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Abstract

In the context of multiple hypothesis testing, the prommrtip of true null hypotheses in the pool
of hypotheses to test often plays a crucial role, althoughgenerally unknowm priori. A testing
procedure using an implicit or explicit estimate of this nity in order to improve its efficency is
calledadaptive In this paper, we focus on the issue of false discovery FER( control and we
present new adaptive multiple testing procedures withrobof the FDR. In a first part, assuming
independence of thp-values, we present two new procedures and give a unifiedweni other
existing adaptive procedures that have provably conttdiBR. We report extensive simulation
results comparing these procedures and testing theirtrdsswhen the independence assumption
is violated. The new proposed procedures appear comgetitth existing ones. The overall best,
though, is reported to be Storey’s estimator, albeit for ecgjx parameter setting that does not
appear to have been considered before. In a second partopeser adaptive versions of step-up
procedures that have provably controlled FDR under pasdapendence and unspecified depen-
dence of thep-values, respectively. In the latter case, while simutationly show an improvement
over non-adaptive procedures in limited situations, tle@edo our knowledge among the first the-
oretically founded adaptive multiple testing procedutes tontrol the FDR when thevalues are
not independent.

Keywords: multiple testing, false discovery rate, adaptive procedpositive regression depen-
dence p-values

1. Introduction

The topic of multiple testing, which enjoys a long history in the statistics literatusegbaerated
a renewed, growing attention in the recent years, spurred by an smgeaumber of application
fields, in particular bioinformatics. For example, when processing mia@paata, a common goal
is to detect which genes (among several ten of thousands) exhibit a cagtlifi different level
of expression in two different experimental conditions. Each geneesepis a “hypothesis” to
be tested in the statistical sense. The genes’ expression levels flucthatdiydénot to speak of
other sources of fluctuation introduced by the experimental protocall), lzeécause the number
of candidate genes is large, it is important to control precisely what cate®med a significant
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observed difference. Generally, it is assumed that the natural flustudistribution of asingle
gene is known and the problem is to take into account the number of geradgeith(for more
details, see for instance Dudoit et al., 2003).

1.1 Adaptive Multiple Testing Procedures

In this work, we focus on building multiple testing procedures with a contrtheffalse discovery
rate (FDR). This quantity is defined as the expected proportion of typersethat is, the proportion
of true null hypotheses among all the null hypotheses that have beeterk{ee., declared as false)
by the procedure. In their seminal work on this topic, Benjamini and Hagh{d®95) proposed
the celebratedinear step-up(LSU) procedure, which was proved to control the FDR under the
assumption of independence betweenphelues. Later, it was proved (Benjamini and Yekutieli,
2001) that the LSU procedure still controls the FDR whenpghalues have positive dependence
(or more precisely, a specific form of positive dependence called yos#égression dependence
from a subset, PRDS). Under completely unspecified dependenceartteeaithors have shown
that the FDR control still holds if the threshold collection of the LSU procedsirdivided by a
factor 1+ 1/2+ ---+1/m, wherem s the total number of null hypotheses to test. More recently,
the latter result has been generalized (Blanchard and Fleuret, 200ichBla and Roquain, 2008;
Sarkar, 2008a,b), by showing that there is in fact a family of step-upegires (depending on the
choice of a kind of prior distribution) that control the FDR under unspetifiependence between
the p-values.

However, all of these procedures, which are built in order to conteHBR at a levetr, can
be shown to have actually their FDR upper boundediuy, whererty is the proportion of true null
hypotheses in the initial pool. Therefore, when most of the hypothesdalae (i.e. i is small),
these procedures are inevitably conservative, since their FDR is inliacmach lower than the
fixed targeta. In this context, the challenge aflaptive controlof the FDR (e.g., Benjamini and
Hochberg, 2000; Black, 2004) is to integrate an estimation of the unknoegogionTy in the
threshold of the previous procedures and to prove that the cormrdisigoRDR is still rigorously
controlled bya.

Of course, adaptive procedures are of practical interest if it isa@gdethatry is, or can be,
significantly smaller than 1. An example of such a situation occurs when ugngy¢hical pro-
cedures (e.g., Benjamini and Heller, 2007) which first selects some dudthypotheses that are
likely to contain false nulls, and then apply a multiple testing procedure on thetes leypotheses.
Since a large part of the true null hypotheses is expected to be false iacihredsstep, an adaptive
procedure is needed in order to keep the FDR close to the target level.

A number of adaptive procedures have been proposed in the receatuliteand can loosely be
divided into the following categories:

e plug-in procedures, where some initial estimatormgfis directly plugged in as a multi-
plicative level correction to the usual procedures. In some cases $ogey’s estimator,
see Storey, 2002), the resulting plug-in adaptive procedure (oriaiearthereof) has been
proved to control the FDR at the desired level (Benjamini et al., 2006e$&tral., 2004). A
variety of other estimators afy have been proposed (e.g., Meinshausen and Rice, 2006; Jin
and Cai, 2007; Jin, 2008); while their asymptotic consistency (as the nurhbgpotheses
tends to infinity) is generally established, their use in plug-in adaptive guses has not
always been studied.
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e two-stageprocedures: in this approach, a first round of multiple hypothesis testipgris
formed using some fixed algorithm, then the results of this first round ackinserder to
tune the parameters of a second round in an adaptive way. This camlgebe interpreted
as using the output of the first stage to estinTgteDifferent procedures following this gen-
eral approach have been proposed (Benjamini et al., 2006; Safka8a; Farcomeni, 2007);
more generally, multiple-stage procedures can be considered.

e one-staggrocedures, which perform a single round of multiple testing (generalbygieor
step-down), based on a particular (deterministic) threshold collection thdénmit adaptive
(Finner et al., 2009; Gavrilov et al., 2009).

In addition, some works (Genovese and Wasserman, 2004; Storey 20@4., Finner et al.,
2009) have studied the question of adaptivity to the paramrmgtéom anasymptotioziewpoint. In
this framework, the more specifrandom effectsnodel is—most generally, though not always—
considered, in whictp-values are assumed independent, each hypothesis has a probgbdity
being true, and all false null hypotheses share the same alternate distribliti@ behavior of
different procedures is then studied under the limit where the numbertefitbgpotheses grows to
infinity. One advantage of this approach and specific model is that it allodsriee quite precise
results (see Neuvial, 2008, for a precise study of limiting behaviors dafaelimit type under
this model, including some of the new procedures introduced in the preapat)p However, we
emphasize that in the present work our focus is decidedly on the nonsastiorgide, using finite
samples and arbitrary alternate hypotheses.

To complete this overview, let us also mention another interesting and diffiirention opened
up recently, that of adaptivity to the alternate distribution. If the alternateitaisitvns are known
a priori, the optimal testing statistics are generally likelihood ratios between each dwdkah al-
ternate, which (possibly after standardization under the forpredlues) can be combined using a
multiple testing algorithm in order to control some measure of type | error while mimgi&mea-
sure of type Il error (see, e.g., Spjgtvoll, 1972, Wasserman and R@&{s, Genovese et al., 2006,
Storey, 2007, Roquain and van de Wiel, 2009). In situations where theatkds unknown, though,
one can hope to estimate, implicitly or explicitly, the alternate distributions from therebd data,
and consequently approximate the optimal test statistics and the associated radtiptg proce-
dure (Sun and Cai, 2007 proposed an asymptotically consistent appoois end). Interestingly,
this point of view is also intimately linked to some traditional topics in statistical learsuroty as
classification and of optimal novelty detection (see, e.g., Scott and Blah@@09). However, in
the present paper we will focus on adaptivity to the paranmgtenly.

1.2 Overview of this Paper
The contributions of the present paper are the following. A first go#ht®fpaper is to introduce a

number of novel adaptive procedures:

1. Weintroduce a newne-stagestep-up procedure that is more powerful than the standard LSU
procedure in a large range of situations, and provably controls the FIdBrindependence
(and in a nonasymptotic sense). This procedure is called one-stagivadhpcause the
estimation ofr is performed implicitly.

2839



BLANCHARD AND ROQUAIN

2. Based on this, we then build a néwo-stageadaptive procedure, which is more powerful in
general than the procedure proposed by Benjamini et al. (2006), muil@bly controlling
the FDR under independence.

3. Under the assumption of positive or arbitrary dependence gitredues, we introduce new
two-stage adaptive versions of known step-up procedures (narhétg bSU under positive
dependence, and of the family of procedures introduced by Blanaratd-leuret, 2007,
under unspecified dependence). These adaptive versions lyrovakrol the FDR and result
in an improvement of power over the non-adaptive versions in some sitsgtiamely, when
the number of hypotheses rejected in the first stage is large, typically moré@8s).

A second goal of this work is to present a review of several existingtagestep-up procedures
with provable FDR control under independence. For this, we presetit¢oretical FDR control as
a consequence of a single general theorem, which was first estaliglBahjamini et al. (2006).
Here, we give a short self-contained proof of this result that is ofgaddent interest. The latter
is based on some tools introduced earlier (Blanchard and Roquain, R668ain, 2007), aimed at
unifying FDR control proofs. Related results and tools also appear @mdigmtly in Finner et al.
(2009) and Sarkar (2008b).

A third goal is to compare both the existing and our new adaptive procedui@ extensive
simulation study under both independence and dependence, followingrtblation model and
methodology used by Benjamini et al. (2006):

e Concerning the new one- and two- stage procedures with theoreticakcBBiol under in-
dependence, these are generally quite competitive in comparison to exiséiag ldowever
we also report that the best procedure overall (in terms of power, gmacedures that are
robust enough to the dependent case) appears to be the plug-idym@based on the well-
known Storey estimator (Storey, 2002) used with the somewhat nonstigratameter setting
A =d. This outcome was in part unexpected since to the best of our knowlknigEgct had
never been pointed out so far (the usual default recommended chaice {sand turns out
to be very unstable in dependent situations); this is therefore an impootaciusion of this
paper regarding practical use of these procedures.

e Concerning the new two-stage procedures with theoretical FDR comidarwdependence,
simulations show an (admittedly limited) improvement over their non-adaptiveteqants
in favorable situations which correspond to what was expected from durdtical study
(i.e., large proportion of false hypotheses). The observed improvemeantortunately not
striking enough to be able to recommend using these procedures in practice.

The paper is organized as follows: in Section 2, we introduce the mathenfaticswork,
and we recall the existing non-adaptive results for FDR control. In Se&jove deal with the
setup of independerg-values. We expose our new procedures and review the existing ames,
compare them theoretically and in a simulation study. The case of positivadiameand arbitrarily
dependenp-values is examined in Section 4 where we introduce our new adaptivedans in
this context. A conclusion is given in Section 5. Section 6 and 7 contain paddhe results and
lemmas, respectively. Some technical remarks and discussions of linkstonitk are gathered
at the end of each relevant subsection, and can be skipped by trspacialist reader.
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2. Preliminaries

In this paper, we stick to the traditional statistical framework for multiple testirig¢chwvwe first
briefly recall below.

2.1 Multiple Testing Framework

Let (X, X,P) be a probability space; we aim at inferring a decisiorPoinom an observation in
X drawn fromP. Let # be a finite set of null hypotheses By that is, each null hypothedisc #H
corresponds to some subset of distributiong.anX) and ‘P satisfiesh” means that? belongs to
this subset of distributions. The number of null hypotheg€sis denoted byn, where|.| is the car-
dinality function. The underlying probabilit§ being fixed, we denotéf = {h € # | P satisfiesh}
the set of the true null hypotheses angl= | | the number of true null hypotheses. We let also
T := Mp/mthe proportion of true null hypotheses. We stress #tatmy, andrg are unknown and
implicitly depend on the unknowR . All the results to come are always implicitly meant to hold
for any generating distributiofi .

We suppose further that there exists a sep-ofaluefunctionsp = (pn,h € #), meaning that
eachpy, : (X,X) — [0,1] is a measurable function and that for e&wh Hp, pn is bounded stochas-
tically by a uniform distribution, that is,

vhe o,  Vte[0,1], Plph<t]<t. (1)

Typically, eachp-value is obtained from a statisti€ that has a known distributioRy under the
corresponding null hypothesis. In this capg,= ®o(Z) satisfies (1) in general, whery(z) =
Po([z,+)). Here, we are however not concerned with how thesalues are precisely constructed
and only assume that they exist and are known (this is the standard settingipiertasting).

2.2 Multiple Testing Procedure and Errors

A multiple testing proceduris a function
R:xe X —R(X) € P(H),

such that for any € #, the functionx — 1{h € R(x)} is measurable. It takes as input an observa-
tion x and returns a subset 6f, corresponding to the rejected hypotheses. As it is commonly the
case, we will focus here on multiple testing procedure baseguhelues, that is, we will implicitly
assume thaR is of the formR(p).

A multiple testing procedur® can make two kinds of errors:tgpe | error occurs forh when
his true and is rejected bR, that is,h € #NR. Converselya type Il error occurs forh when
h is false and is not rejected Wy, that ish € #Hy N R®. Following the Neyman-Pearson general
philosophy for hypothesis testing, the primary concern is to control thetiyaf type | errors of
a testing procedure. For this, the most traditional way is to upper bound #rmilfFwise error
rate” (FWER), which is the probability that one or more true null hypothaesesejected. However,
procedures with a controlled FWER are (by definition) very “cautioug"taanake even a single
error, and thus reject only few hypotheses. This conservative Waneasuring the type | error for
multiple hypothesis testing can be a serious hindrance in practice, sinceireetp collect large
enough data sets so that significant evidence can be found under ittti@str control criterion.
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More recently, a more liberal measure of type | errors has been inteddoenultiple testing (Ben-
jamini and Hochberg, 1995): tHalse discovery rat¢FDR), which is the averaged proportion of
true null hypotheses in the set of all the rejected hypotheses:

Definition 1 (False discovery rate) Thefalse discovery ratef a multiple testing procedure R for
a generating distributior® is given by

[RN 74|

FDR(R) :=E
R

1{|R > 0}| . 2)

A classical aim, then, is to build proceduf@svith FDR upper bounded at a given, fixed level
a. Of course, if we choosR = 0, meaning thaR rejects no hypotheses, trivially FOR) =0< a.
Therefore, it is desirable to build procedur@ssatisfying FDRR) < a while at the same time
having as few type Il errors as possible. As a general rule, provitetd=-DRR) < a, we want
to build procedures that reject as many false hypotheses as possildeab$blute power of a
multiple testing procedure is defined as the average proportion of falséhteges correctly rejected,
E [|[RN#§|] /|#| . Given two procedureR andR', a particularly simple sufficient condition for
Rto be more powerful thaR' is whenR if R C Rholds pointwise. We will say in this case tHat
is (uniformly) less conservatiibanR .

Remark 2 Throughout this paper we will use the following convention: whenevee tisean in-
dicator function inside an expectation, this has logical priority over any otaetor appearing in
the expectation. What we mean is that if other factors include expressians#ly not be defined
(such as the raticg) outside of the set defined by the indicator, this is safely ignored. Thikgé@su
more compact notation, such as in Definition 1. Note also again that thendepee of the FDR on
the unknowr® is implicit.

2.3 Self-Consistency, Step-Up Procedures, FDR Control and Agévity

We first define a general class of multiple testing procedures cadlédonsistent proceduréBlan-
chard and Roguain, 2008).

Definition 3 (Self-consistency, nonincreasing procedureletA: {0,1,...,m} — R*,A(0) =0,
be a nondecreasing function call¢isreshold collectiona multiple testing procedure R is said to
satisfy the self-consistency condition with resped tbthe inclusion

Rc {he | pn <A(R|)}

holds almost surely. Furthermore, we say that R is nonincreasing if lfdr & # the function
pr — |R(p)| is nonincreasing, that is ifR| is nonincreasing in each p-value.

The class of self-consistent procedures includes well-known typeoédures, notably step-
up and step-down. The assumption that a procedure is nonincreasiicy), i&/required in addition
to self-consistency in some of the results to come, is relatively natural asapevalue means we
have more evidence to reject the corresponding hypothesis. We will maiciys fon thestep-up
procedure, which we define now. For this, we sortphelues in increasing order using the notation
Py < -+ < pm) and puttingpg) = 0. This order is of course itself random since it depends on the
observation.
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Definition 4 (Step-up procedure) The step-up procedure with threshold collectibis defined as
R={he H | pn < py}, where k=max{0<i<m]|p; <A(i)}.
A trivial but important property of a step-up procedure is the following.

Lemma 5 The step-up procedure with threshold collectidiis nonincreasing and self-consistent
with respect ta\.

Therefore, a result valid for any nonincreasing self-consisterttgohare w.r.tA holds in particular
for the corresponding step-up procedure. This will be used extggiwrough the paper and thus
should be kept in mind by the reader.

Among all procedures that are self-consistent with respedt, tthe step-up is uniformly less
conservative than any other (Blanchard and Roquain, 2008) andrefdhe of primary interest.
However, to recover procedures of a more general form (includieg-down for instance), the
statements of this paper will be preferably expressed in terms of selistamsprocedures when it
is possible.

Threshold collections are generally scaled by the target FDR teveDnce correspondingly
rewritten under the normalized forx(i) = af(i)/m, we will call  theshape functiofior threshold
collectionA. In the particular case where the shape funcfidgsthe identity function, the procedure
is called thdinear step-upLSU) procedure(at levela).

The LSU plays a prominent role in multiple testing for FDR control; it was the fiirstedure
for which FDR control was proved and it is probably the most widely usedamure in this context.
More precisely, when thp-values are assumed to be independent, the following theorem holds.

Theorem 6 Suppose that the family of p-values= (pn,h € #) is independent. Then any nonin-
creasing self-consistent procedure with respect to threshold collestior= ai/m has FDR upper
bounded bympa , wherety = mg/m is the proportion of true null hypotheses. (In particular, this
is the case for the linear step-up procedure.) Moreover, if the p-valasscaated to true null hy-
potheses are exactly distributed like a uniform distribution, the linear stepragedure has FDR
exactly equal tapa .

For the specific case of the LSU, the first part of this result was provéte landmark paper
of Benjamini and Hochberg (1995); the second part was proved hjaBeni and Yekutieli (2001)
and Finner and Roters (2001). Benjamini and Yekutieli (2001) extettuzéirst part by proving
that the LSU procedure still controls the FDR in the cas@-wilues with a certain form of pos-
itive dependence callegositive regression dependence from a suliB&DS). We skip a formal
definition for now (we will get back to this topic in Section 4). The extensiotheke results to
self-consistent procedures (in the independent as well as PRDSassestablished by Blanchard
and Roquain (2008) and Finner et al. (2009).

However, when no particular assumption is made on the dependence bhdiwgevalues,
it can be shown that the above FDR control does not hold in general. sithition is called
unspecifiedr arbitrary dependence. A modification of the LSU was first proposed by Benjamini
and Yekutieli (2001), and proved to have a controlled FDR under arnpitigpendence. This result
was extended by Blanchard and Fleuret (2007) and Blanchard aneaiRg(2008) (see also a related
result of Sarkar, 2008a,b). Namely, it can be shown that self-consjgtecedures (not necessarily
nonincreasing) based on a particular class of shape functions hatvellsal FDR:
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Theorem 7 Under unspecified dependence of the family of p-vatues(pn,h € #), let B be a
shape function of the form:

B = [ udv(w) 3)

wherev is some fixed a priori probability distribution di®, ). Then any self-consistent procedure
with respect to threshold collectia(i) = af(i)/m has FDR upper bounded byt .

To recap, in all of the above cases, the FDR is actually controlled at tHerigwénstead of the
targeta. Hence, a direct corollary of both of the above theorems is that the ptepsaedure with
shape functiofs* (x) = Tr(;lB(x) has FDR upper bounded loyin either of the following situations:

- B(x) = x when thep-value family is independent or PRDS,
- the shape functiofi is of the form (3) when th@-values have unspecified dependence.

Sincetp < 1, usingP* always gives rise to a less conservative procedure than (sfagpecially
whenTyg is small). However, sincgy is unknown, the shape functi@i is not directly accessible.
We therefore call the step-up procedure usigthe Oracle step-up procedurbased on shape
functionf (in each of the above cases).

Simply put, the role of adaptive step-up procedures is to mimic the latter oraaigddnto obtain
more powerful procedures. Adaptive procedures are often stepacedures using the modified
shape functiors3, whereG is some estimator 0’(51:

Definition 8 (Plug-in adaptive step-up procedure)Given a levela € (0,1), a shape functiorf8
and an estimator G|0, l]ﬂ — (0,) of the quantityrrgl, the plug-in adaptive step-up procedure
of shape functiofs and using estimator G (at leval) is defined as

R={he H | pn<pw}, where k=max{0<i<m|p; <ap(i)G(p)/m}.

The (data-dependent) functidx(p,i) = af(i)G(p)/m is called the adaptive threshold collection
corresponding to the procedure. In the particular case where theestapctionp is the identity
function onR™, the procedure is called an adaptive linear step-up procedure using astires
(and at level).

Following the previous definition, an adaptive plug-in procedure is copgpostwo different
steps:

1. Estimater,* with an estimato.
2. Take the step-up procedure of shape funcGfin

A subclass of plug-in adaptive procedures is formed by so-caleestage proceduresvhen the
estimatolG is actually based on a first, non-adaptive, multiple testing procedure. dinistviously
be possibly iterated and leads to multi-stage procedures. The distinctionelmeg@aeric plug-in
procedures and two-stage procedures is somewhat informal anchtiemeeant only to provide
some kind of nomenclature between different possible approaches.

The main theoretical task is to ensure that an adaptive procedure of taisttlygorrectly con-
trols the FDR. The mathematical difficulty obviously comes from the additiomalown variations
of the estimatof in the procedure.
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3. Adaptive Procedures with Provable FDR Control under Indgpendence

In this section, we introduce two new adaptive procedures that prowaioiyyol the FDR under
independence. The first one is one-stage and does not include lait @gtimator oﬁTgl, hence it
is not explicitly a plug-in procedure. We then propose to use this as thstéig in a new two-stage
procedure, which constitutes the second proposed method.

For clarity, we first introduce the new one-stage procedure; we thenstisseveral possible
plug-in procedures, including our new proposition and several guoes proposed by other au-
thors. FDR control for these various plug-in procedures can be stutlider independence using
a general theoretical device introduced by Benjamini et al. (2006) wheheproduce here with
a self-contained and somewhat simplified proof. Finally, we compare thiésedt approaches;
first with a theoretical study of the robustness under a very specificafamaximal dependence;
second by extensive simulations, where we inspect both the performmadee independence and
the robustness under a wide range of positive correlations.

3.1 New Adaptive One-Stage Step-Up Procedure

We present here our first main contribution, a one-stage adaptiveigtpmcedure. This means
that the estimation step is implicitly included in the (deterministic) threshold collection.

Theorem 9 Suppose that the p-value fampy= (pn,h € H) is independent and Iet € (0,1) be
fixed. Define the adaptive threshold collection

. . ai
Then any nonincreasing self-consistent procedure with respéchts FDR upper bounded flay.
In particular, this is the case of the corresponding step-up procedigeoted by BR-158-

The above result is proved in Section 6. Our proof is in part based onrlzel of Benjamini
et al. (2006). Note that an alternate proof of Theorem 9 is establishearkaiS(2008b) without
using this lemma, while nicely connecting the FDR upper-bound to the falsdisoavery rate.

3.1.1 GOMPARISON TO THELSU

Below, we will mainly focus on the choice= a, leading to the threshold collection

A(i):amin((l—a)m_iiHJ). (5)

Fori < (m+1)/2, the threshold (5) is( r(r}_*i‘ﬂ, and thus our approach differs from the threshold
collection of the standard LSU procedure threshold by the fa%g%ﬁif.

It is interesting to note that the correction facf@% appears in Holm’s step-down procedure
(Holm, 1979) for FWER control. The latter is a well-known improvement ofl@aioni’s procedure
(which corresponds to the fixed threshaldm), taking into account the proportion of true nulls, and
defined as the step-down proceduvéth threshold collectiora/(m—i+1). Here we therefore

1. The step-down procedure with threshold collectkaejects the hypotheses corresponding tdktlmallestp-values,
wherek=max{0<i<m|Vj<i, p; <A(j)}. Itis self-consistent with respect tobut uniformly more conser-
vative than the step-up procedure with the same threshold collection acemjth Definition 4.
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prove that this correction is suitable as well for the linear step-up proeeduthe framework of
FDR control.

If r denotes the final number of rejections of the new one-stage procederean interpret
the ratio (ntf‘J)rT between the adaptive threshold and the LSU threshold at the same pomtas a
posteriori estimate forrrgl. In the next section we propose to use this quantity in a plug-in, two-
stage adaptive procedure.

As Figure 1 illustrates, our procedure is generally less conservativetliga(non-adaptive)
linear step-up procedure (LSU). Precisely, the new procedurergrbe more conservative than
the LSU procedure in the marginal case where the fa%@f%" is smaller than one. This happens
only when the proportion of null hypotheses rejected by the LSU praeeidupositive but less
thana + 1/m (and even in this region the ratio of the two threshold collections is never lass th
(1—a)). Roughly speaking, this situation with only few rejections can only happiei€ are few
false hypotheses to begin witity(close to 1) or if the false hypotheses are very difficult to detect
(the distribution of falsg-values is close to being uniform).

In the interest of being more specific, we briefly investigate this issue in tkidamama, con-
sidering the particulaGaussian random effecisodel (which is relatively standard in the multiple
testing literature, see, for example, Genovese and Wasserman, 200dgiinagive a quantitative
answer from an asymptotical point of view (when the number of testedthgpes grows to infinity).

In the random effect model, hypotheses are assumed to be randomly falseowith probability
T, and the false null hypotheses share a common distrib&iorGlobally, thep-values then are
i.i.d. drawn according to the mixture distributiogU [0, 1] + (1 — )Py .

LSU
02| AORC .

———- BRISA=aq
..... BR-1S.A = 20
......... BR-1S.A = 30
|| —-—- FDR09-1/2
015K — "7 FDR09-1/3 -7

0.1

0.05

0 200 400 600 800 1000

Figure 1: Form = 1000 null hypotheses ard= 5%: comparison of the new threshold collection
BR-1SA given by (4) to that of the LSU, the AORC aR®DR091 .
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Lemma 10 Consider the random effects model where the p-values are i.i.d. with coumaula-
tive distribution function t— 1ot + (1 — 1) F (t). Assume that the true null hypotheses are standard
Gaussian with zero mean and that the alternative hypotheses are standassi@n with mean
u> 0. In this case Rt) = (P (t) — ), where® is the standard Gaussian upper tail function.
Assumingp < (1+a)~1, define

-1
o Nad) e (O T2
=o "(a%)—P <1_n0 0(>.
Thenif 1> u*, the probability that the LSU rejects a proportion of null hypotheses lessltfa+ o
tends to 0 as m tends to infinity. On the other hanty it (1+a)~1, or p< p*, then this probability
tends to one.

Lemma 10 is proved in Section 6. Taking for instance in this lemma the vaigles0.5 and

o = 0.05, results in the critical valug® ~ 1.51. This lemma delineates clearly in a particular
case in which situation we can expect an improvement from the adaptieedane BR-1S over the
standard LSU.

3.1.2 GOMPARISON TOOTHER ADAPTIVE ONE-STAGE PROCEDURES

Very recently, other adaptive one-stage procedures with important streBdoBR-1SA have been
proposed by other authors. (The present work was developedandeptly.)

Starting with some heuristic motivations, Finner et al. (2009) proposed thghbid collection
t(i) = m which they dubbed thasymptotically optimal rejection cury/@ORC). However,
the step-up procedure using this threshold collection as is does not batrelied FDR (since
t(m) =1, the corresponding step-up procedure would always reject alifhetineses), and several
suitable modifications were proposed by Finner et al. (2009), the simpiedieing

ty(i) = min(t(i),n 'ai/m),

which is denoted by¥DR091 in the following.

The theoretical FDR control proved in Finner et al. (2009) is studiednpsytically as the
number of hypotheses grows to infinity. In that framework, asymptotigatabat levela is shown
to hold for anyn < 1. On Figure 1, we represented the thresh@&és1SA and FDR09+] for
comparison, for several choices of the parameters. The two familiesagpige similar, initially
following the AORC curve, then branching out or capping at a point diéipg on the parameter.
One noticeable difference in the initial part of the curve is that wRDdER09+ exactly coincides
with the AORC,BR-1SA is arguably sligthly more conservative. This reflects the nature of the
corresponding theoretical result—nonasymptotic control of the FDRinesja somewhat more
conservative threshold as compared to the only asymptotic contk@Rf . Additionally, we can
useBR-1SA as a first step in a 2-step procedure, as will be argued in the next section

The ratio betweeBR-1SA and the AORC (before the capping point) is a factor which, assuming
a > (m+1)~1, is lower bounded byl —A\)(1— ﬁ) . This suggests that the value foshould be
kept small, this is why we propo2e= a as a default choice.

Finally, the step-dowrprocedure based on the AORC threshold collection (under the slightly
modified formt(i) = m but with no further modification) is proposed and studied by
Gavrilov et al. (2009). Using specific properties of step-down proms] these authors proved
the nonasymptotic FDR control of this procedure.

2847



BLANCHARD AND ROQUAIN

3.2 Adaptive Plug-In Methods

In this section, we consider different adaptive step-up procedditbe plug-in type, that is, based
on an explicit estimator ofrgl. We first review a general method proposed by Benjamini et al.
(2006) in order to derive FDR control for such plug-in proceduse® (@lso Theorem 4.3 of Finner
et al., 2009, for a similar result, as well as Theorem 3.3 of Sarkar, 2008bpropose here a self-
contained proof of this result, which notably extends the original resoth fstep-up procedures
to more general self-consistent procedures. Based on this resuleviesvrthe different plug-in
estimators considered by Benjamini et al. (2006) and add a new one to thadet on the one-
stage adaptive procedure introduced in the previous section.

Let us first introduce the following notation: for eabke #, we denote by _, the collection
of p-valuesp restricted taf \ {h}, thatis,p_n = (pw,h’ # h) . We also denotgon = (p_n,0) the
collectionp wherepy has been replaced by 0.

Theorem 11 (Benjamini, Krieger, Yekutieli 2006) Suppose that the p-value fampy= (pn,h €

#) is independent. Let G0,1)*’ — (0,) be a measurable, coordinate-wise nonincreasing func-
tion. Consider a nonincreasing multiple testing procedure R which is seffistemt with respect to
the adaptive linear threshold collectid(p,i) = aG(p)i/m. Then the following holds:

Q

FORR)< 3 E[G(pon) ©)
heHo

In particular, if for any he #p, it holds thatE [G(pon)] < T, thenFDR(R) < a .

The proofis given in Section 6. Since we assur@dd be nonincreasing, the quanti&yG(po)]
in bound (6) is maximized when thevalues associated to true nulls have a uniform distribution
(pn excepted), while thgp-values associated to false nulls are all set to zero. Following Finner
et al. (2009), thideast favorable configuratiofor the distribution ofp-values is referred to as the
Dirac-Uniform distribution and gives rise to the following corollary:

Corollary 12 Consider the same conditions as for Theorem 11, and assume motbhavés is
invariant by permutation of the p-values. Then it holds that

FDR(R) <y(G,m)a,

with y(G, m) = lyngfm{r:nbEpwU(m,nbl) [G(p)] ¢, where DUm, j) is the distribution ofp where

]
the j first p-values are independent uniform[@1] and the m- j others are identically equal to
zero.

(While the proof is standard, it is given for completeness in Section 6). ifiteeest of the last
result is that forany choice of nonincreasing (permutation invariant) funct®nit is possible in
principle to evaluatg(G, m) by a Monte Carlo method, namely by estimating the expected value of
G under them— 1 possible least favorable configurations. This leads to a practicalotatihe
FDR valid for any value ofry, obtained by dividing the target levalby y(G,m) before applying
the procedure.

However, whermm is large, this method can be computationally demanding, and a more con-
venient approach for practical use is to obtain explicit bounds forigpestimators. We now
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concentrate on this goal and apply the result of Theorem 11 (or altestyatif Corollary 12) to the
following estimators, depending on a fixed paramater(0,1) orky € {1,...,m}:

(1—A)m
StoreyA G = :
[Storeyl () Shesr 1{Ph > A} +1
ko _ (A= puy)m.
[Quant—a] Gz(p) = kot L
[BKY06-A] Gs(p) = _(A=Mm whereRy is the standard LSU at leval;
T m—Ro(p)[+17 ’
[BR-2S] Ga(p) = _ (A=Mm whereR} is BR-1SA (see Theorem 9)
T m-Ry(p)[+1

Above, the notation “Storey~, “Quant—%", “BKYO06- A" and “BR-2SA” refer to the plug-in adap-
tive linear step-up procedures associate@ipG,, Gz andGg, respectively.

EstimatorG; is usally callednodified Storey’s estimat@and was initially introduced by Storey
(2002) from an heuristics on thevalues histogram (originally without the “+1”, hence the name
“modified”). Its intuitive justification is as follows: denoting I8 the set ofp-values larger than the
threshold\, the average number of true nulls having-aalue inS, is mp(1—A). Hence, a natural
estimator ofrgt is (1 —A)m/|S\ N Ho| > (1—M)m/|S\| ~ Gi(p) . In particular, we expect that
Storey’s estimator is generally an underestimatﬁgdf, which is in accordance with the condition
of Theorem 11. A standard choicels=1/2 (as in the SAM software of Storey and Tibshirani,
2003). FDR control for the corresponding plug-in step-up proaeaas proved by Storey et al.
(2004) (more precisely, for the modificatidvip, i) = min(aGy(p)i/m,\)) and by Benjamini et al.
(2006).

EstimatorG, was introduced by Benjamini and Hochberg (2000) and Efron et a@d1(2@&rom a
slope heuristics on thp-values c.d.f. Roughly speakinG, appears as Storey’s estimator with the
data-dependent parameter chaice py,) , and can therefore be interpreted as the quantile version
of Storey’s estimator. A standard value feris [m/2], resulting in the so-called median adaptive
LSU (see Benjamini et al., 2006, and the references therein).

EstimatorGs was introduced by Benjamini et al. (2006) for the particular chaieea/(1+a).
More precisely, a slightly less conservative version, without the “+1” éndenominator, was used
in Benjamini et al. (2006). We forget about this refinement here, notagtthesults only in a very
slight improvement.

Finally, the estimatoG, is new and follows exactly the same philosophyGs that is, uses
a step-up procedure as a first stage in order to estim}eﬁe but this time based on our adaptive
one-stage step-up procedure introduced in the previous sectiom, ttethehe standard LSU. Note
that sinceR, is less conservative thaR, (except in marginal cases), we generally h&ge< G4
pointwise and our estimator improves over the one of Benjamini et al. (2006).

These different estimators all satisfy the sufficient condition mentioned@orBm 11, and we
thus obtain the following corollary:

Corollary 13 Assume that the family of p-valugs= (pn,h € A) is independent. For+ 1,2,34,
and any he Hy, it holds thatE [Gj(pon)] < Trgl. Therefore, the plug-in adaptive linear step-up

procedure at leved using estimator has FDR smaller than or equal .
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The above result fo65;, G, and Gz (for the specific parameter setting= o/(1+ o)) was
proved by Benjamini et al. (2006). In Section 6, we shortly reproduee #rguments, and prove
the result forG,.

To sum up, Corollary 13 states that under independence, fok amgky, the plug-in adaptive
procedures Storej; Quant—"rﬁ, BKYO06-A and BR-2SA all control the FDR at levat.

Remark 14 The result proved by Benjamini et al. (2006) is actually slightly sharpemn fiaeorem

11. Namely, if @) is moreover supposed to be coordinate-wise left-continuous, it is possible
prove that Theorem 11 still holds whpap in the RHS of(6) is replaced by the slightly bett@p =
(p—h, Pn(p-n)) , defined as the collection of p-valupsvhere p has been replaced bgh(p-n) =
max{p € [0,1] | p< a|R(p-n, P)|G(p-n, p) }. This improvement then permits to get rid of the “+1”
in the denominator of &. Here, we opted for simplicity and a more straightforward statement,
noting that this improvement is not crucial.

Remark 15 The one-stage step-up procedure of Finner et al. (2009) (se®pregiscussion in Sec-
tion 3.1.2)—for which there is no result proving nonasymptotic FDR confrabwur knowledge—
can also be interpreted intuitively as an adaptive version of the LSU usingateti®, , where the
choice of parameterkis data-dependent. Namely, assume that we want to reject at least i null
hypotheses whenevey; s lower than the standard LSU threshold times the estimatonGerein

parameter k=i is used. This corresponds to the inequality, - kr(nl__im) , Which, solved in p),
gives the threshold collection of Finner et al. (2009). Remember frotio8e1.2 that this thresh-
old collection must actually be modified in order to be useful, since it otheraligays leads to
reject all hypotheses. The modification leading to FDR0Sansists in capping the estimatagi1

at a leveln, that is, usingmin(n,G,) instead of G in the above reasoning. In fact, the proof
of Finner et al. (2009) relies on a result which is essentially a reformulationh®orem 11 for a

specific form of estimator.

Remark 16 The estimators Gi = 1,2,3,4 are not necessarily larger than 1, and to this extent
can in some unfavorable cases result in the final procedure being lactoare conservative than
the standard LSU. This can only happen in the situation where eithés close to 1 (“sparse
signal”) or the alternative hypotheses are difficult to detect (“weak sighaf’'such a situation is
anticipated, it is more appropriate to use the regular non-adaptive LSU.

For the Storeyx estimator, we can control precisely the probability that such an unfaverab
case arises by using Hoeffding's inequality (Hoeffding, 1963): assuthiagrue nulls are i.i.d.
uniform on(0,1) and the false nulls i.i.d. of c.d.f.(F), we write by definition of &

PGi(p) < U= |2 § (1{pn> A}~ Bloy>A) > (1-T)(F(O) A~ m?
heH
< exp(—2(mé+1)),

where we denoted=e (1—15)(F (M) —A), and assumed additionallye m~1. The behavior of the
bound mainly depends on ¢, which can get small oniy i close to 1 (sparse signal) or(k) is
close toA (weak signal), illustrating the above point. In general, provided 0 does not depend
on m, the probability that the Storey procedure fails to outperform the LSUhesiesxponentially
as m tends to infinity.
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3.3 Theoretical Robustness of the Adaptive Procedures under &imal Dependence

For the different procedures proposed above, the theory onlyda®the correct FDR control under
independence between thevalues. An important issue is to know how robust this control is when
dependence is present (as it is often the case in practice). Howevemaytic computation of
the FDR under dependence is generally a difficult task, and this issuteistatkled empirically
through simulations in a pre-specified model (we will do so in Section 3.4).

In this short section, we present theoretical computations of the FDRdagoréviously intro-
duced adaptive step-up procedures, under the maximally dependentwiade all thep-values
are in fact equal, that ip, = p; for all h € # (andmy = m). It corresponds to the case where we
performmtimes the same test, with the samealue. Albeit relatively trivial and limited, this case
leads to very simple FDR computations and provides at least some hints miogcie robustness
under dependence of the different procedures studied above.

Proposition 17 Suppose that we observe m identical p-valpes (p, ..., Pm) = (P1, ..., p1) With
p1 ~ U([0,1]) and assume m my. Then, the following holds:

a
(1+0a)—(kp—1)m 1’
FDR(BR-2SA) = FDR(StoreyA).

FDR(BR-1SA) = mln()\ a(l—A)m),

FDR(FDRO9#|) =

FDR(StoreyA) = mln()\ a(l=Am) + (a(1-A)(1+m 1) -2, ,
) =

FDR(Quant-ly/m

FDR(BKYO06) =

Interestingly, the above proposition suggests specific choices of taeptarsh, n andkg to
ensure control of the FDR at levelunder maximal dependence:

e For BR-1SA, puttingh, = a/(a+m~1), Proposition 17 gives that FOBR-1SA) = A when-
everA < A,. This suggests to take= a, and is thus in accordance with the default choice
proposed in Section 3.1.

e For FDRO9R, no choice of) < 1 will lead to the correct FDR control under maximal depen-
dence. However, the larggr, the smaller the FDR in this situation. Note that F([I;BROQ%) =
20.

e For StoreyA, BKY06-A and BR-2SA, puttingA; = a/(1+a +m1), we have FDR= A for
A1 < A < Ag. This suggests to chooge= a within these three procedures. Furthermore, note
that the standard choide= 1/2 for StoreyA leads to a very poor control under maximal
dependence: FDStorey3) = min(am,1)/2.

e For Quantkg/m, we see that the value &g maximizing the FDR while maintaining it
below a is kg = [am| + 1. Remark also that the standard cholge= |m/2| leads to
FDR(Quant-k/m) = 2a/(1+ 2a +2m™1) ~ 2a.

Nevertheless, we would like to underline that the above computations steirtebpreted with
caution, as the maximal dependence case is very specific and cansibtypgive an accurate idea
of the behavior of the different procedures when the correlation legtvlee p-values are strong
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but not equal to 1. For instance, it is well-known that the LSU procetiaseFDR far belowa

for strong positive correlations, but its FDR is equabtin the above extreme model (see Finner
et al., 2007, for a comprehensive study of the LSU under positivendigmee). Conversely, the
FDR of some adaptive procedures can be higher under moderateddeperthan under maximal
dependence. This behavior appears in the simulations of the next sékigirgting the complexity

of the issue.

3.4 Simulation Study

How can we compare the different adaptive procedures definece@ab®or a fixed\, it holds
pointwise thatG; > G4 > G3, which shows that the adaptive procedure [Stoxgis always less
conservative than [BR-28}, itself less conservative than [BKYOE(except in the marginal cases
where the one-stage adaptive procedure is more conservative thstarldard step-up procedure,
as delineated earlier for example in Lemma 10). It would therefore appatamrie should always
choose [Storey] and disregard the other ones. However, an important point made LgrBiemn
et al. (2006) for introducingss as a better alternative to the (already known ear{i&gr)s that, on
simulations with positively dependent test statistics, the plug-in procedure Gg with A = 1/2
had very poor control of the FDR, while the FDR was still controlled for thegfin procedure
based orGs. While the positively dependent case is not covered by the theory, itdaswke very
important to ensure that a multiple testing procedure is sufficiently robustactipe so that the
FDR does not vary too much in this situation.

In order to assess the quality of our new procedures, we compardheedifferent methods
on a simulation study following the setting used by Benjamini et al. (2006).XLet|; + €;, for
i,1<i<m, wheree is aRM-valued centred Gaussian random vector such ]Ehial%) =1 and
for i # j, E(gigj) = p, wherep € [0,1] is a correlation parameter. Thus, when= 0 the X;’s
are independent, whereas when- 0 the X;’s are positively correlated (with a constant pairwise
correlation). For instance, thegs can be constructed by takimg:= ,/p U +/1—p Z, wherez;,
1<i<mandU areall i.i.d~ A(0,1).

Considering the one-sided null hypothe$ges “ < 0” against the alternativegy‘> 0 for
1 <i < m, we define thep-valuesp; = E(Xi), for 1 <i < m, where® is the standard Gaussian
distribution tail. We choose a common mgaifor all false hypotheses, that is, forl <i < my,

K =0and fori,mp+1<i<m, = W; the p-values corresponding to the null means follow exactly
a uniform distribution.

Note that the casg= 1 andm =y (i.e., T = 1) corresponds to the maximally dependent case
studied in Section 3.3.

We compare the following step-up multiple testing procedures: first, thetage-step-up pro-
cedures defined in Section 3.1:

- [BR08-1Sa] The new procedure of Theorem 9, with parameter a ,

- [FDRO9»§] The procedure proposed in Finner et al. (2009) and describedcito8e3.1.2,
withn = 3.

Secondly, the adaptive plug-in step-up procedures defined in Secion 3
- [Median LSU] The procedure [Quarf¢] with the choice! = 1,
- [BKYO06-a] The procedure [BKYQ06X] with the parameter choice= a,
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- [BR08-2Sa] The procedure [BR08-23} with the parameter choice=a,
- [StoreyA] With the choices\ =1/2 andA = a.

Finally, we used as oracle reference [LSU Oracle], the step-up goeevith the threshold collec-
tion A(i) = ai/mg, using “oracle” prior knowledge aff.

The parameter choick = a for [StoreyA] comes from the relationship (delineated in Sec-
tion 3.1) of G3, G4 to Gy, and from the discussion of the maximally dependent case in Section 3.3.
Note that the procedure studied by Benjamini et al. (2006) is actually [BX¥ Q1+ o)] in our
notation (up to a minor modification explained in Remark 14). Thefore, theegtoe [BKY064]
used in our simulations is not srictly the same as in Benjamini et al. (2006),ibwsdty close.

The three most important parameters in the simulation are the correlation ieoeffic the
proportion of true null hypotheses),, and the alternative megnwhich represents the signal-to-
noise ratio, or how easy it is to distinguish alternative hypotheses. Wernras Figures 2, 3,
and 4 results of the simulations for one varying parametgr |[{ and p, respectively), the others
being kept fixed. Reported are, for the different methods: the FD&tlapower relative to the
reference [LSU-Oracle]. Remember the absolute power is defined aseidue proportion of false
null hypotheses that are correctly rejected; for each procedureldii/e power is the ratio of its
absolute power to that of [LSU-Oracle]. Each point is estimated by amgeef 16 simulations,
with fixed parametersn= 100 ando = 5% .

3.4.1 INDERINDEPENDENCE(p =0)

Remember that under independence ofgh&lues, the procedure [LSU] has a FDR equalitg
and that the procedure [LSU Oracle] has a FDR equal {provided thata < 15). The other
procedures have their FDR upper boundedibfin an asymptotical sense only for [FDR%S})}.

The situation where thp-values are independent corresponds to the first row of Figured 2 an
3 and the leftmost point of each graph in Figure 4. It appears that in tlepémdient case, the
following procedures can be consistently ordered in terms of (relatoeepover the range of
parameters studied here:

[Storey%] >~ [Storeyqa] >~ [BR08-2S4a] - [BKYO06-qa],

the symbol %" meaning “is (uniformly over our experiments) more powerful than”.

Next, the procedures [median-LSU] and [FDR@]E}appear both consistently less powerful than
[Storey%], and [FDR09%] is additionally also consistently less powerful than [StoedyT heir re-
lation to the remaining procedures depends on the parameters; both [rh&didiand [FDROQ%]
appear to be more powerful than the remaining procedures wdne-n%, and less efficient other-
wise. We note that [median-LSU] also appears to perform better wielow (i.e., the alternative
hypotheses are harder to distinguish).

Concerning our one-stage procedure [BR08edSwe note that it appears to be indistinguish-
able from its two-stage counterpart [BR08-25when 15 > % and significantly less powerful
otherwise. This also corresponds to our expectations, since in the situa&oé , there is a much
higher likelihood that more than 50% hypotheses are rejected, in whicloaaeae-stage threshold
family hits its “cap” at levela (see, e.g., Fig. 1; a similar qualitative explanation applies to under-
stand the behavior of [FDRO§}). This is precisely to improve on this situation that we introduced
the two-stage procedure, and we see that the latter does in fact impistarsially the one-stage
version in that specific region.
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The fact that [Store)é] is uniformly more powerful than the other procedures in the independent
case corroborates the simulations reported in Benjamini et al. (2006)er&@klnspeaking, under
independence we obtain a less biased estimauegfbwhen considering Storey’s estimator based on
a “high” threshold like\ = 1 . Namely, highep-values are less likely to be “contaminated” by false
null hypotheses; conversely, if we take a lower thresiglithere will be more false null hypotheses
included in the set op-values larger thah , leading to a pessimistic bias in the estimatiorrrgﬂ‘ .

This qualitative reasoning is also consistent with the observed behayjimedian-LSU], since the
set of p-values larger than the median is much more likely to be “contaminated” wdnen% .

However, the problem with [Store%/}is that the corresponding estimationngf1 exhibits much
more variability than its competitors when there is a substantial correlation bethevalues. As
aconsequence itis a very fragile procedure. This phenomenon wasapinpointed in Benjamini
et al. (2006) and we study it next.

3.4.2 NDER POSITIVE DEPENDENCE(p > 0)

Under positive dependence, remember that it is known theoretically fremaBiini and Yekutieli
(2001) that the FDR of the procedure [LSU] (resp. [LSU Oracle]jilslmunded byaty (resp.a),

but without equality in general. However, we do not know from a theakfioint of view if the
adaptive procedures have their FDR upper boundedl. by fact, it was pointed out by Farcomeni
(2007), in another work reporting simulations on adaptive procedtiraspne crucial point to this
respect seems to be the variability of estimate@]f. Estimates of this quantity that are not robust
with respect to positive dependence will result in failures for the cpaeding multiple testing
procedure.

The situation where thp-values are positively dependent corresponds to the second and third
rows (@ = 0.2,0.5, respectively) of Figures 2 and 3 and to all the graphs of Figure eefgxhe
leftmost points corresponding o= 0).

The most striking fact is that [Store}d—does not control the FDR at the desired level any longer
under positive dependence, and can even be off by quite a large faébie is in accordance with
the experimental findings of Benjamini et al. (2006). Therefore, althdbis procedure was the
favorite in the independent case, it turns out to be not robust, whicliawelesirable for practical
use where it is generally impossible to guarantee thapthalues are independent. The procedure
[median-LSU] appears to have higher power than the remaining ones intuagans studied in
Figure 3, especially with a low signal-to-noise ratio. Unfortunately, otheas@ins appearing in
Figures 2 and 4 show that [median-LSU] can exhibit a poor FDR contsmrime parameter regions,
most notably when is close to 1 and positive dependence is present (see, e.g., Figurigofn bo
row). In a majority of practical situations, this is an important drawback sirisadifficult to rule
outa priori that1y is close to 1 (i.e., there is only a small proportion of false hypotheses), or tha
dependence is present. Additionally, from the inspection of the behalvibe @ower of [median-
LSU] in Figures 2 and 4, it appears that the parameter setting 0.5 (which is the fixed value
used in Figure 3) is actually noticeably the most favorable for [median-L8lder dependence.
For other values offy, this procedure is often clearly outperformed in terms of power, in particula
by [Storeya] and [BR-2Sa]. (At this point we have no satisfying explanation to this peculiar “peak
of power” atrp = 0.5 observed specifically for the [median-LSU] procedure under digorere.) For
all of these reasons, our conclusion is that [median-LSU] is also nast@mough in general to be
reliable.
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ternatives ig1= 3. From top to bottom: pairwise correlation coefficierit {0,0.2,0.5}.

2855



BLANCHARD AND ROQUAIN

FDR Relative power to [LSU-oracle]
(o]
o
4 —
o r r r r r r r r v .+ = ; g{géf-ﬁ'ﬂ'g‘“ —T 5 |
X é{gu
' X AZ'D
— TT’.A’S—;?‘?;%%’D o
B St LR I R
3 S B e S . '
of LV RN g ] L g e
++><X AA’;DDD 8
. Lo e [SU-Oracle e
K e Lo s Storeya N P - Storeya
L 2ol w8 +  Storey-1/2 Sk+ o +  Storey-1/2 |
« k-f-g-e-8-8 x Median LSU _— ’p" x Median LSU
ol o BKYO06 | ' s 13 o BKYO06
o ° BR-1S« a ° BR-1S«
--------- BR-2S« [ aa 0 --------- BR-2S4@
----- FDR09-1/2 <k --748 ----- FDR09-1/2
M M M M M T T T T M S e 68 M M M T T T T M
05 1 15 2 25 3 35 4 45 5 05 1 15 2 25 3 35 4 45 5
8 ~
O' T T R T T T T T T T T —[r T T T T T T T T T
+
+
+
+
- n N
YT L
NES Y 1l
< X x 2,50
2 x X a8
s} @ XL 04
ofF X X N '/O,D -
i . a ,,‘®»'D
N
o A I’ ‘0
ofF .* /’o"D -
SN i ,’,'/Oﬂ
2 Rt
o < "o'g
Sf® y
05 1 15 2 25 3 35 4 45 5 05 1 15 2 25 3 35 4 45 5
(o]
Q T T T T T T T T T T T T T T T T T T T T
OoF + L
.
. —
i FEETTESES
© Texk &é{§g+
=  xxxhieB
of . b xox ox X X XX e o8
0] e ’ /j‘élz ’
< o A A s ,:};J: o -
o S
S et
- ,_j_j/o—’o o
X o ° ©
ol ©pe °
oL or o i
o F’ ol
05 1 15 2 25_3 35 4 45 5 05 1 15 2 25_3 35 4 45 5
M M

Figure 3: FDR and power relative to oracle as a function of the common atfiegrhypothesis
meany. Target FDR iso = 5%, total number of hypotheses= 100. The proportion
of true null hypotheses igy = 0.5. From top to bottom: pairwise correlation coefficient
p €{0,0.2,0.5}.

2856



ADAPTIVE FDR CONTROL UNDERINDEPENDENCE ANDDEPENDENCE

FDR Relative power to [LSU-oracle]

b
o
T T T T - T T T T
0] + Ty
o Lt 'A.AA++++
- +
ol s i Botea, e,
LT Bo ey Ty
+ 4
(o] +++++ Lo Yo IR ++++
o Lt S S8 “a S * +
st R i oF Xxiyyysg AﬁAAA +++++f
Lt SR®_ e ana
L ﬂ{XXX; L8, c !
©c000O0O0g o S Tm ST A
S A-A_ﬁ_é_ﬁ_é_ﬁ-a-ﬁ-ﬁ'ﬁﬁ‘ﬁﬁ'e'ﬁ-g-g.g_gﬂg, OOOOOOO = .°°
O-Nyrgggﬂﬂu b o ©00o08ggo0°°
-a-2'g )
o st o J
o
S a]
o KRR X R R KK K KKK KKK XXX =X X X X 5 5 3 e e DDDD
OOOooooooooooooooooooooooooo
o
o 1 1 1 1 [e¢} 1 1 1 1
o
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
(o]
S — . . . : : :
LSU-Oracle
* s Storeya £, o« %o
- + Storey-1/2 EEEE PP WX Xaq
© + x gllsgloag LSU Opg - Z.é‘arm.‘?‘{{“ RRroagapaunxk x58° 6;0
+ o OB.g T~ 7
o o o + Ce.g T T - oo - e
) 1o} Og*t S - @
ot + o BR-1S« - (=) POy T 0000550077
Y S BR-2S4 or "R00,, 1
B . FDR09-1/2 T %og
+ R
Tz = Taa N o
P -4, " o
3§'§'§'X XA g &‘g R X X X S e Up e N " Yo
I].a088%800,0 g “ Storeya e, .
o 00 4 ¥ [e)] + o+
ot ©000 0 - st Storey-1/2 i

BKYO06

BR-1S«a
--------- BR-2Sa
wl]|----- FDR09-1/2

o, t x Median LSU

0.8

0.2 0.4 0.6 0.8 1

0.080.02
o
o
(V)
o
~
o
o
o
o
P
o

T T T T T T T T
r —
+ ’,
l §$AAA
L = A A D
;*;:-_A_A_A_A_A_AAAAAAAAAAAAA_A_A_’ .
+ ! -0-0-0 f,oo T TTTmmTmmTo o°
“9-9-g-o- -
1 -©
© DDDDE%’S%‘@% G -G-0-0-0-0- 6 0- 0 0 O 0 @ C"®
S + 1 o % QEDDDDDDDDDDDDDDDD
4 1 X +
of 1] o X x e
+ x s bk X + -
g X x X X X X X x 1 o X + 4
X X x X
L ox X X % 1 X x x +
x N X i X ol
x AL A p LA TP X X .
Pa— = x
—a__ — < - N X
A == - - N &, ax , X%y
o 5 - < %
a8 E T e TRy YT S - A X X x
g I N .3 Srd + X
o DDOO o s o N
L oo o- ° : x
o 5] 065060 oF L
o +
+
i
N Yo}
o : : : : [o¢] : : : :
o o

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Y Y

Figure 4: FDR and power relative to oracle as a function of the pairwiseletion coefficient
p.Target FDR isx = 5%, total number of hypothesas= 100 . The mean for the alterna-
tives isp= 3. From top to bottom: proportion of true null hypothesgs {0.2,0.5,0.8}.
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The other remaining procedures seem to exhibit a robust control odReuRder dependence,
or at least their FDR appears to be very close to the target level (eSm*e{EDROgé] whenp and
T are close to 1). For these procedures, it seems that the qualitative sionslaoncerning power
comparison found in the independent case remain true. To sum up:

¢ the best overall procedure seems to be [Starkyts FDR seems to be under or only slightly
over the target level in all situations, and it exhibits globally a power suptriother proce-
dures.

e then come in order of power, our two-stage procedure [BRO8R 8ien [BKY06-0].

e like in the dependent case, [FDR(%SHanks second whermy > % but tends to perform no-
ticeably poorer ifiy gets smaller. Its FDR is also not controlled if very strong correlations
are present.

The overall conclusion we draw from these experiments is that for pahatse, we recom-
mend in priority [Storeya], then as close seconds [BR08-@%er [FDROQ%] (the latter when it
is expected thatp > 1/2, and that there are no very strong correlations present). Thedwroce
dre [BKY06-0] is also competitive but appears to be in most cases noticeably outperfosnibe
above ones. These procedures all exhibit good robustness todéeyerfor FDR control as well as
comparatively good power. The fact that [Stoyperforms so well and seems to hold the favorite
position has up to our knowledge not been reported before (it wasclatied in the simulations of
Benjamini et al., 2006) and came somewhat as a surprise to us.

Remark 18 As pointed out earlier, the fact that [FDRog—performs sub-optimally forg < %
appears to be strongly linked to the choice of paramater % . Namely, the implicit estimator of
Tra1 in the procedure is capped gt (see Remark 15). Choosing a higher valuerjowill reduce
the sub-optimality region but increase the variability of the estimate and thereakee the overall
robustness of the procedure (if dependence is present; and ales imitpendence if only a small
number m of hypotheses are tested, as for this procedure the congergéthe FDR towards its
asymptotically controlled value becomes slowenagows towards 1).

Remark 19 Another two-stage adaptive procedure was introduced in Sarkar @0Qghich is
very similar to a plug-in procedure using [Storay- In fact, in the experiments presented in Sarkar
(2008a), the two procedures are almost equivalent, correspondiRg=60.995. We decided not to
include this additional procedure in our simulations to avoid overloading tbésp Qualitatively,
we observed that the procedures of Sarkar (2008a) or [Store9=).&e very similar in behavior
to [Storey-%]: very performant in the independent case but very fragile with ressfgedeviations
from independence.

Remark 20 One could formulate the concern that the observed FDR control for [Btwfeould
possibly fail with other parameters settings, for example wigand/or p are close to one. We
performed additional simulations to this respect (a more detailed repoxtadable on the authors’
web pages), which we summarize briefly here. We considered the fajloages:p = 0.95 and
varyingp € [0,1]; p = 0.95and varyingr < [0, 1] ; finally (1, p) varying both in[0.8,1)2, using a
finer discretization grid to cover this region in more detail. In all the aboveesaStoreyx still had
its FDR very close to (or belovg. Note also that the cage~ 1 and 1 ~ 1is in accordance with
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the result of Section 3.3, stating tHalDR(Storeyel) = a whenp = 1 and1p = 1. Finally, we also
performed additional experiments for different choices of the numbleypiitheses to test (8|20
and m= 10%) and different choices of the target level£ 10% 1%). In all of these cases were the
results qualitatively in accordance with the ones already presented here.

4. New Adaptive Procedures with Provable FDR Control under Abitrary
Dependence

In this section, we consider from a theoretical point of view the probleeoaoktructing multiple
testing procedures that are adaptivegander arbitrary dependence conditions ofphrealues. The
derivation of adaptive procedures that have provably controlled &der dependence appears to
have been only studied scarcely (see Sarkar, 2008a, and Farc@®d@n), Here, we propose to
use a two-stage procedure where the first stage is a multiple testing with @itheslied FWER or
controlled FDR. The first option is relatively straightfoward and is intended geference. In the
second case, we use Markov’s inequality to estirm%‘fe Since Markov’s inequality is general but
not extremely precise, the resulting procedures are obviously quitera@tise and are arguably
of a limited practical interest. However, we will show that they still provide anrowgment, in a
certain regime, with respect to the (non-adaptive) LSU procedure inrRBXSRase and with respect
to the family of (non-adaptive) procedures proposed in Theorem 7 iartigary dependence case.

For the purposes of this section, we first recall the formal definition RID® dependence of
Benjamini and Yekutieli (2001):

Definition 21 (PRDS condition) Remember that a set D [0, 1]}[ is said to be nondecreasing if
for all x,y € [0,1]”, if x < y coordinate-wise, x D implies ye D. Then, the p-value family =
(pn,h € #H) is said to be positively regression dependent on each one fieifPRDS on#j in
short) if for any nondecreasing measurable set[0, 1]}[ and for all he #p, the function ue
[0,1] — P[p € D | pn = u] is nondecreasing.

On the one hand, it was proved by Benjamini and Yekutieli (2001) that 8 &till has controlled
FDR at levelmpa (i.e., Theorem 6 still holds) under the PRDS assumption. On the other haohet, u
totally arbitrary dependence this result does not hold, and Theorenvitips a family of threshold
collection resulting in controlled FDR at the same level in this case.

Our first result concerns a two-stage procedure where the first Bgaig any multiple testing
procedure with controlled FWER, and where we (over-) estimgteia the straightforward estima-
tor (m— |Rp|) . This should be considered as a form of baseline reference for tlafyto-stage
procedure.

Theorem 22 Let Ry be a nonincreasing multiple testing procedure and assume that its FWER is
controlled at leveb, that is,P[RyN #Hp # 0] < ap. Then the adaptive step-up procedure R with
data-dependent threshold collectiafi) = a1 (m—|Ro|)~1B(i) has FDR controlled at levelo + o

in either of the following dependence situations:

e the p-value family pn, h € #) is PRDS onHp and the shape function is the identity function.
¢ the p-values have unspecified dependencd3ard shape function of the form (3).
Here it is clear that the price for adaptivity is a certain loss in FDR contrdbdéing able to use the

information of the first stage. If we choosg = a; = a/2, then this procedure will outperform its
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non-adaptive counterpart (using the same shape function) only if éhem@ore than 50% rejected
hypotheses in the first stage. Only if it is expected that this situation will coes it make sense
to employ this procedure, since it will otherwise perform worse than theadaiptive procedure.

Our second result is a two-stage procedure where the first stagertaslied FDR. First intro-
duce, for a fixed constamt> 2, the following function: fox € [0, 1],

(X) ! if x<Kk™!
Fc(X) = ot -
1-/1-4(1x)k2 otherwise

If Ry denotes the first stage, we propose udtfagRy|/m) as an (under-)estimation arfgl at the
second stage. We obtain the following result:

Theorem 23 Let 3 be a fixed shape function, amg, a1 € (0,1) such thatop < a;. Denote by
Ro the step-up procedure with threshold collectify(i) = 0pP(i)/m. Then the adaptive step-up
procedure R with data-dependent threshold collecfigfi) = a13(i)F« (|Ro|/m) /m has FDR upper
bounded byx; + Ko in either of the following dependence situations:

e the p-value family pn, h € #) is PRDS oy and the shape function is the identity function.

e the p-values have unspecified dependenceara shape function of the form (3).

For instance, in the PRDS case, the proceducd Theorem 23, used with = 2, 0p = 0 /4
andai = a/2, corresponds to the adaptive linear step-up procedure atl¢@ekith the following
estimator forg* :

1
1—/(2[Rol/m—1)
where|Ry| is the number of rejections of the LSU procedure at level.

Whether in the PRDS or arbitrary dependence case, with the above digieeameters, we
note thatR is less conservative than the non-adaptive step-up procedure witiindfaecollection
A(i) = af(i)/mif Fx(|Ro| /m) > 2 or equivalently wherRy rejects more thaf, *(2) = 62,5% of
the null hypotheses. ConverseR/js more conservative otherwise, and we can lose up to a factor 2
in the threshold collection with respect to the standard one-stage versierefdre, here again this
adaptive procedure is only useful in the cases where it is expected tlage” proportion of null
hypotheses can easily be rejected. In particular, when we use Th@8render unspecified depen-
dence, it is relevant to choose the shape fundfidrom a distributionv concentrated on the large
numbers off 1,...,m}. Finally, note that it is notimmediate to see if this procedure will improve on
the one of Theorem 22. Namely, with the above choice of parametergduaof Theorem 22 has
the advantage of using a better estimatorgt of the form(1—x)~* > (1—/(2x—1);) tinthe
second round (witkx = |Ry|/m coming from the first round), but it has the drawback to use a first
round controlling the FWER at level /2 which can be much more conservative than controlling
the FDR at levetr /4.

To explore this issue, we performed the two above procedures, in@afdgssituation whereg
is small. Namely, we considered the simulation setting of Section 3.4pwtl0.1, my = 100 and
m= 1000 (hencetp = 10%) anda = 5% . The common valug of the positive means varies in the
range[0,5] . Larger values ofi correspond to a very large proportion of hypotheses that are easy to
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reject, which favors the first stage of the two above procedures. iyadg correlated family of
Gaussians satisfies the PRDS assumption (see Benjamini and Yekutieli, 20@4at we use the
identity shape function (linear step-up), and compare our procedgafissaithe standard LSU. For
the FWER-controlled first stage of Theorem 22, we chose a standdndl ptocedure (see Holm,
1979), which is a step-down procedure with threshold colledtipn=oam/(m—i+1). In Figure
5, we report the relative power to the oracle LSU, and the False NoowdiscRate (FNR), which
is the converse of the FDR for type |l errors, that is, the average afdiie of non-rejected false
hypotheses over the total number of non-rejected hypotheses. Sirare\vea situation whersy

is small, the FNR might actually be a more relevant criterion than the raw powthisisituation,
because of the small number of non-rejected hypotheses, two diffsesadures could have their
power very similar and close to 1, but noticeably different FNRs.

The conclusion is that there exists an (unfortunately relatively small) regi@ne the adaptive
procedures improve over the standard LSU in terms of power. In termblRf Ehe improvement
is more noticeable and over a larger region. Finally, our two-stage adgpticedure of Theorem
23 appears to outperform consistently the baseline of Theorem 22e Té®dts are still unsatis-
fying to the extent that the adaptive procedure improves over the raytiael one only in a region
limited to some quite particular cases, and underperforms otherwise. Nslesghthis demon-
strates theoretically the possibility of provably adaptive procedures wagendence. Again, this
theme appears to have been theoretically studied in only a handful of pseviarks until now, and
improving significantly the theory in this setting is still an open challenge.

Remark 24 Some theoretical results for two-stage procedures under possibledepee using a
first stage with controlled FWER or controlled FDR appeared earlier (Baneni, 2007). However,
it appears that in this reference, it is implicitly assumed that the two stagesctually independent,
because the proof relies on a conditioning argument wherein FDR ddotrthe second stage still
holds conditionally on the first stage output. This is the case for example if thasthges are
performed on separate families of p-values corresponding to a newendept observation. Here
we specifically wanted to take into account that we use the same collectiovatdigs for the two
stages, and therefore that the two stages cannot assumed to be indspdndhis sense the result
of Theorem 22 is novel with respect to that of Farcomeni (2007).

Remark 25 The theoretical problem of adaptive procedures under arbitrary ddpece was also
considered by Sarkar (2008a) using two-stage procedures. Hmwbe procedures proposed there
were reported not to yield any significant improvement over non-‘agaprocedures.

5. Conclusion and Discussion

We proposed several adaptive multiple testing procedures that praaitipl the FDR under dif-
ferent hypotheses on the dependence oftvalues. Firstly, we introduced the one- and two-stage
procedure8R-1SandBR-2Sand we proved their theoretical validity when thevalues are inde-
pendent. The proceduBR-2Ss less conservative in general (except in marginal situations) than the
adaptive procedure proposed by Benjamini et al. (2006). Extessivalations showed that these
new procedures appear to be robustly controlling the FDR even in a godé@pendence situation,
which is a very desirable property in practice. This is an advantage wipeceso the [Store;é]
procedure, which is less conservative but breaks down underveodigpendence. Moreover, our
simulations showed that the choice of paramatera instead ofA = 1/2 in the Storey procedure

2861



BLANCHARD AND ROQUAIN

Relative power to [LSU-oracle]

@ @ TR~
ol ol >
N
AR
A\
@ @ N
Ot (=] 3 \ S
< < \\
ofr ol W\
\
\
N N “\u
e , LSU e LSU v\
/ ———- BR-dep ———- BR-dep N
———————— BR-dep-Holm -------- BR-dep-Holm No
o I I I I o I I I I 1 P

False Non-discovery Rate (FNR)

05 1 15 2 25 3 35 4 45 5 05 1 15 2 25 3 35 4 45 5
n N

Figure 5: Relative power to oracle and false non-discovery rate (FflRe different procedures,
as a function of the common alternative hypothesis medParameters ae= 5% ,m=
1000, = 10%,p = 0.1. “BR08-dep-Holm” corresponds to the procedure of Theorem
22 usinga; = g = 0/2 and Holm’s step-down for the first step, and “BR08-dep” to
the procedure of Theorem 23 with= 2, 0p = a /4 anda; = o /2. The shape function
B is the identity function. Each point is estimated by an average ovemb@pendent
repetitions.

resulted in a much more robust procedure under positive dependsrhe,price of being slightly
more conservative. This fact is supported by a theoretical investigdtibie onaximally dependent
case. These properties do not appear to have been reported, laefdrgut forward Storeg-as a
procedure of considerable practical interest.

Secondly, we presented what we think is among the first examples of\alapiltiple testing
procedures with provable FDR control in the PRDS case and undeecifisgd dependence. An
important difference with respect to earlier works on this topic is that thesgoiares we introduced
here are both theoretically founded and can be shown to improve oveadapiive procedures in
certain (admittedly limited) circumstances. Although their interest at this point idyrhaoretical,
this shows in principle that adaptivity can improve performance in a thedfgtigprous way even
without the independence assumption.

The proofs of the results have been built upon the notigetifconsistencgnd other technical
tools introduced in a previous work (Blanchard and Roquain, 2008)bé&lfeve these tools allow
for a more unified approach than in the classical adaptive multiple testing literatwoiding in
particular to deal explicitly with the reordergudvalues, which can be somewhat cumbersome.

Another advantage of this approach is that it can be extended in a rilatvaightforward
manner to the case @feighted FDRthat is, the quantity (2) where the cardinality meagurbas
been replaced by a general meast@R) = 5 pcrWh (With W(H) = ScsrWh = m). This allows
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in particular to recover results very similar to those of Benjamini and Helléd{pand can also be
used to prove that a (generalized) Storey estimator can be used to ¢hatméighted FDR. The
modifications needed to include this generalizations are relatively minor; wetloenitetails here
and refer the reader to Blanchard and Roquain (2008) to see howsbeitaeighted FDR can be
handled using the same technical tools.

There remains a vast number of open issues concerning adaptivesipres. We first want to
underline once more that the theory for adaptive procedures undendence is still underdevel-
oped. It might actually be too restrictive to look for procedures havingrétically controlled FDR
uniformly over arbitrary dependence situations such as what we studsattion 4. An interesting
future theoretical direction could be to prove that some of the adaptiveeguoes showing good
robustness in our simulations actually have controlled FDR under some t{pependence, at
least when thg-values are in some sense not too far from being independent.

6. Proofs

This section collects proofs for all the stated results, following their ortiappearance in the text.

6.1 Proofs for Section 3

The following proofs use the notatiquy, andp_n defined at the beginning of Section 3.2.

6.1.1 FROOF OFTHEOREM9
Let R denote a nonincreasing self-consistent procedure with respAatéfined in (4). By defini-
tion, R satisfies
Re dhe st pn<min(@—n)—2R_ )
Pn = m-|R+1") [

Therefore, we have

B 1{heR(p)}
FDRR) = hez%E[ IR(p)| }

s [1{pn< (1- N R0 |
2 IR(p)|

s '1{ph§(1—7\)$%+1}
2 IR(p)

s _JE 1{phé(1—)\)m—aR(F§§h))||+1}’ B
2 IR(P)|

1
: (1_)\)ah€Z%E[m—!R(Do,h)|+1]’

The second inequality above comes froR(p)| < |R(pon)|, which itself holds becausgR| is
coordinate-wise nonincreasing in eapfvalue. The last inequality is obtained with Lemma 27
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of Section 7 withJ = pp, g(U) = |R(p_n,U)| andc = %, because the distribution @,
conditionally onp_, is (by independence) identical to its marginal distribution, hence stochstica
lower bounded by a uniform variable ¢, 1]; |R| is coordinate-wise nonincreasing; and because
Pon depends only on the-values ofp_n. Finally, since the threshold collection &is upper

bounded by, we get
(1=NE[m/(m—[R(pon)|+1)] <EGy1(Pop),

whereG; is the Storey estimator with paramefer We then uséEGy(pon) < Tra1 (see proof of
Corollary 13) to conclude. |

6.1.2 ARROOF OFLEMMA 10

DenoteG(t) = ot + (1 —1p)F () the c.d.f. of thep-values under the random effects mixture model.
Let us denote b, the threshold of the LSU procedure. The proportion of rejected hypetifeom
the initial pool is then exactl(ﬁm(fm) , whereGp, is the empirical cdf of thg-values. It was proved
by Genovese and Wasserman (2002) under the random effects madedsth tends to infinity
the LSU threshold,, converges in probability tt*, which is the largest poirtte [0,1] such that
G(t) = a . SinceGn converges in probability uniformly t&, we deduce that the proportion
of rejected hypotheses convergesito't* in probability; hence, it* > a2, the probability that the
proportion of rejected hypotheses is less that1/m converges to zero; and conversely converges
to 1ift* < a2,

The definition oft* and the expression fd@b in the Gaussian mean shift model imply the fol-
lowing relation whenevetr* > 0;

—1 —1fat-m
=0 "t")-o t ).
u (") ( T )
Itis easily seen that ify < (1+0a)~1, the quantity in the statement of the lemma is well defined
and we haveé* > o for u > p*. This gives the first part of the result.
Conversely, ify > (14 a)~! we havet* = 0, and if Ty < (1+a)~! but u < p*, we have
t* < a?; this leads to the second part of the result. [ |

6.1.3 FRROOF OFTHEOREM 11
By definition of self-consistency, the procediRsatisfies

Rc {he % | pn<a|RG(p)/m}.
Therefore,

o [i{heRp)} 1{pn < o[R(p)|G(p) /)
FORR) = hE%E[ R he%E[ Rp)| J

SinceG is nonincreasing, we get:
1{pn < a|R(p)|G(p07h)/m}]

FDR(R) < ZE[
heHo

IR(p)|
- 1{pn < a|R(P)|G(Pon)/m} a
_ he%E [E[ RO ‘p_hH < mhez}bEG(po,h),
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The last step is obtained with Lemma 27 of Section 7 with- pn, g(U) = |R(p_n,U)| andc =
aG(pon)/m, because the distribution pf, conditionally onp_ is (by independence) identical to its
marginal distribution, hence stochastically lower bounded by a uniforrahlar |R| is coordinate-
wise nonincreasing; anghy depends only on thp-values ofp_p. |

6.1.4 FRROOF OFCOROLLARY 12

AssumingHy # O without loss of generality, fohy € #Ho we want to upper bountl [G(po,)]
appearing in the bound of Theorem 11. Ipgt,, denote the family op-valuespgy, where allp-
valuespn , h € # '\ Hp have been replaced by zero. Siges nonincreasing, we had&[G(pop, )] <
E[G(Pohy)] . Now, for anyh € %o\ {ho}, denotepy, the family por, , where the variablep,
has been replaced hy,, an independent uniform variable ¢@ 1]. Since bothpy and u, are
independent of the othgrvalues,p;, is stochastically lower bounded Iy andG is honincreasing,
we have

E [G(Poho) [P=n] < E [G(Bop,)|P-h] -
hence also in unconditional expectation. Iterating this reasoning in sicoder allh € H\ {ho} ,

we have finally replacefy n, by a family ofmg — 1 independent uniform variables and-my + 1
zeros, while only increasing the expected value, so that (now usingtisgtermutation invariant)

E[G(pO,ho)] < IEpNDU(m,mo—l) [G(p)] )
which, combined with (6), entails the desired result. |

6.1.5 FRROOF OFCOROLLARY 13

First, we prove that the sufficient condition of Theorem 11 holds for timéncreasing estimato;,
i =1,3,4. To that end, we reproduce here without major changes the argunsedtdy Benjamini
et al. (2006). The bound f@s; is obtained using Lemma 30 (see below) wits mgandg=1—A:
for all h € #p,
~1
EGipon] <ma-NE| (S Lpyn+1) | <t
e\ {h}

The proof forGz and G, is deduced from the one @; becausds; andG4 are smaller thaits;
pointwise.

Secondly, foiG, we use a somewhat more direct argument than Benjamini et al. (2006)lyname
using Corollary 12 and proving thgG,,m) < 1. Takep ~ DU (m,mp—1). On the one hand, if
ko <m—nmy+ 1, we havep,) = 0, and thereforepGz(p) = Tom/(Mm— Ko+ 1) < 1 pointwise. On
the other hand, iko > m—mg + 2, we havep,) = ik,—m+mo—1)» Whereqy) < ... < qm,—1) are the
(mp — 1) orderedp-values ofp corresponding to uniform variables. Thus,

1-E [do-memy-1)] 1— (ko —m-+my—1)/my

TolE [G2(p)] = mo—— 7 = = Mo ——— =1

6.1.6 FROOF OFPROPOSITION17

Let us first consider adaptive one-stage procedures: for amugtppocedurd of thresholdA(i) =
ap(i)/mwe easily derive that the probability th@tmakes any rejection is

P[EI[ pi <A®)] =P[3Fi | pr <A(1)] = P[pr < A(m)] = A(m),
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which is FDRR) becauseny = m. The results foBR-1SA andFDR091 follow.
With the same reasoning, we find that for any plug-in adaptive linear stewacedurer that
uses an estimatd@s(p),
FDR(R) = P[p1 < aG(p)]. @)

Next, for the Storey plug-in procedure, we hawg(ps,...,p1) = (L—=A)m/(ml{p; > A} + 1), so
that applying (7), we get
FDR(StoreyA) = P[py < aGa(p)]
=Plpr <A pr<a(l-Am|+P[py > A, p1 < a(1-A)m/(m+1)]

=min <7\,a(l—)\)m> + <a(r1n_+}\1)m_)\>+'

For the quantile procedure, we have
a
1+a—(k—1)/m’

For the BKYO06 procedure, we simply remark that since the linear step-agegure of level
rejects all the hypotheses when < A and rejects no hypothesis otherwise, the estim@toand
G3 are equal in this case. The proof BR-2SA is similar. |

Plpy < a(1— pom/(m—ko+ 1] = Ppa((L+a)m—ko + 1) < am] =

6.2 Proofs for Section 4

We begin with a technical lemma that will be useful for proving both Theor@nar®d 23. It is
related to techniques previously introduced by Blanchard and Roquzi8)2

Lemma 26 Assume R is a multiple testing procedure satisfying the self-consistency cenditio
Rc {he A | pn<aG(p)B(|R)/m},
where Gp) is a data-dependent factor. Then the following inequality holds:

FORR) <a+B | N0 (R > 011 {6(p) > 6%} ®

under either of the following conditions:

e the p-value family(pn,h € #) is PRDS on%p, R is nonincreasing an@ is the identity
function.

¢ the p-values have unspecified dependencd3ard shape function of the form (3).

Proof. We have

FDR(R) = E [’RIQRI%‘ 1R > 0}]
_ = [|IRN | 1 |RN Ho| 1
_E{ R 1{|R >0}1{G<m }}HE[ R 1{|R >0}1{G>m, }]

<ZIE[

1{ph§GB(‘R|)/nb}}+E[|Rm%|
__heiﬁ

1
R R 1{|R > 0}1{G>m, }]
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The desired conclusion will therefore hold if we establish that fortaay* , andc > 0:

1{pn < cB(|R)}
E[ R ] =¢

Under unspecified dependence, this is a direct consequence of Lebnoh&&ction 7 withJ = py,
andV = B(|R|). For the PRDS case, we note that sifiRg)| is coordinate-wise nonincreasing in
eachp-value, for any > 0,D = {z € [0,1]*! | |R(z)| < v} is a measurable nondecreasing set, so
that the PRDS property implies that— P[|R| < V| p, = u] is nondecreasing. This implies that
u— P[|R < V| pn < u] by the following argument (see also Lehmann, 1966, cited by Benjamini
and Yekutieli, 2001, and Blanchard and Roquain, 2008): puttiad® [p, < u| pn < U],

PlpeD|pn<u]=E[P[peD|pn|pr<V]
=VE[P[peD|pn |pn<ul+(L1-y)E[PlpeD|py |[u<prn<U]
>EPpeD|pn |pn<ul=PlpeD|pn<u.

We can then apply Lemma 28 of Section 7 with= p, andV = |R|. |

6.2.1 FRROOF OFTHEOREM 22

By definition of a step-up procedure, the two-stage proceBuwatisfies the assumption of Lemma
26 forG(p) = (1— %)‘1, whereRy is the first stage with FWER controlled at lewe] . Further-
more, it is easy to check th@®| is nonincreasing as a function of egetvalue (sinceRy| is). Then,
we can apply Lemma 26, and from inequality (8) we deduce

FDR(R) <ai1+E PR?RT_@J'{J'_“E’]O < Tl'o}]
< a1+ P[RoNHy # 0]
<0Op+0aj.

In the case wherBy rejects all hypotheses, we assumed implicitly that the second stage also does.
[ |

6.2.2 RROOF OFTHEOREM 23

Assumery > 0 (otherwise the result is trivial). By definition of a step-up procedure fwo-stage
procedureR satisfies the assumption of Lemma 26 @fp) = F(|Ro|/m), whereRy is the first
stage. Furthermore, it is easy to check tlffitis nonincreasing as a function of eagtvalue (since
|Ro| is). Then, we can apply Lemma 26, and from inequality (8) we deduce

FDR(R) <01 +E {Wl{ﬁ(\%\/m) > Tfol}]
~1
o [HER 6]

For the second inequality, we have used the two following facts:
(i) Fc(|Rol/m) > 15 implies|Ry| > 0,
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(ii) because of the assumption < a; andF > 1, the output of the second step is necessarily
a set containing at least the output of the first step. H&Rce |Ro| .

Let us now concentrate on further bounding this second term. For tlsiscéinsider the gen-
eralized inverse oFy, F1(t) = inf{x| Fc(x) >t}. SinceF is a nondecreasing left-continuous
function, we haver(x) >t < x > F_1(t). Furthermore, the expression Bf ! is given by:

Vt € [1,+0), F 2 (t) = k172 —t~1 4 1 (providing in particular thal, (15 1) > 1 10). Hence

1{Re(Rol/m) > 5"} 1{[Rol/m> R 15"}
R ] = ”"E[ R ]

P [|Ro|/m> F (5 Y] - 9)

|
To

=R Y

Now, by assumption, the FDR of the first stigpis controlled at levetpag, so that

roto > [Wlw >0}}

R o) > 0}

[(1+(—-1)27Y)1{z>0}],

Vv

E
E
where we denoted b¥ the random variabléRy|/m. Hence by Markov’s inequality, for atl >
1-T1o,

PZ>t] <P[(1+(o-1)Z ) 1{Z >0} > 14 (mo— 1t Y] < M?

choosing = FK‘l(Tral) and using this into (9), we obtain

1{F(IRol/m) > 15" }
Rol

U

molE .
FK_l(T[(;l) - l+ To

< dp

If we want this last quantity to be less thang, this yields the conditiorr, (T ?) > k11§ —
To+ 1, and this is true from the expressionfgf! (note that this is how the formula fdi was
determined in the first place). |

7. Probabilistic Lemmas

The three following lemmas have been established in a previous work (seehBtd and Roquain,
2008, Lemma 3.2).

Lemma 27 Let g: [0,1] — (0,) be a nonincreasing function. Let U be a random variable which
is stochastically lower bounded by a uniform variable[0r1], that is,Vu € [0,1], P[U <u] < u.
Then, for any constants 0, we have
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Lemma 28 Let U,V be two nonnegative real variables. Assume the following:

1. U is stochastically lower bounded by a uniform variable [onl], that is, Yu € [0,1],
PU<u<u.

2. The conditional distribution of V given Y u is stochastically decreasing in u, that is,

Yv>0, vo<u<u, PV <v|U<Uu<P[V<v|U<U].

Then, for any constants 0, we have

. [1{u\§ cV}} <o

Lemma 29 Let U,V be two nonnegative real variables afidbe a function of the form (3). Assume
thatU is stochastically lower bounded by a uniform variablé@d], thatis,vue [0,1], P[U < u] <
u. Then, for any constante 0, we have

SECEL

The following lemma was stated by Benjamini et al. (2006). It is a major point wisegstimate
Tgl in the independent case. The proof is left to the reader.

Lemma 30 Forany k>2,qe€ (0,1], letY be a binomial random variable with parametéks- 1,q);
then the following holds:
E[1/(1+Y)] <1/kq.
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