variable is analyzed once after being loaded into
central memory. The discretization Algorithm 1 extensively accesses the values of the analyzed
variable, both in the initialization step (values are sorted) and in the optimization step. We partition
the set of input variables intoC = ⌈S/M⌉ chunks ofK1, . . . ,KC variables, such that each chunk can
be loaded into memory (KcN < M,1 ≤ c ≤ C). The preprocessing phase loops on theC subsets,
and at each step of the loop, reads the data set, parses and loads the chunk variables only, as shown
in Figure 1. Each memory chunk is preprocessed as in Algorithm 1, in orderto induce conditional
probability tables (CPT) for the chunk variables.

After the preprocessing, the chunk variables are recoded by replacing the input values by their
index in the related CPT. The recoded chunk of variables are stored inC files of integer indexes,
as shown in Figure 2. These recoded chunks are very fast to load, since the chunk variables only
need to be read, without any parsing (integer indexes are directly transfered from disk to central
memory).

The scalable version of the preprocessing algorithm is summarized in Algorithm 3. Each input
variable is readC times, but parsed and loaded only once as in the standard case. The overhead
in terms of disk read time is O((C− 1)KNtr) time for the load steps. In the recoding step, each
variable is written once on disk, which involves an overhead of O(KNtr) (disk sequential write time
is similar to disk sequential read time). Overall, the overhead is O(CKNtr) time.

This could be improved by first splitting the input data file intoC initial disk chunks (without
parsing), with an overall overhead of only O(3KNtr) time (read and write all the input data before
preprocessing, and write recoded chunks after preprocessing). However, this involves extra disk
space and the benefit is small in practice, since evenC read steps are not time expensive compared
to the rest of the algorithm.

2. On 32 bits CPU, central memory is physically limited to 4 Go, or even to 2 Go on Windows PCs.

1372



A PARAMETER-FREE CLASSIFICATION METHOD FORLARGE SCALE LEARNING

Disk Central memory

load

Var1 Var2 Var3 Var4 Var5 Var6 Var7 Var8

3.24 -2.14 -0.70 4.28 3.85 -2.12 -6.59 -2.09

-0.82 0.71 2.02 -0.27 3.43 3.19 -0.10 -2.99

5.74 -2.87 3.37 -0.29 7.08 -1.95 -3.46 -5.21

4.25 -1.98 1.15 0.73 3.08 -1.43 -5.50 -3.62

-2.31 -1.63 -1.44 -0.33 0.18 -0.60 0.25 -2.18

1.46 -3.81 0.12 -1.15 -0.56 1.08 -0.51 -0.08

-0.68 2.49 0.78 -0.11 2.57 0.76 -0.21 0.62

3.03 0.13 -1.70 0.44 -1.00 -0.01 -0.91 1.55

-0.94 -0.96 0.16 -1.47 1.15 1.93 -3.76 1.49

8.50 -2.06 0.39 -2.40 1.73 -1.48 -1.98 -2.05

3.12 -1.35 -2.04 -0.24 -1.27 0.35 -2.44 1.99

4.18 2.65 3.19 3.01 5.76 -0.35 -2.87 -2.98

-1.86 1.83 -0.35 -2.88 -3.79 2.81 2.23 3.15

-1.87 -0.14 -1.32 -2.48 -0.60 -0.05 1.24 5.99

… … … … … … … …

Chunk 1 Chunk 2 Chunk 3

Var4 Var5 Var6

4.28 3.85 -2.12

-0.27 3.43 3.19

-0.29 7.08 -1.95

0.73 3.08 -1.43

-0.33 0.18 -0.60

-1.15 -0.56 1.08

-0.11 2.57 0.76

0.44 -1.00 -0.01

-1.47 1.15 1.93

-2.40 1.73 -1.48

-0.24 -1.27 0.35

3.01 5.76 -0.35

-2.88 -3.79 2.81

-2.48 -0.60 -0.05

… … …

Chunk 2

Figure 1: Preprocessing: the input file on disk is read several times, with one chunk of variables
parsed and loaded into central memory one at a time.

Disk

recode

Var1 Var2 Var3 Var4 Var5 Var6 Var7 Var8

3.24 -2.14 -0.70 4.28 3.85 -2.12 -6.59 -2.09

-0.82 0.71 2.02 -0.27 3.43 3.19 -0.10 -2.99

5.74 -2.87 3.37 -0.29 7.08 -1.95 -3.46 -5.21

4.25 -1.98 1.15 0.73 3.08 -1.43 -5.50 -3.62

-2.31 -1.63 -1.44 -0.33 0.18 -0.60 0.25 -2.18

1.46 -3.81 0.12 -1.15 -0.56 1.08 -0.51 -0.08

-0.68 2.49 0.78 -0.11 2.57 0.76 -0.21 0.62

3.03 0.13 -1.70 0.44 -1.00 -0.01 -0.91 1.55

-0.94 -0.96 0.16 -1.47 1.15 1.93 -3.76 1.49

8.50 -2.06 0.39 -2.40 1.73 -1.48 -1.98 -2.05

3.12 -1.35 -2.04 -0.24 -1.27 0.35 -2.44 1.99

4.18 2.65 3.19 3.01 5.76 -0.35 -2.87 -2.98

-1.86 1.83 -0.35 -2.88 -3.79 2.81 2.23 3.15

-1.87 -0.14 -1.32 -2.48 -0.60 -0.05 1.24 5.99

… … … … … … … …

Chunk 1 Chunk 2 Chunk 3

Disk

RVar1 RVar2 RVar3 RVar4 RVar5 RVar6 RVar7 RVar8

1 0 0 1 2 0 0 1

0 1 0 0 2 1 1 1

1 0 0 0 3 0 0 0

1 1 0 0 2 0 0 0

0 1 0 0 1 0 1 1

0 0 0 0 1 0 1 1

0 2 0 0 2 0 1 2

1 1 0 0 0 0 1 2

0 1 0 0 1 0 0 2

2 0 0 0 1 0 1 1

1 1 0 0 0 0 1 2

1 2 0 1 3 0 1 1

0 2 0 0 0 0 2 3

0 1 0 0 1 0 1 3

… … … … … … … …

Recoded

chunk 1

Recoded

chunk 2

Recoded

chunk 3

Figure 2: Recoding: the input file on disk is read and recoded once, andseveral recoded chunks of
variables are written on disk.

1373



MARC BOULLÉ

Algorithm 3 Scalable preprocessing
Input: input data on disk
Output: recoded data on several recoded disk chunks, conditional probabilitytables

1: // Compute chunking parameters
2: estimate input data sizeSand available central memory sizeM
3: compute number of chunks:C = ⌈S/M⌉
4: partition the set of variables intoC balanced chunks of variables
5: // Main loop
6: for all chunkdo
7: // Load chunk into central memory
8: for all variabledo
9: read input data

10: if (variable in current chunk)then
11: parse and load variable
12: end if
13: end for
14: // Preprocessing
15: for all variable in memory chunkdo
16: call the discretization or value grouping algorithm
17: keep the conditional probability table (CPT) into memory
18: end for
19: // Recoding
20: for all variable in memory chunkdo
21: write a recoded chunk by replacing each input value by its index in the CPT
22: end for
23: end for

3.2.3 VARIABLE SELECTION

In the variable selection phase, the algorithm performs O(logK + logN) steps of fast forward back-
ward variable selection, based on random reordering of the variables.Each step evaluates the add
or drop of one variable at a time, so that the whole input data has to be read.

In the scalable version of the variable selection phase, we exploit the recoded chunks of vari-
ables as shown in Figure 3: one single chunk is loaded in memory at a time. Instead of reordering
randomly all the variables, we first reorder randomly the list of recoded chunks, then reorder ran-
domly the subset of variables in the recoded chunk currently loaded in memory. This “double stage”
reordering is the only place where the scalable algorithm does not exactly mirror the behavior of the
standard algorithm.

Each step of fast forward backward variable selection involves reading each recoded chunk O(1)
times (exactly 2∗MaxIter times withMaxIter= 2), thus implies an overhead of O(KNtr) read time.

Overall, the algorithmic overhead consists of additional steps for reading the input data:C ≈
S/M steps for the preprocessing phase and(logK + logN) read for variable selection phase, with
an overhead of O(KN(S/M + logK + logN)tr) time. Since sequential disk read timets is compa-
rable to memory access time, we expect that the scalable version of the algorithm has a practicable
computation time.

1374



A PARAMETER-FREE CLASSIFICATION METHOD FORLARGE SCALE LEARNING

read

Central memoryDisk

RVar1 RVar2 RVar3 RVar4 RVar5 RVar6 RVar7 RVar8

1 0 0 1 2 0 0 1

0 1 0 0 2 1 1 1

1 0 0 0 3 0 0 0

1 1 0 0 2 0 0 0

0 1 0 0 1 0 1 1

0 0 0 0 1 0 1 1

0 2 0 0 2 0 1 2

1 1 0 0 0 0 1 2

0 1 0 0 1 0 0 2

2 0 0 0 1 0 1 1

1 1 0 0 0 0 1 2

1 2 0 1 3 0 1 1

0 2 0 0 0 0 2 3

0 1 0 0 1 0 1 3

… … … … … … … …

Recoded

chunk 1

Recoded

chunk 2

Recoded

chunk 3

RVar4 RVar5 RVar6

1 2 0

0 2 1

0 3 0

0 2 0

0 1 0

0 1 0

0 2 0

0 0 0

0 1 0

0 1 0

0 0 0

1 3 0

0 0 0

0 1 0

… … …

Recoded

chunk 2

Figure 3: Read: the recoded chunks of variables are read and loaded(no parsing) into central mem-
ory one at a time.

4. Results on the Large Scale Learning Challenge

In this section, we summarize the Pascal Large Scale Learning Challenge (Sonnenburg et al., 2008)
and describe our submission. We then analyze the advantages and limitations of our non-parametric
modeling approach on large scale learning and evaluate our chunking strategy. We finaly report the
challenge results.

4.1 Challenge Data Sets and Protocol

The challenge is designed to enable a direct comparison of learning methods given limited resource.
The data sets, summarized in Table 1 represent a variety of domains and contain up to millions of
instances, thousands of variables and tens of gigabytes of disk space.

The challenge data sets are a convenient way to evaluate the scalability of our offline method,
when data set size is larger than the central memory by one order of magnitude (on computers
with 32 bit CPU). In the Wild Competition Track of the challenge, the participants are “free to
do anything that leads to more efficient, more accurate methods, for example,perform feature
selection, find effective data representations, use efficient program-code, tune the core algorithm
etc”. The method have to be trained on subsets of the train data set of increasing size, with sizes
102,103,104,105, . . . up to the maximum number of train examples.

For all the training sessions, the accuracy is estimated using the area over the precision recall
curve (aoPRC) criterion. The training time is estimated by the organizer in the final evaluation by
a re-run of the algorithm on a single CPU Linux machine, 32 Gb RAM. It is noteworthy that the
evaluated training time is the computation time for the optimal parameter settings, excluding data
loading times and any kind of data preparation or model selection time.

1375



MARC BOULLÉ

Data set Domain Training Validation Dimensions Best Our
aoPRC aoPRC

alpha artificial 500000 100000 500 0.1345 0.2479
beta artificial 500000 100000 500 0.46270.4627
gamma artificial 500000 100000 500 0.01140.0114
delta artificial 500000 100000 500 0.07980.0798
epsilon artificial 500000 100000 2000 0.0343 0.0625
zeta artificial 500000 100000 2000 0.0118 0.0305
fd face detection 5469800 532400 900 0.18290.1829
ocr character recognition 3500000 670000 1156 0.1584 0.1637
dna dna split point detection 50000000 1000000 200 0.8045 0.8645
webspam webspam detection 350000 50000 variable 0.0004 0.0031

Table 1: Challenge data sets and final best vs our results for the aoPRC criterion.

The overall results are summarized based on performance figures: displaying training time vs.
test error, data set size vs. test error and data set size vs. training time.A final ranking is computed
by aggregating a set of performance indicators computed from these figures.

4.2 Our Submission

We made one fully automatic submission, using the raw representation of the datasets, which is
numerical for all the data sets except for dna where the variables are categorical.

For the two image-based data sets (fd and ocr), we also studied the impact ofinitial represen-
tation using centered reduced rows, and finally chose the representationleading to the best results:
raw for ocr and centered-reduced for fd.

The webspam data set is represented using a tri-gram representation, which implies 16 millions
of potential variables (K = 2563 ≈ 16∗ 106). Although this is a sparse data set, our algorithm
exploits a dense representation and cannot manage such a large number of variables. We applied a
simple dimensionality reduction method inspired from the random projection technique (Vempala,
2004). We choose to build a compact representation, using a set ofK′ = 10007 (first prime number
beyond 10000) constructed variables: each constructed feature is thesum of the initial variables
having the same index moduloK′:

∀k′,0≤ k′ < K′,Vark′ = ∑
k,k modK′=k′

Vark.

As our method is available as a scoring tool for Windows end users, it is implemented for 32
bits CPUs and limited to 2 Gb RAM, thus does not benefit from the 32 Gb RAM allowed in the
challenge. The algorithmic extensions presented in Section 3.2 are thus extensively exploited for
the largest training sessions.

4.3 Non-Parametric Modeling with Large Data Sets

In Boullé (2007), we have analyzed the accuracy performance of our method using extensive ex-
periments. In the section, we give new insights on our non-parametric approach and its impact on
large scale learning. Actually, the MODL method considers a space of discretization models which
grows with the size of the training data set. The number of intervals is taken between 1 toN in-

1376



A PARAMETER-FREE CLASSIFICATION METHOD FORLARGE SCALE LEARNING

tervals, whereN is the number of training instances, the boundaries come from the input data and
the class conditional parameters per interval are confined to a finite numberof frequencies (rather
than continuous distributions in [0, 1]), on the basis on instance counts in thedata. Both the space
of discretization models and the prior distribution on the model parameters are data-dependent.
More precisely, they depends on the input data, and the best model, with themaximum a posteriori
probability, is selected using the output data.

To illustrate this, we chose the delta data set and exploit the 500000 labeled instances for our
experiment. We use training sets of increasing sizes 100, 1000, 10000, 100000 and 400000, and
keep the last 100000 instances as a test set. The best variable according to the MODL criterion is
Var150 for all data set sizes above 1000. In Figure 4, we draw the discretization (with boundaries
and conditional probability of the positive class) of Var150, using the MODL method and the unsu-
pervised equal frequency method with 10 intervals, as a baseline. For data set size 100, the empirical
class distribution is noisy, and the MODL method selects a discretization having one single interval,
leading to the elimination of the variable. When the data set size increases, the MODL discretiza-
tions contain more and more intervals, with up to 12 intervals in the case of data set size 400000.
Compared to the fixed size equal frequency discretization, the MODL methodbuilds discretizations
which are both more accurate and robust and obtain a good approximation of the underlying class
distribution.

This also demonstrates how the univariate MODL preprocessing method behaves as a variable
ranking method with a clear threshold: any input variable discretized into onesingle interval does
not contain any predictive information and can be eliminated. In Figure 5, wereport the number of
selected variables per data set size, which goes from 6 for data set size100 to about 350 for data
set size 400000. Figure 5 also report the test AUC (area under the ROCcurve (Fawcett, 2003)),
which significantly improves with the data set size and exhibits a clear correlation with the number
of selected variables.

One drawback of this approach is that all the training data have to be exploited simultaneously
to unable a deep optimization of the model parameters and fully benefit from their expressiveness.
Although learning with very large data sets is possible, as shown in this paper, the approach is
limited to offline learning and does not apply to the one-pass learning paradigm or to learning on
stream.

Overall, our non-parametric approach build models of increasing complexitywith the size of
the training data set, in order to better approximate the underlying class distribution. Small train-
ing data sets lead to simple models, which are fast to deploy (few selected variables with simple
discretization), whereas large training data sets allow more accurate models at the expense of more
training time and deployment time.

4.4 Impact of the Chunking Strategy

In Section 3.2, we have proposed a chunking strategy that allows to learn with training data sets
which size is far larger than central memory. The only difference with the standard algorithm is
the “double stage” random reordering of the variables, which is performed prior to each step of fast
forward or backward variable selection in Algorithm 2. In this section, we evaluate our chunking
strategy and its impact on training time and test AUC.

We exploit the delta data set with trainings sets of increasing sizes 100, 1000, 10000, 10000,
400000, and a test set of 100000 instances. The largest training size fits into central memory on our

1377



MARC BOULLÉ

Sample size 100

0.3

0.4

0.5

0.6

0.7

0.8

0.9

-1.5 -1 -0.5 0 0.5 1 1.5
Var150

P(class=1)

Sample size 1000

0.3

0.4

0.5

0.6

0.7

0.8

0.9

-1.5 -1 -0.5 0 0.5 1 1.5

Var150

P(class=1)

Sample size 10000

0.3

0.4

0.5

0.6

0.7

0.8

0.9

-1.5 -1 -0.5 0 0.5 1 1.5

Var150

P(class=1)

Sample size 100000

0.3

0.4

0.5

0.6

0.7

0.8

0.9

-1.5 -1 -0.5 0 0.5 1 1.5

Var150

P(class=1)

Sample size 400000

0.3

0.4

0.5

0.6

0.7

0.8

0.9

-1.5 -1 -0.5 0 0.5 1 1.5

Var150

P(class=1)

Figure 4: Discretization of Var150 for the delta data set, using the MODL method (in black) and
the 10 equal frequency method (in gray).

1378



A PARAMETER-FREE CLASSIFICATION METHOD FORLARGE SCALE LEARNING

1

10

100

1000

100 1000 10000 100000 1000000

Sample size

S
e
le

c
te

d
 v

a
ri
a
b
le

 n
u
m

b
e
r

0.5

0.6

0.7

0.8

0.9

1

100 1000 10000 100000 1000000

Sample size

T
e
s
t 

A
U

C

Figure 5: Data set size versus selected variable number and test AUC forthe delta data set.

machine (Pentium 4, 3.2 Ghz, 2 Go RAM, Windows XP), which allows to comparethe standard al-
gorithm with the chunking strategy. In Figure 6, we report the wall-clock variable selection training
time and the test AUC for the standard algorithm (chunk number = 1) and the chunking strategy, for
various numbers of chunks.

0.1

1

10

100

1000

10000

1 10 100 1000

Chunk number

T
ra

in
 t
im

e
 (

s
e
c
o
n
d
)

Size 400000

Size 100000

Size 10000

Size 1000

Size 100

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000

Chunk number

T
e
s
t 
A

U
C

Size 400000

Size 100000

Size 10000

Size 1000

Size 100

Figure 6: Impact on the chunking strategy on the wall-clock variable selection training time and the
test AUC for the delta data set.

The results show that the impact on test AUC is insignificant: the largest differences go from
0.003 for data set size 100 to 0.0004 for data set size 400000. The variable selection training time is
almost constant with the number of chunks. Compared to the standard algorithm, the time overhead
is only 10% (for data set size above 10000), whatever be the number of chunks. Actually, as
analyzed in Section 3.2, the recoded chunks of variables are extremely quick to load into memory,
resulting in just a slight impact on training time.

We perform another experiment using the fd data set, with up to 5.5 millions of instances and
900 variables, which is one order of magnitude larger than our central memory resources. Figure 7
reports the wall-clock full training time, including load time, preprocessing andvariable selection.
When the size of the data sets if far beyond the size of the central memory, the overhead in wall-
clock time is by only a factor two. This overhead mainly comes from the preprocessing phase of the
algorithm (see Algorithm 3), which involves several reads of the initial training data set. Overall,
the wall-clock training time is about one hour per analyzed gigabyte.

1379



MARC BOULLÉ

Face dataset

1

10

100

1000

10000

100000

1000000

100 1000 10000 100000 1000000 10000000

Dataset 

size

Training 

time

Wall-clock time

CPU time

IO time

Figure 7: Training time for the fd data set.

Rank Score Submitter Title
1 2.6 chap - Olivier Chapelle Newton SVM
2 2.7 antoine - Antoine Bordes SgdQn
3 3.2 yahoo - Olivier Keerthi SDM SVM L2
4 3.5 yahoo - Olivier Keerthi SDM SVM L1
5 5 MB - Marc Boulle Averaging of Selective Naive Bayes Classifiers final
6 5.8 beaker - Gavin Cawley LR
7 6.8 kristian - Kristian Woodsend IPM SVM 2
8 7.3 ker2 - Porter Chang CTJ LSVM01
9 7.7 antoine - Antoine Bordes LaRankConverged
10 8 rofu - Rofu yu liblinear

Table 2: Challenge final ranking.

4.5 Challenge Results

The challenge attracted 49 participants who registered, for a total of 44 submissions. In the final
evaluation, our submission is ranked 5th using the the aggregated performance indicator of the
organizers, as shown in Table 2. To go beyond this aggregated indicatorand analyze the intrinsic
multi-criterion nature of the results, we now report and comment separately the training time and
accuracy performance of our method.

4.5.1 TRAINING TIME

Most of the other competitors exploit linear SVM, using for example Newton based optimization in
the primal (Chapelle, 2007), Sequential Dual Method optimization (Hsieh et al., 2008) or stochastic
gradient optimization (Bordes and Bottou, 2008). These method were applied using a specific data
preparation per data set, such as 0-1, L1 or L2 normalization, and the modelparameters were tuned
using most of the available training data, even for the smallest training sessions. They exploit
incremental algorithms, similar to online learning methods: they are very fast and need only a few
passes on the data to reach convergence.

1380



A PARAMETER-FREE CLASSIFICATION METHOD FORLARGE SCALE LEARNING

We report in Figure 8 the training time vs data set size performance curves (in black for our
results).3 As far as the computation time only is considered, our offline training time is much
longer than that of the online methods of the other competitors, by about two orders of magnitude.
However, when the overall process is accounted for, with data preparation, model selection and
data loading time, our training time becomes competitive, with about one hour of training time per
analyzed gigabyte.

4.5.2 ACCURACY

Table 1 reports our accuracy results in the challenge for the area over the precision recall curve
(aoPRC) criterion in the final evaluation of the challenge. The detailed results are presented in
Figure 9, using the data set size vs accuracy performance curves.

On the webspam data set, the linear SVM submissions of Keerthi obtain excellent performance,
which confirms the effectiveness of SVM for text categorization (Joachims, 1998). On the alpha
data set, our method (based on the naive Bayes assumption) fails to exploit thequadratic nature of
this artificial data set and obtains poor results. Except for this data set, our method always ranks
among the first competitors and obtains the 1st place with a large margin on four data sets: beta,
gamma, delta and fd. This is a remarkable performance for a fully automatic method, which exploits
the limited naive Bayes assumption.

Overall, our method is highly scalable and obtains competitive performance fully automatically,
without tuning any parameter.

5. Conclusion

We have presented a parameter-free classification method that exploits the naive Bayes assumption.
It estimates the univariate conditional probabilities using the MODL method, with Bayes optimal
discretizations and value groupings for numerical and categorical variables. It searches for a subset
of variables consistent with the naive Bayes assumption, using an evaluation based on a Bayesian
model selection approach and efficient add-drop greedy heuristics. Finally, it combines all the
evaluated models using a compression-based averaging schema. In this paper, we have introduced
a carefully designed chunking strategy, such that our method is no longerlimited to data sets that fit
into central memory.

Our classifier is aimed at automatically producing competitive predictions in a large variety of
data mining contexts. Our results in the Large Scale Learning Challenge demonstrates that our
method is highly scalable and automatically builds state-of-the art classifiers. When the data set
size is larger than the available central memory by one order of magnitude, our method exploits an
efficient chunking strategy, with a time overhead of only a factor two.

Compared to alternative methods, our method requires all the data simultaneously to fully ex-
ploit the potential of our non-parametric preprocessing: it is thus dedicated to offline learning, not to
online learning. Another limitation is our selective naive Bayes assumption. Although this is often
leveraged in practice when large number of features can be constructedusing domain knowledge,
alternative methods might be more effective when their bias fit the data. Overall, our approach is

3. For readability reasons in this paper, we have represented our results in black and the others in gray, which allows
to present our performance relatively to the distribution of all the results.On the challenge website, Figures 8 and 9
come in color, which allows to discriminate the performance of each method.

1381



MARC BOULLÉ

Figure 8: Final training time results: data set size versus training time (excluding data loading).

1382



A PARAMETER-FREE CLASSIFICATION METHOD FORLARGE SCALE LEARNING

Figure 9: Final accuracy results: data set size versus test error.

1383



MARC BOULLÉ

of great interest for automatizing the data preparation and modeling phasesof data mining, and
exploits as much as possible all the available training data in its initial representation.

In future work, we plan to further improve the method and extend it to classification with large
number of class values and to regression.

Acknowledgments

I am grateful to Bruno Guerraz, who got the initial Windows code to work under Linux. I would
also like to thank the organizers of the Large Scale Learning Challenge fortheir valuable initiative.

References

A. Bordes and L. Bottou. Sgd-qn, larank: Fast optimizers for linear svms. In
ICML 2008 Workshop for PASCAL Large Scale Learning Challenge, 2008.
http://largescale.first.fraunhofer.de/workshop/.

M. Boullé. A Bayes optimal approach for partitioning the values of categorical attributes.Journal
of Machine Learning Research, 6:1431–1452, 2005.

M. Boullé. MODL: a Bayes optimal discretization method for continuous attributes.Machine
Learning, 65(1):131–165, 2006.

M. Boullé. Compression-based averaging of selective naive Bayes classifiers. Journal of Machine
Learning Research, 8:1659–1685, 2007.

M. Boullé. An efficient parameter-free method for large scale offline learning.
In ICML 2008 Workshop for PASCAL Large Scale Learning Challenge, 2008.
http://largescale.first.fraunhofer.de/workshop/.

L. Breiman. Bagging predictors.Machine Learning, 24(2):123–140, 1996.

O. Chapelle. Training a support vector machine in the primal.Neural Computation, 19:1155–1178,
2007.

P. Chapman, J. Clinton, R. Kerber, T. Khabaza, T. Reinartz, C. Shearer, and R. Wirth.CRISP-DM
1.0 : Step-by-step Data Mining Guide, 2000.

J. Dougherty, R. Kohavi, and M. Sahami. Supervised and unsupervised discretization of continuous
features. InProceedings of the 12th International Conference on Machine Learning, pages 194–
202. Morgan Kaufmann, San Francisco, CA, 1995.

T. Fawcett. ROC graphs: Notes and practical considerations for researchers. Technical Report
HPL-2003-4, HP Laboratories, 2003.

U.M. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. Knowledge discoveryand data mining: towards
a unifying framework. InKDD, pages 82–88, 1996.

D.J. Hand and K. Yu. Idiot bayes ? not so stupid after all?International Statistical Review, 69(3):
385–399, 2001.

1384



A PARAMETER-FREE CLASSIFICATION METHOD FORLARGE SCALE LEARNING

J.A. Hoeting, D. Madigan, A.E. Raftery, and C.T. Volinsky. Bayesian modelaveraging: A tutorial.
Statistical Science, 14(4):382–417, 1999.

C-J. Hsieh, K-W. Chang, C-J. Lin, S. Keerthi, and S. Sundararajan.A dual coordinate descent
method for large-scale linear svm. InICML ’08: Proceedings of the 25th international conference
on Machine learning, pages 408–415, New York, NY, USA, 2008. ACM.

T. Joachims. Text categorization with support vector machines: Learningwith many relevant fea-
tures. InEuropean Conference on Machine Learning (ECML), pages 137–142, Berlin, 1998.
Springer.

R. Kohavi and G. John. Wrappers for feature selection.Artificial Intelligence, 97(1-2):273–324,
1997.

P. Langley and S. Sage. Induction of selective Bayesian classifiers. In Proceedings of the 10th
Conference on Uncertainty in Artificial Intelligence, pages 399–406. Morgan Kaufmann, 1994.

P. Langley, W. Iba, and K. Thompson. An analysis of Bayesian classifiers. In 10th National Con-
ference on Artificial Intelligence, pages 223–228. AAAI Press, 1992.

H. Liu, F. Hussain, C.L. Tan, and M. Dash. Discretization: An enabling technique. Data Mining
and Knowledge Discovery, 4(6):393–423, 2002.

R. Mamdouh.Data Preparation for Data Mining Using SAS. Morgan Kaufmann Publishers, 2006.

D. Pyle. Data Preparation for Data Mining. Morgan Kaufmann Publishers, Inc. San Francisco,
USA, 1999.

S. Sonnenburg, V. Franc, E. Yom-Tov, and M. Sebag. Pascal largescale learning challenge, 2008.
http://largescale.first.fraunhofer.de/about/.

S. Vempala.The Random Projection Method, volume 65 ofDIMACS Series in Discrete Mathematics
and Theoretical Computer Science. American Mathematical Society, 2004.

1385


