Journal of Machine Learning Research 10 (2009) 1367-1385 bm8ted 1/09; Revised 4/09; Published 7/09

A Parameter-Free Classification Method for Large Scale Learning

Marc Boull & MARC.BOULLE@ORANGE-FTGROURCOM
Orange Labs

2, avenue Pierre Marzin

22300 Lannion, France

Editor: Soeren Sonnenburg

Abstract

With the rapid growth of computer storage capacities, atél data and demand for scoring models
both follow an increasing trend, sharper than that of thegssing power. However, the main
limitation to a wide spread of data mining solutions is the-ircreasing availability of skilled data
analysts, which play a key role in data preparation and meelettion.

In this paper, we present a parameter-free scalable ctad®ifi method, which is a step to-
wards fully automatic data mining. The method is based oreBaptimal univariate conditional
density estimators, naive Bayes classification enhancédanBayesian variable selection scheme,
and averaging of models using a logarithmic smoothing ofib&erior distribution. We focus on
the complexity of the algorithms and show how they can copl data sets that are far larger
than the available central memory. We finally report resuitshe Large Scale Learning challenge,
where our method obtains state of the art performance wjttdinticable computation time.

Keywords: large scale learning, naive Bayes, Bayesianism, modeaitsabe model averaging

1. Introduction

Data mining is “the non-trivial process of identifying valid, novel , potentiabgful, and ultimately
understandable patterns in data” (Fayyad et al., 1996). Severatriatipartners have proposed to
formalize this process using a methodological guide named CRISP-DM Ros€£Industry Stan-
dard Process for Data Mining (Chapman et al., 2000). The CRISP-DMImoaigdes an overview
of the life cycle of a data mining project, which consists in the following phabesiness un-
derstanding, data understanding, data preparation, modeling, evalaatiateployment. Practical
data mining projects involve a large variety of constraints, like scalable traggugithms, under-
standable models, easy and fast deployment. In a large telecommunicatioantesnike France
Telecom, data mining applies to many domains: marketing, text mining, web minirfi, ¢tfagsifi-
cation, sociology, ergonomics. The available data is heterogeneous,usiirical and categorical
variables, target variables with multiple classes, missing values, noisy agbdldistributions, and
with numbers of instances or variables which can vary over severatoad magnitude. The most
limiting factor which slows down the spread of data mining solutions is the dataratgm phase,
which consumes 80% of the process (Pyle, 1999; Mamdouh, 2006)egnites skilled data an-
alysts. In this paper, we present a meth@8oulle, 2007) which aims at automatizing the data
preparation and modeling phases of a data mining project, and whichmperfeell on a large vari-
ety of problems. The interest of the paper, which extends the workdigipaat (Boule, 2008), is

1. The method is available as a shareware, downloadabte pt// perso.rd. francet el ecom fr/boul | e/ .

(©2009 Marc Boulé.

MARC BOULLE

to introduce the algorithmic extensions of the method to large scale learning,dakeedoes not fit
into memory, and to evaluate them in an international challenge.

The paper is organized as follows. Section 2 summarizes the principles ofetbhod and
Section 3 focuses on its computational complexity, with a detailed descriptioe ektknsions in-
troduced for large scale learning. Section 4 reports the results obtairtbd barge Scale Learning
challenge (Sonnenburg et al., 2008). Finally, Section 5 gives a summaigiscusses future work.

2. A Parameter-Free Classifier

Our method, introduced in Bo@l(2007), extends the naive Bayes classifier owing to an optimal
estimation of the class conditional probabilities, a Bayesian variable selectiba eompression-
based model averaging.

2.1 Optimal Discretization

The naive Bayes classifier has proved to be very effective on mahgaga applications (Langley
et al., 1992; Hand and Yu, 2001). It is based on the assumption thatrilablea are independent
within each output class, and solely relies on the estimation of univariatétiooad probabili-
ties. The evaluation of these probabilities for numerical variables haglglbegen discussed in the
literature (Dougherty et al., 1995; Liu et al., 2002). Experiments demongshatesven a simple
equal width discretization brings superior performance compared to shenasion using a Gaus-
sian distribution. In the MODL approach (Bo&)I2006), the discretization is turned into a model
selection problem and solved in a Bayesian way. First, a space of diati@timodels is defined.
The parameters of a specific discretization are the number of intervalsptmel$ of the intervals
and the output frequencies in each interval. Then, a prior distributiorojsoged on this model
space. This prior exploits the hierarchy of the parameters: the numbeieofats is first chosen,
then the bounds of the intervals and finally the output frequencies. Tdieects uniform at each
stage of the hierarchy. Finally, the multinomial distributions of the output valueacdh interval
are assumed to be independent from each other. A Bayesian apjsaaiied to select the best
discretization model, which is found by maximizing the probabifity¥odel|Data) of the model
given the data. Owing to the definition of the model space and its prior distnijutie Bayes
formula is applicable to derive an exact analytical criterion to evaluate thteipor probability of a
discretization model. Efficient search heuristics allow to find the most pleldigrretization given
the data sample. Extensive comparative experiments report high penftgma

The case of categorical variables is treated with the same approach ire B20d5), using a
family of conditional density estimators which partition the input values into ggadipalues.

2.2 Bayesian Approach for Variable Selection

The naive independence assumption can harm the performance wieedioln order to better
deal with highly correlated variables, the selective naive Bayes agip{bangley and Sage, 1994)
exploits a wrapper approach (Kohavi and John, 1997) to select bsesaf variables which opti-
mizes the classification accuracy. Although the selective naive Bayesabpperforms quite well
on data sets with a reasonable number of variables, it does not scaleydarge data sets with
hundreds of thousands of instances and thousands of variablesasurt marketing applications
or text mining. The problem comes both from the search algorithm, whoselexitgps quadratic

1368

A PARAMETER-FREE CLASSIFICATION METHOD FORLARGE SCALE LEARNING

in the number of variables, and from the selection process which is pranetbtting. In Boule
(2007), the overfitting problem is tackled by relying on a Bayesian appraghere the best model
is found by maximizing the probability of the model given the data. The parasetex variable
selection model are the number of selected variables and the subsaabfesrA hierarchic prior
is considered, by first choosing the number of selected variables aoddsehoosing the subset of
selected variables. The conditional likelihood of the models exploits the Baiyes assumption,
which directly provides the conditional probability of each label. This allowsxact calculation
of the posterior probability of the models. Efficient search heuristic witkeslipear computation
time are proposed, on the basis of greedy forward addition and batlearination of variables.

2.3 Compression-Based Model Averaging

Model averaging has been successfully exploited in Bagging (Brein®@) Lising multiple clas-
sifiers trained from re-sampled data sets. In this approach, the adeckgsifier uses a voting
rule to classify new instances. Unlike this approach, where each classifiehe same weight, the
Bayesian Model Averaging (BMA) approach (Hoeting et al., 1999) Wsighe classifiers accord-
ing to their posterior probability. In the case of the selective naive Balgssitier, an inspection
of the optimized models reveals that their posterior distribution is so sharpkg@diaat averaging
them according to the BMA approach almost reduces to the maximum a pdsteiid?) model.
In this situation, averaging is useless. In order to find a trade-off betegeal weights as in bag-
ging and extremely unbalanced weights as in the BMA approach, a logaritnmiatising of the
posterior distribution, called compression-based model averaging (CiglAjtroduced in Bou#é
(2007). Extensive experiments demonstrate that the resulting compréssied model averaging
scheme clearly outperforms the Bayesian model averaging scheme.

3. Complexity Analysis

In this section, we first recall the algorithmic complexity of the algorithms detail@biilé (2005,
2006, 2007) in the case where all the data fits in central memory, then ing tldel extension of the
algorithms when data exceeds the central memory.

3.1 When Data Fits into Central Memory

The algorithm consists in three phases: data preprocessing usingidaere or value grouping,
variable selection and model averaging.

3.1.1 FREPROCESSING

In the case of numerical variables, the discretization Algorithm 1 exploiteedgrheuristic. It first
sorts the input values, then starts with initial single value intervals and ssafohthe best merge
between adjacent intervals. This merge is performed if the cost (evaluafidine discretization
decreases after the merge and the process is reiterated until no furtiger caa decrease the dis-
cretization cost. With a straightforward implementation of the algorithm, the metimsdmO(N®)
time, whereN is the number of instances. However, the method can be optimizedNio@N) time
owing to the additivity of the discretization cost with respect to the intervalsiaimdj a maintained
sorted list of the evaluated merges (such as an AVL binary search tregdimple).

1369

MARC BOULLE

Algorithm 1 Discretization
Input: X« // Numerical input variable
Output: D // Best discretization
1: // Initialization
Sort the input values
D = Elementary discretization with one interval per value value
/I Optimization
COShest= COSD), Myest= 0
repeat
for all mergem between adjacent intervai®
if (costDUmM) < coshesy) then
COShest= COStDUM), Myest=Mm
end if
end for
if (cosbest= costD)) then
D =D UmMyest
14: endif
15: until no improvement

e eIl

The case of categorical variables is handled using a similar greedy tieu@serall, the pre-
processing phase is super-linear in time and requi@&NJogN) time, whereK is the number of
variables andN the number of instances.

3.1.2 VARIABLE SELECTION

In the variable selection Algorithm 2, the method alternates fast forwardbaoklward variable
selection steps based on randomized reorderings of the variablesg@aats the process several
times in order to better explore the search space and reduce the vadasee dy the dependence
over the order of the variables.

Evaluating one variable selection for the naive Bayes classifier reqOiflésl) time, since
the conditional probabilities, which are linear in the number of variablesiire@(K) time per
instance. Updating the evaluation of a variable subset by adding oridgoppe single variable
requires only @1) time per instance and thug®) time for all the instances. Therefore, one loop
of fast forward or backward variable selection, which involvé& Dadds or drops of variables, can
be evaluated in KXN) time.

In order to bound the time complexity, each succession of fast forwatdackward variable
selection is repeated only twickaxIter = 2 in algorithm 2), which is sufficient in practice to be
close to convergence within a small computation time.

The number of repeats of the outer loop is fixed to,Ng-log, K, so that the overall time
complexity of the variable selection algorithm iSKN(logK + logN)), which is comparable to
that of the preprocessing phase.

1370

A PARAMETER-FREE CLASSIFICATION METHOD FORLARGE SCALE LEARNING

Algorithm 2 Variable Selection
Input: X = (Xg,Xz,...Xk) // Set of input variables
Output: B /I Best subset of variables
1: B=0 // Start with an empty subset of variables
2: for Step=1to logKN do

3./l Fast forward backward selection
4: S=0 [lInitialize an empty subset of variables
5 lter=0
6: repeat
7 Iter =lter+1
8 X' = ShufflgX) // Randomly reorder the variables to add
9: // Fast forward selection
10: for X € X' do
11: if (cost{SU{X«}) < cost(S)) then
12: S=SU{X}
13: end if
14: end for
15: X’ = ShufflgX) // Randomly reorder the variables to remove
16: I/l Fast backward selection
17: for X, € X' do
18: if (cost(S—{X}) < cost(S)) then
19: S=S—{X}
20: end if
21: end for

22 until no improvement olter > Maxlter
23: // Update best subset of variables
24: if (cost(S) < cost(B)) then

25: B=S
26: endif
27: end for

3.1.3 MODEL AVERAGING

The model averaging algorithm consists in collecting all the models evaluateel vatiable selec-
tion phase and averaging then according to a logarithmic smoothing of thééripogprobability,
with no overhead on the time complexity.

Overall, the preprocessing, variable selection and model averagimgahtime complexity of
O(KN(logK +logN)) and a space complexity of(&N).
3.2 When Data Exceeds Central Memory

Whereas standard scalable approaches, such as data sampling olearhivgy, cannot process
all the data simultaneously and have to consider simpler models, our objectiveidance the
scalability of our algorithm without sacrificing the quality of the results.

1371

MARC BOULLE

With the QKN) space complexity, large data sets cannot fit into central memory and training
time becomes impracticable as soon as memory pages have to be swapped detkvard central
memory?> To avoid this strong limitation, we enhance our algorithm with a specially designed
chunking strategy.

3.2.1 (HUNKING STRATEGY

First of all, let us consider the access time from cemrnory () and from sequentialead)

or random diskaccess t;). In modern personal computers (year 20Q8)js in the order of 10
nanoseconds. Sequential read from disk is so fast (based on 1@0slhsfer rates) that is in

the same order ag,: CPU is sometimes a limiting factor, when parsing operations are involved.
Random disk acceds is in the order of 10 milliseconds, one million times slower tharor t;.
Therefore, the only way to manage very large amounts of memory space xpltit elisk in a
sequential manner.

Let SSO(KN) be the size of the data set ahtlithe size of the central memory. Our chunking
strategy consists in minimizing the number of exchanges between disk andl ceatmory. The
overhead of the scalable version of the algorithms will be expressed in tésaguential disk read
timet,.

3.2.2 FRREPROCESSING

For the preprocessing phase of our method, each variable is analyzedifter being loaded into
central memory. The discretization Algorithm 1 extensively accesses thesvaf the analyzed
variable, both in the initialization step (values are sorted) and in the optimizatipr\&gepartition
the set of input variables in®© = [S/M] chunks ofKy, ..., K¢ variables, such that each chunk can
be loaded into memonkKgN < M, 1 < ¢ < C). The preprocessing phase loops onhsubsets,
and at each step of the loop, reads the data set, parses and loadsitheafables only, as shown
in Figure 1. Each memory chunk is preprocessed as in Algorithm 1, in tvdeduce conditional
probability tables (CPT) for the chunk variables.

After the preprocessing, the chunk variables are recoded by reglé@rinput values by their
index in the related CPT. The recoded chunk of variables are stoi€dilies of integer indexes,
as shown in Figure 2. These recoded chunks are very fast to loaé, thi@ chunk variables only
need to be read, without any parsing (integer indexes are directly éradsfrom disk to central
memory).

The scalable version of the preprocessing algorithm is summarized in AlguBitieach input
variable is readC times, but parsed and loaded only once as in the standard case. Theaaler
in terms of disk read time is @C — 1)KNt,) time for the load steps. In the recoding step, each
variable is written once on disk, which involves an overhead @€,) (disk sequential write time
is similar to disk sequential read time). Overall, the overhead @Kt) time.

This could be improved by first splitting the input data file i@anitial disk chunks (without
parsing), with an overall overhead of only 8XNt,) time (read and write all the input data before
preprocessing, and write recoded chunks after preprocessirgyevdr, this involves extra disk
space and the benefit is small in practice, since €/egad steps are not time expensive compared
to the rest of the algorithm.

2. On 32 hits CPU, central memory is physically limited to 4 Go, or even to 2rG&indows PCs.

1372

A PARAMETER-FREE CLASSIFICATION METHOD FORLARGE SCALE LEARNING

load
Chunk 1 Chunk 2 Chunk 3 Chunk 2
\Var1 [Var2 |Var3 [[Var4 [Var5 |Var6 |[[Var7 [Var8 Var4 |Var5 |Varé
3.24(-2.14] -0.70] 4.28 3.85(-2.12|| -6.59| -2.09| 4.28| 3.85| -2.12]
-0.82| 0.71| 2.02| -0.27| 3.43| 3.19| -0.10| -2.99 -0.27| 3.43| 3.19
5.74| -2.87] 3.37| -0.29(7.08[-1.95 -3.46] -5.21 -0.29| 7.08| -1.95
4.25| -1.98| 1.15 0.73| 3.08| -1.43| -5.50| -3.62 0.73| 3.08| -1.43
-2.31| -1.63| -1.44| -0.33| 0.18| -0.60 0.25| -2.18| -0.33| 0.18] -0.60
1.46| -3.81| 0.12f -1.15| -0.56| 1.08} -0.51| -0.08 -1.15| -0.56| 1.08
-0.68| 2.49| 0.78) -0.11| 2.57| 0.76[-0.21| 0.62] -0.11| 2.57| 0.76
3.03(0.13] -1.70f 0.44(-1.00(-0.01j| -0.91] 1.55| 0.44| -1.00| -0.01
-0.94| -0.96| 0.16| -1.47| 1.15| 1.93[-3.76| 1.49 -1.47(1.15| 1.93]
8.50(-2.06] 0.39 -2.40(1.73| -1.48| -1.98| -2.05| -2.40| 1.73| -1.48]
3.12(-1.35| -2.04ff -0.24(-1.27| 0.35| -2.44| 1.99| -0.24| -1.27| 0.35
4.18| 2.65| 3.19 3.01| 5.76| -0.35| -2.87| -2.98 3.01| 5.76| -0.35
-1.86| 1.83| -0.35| -2.88| -3.79| 2.81| 2.23| 3.15 -2.88| -3.79| 2.81
-1.87| -0.14| -1.32| -2.48| -0.60| -0.05 1.24| 5.99 -2.48| -0.60| -0.05
Disk Central memory

Figure 1: Preprocessing: the input file on disk is read several times, wélctlounk of variables
parsed and loaded into central memory one at a time.

recode
Chunk 1 Chunk 2 Chunk 3 Recoded Recoded Recoded
L chunk 1 L chunk 2 “ chunk 3
Var1 |Var2 |Var3 [Var4 |Var5 [Var6 [[Var7 |Var8 RVar1[RVar2|RVar3| RVar4|RVar5|RVarg RVar7|RVarg|
3.24(-2.14| -0.70 4.28] 3.85| -2.12| -6.59| -2.09 1 0 0 1 2 0 0 1
-0.82[0.71] 2.02| -0.27| 3.43| 3.19| -0.10| -2.99 0 1 0 0 2 1 1 1
5.74| -2.87| 3.37| -0.29| 7.08| -1.95| -3.46| -5.21 1 0 0 0 3 0 0 0
4.25| -1.98| 1.15|| 0.73 3.08| -1.43| -5.50| -3.62] 1 1 0 0 2 0 0 0
-2.31(-1.63| -1.44| -0.33| 0.18| -0.60] 0.25| -2.18 0 1 0 0 1 0 1 1
1.46| -3.81| 0.12f -1.15] -0.56] 1.08f -0.51(-0.08| 0 0 0 0 1 0 1 1
-0.68(2.49| 0.78| -0.11| 2.57| 0.76] -0.21| 0.62 0 2 0 0 2 0 1 2
3.03[0.13| -1.70 0.44| -1.00[-0.01] -0.91| 1.55 1 1 0 0 0 0 1 2
-0.94(-0.96| 0.16| -1.47| 1.15[1.93] -3.76| 1.49 0 1 0 0 1 0 0 2
8.50(-2.06| 0.39| -2.40] 1.73| -1.48|| -1.98| -2.05 2 0 0 0 1 0 1 1
3.12[-1.35| -2.04| -0.24] -1.27| 0.35] -2.44| 1.99 1 1 0 0 0 0 1 2
4.18| 2.65| 3.19 3.01| 5.76| -0.35| -2.87| -2.98| 1 2 0 1 3 0 1 1
-1.86(1.83| -0.35| -2.88| -3.79| 2.81]| 2.23| 3.15 0 2 0 0 0 0 2 3
-1.87(-0.14| -1.32| -2.48| -0.60| -0.05] 1.24| 5.99 0 1 0 0 1 0 1 3
Disk Disk

Figure 2: Recoding: the input file on disk is read and recoded onceseasdal recoded chunks of
variables are written on disk.

1373

MARC BOULLE

Algorithm 3 Scalable preprocessing

Input: input data on disk

Output: recoded data on several recoded disk chunks, conditional probaabligs
1. // Compute chunking parameters

2: estimate input data siZzeéand available central memory sike
3: compute number of chunk€ = [S/M|
4: partition the set of variables intd balanced chunks of variables
5. // Main loop
6: for all chunkdo
7. Il Load chunk into central memory
8. for all variabledo
9: read input data
10: if (variable in current chunkhen
11: parse and load variable
12: end if
13: end for
14: I/ Preprocessing
15: for all variable in memory chunéo
16: call the discretization or value grouping algorithm
17: keep the conditional probability table (CPT) into memory
18: end for
19: /I Recoding
20: for all variable in memory chunéo
21: write a recoded chunk by replacing each input value by its index in the CPT

22: end for
23: end for

3.2.3 VARIABLE SELECTION

In the variable selection phase, the algorithm perforriegX + logN) steps of fast forward back-
ward variable selection, based on random reordering of the variabéh step evaluates the add
or drop of one variable at a time, so that the whole input data has to be read.

In the scalable version of the variable selection phase, we exploit thdeg@ahunks of vari-
ables as shown in Figure 3: one single chunk is loaded in memory at a timeadrestezordering
randomly all the variables, we first reorder randomly the list of recodhechks, then reorder ran-
domly the subset of variables in the recoded chunk currently loaded in ngefrios “double stage”
reordering is the only place where the scalable algorithm does not exaatty thie behavior of the
standard algorithm.

Each step of fast forward backward variable selection involves rgadioh recoded chunk(®
times (exactly 2 MaxItertimes withMaxlIter = 2), thus implies an overhead of ONt;) read time.

Overall, the algorithmic overhead consists of additional steps for readnpplut data:C =~
S/M steps for the preprocessing phase 8odK + logN) read for variable selection phase, with
an overhead of KN(S/M + logK +logN)t,) time. Since sequential disk read tirads compa-
rable to memory access time, we expect that the scalable version of the aigbsitha practicable
computation time.

1374

A PARAMETER-FREE CLASSIFICATION METHOD FORLARGE SCALE LEARNING

Recoded Recoded Recoded Recoded
chunk 1 chunk 2 chunk 3 chunk 2
RVar1|RVar2|RVar3| RVar4|RVar5|RVar| RVar7|RVarg| RVar4|RVar5|RVar6|

0 0 2 0 0 1 1 2 0

o
o

:OO—\ANO—kOOO—\Ao_n
SN =202 =2NO 220
:ooooooooooooo
:oo—\oooooooooo—n
E—\O(»)O—k—kON—\—\N(A)N
;oooooooooooo—\

1
0
0
1
1
1
1
0
1
1
1
2
1

WW=aN=2NNN 2200 s
oco-=xo0000o00o000o0
2 OWOo 220N NWN
Ooooocoooooooo -~

Disk Central memory

Figure 3: Read: the recoded chunks of variables are read and Igampdrsing) into central mem-
ory one at a time.

4. Results on the Large Scale Learning Challenge

In this section, we summarize the Pascal Large Scale Learning Challemgge{®urg et al., 2008)
and describe our submission. We then analyze the advantages and limithbanson-parametric
modeling approach on large scale learning and evaluate our chunkiteggtré/e finaly report the
challenge results.

4.1 Challenge Data Sets and Protocol

The challenge is designed to enable a direct comparison of learning methexl$imited resource.
The data sets, summarized in Table 1 represent a variety of domains aathagnto millions of
instances, thousands of variables and tens of gigabytes of disk space.

The challenge data sets are a convenient way to evaluate the scalability affliie method,
when data set size is larger than the central memory by one order of mag(imdomputers
with 32 bit CPU). In the Wild Competition Track of the challenge, the participards‘face to
do anything that leads to more efficient, more accurate methods, for exapgpferm feature
selection, find effective data representations, use efficient progog®;- tune the core algorithm
etc”. The method have to be trained on subsets of the train data set ofsingrsé&ze, with sizes
107,10%,10%,10°,... up to the maximum number of train examples.

For all the training sessions, the accuracy is estimated using the area eetision recall
curve (aoPRC) criterion. The training time is estimated by the organizer in thesfialuation by
a re-run of the algorithm on a single CPU Linux machine, 32 Gb RAM. It iswotthy that the
evaluated training time is the computation time for the optimal parameter settings, ingatiada
loading times and any kind of data preparation or model selection time.

1375

MARC BOULLE

Dataset Domain Training Validation Dimensions Best Our
aoPRC aoPRC
alpha artificial 500000 100000 500 0.1345 0.2479
beta artificial 500000 100000 500 0.4627.4627
gamma artificial 500000 100000 500 0.0110.0114
delta artificial 500000 100000 500 0.07980.0798
epsilon artificial 500000 100000 2000 0.0343 0.0625
zeta artificial 500000 100000 2000 0.0118 0.0305
fd face detection 5469800 532400 900 0.1820.1829
ocr character recognition 3500000 670000 1156 0.1584 ©.163
dna dna split point detection 50000000 1000000 200 0.8048648.
webspam webspam detection 350000 50000 variable 0.000403D.0

Table 1: Challenge data sets and final best vs our results for the acR&®o.

The overall results are summarized based on performance figurelytigptraining time vs.
test error, data set size vs. test error and data set size vs. trainingitiinal ranking is computed
by aggregating a set of performance indicators computed from thesedigu

4.2 Our Submission

We made one fully automatic submission, using the raw representation of theatstavhich is
numerical for all the data sets except for dna where the variables tegocaal.

For the two image-based data sets (fd and ocr), we also studied the impaitiabfepresen-
tation using centered reduced rows, and finally chose the represeréatiling to the best results:
raw for ocr and centered-reduced for fd.

The webspam data set is represented using a tri-gram representdticmjwplies 16 millions
of potential variables = 256° ~ 16« 10°). Although this is a sparse data set, our algorithm
exploits a dense representation and cannot manage such a large nfinadyeaides. We applied a
simple dimensionality reduction method inspired from the random projectionitpeh(Mempala,
2004). We choose to build a compact representation, using a Kétof0007 (first prime number
beyond 10000) constructed variables: each constructed feature sarthef the initial variables
having the same index modukg:

vk, 0<K <K' Vary = %_ Vary.
k,k modK’=Kk

As our method is available as a scoring tool for Windows end users, it is imptechéor 32
bits CPUs and limited to 2 Gb RAM, thus does not benefit from the 32 Gb RAM atow the
challenge. The algorithmic extensions presented in Section 3.2 are thusiexteexploited for
the largest training sessions.

4.3 Non-Parametric Modeling with Large Data Sets

In Boullé (2007), we have analyzed the accuracy performance of our mesiug @xtensive ex-
periments. In the section, we give new insights on our non-parametrioagpand its impact on
large scale learning. Actually, the MODL method considers a space oedimation models which
grows with the size of the training data set. The number of intervals is takerebetvtoN in-

1376

A PARAMETER-FREE CLASSIFICATION METHOD FORLARGE SCALE LEARNING

tervals, whereN is the number of training instances, the boundaries come from the inputrdhta a
the class conditional parameters per interval are confined to a finite niohfsequencies (rather
than continuous distributions in [0, 1]), on the basis on instance counts dathe Both the space
of discretization models and the prior distribution on the model parametersataedependent.
More precisely, they depends on the input data, and the best model, witrattimum a posteriori
probability, is selected using the output data.

To illustrate this, we chose the delta data set and exploit the 500000 labeti@olcies for our
experiment. We use training sets of increasing sizes 100, 1000, 100000d and 400000, and
keep the last 100000 instances as a test set. The best variable agc¢ortfia MODL criterion is
Varl50 for all data set sizes above 1000. In Figure 4, we draw theetiisation (with boundaries
and conditional probability of the positive class) of Var150, using the M@i2thod and the unsu-
pervised equal frequency method with 10 intervals, as a baseline. taeatasize 100, the empirical
class distribution is noisy, and the MODL method selects a discretization havingjrgle interval,
leading to the elimination of the variable. When the data set size increases(Qbé Biscretiza-
tions contain more and more intervals, with up to 12 intervals in the case of datizesd00000.
Compared to the fixed size equal frequency discretization, the MODL meéitlitts discretizations
which are both more accurate and robust and obtain a good approximatian underlying class
distribution.

This also demonstrates how the univariate MODL preprocessing methasdsels a variable
ranking method with a clear threshold: any input variable discretized intsiogée interval does
not contain any predictive information and can be eliminated. In Figure Sepat the number of
selected variables per data set size, which goes from 6 for data sdi0§ize about 350 for data
set size 400000. Figure 5 also report the test AUC (area under thecR@€ (Fawcett, 2003)),
which significantly improves with the data set size and exhibits a clear correlaiib the number
of selected variables.

One drawback of this approach is that all the training data have to be exidoitelltaneously
to unable a deep optimization of the model parameters and fully benefit fronegpeessiveness.
Although learning with very large data sets is possible, as shown in this,gapeeapproach is
limited to offline learning and does not apply to the one-pass learning parastigo learning on
stream.

Overall, our non-parametric approach build models of increasing complexitythe size of
the training data set, in order to better approximate the underlying class dismib&mall train-
ing data sets lead to simple models, which are fast to deploy (few selectelleaneth simple
discretization), whereas large training data sets allow more accurate mpttedeapense of more
training time and deployment time.

4.4 Impact of the Chunking Strategy

In Section 3.2, we have proposed a chunking strategy that allows to lgédrnraming data sets
which size is far larger than central memory. The only difference with thedata algorithm is
the “double stage” random reordering of the variables, which is peddrprior to each step of fast
forward or backward variable selection in Algorithm 2. In this section, waduate our chunking
strategy and its impact on training time and test AUC.

We exploit the delta data set with trainings sets of increasing sizes 100, 10000, 10000,
400000, and a test set of 100000 instances. The largest trainingsizgdicentral memory on our

1377

MARC BOULLE

P(class=1) Sample size 100
0-9
0.8
I—G s
Q.6 f—l —
oW~
Q.4 H
T T 83 ‘ :
' Var150
-1.5 -1 -0.5 0 0.5 1 1.5
P(class=1) Sample size 1000
0.8 -
0.7 q
I—L .6 1
ﬁ.S b
=y
U.S
! ! 83 T T Var150
15 -1 05 0 05 1 15
P(class=1) Sample size 10000
— 0.8 |
R 0.7 4
:I_':ﬁi
0.4 E_=
‘ 63 ‘ ‘ Var150
-1.5 -1 -0.5 0 05 1 15
P(class=1) Sample size 100000
n_n
l 0.8
0.7
0.4 L$——|
‘ ‘ 63 ‘ ‘ Var150
15 - 05 0 0.5 1 15
P(class=1) Sample size 400000
ﬁ 08 |
0.7 -
0.4 ‘ﬂ—h
‘ &3 ‘ ‘ Var150
15 -1 0.5 0 0.5 1 15

Figure 4: Discretization of Varl50 for the delta data set, using the MODL mdefindblack) and
the 10 equal frequency method (in gray).

1378

A PARAMETER-FREE CLASSIFICATION METHOD FORLARGE SCALE LEARNING

1000

0.9
100
0.8

Selected variable number
Test AUC

100 1000 10000 100000 1000000 100 1000 10000 100000 1000000

Sample size Sample size

Figure 5: Data set size versus selected variable number and test At fdelta data set.

machine (Pentium 4, 3.2 Ghz, 2 Go RAM, Windows XP), which allows to comibarstandard al-
gorithm with the chunking strategy. In Figure 6, we report the wall-cloclatde selection training
time and the test AUC for the standard algorithm (chunk number = 1) and timkicly strategy, for
various numbers of chunks.

10000 1

—&— Size 400000 —=— Size 400000
f . = = = = m ma —2— Size 100000 —&—Size 100000
1000 —o—Size 10000 09 —O—Size 10000
n—t— —*—Size 1000 ’ —X— Size 1000
5 —+—Size 100 > 0—0—0—0—0—0—0 —+—Size 100
i=
8 100 o 08
) =)
o <
€ —0—o0— 60—~ o 7
£ 10 =07
E Y——K——K—K—X
1 X 06
’_‘x/x__x/'“
F——t———t
0.1 Chunk number 0.5 . . Chunk number

1 10 100 1000 1 10 100 1000

Figure 6: Impact on the chunking strategy on the wall-clock variable setetéiming time and the
test AUC for the delta data set.

The results show that the impact on test AUC is insignificant: the largestatiffes go from
0.003 for data set size 100 to 0.0004 for data set size 400000. Thblea@ection training time is
almost constant with the number of chunks. Compared to the standard aigdtithtime overhead
is only 10% (for data set size above 10000), whatever be the numbdiuoks. Actually, as
analyzed in Section 3.2, the recoded chunks of variables are extreniekytqguoad into memory,
resulting in just a slight impact on training time.

We perform another experiment using the fd data set, with up to 5.5 millions tahices and
900 variables, which is one order of magnitude larger than our central rggegouUrces. Figure 7
reports the wall-clock full training time, including load time, preprocessingwamiible selection.
When the size of the data sets if far beyond the size of the central memorywetiesad in wall-
clock time is by only a factor two. This overhead mainly comes from the prepsirng phase of the
algorithm (see Algorithm 3), which involves several reads of the initial ingilata set. Overall,
the wall-clock training time is about one hour per analyzed gigabyte.

1379

MARC BOULLE

Training Face dataset
time

1000000

100000 -

10000

—8—Wall-clock time
—4&—CPU time

1000 + —=—10 time

100

10 4

Dataset
iz

1 T T T T
size
100 1000 10000 100000 1000000 10000000

Figure 7: Training time for the fd data set.

Rank Score Submitter Title

1 2.6 chap - Olivier Chapelle Newton SVM

2 2.7 antoine - Antoine Bordes SgdQn

3 3.2 yahoo - Olivier Keerthi SDM SVM L2

4 3.5 yahoo - Olivier Keerthi SDM SVM L1

5 5 MB - Marc Boulle Averaging of Selective Naive Bayes Cléisss final
6 5.8 beaker - Gavin Cawley LR

7 6.8 kristian - Kristian Woodsend IPM SVM 2

8 7.3 ker2 - Porter Chang CTJ LSVMO1

9 7.7 antoine - Antoine Bordes LaRankConverged
10 8 rofu - Rofu yu liblinear

Table 2: Challenge final ranking.

4.5 Challenge Results

The challenge attracted 49 participants who registered, for a total ofldissions. In the final
evaluation, our submission is ranketf Bising the the aggregated performance indicator of the
organizers, as shown in Table 2. To go beyond this aggregated ind&catanalyze the intrinsic
multi-criterion nature of the results, we now report and comment separateetyatining time and
accuracy performance of our method.

4.5.1 TRAINING TIME

Most of the other competitors exploit linear SVM, using for example Newt@edaptimization in
the primal (Chapelle, 2007), Sequential Dual Method optimization (Hsielh, 088) or stochastic
gradient optimization (Bordes and Bottou, 2008). These method were @pigiieg a specific data
preparation per data set, such as 0-1, L1 or L2 normalization, and the pardeheters were tuned
using most of the available training data, even for the smallest training sessidrey exploit
incremental algorithms, similar to online learning methods: they are very fdstead only a few
passes on the data to reach convergence.

1380

A PARAMETER-FREE CLASSIFICATION METHOD FORLARGE SCALE LEARNING

We report in Figure 8 the training time vs data set size performance curve&a¢k for our
results)> As far as the computation time only is considered, our offline training time is much
longer than that of the online methods of the other competitors, by about teosoof magnitude.
However, when the overall process is accounted for, with data @tmar model selection and
data loading time, our training time becomes competitive, with about one houirghgdime per
analyzed gigabyte.

4.5.2 ACCURACY

Table 1 reports our accuracy results in the challenge for the area avgrdhision recall curve
(aoPRC) criterion in the final evaluation of the challenge. The detailedisemte presented in
Figure 9, using the data set size vs accuracy performance curves.

On the webspam data set, the linear SVM submissions of Keerthi obtain exgeléormance,
which confirms the effectiveness of SVM for text categorization (Jimash1998). On the alpha
data set, our method (based on the naive Bayes assumption) fails to exphpitaith@tic nature of
this artificial data set and obtains poor results. Except for this data semethod always ranks
among the first competitors and obtains tieplace with a large margin on four data sets: beta,
gamma, delta and fd. This is a remarkable performance for a fully automatic anethiwh exploits
the limited naive Bayes assumption.

Overall, our method is highly scalable and obtains competitive performatigadiiomatically,
without tuning any parameter.

5. Conclusion

We have presented a parameter-free classification method that exploiswb®ayes assumption.
It estimates the univariate conditional probabilities using the MODL method, vages optimal
discretizations and value groupings for numerical and categoricablesiat searches for a subset
of variables consistent with the naive Bayes assumption, using an evalbasied on a Bayesian
model selection approach and efficient add-drop greedy heuristicsllyk- it combines all the
evaluated models using a compression-based averaging schema. Irptrisygmhave introduced
a carefully designed chunking strategy, such that our method is no lbmiged to data sets that fit
into central memory.

Our classifier is aimed at automatically producing competitive predictions in @ lengety of
data mining contexts. Our results in the Large Scale Learning Challenge diaten that our
method is highly scalable and automatically builds state-of-the art classifiehen itie data set
size is larger than the available central memory by one order of magnitudeetiiod exploits an
efficient chunking strategy, with a time overhead of only a factor two.

Compared to alternative methods, our method requires all the data simultgnieoiudly ex-
ploit the potential of our non-parametric preprocessing: it is thus deditataffline learning, not to
online learning. Another limitation is our selective naive Bayes assumptionoégtinthis is often
leveraged in practice when large number of features can be constusitepddomain knowledge,
alternative methods might be more effective when their bias fit the data.alDvaur approach is

3. For readability reasons in this paper, we have represented oltsri@sblack and the others in gray, which allows
to present our performance relatively to the distribution of all the resQitsthe challenge website, Figures 8 and 9
come in color, which allows to discriminate the performance of each method

1381

albha

m—a Averaging of

MARC BOULLE

beta

Selective Naive

Bayes Classifiers

Wi Averaging of
Selective Naive
Bayes Classifiers

Other entries

m—m Averaging of
Selective Naive
Bayes Classifiers

Other entries

Wi Averaging of
Selective Naive
Bayes Classifiers

Other entries

m— Averaging of
Selective Naive
Bayes Classifiers

Other entries

m—m Averaging of
Selective Naive
Bayes Classifiers

Other entries

10°

. Other entries
-
= &
o v
E E
= F
> >
4 2
o o
10° - . e 10° 5
10? 10° 10* 10° 10° 10° 10° 10* 10° 1%
Dataset Size Dataset Size
Averaging of
gamma Bl G elecive Naive delta
10" - Bayes Classifiers 10°
10° Other entries 10°
10° 10°
10 1 10
@ 100 r T 100
3 -
£a0? £10"
B g2 2 102
107 107
o b o] =
107 10°
10 10"
10° 10°
10° - 10° = g
10° 10° 10" 10° 10° 10° 10° 10° 10° 10°
Dataset Size Dataset Size
H m—m Averaging of
epsilon Selective Naive zeta
10° Bayes Classifiers 10°
10 L Other entries 10"
10°
] 162
= & 10"
o) —
: 20 :
F F
= 107 _—
& &
107
10°
10*
10°
10° v = 10° % o =
10? 10° 10 10 10° 10? 10 10 10° 10°
Dataset Size Dataset Size
Averaging of
face Selective Naive
10° Bayes Classifiers
10° Other entries
106 =]
10° .
10? o
T gt)
e :
£ 10° £
O 2
310 &
10°
107
10"
10°
10° 10° a 5
10° 10° o* 10° 10° 107 10? 10° 0 10° 10° 107
Dataset Size Dataset Size
m—m Averaging of
Selective Naive webspam
Bayes Classifiers
. Other entries
=z G
P o
£ £
E E
o >
2 2
& 5]
108 H H _ 102 i i L
10° 10° 10* 10° 10° 10 10° 10? 10° 10° 10°

Dataset Size

Dataset Size

Figure 8: Final training time results: data set size versus training time (exglddia loading).

1382

A PARAMETER-FREE CLASSIFICATION METHOD FORLARGE SCALE LEARNING

alpha

Selective Naive

aoPRC

Bayes Classifiers

Other entries

m—a Averaging of

107 10°

10* 10°
Dataset Size

10°

m—m Averaging of

Selective Naive
Bayes Classifiers

Other entries

10? 10°

epsilon

10"

Dataset Size

10°

m—m Averaging of

Selective Naive
Bayes Classifiers

_ Other entries
0 2 3 4 S 6
10 10 10 10 10
Dataset Size
— Averaging of
face Selective Naive
10

Bayes Classifiers

Other entries
\?:':
0.2
0.1
10° 10° * & 10° 107

0’ 10
Dataset Size

aoPRC

Averaging of
Selective Naive
Bayes Classifiers

Other entries

10° 10° 10
Dataset Size

W—m Averaging of
beta Selective Naive
051 Bayes Classifiers
~ . Otherentries
——
0.49
(e}
2
£
S
3
0.48
047
0.46 = = ' s
107 10 10 10° 10
Dataset Size
‘Averaging of
delta B Seiecive Naive
0.50 Bayes Classifiers
~ . Otherentries
0% =1
0.40
035
© 030
2
3
8025
020 \\o\
0.15 1
=
0.10
0.05= = - g s
10 10° 10 10° 10°
Dataset Size
W—m Averaging of
zeta Selective Naive
0 Bayes Classifiers

aoPRC

aoPRC

_— Other entries

10* 10° 10°
Dataset Size

m— Averaging of
Selective Naive

035

Bayes Classifiers

_— Other entries

| =

0 10
Dataset Size

107

m—m Averaging of
Selective Naive

Bayes Classifiers

 Other entries

0.04

0.03

0.02 "

% 10° 16“ 10"E 10°

Dataset Size

Figure 9: Final accuracy results: data set size versus test error.

1383

MARC BOULLE

of great interest for automatizing the data preparation and modeling pbfgasa mining, and
exploits as much as possible all the available training data in its initial representatio

In future work, we plan to further improve the method and extend it to claa8dit with large
number of class values and to regression.

Acknowledgments

I am grateful to Bruno Guerraz, who got the initial Windows code to warétar Linux. | would
also like to thank the organizers of the Large Scale Learning Challenglediovaluable initiative.

References

A. Bordes and L. Bottou. Sgd-gn, larank: Fast optimizers for linear svmsin
ICML 2008 Workshop for PASCAL Large Scale Learning Challeng@008.
http://largescale.first.fraunhofer.de/workshop/.

M. Boullé. A Bayes optimal approach for partitioning the values of categorical atéésbJournal
of Machine Learning Research:1431-1452, 2005.

M. Boullée. MODL: a Bayes optimal discretization method for continuous attributdachine
Learning 65(1):131-165, 2006.

M. Boullé. Compression-based averaging of selective naive Bayes classlbernal of Machine
Learning Researcl8:1659-1685, 2007.

M. Boullé. An efficient parameter-free method for large scale offline learning.
In ICML 2008 Workshop for PASCAL Large Scale Learning Challeng2008.
http://largescale.first.fraunhofer.de/workshop/.

L. Breiman. Bagging predictordachine Learning24(2):123-140, 1996.

O. Chapelle. Training a support vector machine in the prifNalural Computation19:1155-1178,
2007.

P. Chapman, J. Clinton, R. Kerber, T. Khabaza, T. Reinartz, C. 8heard R. Wirth.CRISP-DM
1.0 : Step-by-step Data Mining Guigd2000.

J. Dougherty, R. Kohavi, and M. Sahami. Supervised and unsupeémiseretization of continuous
features. IrProceedings of the 12th International Conference on Machine Learpages 194—
202. Morgan Kaufmann, San Francisco, CA, 1995.

T. Fawcett. ROC graphs: Notes and practical considerations forrobsga. Technical Report
HPL-2003-4, HP Laboratories, 2003.

U.M. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. Knowledge discaratylata mining: towards
a unifying framework. IrKDD, pages 82—88, 1996.

D.J. Hand and K. Yu. Idiot bayes ? not so stupid after dlifernational Statistical Revievé9(3):
385-399, 2001.

1384

A PARAMETER-FREE CLASSIFICATION METHOD FORLARGE SCALE LEARNING

J.A. Hoeting, D. Madigan, A.E. Raftery, and C.T. Volinsky. Bayesian masetaging: A tutorial.
Statistical Sciencel4(4):382—-417, 1999.

C-J. Hsieh, K-W. Chang, C-J. Lin, S. Keerthi, and S. Sundararafamlual coordinate descent
method for large-scale linear svm.IlBML '08: Proceedings of the 25th international conference
on Machine learningpages 408—415, New York, NY, USA, 2008. ACM.

T. Joachims. Text categorization with support vector machines: Leawithgnany relevant fea-
tures. InEuropean Conference on Machine Learning (ECMhages 137-142, Berlin, 1998.
Springer.

R. Kohavi and G. John. Wrappers for feature selectidntificial Intelligence 97(1-2):273-324,
1997.

P. Langley and S. Sage. Induction of selective Bayesian classifiarBroteedings of the 10th
Conference on Uncertainty in Artificial Intelligengeages 399-406. Morgan Kaufmann, 1994.

P. Langley, W. Iba, and K. Thompson. An analysis of Bayesian classifia 10th National Con-
ference on Artificial Intelligenggpages 223-228. AAAI Press, 1992.

H. Liu, F. Hussain, C.L. Tan, and M. Dash. Discretization: An enablingriepie. Data Mining
and Knowledge Discoveyy(6):393—-423, 2002.

R. Mamdouh.Data Preparation for Data Mining Using SAMorgan Kaufmann Publishers, 2006.

D. Pyle. Data Preparation for Data Mining Morgan Kaufmann Publishers, Inc. San Francisco,
USA, 1999.

S. Sonnenburg, V. Franc, E. Yom-Tov, and M. Sebag. Pascal $aaje learning challenge, 2008.
http://largescale.first.fraunhofer.de/about/.

S. VempalaThe Random Projection Methpeblume 65 oDIMACS Series in Discrete Mathematics
and Theoretical Computer Sciencgmerican Mathematical Society, 2004.

1385

