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Abstract
In the context of multiple hypothesis testing, the proportion π0 of true null hypotheses in the pool
of hypotheses to test often plays a crucial role, although itis generally unknowna priori. A testing
procedure using an implicit or explicit estimate of this quantity in order to improve its efficency is
calledadaptive. In this paper, we focus on the issue of false discovery rate (FDR) control and we
present new adaptive multiple testing procedures with control of the FDR. In a first part, assuming
independence of thep-values, we present two new procedures and give a unified review of other
existing adaptive procedures that have provably controlled FDR. We report extensive simulation
results comparing these procedures and testing their robustness when the independence assumption
is violated. The new proposed procedures appear competitive with existing ones. The overall best,
though, is reported to be Storey’s estimator, albeit for a specific parameter setting that does not
appear to have been considered before. In a second part, we propose adaptive versions of step-up
procedures that have provably controlled FDR under positive dependence and unspecified depen-
dence of thep-values, respectively. In the latter case, while simulations only show an improvement
over non-adaptive procedures in limited situations, theseare to our knowledge among the first the-
oretically founded adaptive multiple testing procedures that control the FDR when thep-values are
not independent.

Keywords: multiple testing, false discovery rate, adaptive procedure, positive regression depen-
dence,p-values

1. Introduction

The topic of multiple testing, which enjoys a long history in the statistics literature, has generated
a renewed, growing attention in the recent years, spurred by an increasing number of application
fields, in particular bioinformatics. For example, when processing microarray data, a common goal
is to detect which genes (among several ten of thousands) exhibit a significantly different level
of expression in two different experimental conditions. Each gene represents a “hypothesis” to
be tested in the statistical sense. The genes’ expression levels fluctuate naturally (not to speak of
other sources of fluctuation introduced by the experimental protocol), and, because the number
of candidate genes is large, it is important to control precisely what can bedeemed a significant
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observed difference. Generally, it is assumed that the natural fluctuation distribution of asingle
gene is known and the problem is to take into account the number of genes involved (for more
details, see for instance Dudoit et al., 2003).

1.1 Adaptive Multiple Testing Procedures

In this work, we focus on building multiple testing procedures with a control ofthe false discovery
rate (FDR). This quantity is defined as the expected proportion of type I errors, that is, the proportion
of true null hypotheses among all the null hypotheses that have been rejected (i.e., declared as false)
by the procedure. In their seminal work on this topic, Benjamini and Hochberg (1995) proposed
the celebratedlinear step-up(LSU) procedure, which was proved to control the FDR under the
assumption of independence between thep-values. Later, it was proved (Benjamini and Yekutieli,
2001) that the LSU procedure still controls the FDR when thep-values have positive dependence
(or more precisely, a specific form of positive dependence called positive regression dependence
from a subset, PRDS). Under completely unspecified dependence, the same authors have shown
that the FDR control still holds if the threshold collection of the LSU procedure is divided by a
factor 1+ 1/2+ · · ·+ 1/m, wherem is the total number of null hypotheses to test. More recently,
the latter result has been generalized (Blanchard and Fleuret, 2007; Blanchard and Roquain, 2008;
Sarkar, 2008a,b), by showing that there is in fact a family of step-up procedures (depending on the
choice of a kind of prior distribution) that control the FDR under unspecified dependence between
the p-values.

However, all of these procedures, which are built in order to control the FDR at a levelα, can
be shown to have actually their FDR upper bounded byπ0α, whereπ0 is the proportion of true null
hypotheses in the initial pool. Therefore, when most of the hypotheses are false (i.e.,π0 is small),
these procedures are inevitably conservative, since their FDR is in actuality much lower than the
fixed targetα. In this context, the challenge ofadaptive controlof the FDR (e.g., Benjamini and
Hochberg, 2000; Black, 2004) is to integrate an estimation of the unknown proportionπ0 in the
threshold of the previous procedures and to prove that the corresponding FDR is still rigorously
controlled byα.

Of course, adaptive procedures are of practical interest if it is expected thatπ0 is, or can be,
significantly smaller than 1. An example of such a situation occurs when using hierarchical pro-
cedures (e.g., Benjamini and Heller, 2007) which first selects some clusters of hypotheses that are
likely to contain false nulls, and then apply a multiple testing procedure on the selected hypotheses.
Since a large part of the true null hypotheses is expected to be false in the second step, an adaptive
procedure is needed in order to keep the FDR close to the target level.

A number of adaptive procedures have been proposed in the recent literature and can loosely be
divided into the following categories:

• plug-in procedures, where some initial estimator ofπ0 is directly plugged in as a multi-
plicative level correction to the usual procedures. In some cases (e.g.,Storey’s estimator,
see Storey, 2002), the resulting plug-in adaptive procedure (or a variation thereof) has been
proved to control the FDR at the desired level (Benjamini et al., 2006; Storey et al., 2004). A
variety of other estimators ofπ0 have been proposed (e.g., Meinshausen and Rice, 2006; Jin
and Cai, 2007; Jin, 2008); while their asymptotic consistency (as the numberof hypotheses
tends to infinity) is generally established, their use in plug-in adaptive procedures has not
always been studied.
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• two-stageprocedures: in this approach, a first round of multiple hypothesis testing isper-
formed using some fixed algorithm, then the results of this first round are used in order to
tune the parameters of a second round in an adaptive way. This can generally be interpreted
as using the output of the first stage to estimateπ0. Different procedures following this gen-
eral approach have been proposed (Benjamini et al., 2006; Sarkar,2008a; Farcomeni, 2007);
more generally, multiple-stage procedures can be considered.

• one-stageprocedures, which perform a single round of multiple testing (generally step-up or
step-down), based on a particular (deterministic) threshold collection that renders it adaptive
(Finner et al., 2009; Gavrilov et al., 2009).

In addition, some works (Genovese and Wasserman, 2004; Storey et al.,2004; Finner et al.,
2009) have studied the question of adaptivity to the parameterπ0 from anasymptoticviewpoint. In
this framework, the more specificrandom effectsmodel is—most generally, though not always—
considered, in whichp-values are assumed independent, each hypothesis has a probabilityπ0 of
being true, and all false null hypotheses share the same alternate distribution. The behavior of
different procedures is then studied under the limit where the number of tested hypotheses grows to
infinity. One advantage of this approach and specific model is that it allows toderive quite precise
results (see Neuvial, 2008, for a precise study of limiting behaviors of central limit type under
this model, including some of the new procedures introduced in the present paper). However, we
emphasize that in the present work our focus is decidedly on the nonasymptotic side, using finite
samples and arbitrary alternate hypotheses.

To complete this overview, let us also mention another interesting and different direction opened
up recently, that of adaptivity to the alternate distribution. If the alternate distributions are known
a priori, the optimal testing statistics are generally likelihood ratios between each null and each al-
ternate, which (possibly after standardization under the form ofp-values) can be combined using a
multiple testing algorithm in order to control some measure of type I error while minimizing a mea-
sure of type II error (see, e.g., Spjøtvoll, 1972, Wasserman and Roeder, 2006, Genovese et al., 2006,
Storey, 2007, Roquain and van de Wiel, 2009). In situations where the alternate is unknown, though,
one can hope to estimate, implicitly or explicitly, the alternate distributions from the observed data,
and consequently approximate the optimal test statistics and the associated multipletesting proce-
dure (Sun and Cai, 2007 proposed an asymptotically consistent approach to this end). Interestingly,
this point of view is also intimately linked to some traditional topics in statistical learningsuch as
classification and of optimal novelty detection (see, e.g., Scott and Blanchard, 2009). However, in
the present paper we will focus on adaptivity to the parameterπ0 only.

1.2 Overview of this Paper

The contributions of the present paper are the following. A first goal ofthe paper is to introduce a
number of novel adaptive procedures:

1. We introduce a newone-stagestep-up procedure that is more powerful than the standard LSU
procedure in a large range of situations, and provably controls the FDR under independence
(and in a nonasymptotic sense). This procedure is called one-stage adaptive, because the
estimation ofπ0 is performed implicitly.
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2. Based on this, we then build a newtwo-stageadaptive procedure, which is more powerful in
general than the procedure proposed by Benjamini et al. (2006), whileprovably controlling
the FDR under independence.

3. Under the assumption of positive or arbitrary dependence of thep-values, we introduce new
two-stage adaptive versions of known step-up procedures (namely, of the LSU under positive
dependence, and of the family of procedures introduced by Blanchardand Fleuret, 2007,
under unspecified dependence). These adaptive versions provably control the FDR and result
in an improvement of power over the non-adaptive versions in some situations (namely, when
the number of hypotheses rejected in the first stage is large, typically more than 60%).

A second goal of this work is to present a review of several existing adaptive step-up procedures
with provable FDR control under independence. For this, we present the theoretical FDR control as
a consequence of a single general theorem, which was first establishedby Benjamini et al. (2006).
Here, we give a short self-contained proof of this result that is of independent interest. The latter
is based on some tools introduced earlier (Blanchard and Roquain, 2008;Roquain, 2007), aimed at
unifying FDR control proofs. Related results and tools also appear independently in Finner et al.
(2009) and Sarkar (2008b).

A third goal is to compare both the existing and our new adaptive procedures in an extensive
simulation study under both independence and dependence, following the simulation model and
methodology used by Benjamini et al. (2006):

• Concerning the new one- and two- stage procedures with theoretical FDRcontrol under in-
dependence, these are generally quite competitive in comparison to existing ones. However
we also report that the best procedure overall (in terms of power, among procedures that are
robust enough to the dependent case) appears to be the plug-in procedure based on the well-
known Storey estimator (Storey, 2002) used with the somewhat nonstandard parameter setting
λ = α . This outcome was in part unexpected since to the best of our knowledge,this fact had
never been pointed out so far (the usual default recommended choice isλ = 1

2 and turns out
to be very unstable in dependent situations); this is therefore an important conclusion of this
paper regarding practical use of these procedures.

• Concerning the new two-stage procedures with theoretical FDR control under dependence,
simulations show an (admittedly limited) improvement over their non-adaptive counterparts
in favorable situations which correspond to what was expected from the theoretical study
(i.e., large proportion of false hypotheses). The observed improvementis unfortunately not
striking enough to be able to recommend using these procedures in practice.

The paper is organized as follows: in Section 2, we introduce the mathematicalframework,
and we recall the existing non-adaptive results for FDR control. In Section 3, we deal with the
setup of independentp-values. We expose our new procedures and review the existing ones,and
compare them theoretically and in a simulation study. The case of positive dependent and arbitrarily
dependentp-values is examined in Section 4 where we introduce our new adaptive procedures in
this context. A conclusion is given in Section 5. Section 6 and 7 contain proofs of the results and
lemmas, respectively. Some technical remarks and discussions of links to other work are gathered
at the end of each relevant subsection, and can be skipped by the non-specialist reader.
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2. Preliminaries

In this paper, we stick to the traditional statistical framework for multiple testing, which we first
briefly recall below.

2.1 Multiple Testing Framework

Let (X ,X,P) be a probability space; we aim at inferring a decision onP from an observationx in
X drawn fromP . LetH be a finite set of null hypotheses forP, that is, each null hypothesish∈H

corresponds to some subset of distributions on(X ,X) and “P satisfiesh” means thatP belongs to
this subset of distributions. The number of null hypotheses|H | is denoted bym, where|.| is the car-
dinality function. The underlying probabilityP being fixed, we denoteH0 = {h∈H | P satisfiesh}
the set of the true null hypotheses andm0 = |H0| the number of true null hypotheses. We let also
π0 := m0/m the proportion of true null hypotheses. We stress thatH0, m0, andπ0 are unknown and
implicitly depend on the unknownP . All the results to come are always implicitly meant to hold
for any generating distributionP .

We suppose further that there exists a set ofp-valuefunctionsp = (ph,h ∈ H ), meaning that
eachph : (X ,X) 7→ [0,1] is a measurable function and that for eachh∈H0, ph is bounded stochas-
tically by a uniform distribution, that is,

∀h∈H0 , ∀t ∈ [0,1], P [ph ≤ t] ≤ t. (1)

Typically, eachp-value is obtained from a statisticZ that has a known distributionP0 under the
corresponding null hypothesis. In this case,ph = Φ0(Z) satisfies (1) in general, whereΦ0(z) =
P0([z,+∞)). Here, we are however not concerned with how thesep-values are precisely constructed
and only assume that they exist and are known (this is the standard setting in multiple testing).

2.2 Multiple Testing Procedure and Errors

A multiple testing procedureis a function

R : x∈ X 7→ R(x) ∈ P (H ),

such that for anyh∈H , the functionx 7→ 1{h∈ R(x)} is measurable. It takes as input an observa-
tion x and returns a subset ofH , corresponding to the rejected hypotheses. As it is commonly the
case, we will focus here on multiple testing procedure based onp-values, that is, we will implicitly
assume thatR is of the formR(p).

A multiple testing procedureR can make two kinds of errors: atype I erroroccurs forh when
h is true and is rejected byR, that is,h ∈ H0∩R. Conversely,a type II error occurs forh when
h is false and is not rejected byR, that ish ∈ H c

0 ∩Rc. Following the Neyman-Pearson general
philosophy for hypothesis testing, the primary concern is to control the quantity of type I errors of
a testing procedure. For this, the most traditional way is to upper bound the “Family-wise error
rate” (FWER), which is the probability that one or more true null hypothesesare rejected. However,
procedures with a controlled FWER are (by definition) very “cautious” not to make even a single
error, and thus reject only few hypotheses. This conservative way of measuring the type I error for
multiple hypothesis testing can be a serious hindrance in practice, since it requires to collect large
enough data sets so that significant evidence can be found under this strict error control criterion.
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More recently, a more liberal measure of type I errors has been introduced in multiple testing (Ben-
jamini and Hochberg, 1995): thefalse discovery rate(FDR), which is the averaged proportion of
true null hypotheses in the set of all the rejected hypotheses:

Definition 1 (False discovery rate)Thefalse discovery rateof a multiple testing procedure R for
a generating distributionP is given by

FDR(R) := E

[ |R∩H0|
|R| 1{|R| > 0}

]
. (2)

A classical aim, then, is to build proceduresR with FDR upper bounded at a given, fixed level
α. Of course, if we chooseR= /0, meaning thatR rejects no hypotheses, trivially FDR(R) = 0≤ α .
Therefore, it is desirable to build proceduresR satisfying FDR(R) ≤ α while at the same time
having as few type II errors as possible. As a general rule, providedthat FDR(R) ≤ α, we want
to build procedures that reject as many false hypotheses as possible. The absolute power of a
multiple testing procedure is defined as the average proportion of false hypotheses correctly rejected,
E

[∣∣R∩H c
0

∣∣]/
∣∣H c

0

∣∣ . Given two proceduresR andR′ , a particularly simple sufficient condition for
R to be more powerful thanR′ is whenR′ if R′ ⊂ R holds pointwise. We will say in this case thatR
is (uniformly) less conservativethanR′ .

Remark 2 Throughout this paper we will use the following convention: whenever there is an in-
dicator function inside an expectation, this has logical priority over any otherfactor appearing in
the expectation. What we mean is that if other factors include expressions that may not be defined
(such as the ratio00) outside of the set defined by the indicator, this is safely ignored. This results in
more compact notation, such as in Definition 1. Note also again that the dependence of the FDR on
the unknownP is implicit.

2.3 Self-Consistency, Step-Up Procedures, FDR Control and Adaptivity

We first define a general class of multiple testing procedures calledself-consistent procedures(Blan-
chard and Roquain, 2008).

Definition 3 (Self-consistency, nonincreasing procedure)Let ∆ : {0,1, . . . ,m}→ R
+ , ∆(0) = 0 ,

be a nondecreasing function calledthreshold collection; a multiple testing procedure R is said to
satisfy the self-consistency condition with respect to∆ if the inclusion

R⊂ {h∈H | ph ≤ ∆(|R|)}

holds almost surely. Furthermore, we say that R is nonincreasing if for all h ∈ H the function
ph 7→ |R(p)| is nonincreasing, that is if|R| is nonincreasing in each p-value.

The class of self-consistent procedures includes well-known types ofprocedures, notably step-
up and step-down. The assumption that a procedure is nonincreasing, which is required in addition
to self-consistency in some of the results to come, is relatively natural as a lower p-value means we
have more evidence to reject the corresponding hypothesis. We will mainly focus on thestep-up
procedure, which we define now. For this, we sort thep-values in increasing order using the notation
p(1) ≤ ·· · ≤ p(m) and puttingp(0) = 0 . This order is of course itself random since it depends on the
observation.
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Definition 4 (Step-up procedure) The step-up procedure with threshold collection∆ is defined as

R= {h∈H | ph ≤ p(k)}, where k= max{0≤ i ≤ m | p(i) ≤ ∆(i)}.

A trivial but important property of a step-up procedure is the following.

Lemma 5 The step-up procedure with threshold collection∆ is nonincreasing and self-consistent
with respect to∆ .

Therefore, a result valid for any nonincreasing self-consistent procedure w.r.t.∆ holds in particular
for the corresponding step-up procedure. This will be used extensively through the paper and thus
should be kept in mind by the reader.

Among all procedures that are self-consistent with respect to∆ , the step-up is uniformly less
conservative than any other (Blanchard and Roquain, 2008) and is therefore of primary interest.
However, to recover procedures of a more general form (including step-down for instance), the
statements of this paper will be preferably expressed in terms of self-consistent procedures when it
is possible.

Threshold collections are generally scaled by the target FDR levelα . Once correspondingly
rewritten under the normalized form∆(i) = αβ(i)/m, we will call β theshape functionfor threshold
collection∆ . In the particular case where the shape functionβ is the identity function, the procedure
is called thelinear step-up(LSU) procedure(at levelα).

The LSU plays a prominent role in multiple testing for FDR control; it was the firstprocedure
for which FDR control was proved and it is probably the most widely used procedure in this context.
More precisely, when thep-values are assumed to be independent, the following theorem holds.

Theorem 6 Suppose that the family of p-valuesp = (ph,h∈ H ) is independent. Then any nonin-
creasing self-consistent procedure with respect to threshold collection∆(i) = αi/m has FDR upper
bounded byπ0α , whereπ0 = m0/m is the proportion of true null hypotheses. (In particular, this
is the case for the linear step-up procedure.) Moreover, if the p-values associated to true null hy-
potheses are exactly distributed like a uniform distribution, the linear step-up procedure has FDR
exactly equal toπ0α .

For the specific case of the LSU, the first part of this result was provedin the landmark paper
of Benjamini and Hochberg (1995); the second part was proved by Benjamini and Yekutieli (2001)
and Finner and Roters (2001). Benjamini and Yekutieli (2001) extendedthe first part by proving
that the LSU procedure still controls the FDR in the case ofp-values with a certain form of pos-
itive dependence calledpositive regression dependence from a subset(PRDS). We skip a formal
definition for now (we will get back to this topic in Section 4). The extension ofthese results to
self-consistent procedures (in the independent as well as PRDS case) was established by Blanchard
and Roquain (2008) and Finner et al. (2009).

However, when no particular assumption is made on the dependence between the p-values,
it can be shown that the above FDR control does not hold in general. Thissituation is called
unspecifiedor arbitrary dependence. A modification of the LSU was first proposed by Benjamini
and Yekutieli (2001), and proved to have a controlled FDR under arbitrary dependence. This result
was extended by Blanchard and Fleuret (2007) and Blanchard and Roquain (2008) (see also a related
result of Sarkar, 2008a,b). Namely, it can be shown that self-consistent procedures (not necessarily
nonincreasing) based on a particular class of shape functions have controlled FDR:
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Theorem 7 Under unspecified dependence of the family of p-valuesp = (ph,h ∈ H ), let β be a
shape function of the form:

β(r) =
Z r

0
udν(u), (3)

whereν is some fixed a priori probability distribution on(0,∞). Then any self-consistent procedure
with respect to threshold collection∆(i) = αβ(i)/m has FDR upper bounded byαπ0 .

To recap, in all of the above cases, the FDR is actually controlled at the level π0α instead of the
targetα. Hence, a direct corollary of both of the above theorems is that the step-up procedure with
shape functionβ∗(x) = π−1

0 β(x) has FDR upper bounded byα in either of the following situations:

- β(x) = x when thep-value family is independent or PRDS,

- the shape functionβ is of the form (3) when thep-values have unspecified dependence.

Sinceπ0 ≤ 1, usingβ∗ always gives rise to a less conservative procedure than usingβ (especially
whenπ0 is small). However, sinceπ0 is unknown, the shape functionβ∗ is not directly accessible.
We therefore call the step-up procedure usingβ∗ the Oracle step-up procedurebased on shape
functionβ (in each of the above cases).

Simply put, the role of adaptive step-up procedures is to mimic the latter oracle in order to obtain
more powerful procedures. Adaptive procedures are often step-up procedures using the modified
shape functionGβ , whereG is some estimator ofπ−1

0 :

Definition 8 (Plug-in adaptive step-up procedure)Given a levelα ∈ (0,1), a shape functionβ
and an estimator G: [0,1]H → (0,∞) of the quantityπ−1

0 , the plug-in adaptive step-up procedure
of shape functionβ and using estimator G (at levelα) is defined as

R= {h∈H | ph ≤ p(k)}, where k= max{0≤ i ≤ m | p(i) ≤ αβ(i)G(p)/m}.

The (data-dependent) function∆(p, i) = αβ(i)G(p)/m is called the adaptive threshold collection
corresponding to the procedure. In the particular case where the shape functionβ is the identity
function onR

+, the procedure is called an adaptive linear step-up procedure using estimator G
(and at levelα).

Following the previous definition, an adaptive plug-in procedure is composed of two different
steps:

1. Estimateπ−1
0 with an estimatorG .

2. Take the step-up procedure of shape functionGβ .

A subclass of plug-in adaptive procedures is formed by so-calledtwo-stage procedures, when the
estimatorG is actually based on a first, non-adaptive, multiple testing procedure. This can obviously
be possibly iterated and leads to multi-stage procedures. The distinction between generic plug-in
procedures and two-stage procedures is somewhat informal and generally meant only to provide
some kind of nomenclature between different possible approaches.

The main theoretical task is to ensure that an adaptive procedure of this type still correctly con-
trols the FDR. The mathematical difficulty obviously comes from the additional random variations
of the estimatorG in the procedure.
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3. Adaptive Procedures with Provable FDR Control under Independence

In this section, we introduce two new adaptive procedures that provablycontrol the FDR under
independence. The first one is one-stage and does not include an explicit estimator ofπ−1

0 , hence it
is not explicitly a plug-in procedure. We then propose to use this as the firststage in a new two-stage
procedure, which constitutes the second proposed method.

For clarity, we first introduce the new one-stage procedure; we then discuss several possible
plug-in procedures, including our new proposition and several procedures proposed by other au-
thors. FDR control for these various plug-in procedures can be studied under independence using
a general theoretical device introduced by Benjamini et al. (2006) whichwe reproduce here with
a self-contained and somewhat simplified proof. Finally, we compare these different approaches;
first with a theoretical study of the robustness under a very specific case of maximal dependence;
second by extensive simulations, where we inspect both the performanceunder independence and
the robustness under a wide range of positive correlations.

3.1 New Adaptive One-Stage Step-Up Procedure

We present here our first main contribution, a one-stage adaptive step-up procedure. This means
that the estimation step is implicitly included in the (deterministic) threshold collection.

Theorem 9 Suppose that the p-value familyp = (ph,h∈ H ) is independent and letλ ∈ (0,1) be
fixed. Define the adaptive threshold collection

∆(i) = min

(
(1−λ)

αi
m− i +1

,λ
)

. (4)

Then any nonincreasing self-consistent procedure with respect to∆ has FDR upper bounded byα .
In particular, this is the case of the corresponding step-up procedure,denoted by BR-1S-λ .

The above result is proved in Section 6. Our proof is in part based on Lemma 1 of Benjamini
et al. (2006). Note that an alternate proof of Theorem 9 is established in Sarkar (2008b) without
using this lemma, while nicely connecting the FDR upper-bound to the false non-discovery rate.

3.1.1 COMPARISON TO THELSU

Below, we will mainly focus on the choiceλ = α , leading to the threshold collection

∆(i) = αmin

(
(1−α)

i
m− i +1

,1

)
. (5)

For i ≤ (m+ 1)/2, the threshold (5) isα (1−α)i
m−i+1 , and thus our approach differs from the threshold

collection of the standard LSU procedure threshold by the factor(1−α)m
m−i+1 .

It is interesting to note that the correction factormm−i+1 appears in Holm’s step-down procedure
(Holm, 1979) for FWER control. The latter is a well-known improvement of Bonferroni’s procedure
(which corresponds to the fixed thresholdα/m), taking into account the proportion of true nulls, and
defined as the step-down procedure1 with threshold collectionα/(m− i + 1) . Here we therefore

1. The step-down procedure with threshold collection∆ rejects the hypotheses corresponding to thek smallestp-values,
wherek = max{0≤ i ≤ m | ∀ j ≤ i , p( j) ≤ ∆( j)}. It is self-consistent with respect to∆ but uniformly more conser-
vative than the step-up procedure with the same threshold collection, compare with Definition 4.
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prove that this correction is suitable as well for the linear step-up procedure, in the framework of
FDR control.

If r denotes the final number of rejections of the new one-stage procedure,we can interpret
the ratio (1−α)m

m−r+1 between the adaptive threshold and the LSU threshold at the same point as an a

posterioriestimate forπ−1
0 . In the next section we propose to use this quantity in a plug-in, two-

stage adaptive procedure.
As Figure 1 illustrates, our procedure is generally less conservative than the (non-adaptive)

linear step-up procedure (LSU). Precisely, the new procedure can only be more conservative than
the LSU procedure in the marginal case where the factor(1−α)m

m−i+1 is smaller than one. This happens
only when the proportion of null hypotheses rejected by the LSU procedure is positive but less
thanα + 1/m (and even in this region the ratio of the two threshold collections is never less than
(1−α) ). Roughly speaking, this situation with only few rejections can only happen ifthere are few
false hypotheses to begin with (π0 close to 1) or if the false hypotheses are very difficult to detect
(the distribution of falsep-values is close to being uniform).

In the interest of being more specific, we briefly investigate this issue in the next lemma, con-
sidering the particularGaussian random effectsmodel (which is relatively standard in the multiple
testing literature, see, for example, Genovese and Wasserman, 2004) in order to give a quantitative
answer from an asymptotical point of view (when the number of tested hypotheses grows to infinity).
In the random effect model, hypotheses are assumed to be randomly true or false with probability
π0 , and the false null hypotheses share a common distributionP1 . Globally, thep-values then are
i.i.d. drawn according to the mixture distributionπ0U [0,1]+ (1−π0)P1 .

0

0.05

0.1

0.15

0.2

0 200 400 600 800 1000

LSU
AORC
BR-1S,λ = α
BR-1S,λ = 2α
BR-1S,λ = 3α
FDR09-1/2
FDR09-1/3

Figure 1: Form= 1000 null hypotheses andα = 5%: comparison of the new threshold collection
BR-1S-λ given by (4) to that of the LSU, the AORC andFDR09-η .
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Lemma 10 Consider the random effects model where the p-values are i.i.d. with common cumula-
tive distribution function t7→ π0t +(1−π0)F(t). Assume that the true null hypotheses are standard
Gaussian with zero mean and that the alternative hypotheses are standard Gaussian with mean
µ > 0 . In this case F(t) = Φ(Φ−1

(t)−µ) , whereΦ is the standard Gaussian upper tail function.
Assumingπ0 < (1+α)−1 , define

µ⋆ = Φ−1
(α2)−Φ−1

(
α−1−π0

1−π0
α2

)
.

Then if µ> µ∗ , the probability that the LSU rejects a proportion of null hypotheses less than 1/m+α
tends to 0 as m tends to infinity. On the other hand, ifπ0 > (1+α)−1 , or µ< µ∗ , then this probability
tends to one.

Lemma 10 is proved in Section 6. Taking for instance in this lemma the valuesπ0 = 0.5 and
α = 0.05, results in the critical valueµ⋆ ≃ 1.51 . This lemma delineates clearly in a particular
case in which situation we can expect an improvement from the adaptive procedure BR-1S over the
standard LSU.

3.1.2 COMPARISON TOOTHER ADAPTIVE ONE-STAGE PROCEDURES

Very recently, other adaptive one-stage procedures with important similarities toBR-1S-λ have been
proposed by other authors. (The present work was developed independently.)

Starting with some heuristic motivations, Finner et al. (2009) proposed the threshold collection
t(i) = αi

m−(1−α)i , which they dubbed theasymptotically optimal rejection curve(AORC). However,
the step-up procedure using this threshold collection as is does not have controlled FDR (since
t(m) = 1 , the corresponding step-up procedure would always reject all the hypotheses), and several
suitable modifications were proposed by Finner et al. (2009), the simplest one being

t ′η(i) = min
(
t(i),η−1αi/m

)
,

which is denoted byFDR09-η in the following.
The theoretical FDR control proved in Finner et al. (2009) is studied asymptotically as the

number of hypotheses grows to infinity. In that framework, asymptotical control at levelα is shown
to hold for anyη < 1. On Figure 1, we represented the thresholdsBR-1S-λ and FDR09-η for
comparison, for several choices of the parameters. The two families appear quite similar, initially
following the AORC curve, then branching out or capping at a point depending on the parameter.
One noticeable difference in the initial part of the curve is that whileFDR09-η exactly coincides
with the AORC,BR-1S-λ is arguably sligthly more conservative. This reflects the nature of the
corresponding theoretical result—nonasymptotic control of the FDR requires a somewhat more
conservative threshold as compared to the only asymptotic control ofFDR-η . Additionally, we can
useBR-1S-λ as a first step in a 2-step procedure, as will be argued in the next section.

The ratio betweenBR-1S-λ and the AORC (before the capping point) is a factor which, assuming
α ≥ (m+1)−1 , is lower bounded by(1−λ)(1− 1

m+1) . This suggests that the value forλ should be
kept small, this is why we proposeλ = α as a default choice.

Finally, thestep-downprocedure based on the AORC threshold collection (under the slightly
modified form t̃(i) = αi

m−(1−α)i+1, but with no further modification) is proposed and studied by
Gavrilov et al. (2009). Using specific properties of step-down procedures, these authors proved
the nonasymptotic FDR control of this procedure.

2847



BLANCHARD AND ROQUAIN

3.2 Adaptive Plug-In Methods

In this section, we consider different adaptive step-up procedures of the plug-in type, that is, based
on an explicit estimator ofπ−1

0 . We first review a general method proposed by Benjamini et al.
(2006) in order to derive FDR control for such plug-in procedures (see also Theorem 4.3 of Finner
et al., 2009, for a similar result, as well as Theorem 3.3 of Sarkar, 2008b). We propose here a self-
contained proof of this result, which notably extends the original result from step-up procedures
to more general self-consistent procedures. Based on this result, we review the different plug-in
estimators considered by Benjamini et al. (2006) and add a new one to the lot,based on the one-
stage adaptive procedure introduced in the previous section.

Let us first introduce the following notation: for eachh∈ H , we denote byp−h the collection
of p-valuesp restricted toH \{h} , that is,p−h = (ph′ ,h′ 6= h) . We also denotep0,h = (p−h,0) the
collectionp whereph has been replaced by 0.

Theorem 11 (Benjamini, Krieger, Yekutieli 2006) Suppose that the p-value familyp = (ph,h ∈
H ) is independent. Let G: [0,1]H → (0,∞) be a measurable, coordinate-wise nonincreasing func-
tion. Consider a nonincreasing multiple testing procedure R which is self-consistent with respect to
the adaptive linear threshold collection∆(p, i) = αG(p)i/m . Then the following holds:

FDR(R) ≤ α
m ∑

h∈H0

E [G(p0,h)] . (6)

In particular, if for any h∈H0 , it holds thatE [G(p0,h)] ≤ π−1
0 , thenFDR(R) ≤ α .

The proof is given in Section 6. Since we assumedG to be nonincreasing, the quantityE [G(p0,h)]
in bound (6) is maximized when thep-values associated to true nulls have a uniform distribution
(ph excepted), while thep-values associated to false nulls are all set to zero. Following Finner
et al. (2009), thisleast favorable configurationfor the distribution ofp-values is referred to as the
Dirac-Uniform distribution and gives rise to the following corollary:

Corollary 12 Consider the same conditions as for Theorem 11, and assume moreoverthat G is
invariant by permutation of the p-values. Then it holds that

FDR(R) ≤ γ(G,m)α ,

with γ(G,m) = max
1≤m0≤m

{
m0

m
Ep∼DU(m,m0−1) [G(p)]

}
, where DU(m, j) is the distribution ofp where

the j first p-values are independent uniform in[0,1] and the m− j others are identically equal to
zero.

(While the proof is standard, it is given for completeness in Section 6). Theinterest of the last
result is that forany choice of nonincreasing (permutation invariant) functionG , it is possible in
principle to evaluateγ(G,m) by a Monte Carlo method, namely by estimating the expected value of
G under them−1 possible least favorable configurations. This leads to a practical control of the
FDR valid for any value ofm0, obtained by dividing the target levelα by γ(G,m) before applying
the procedure.

However, whenm is large, this method can be computationally demanding, and a more con-
venient approach for practical use is to obtain explicit bounds for specific estimators. We now

2848



ADAPTIVE FDR CONTROL UNDER INDEPENDENCE ANDDEPENDENCE

concentrate on this goal and apply the result of Theorem 11 (or alternatively of Corollary 12) to the
following estimators, depending on a fixed parameterλ ∈ (0,1) or k0 ∈ {1, . . . ,m}:

[Storey-λ] G1(p) =
(1−λ)m

∑h∈H 1{ph > λ}+1
;

[Quant-
k0

m
] G2(p) =

(1− p(k0))m

m−k0 +1
;

[BKY06-λ] G3(p) =
(1−λ)m

m−|R0(p)|+1
, whereR0 is the standard LSU at levelλ ;

[BR-2S-λ] G4(p) =
(1−λ)m

m−|R′
0(p)|+1

, whereR′
0 is BR-1S-λ (see Theorem 9).

Above, the notation “Storey-λ”, “Quant-k0
m”, “BKY06- λ” and “BR-2S-λ” refer to the plug-in adap-

tive linear step-up procedures associated toG1, G2, G3 andG4, respectively.
EstimatorG1 is usally calledmodified Storey’s estimatorand was initially introduced by Storey

(2002) from an heuristics on thep-values histogram (originally without the “+1”, hence the name
“modified”). Its intuitive justification is as follows: denoting bySλ the set ofp-values larger than the
thresholdλ, the average number of true nulls having ap-value inSλ is m0(1−λ). Hence, a natural
estimator ofπ−1

0 is (1− λ)m/|Sλ ∩H0| ≥ (1− λ)m/|Sλ| ≃ G1(p) . In particular, we expect that
Storey’s estimator is generally an underestimate ofπ−1

0 , which is in accordance with the condition
of Theorem 11. A standard choice isλ = 1/2 (as in the SAM software of Storey and Tibshirani,
2003). FDR control for the corresponding plug-in step-up procedure was proved by Storey et al.
(2004) (more precisely, for the modificatioñ∆(p, i) = min(αG1(p)i/m,λ) ) and by Benjamini et al.
(2006).

EstimatorG2 was introduced by Benjamini and Hochberg (2000) and Efron et al. (2001), from a
slope heuristics on thep-values c.d.f. Roughly speaking,G2 appears as Storey’s estimator with the
data-dependent parameter choiceλ = p(k0) , and can therefore be interpreted as the quantile version
of Storey’s estimator. A standard value fork0 is ⌊m/2⌋, resulting in the so-called median adaptive
LSU (see Benjamini et al., 2006, and the references therein).

EstimatorG3 was introduced by Benjamini et al. (2006) for the particular choiceλ = α/(1+α).
More precisely, a slightly less conservative version, without the “+1” in the denominator, was used
in Benjamini et al. (2006). We forget about this refinement here, noting that it results only in a very
slight improvement.

Finally, the estimatorG4 is new and follows exactly the same philosophy asG3, that is, uses
a step-up procedure as a first stage in order to estimateπ−1

0 , but this time based on our adaptive
one-stage step-up procedure introduced in the previous section, rather than the standard LSU. Note
that sinceR′

0 is less conservative thanR0 (except in marginal cases), we generally haveG3 ≤ G4

pointwise and our estimator improves over the one of Benjamini et al. (2006).
These different estimators all satisfy the sufficient condition mentioned in Theorem 11, and we

thus obtain the following corollary:

Corollary 13 Assume that the family of p-valuesp = (ph,h∈H ) is independent. For i= 1,2,3,4 ,
and any h∈ H0 , it holds thatE [Gi(p0,h)] ≤ π−1

0 . Therefore, the plug-in adaptive linear step-up
procedure at levelα using estimator Gi has FDR smaller than or equal toα .
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The above result forG1, G2 and G3 (for the specific parameter settingλ = α/(1+ α)) was
proved by Benjamini et al. (2006). In Section 6, we shortly reproduce their arguments, and prove
the result forG4.

To sum up, Corollary 13 states that under independence, for anyλ andk0, the plug-in adaptive
procedures Storey-λ, Quant-k0

m , BKY06-λ and BR-2S-λ all control the FDR at levelα.

Remark 14 The result proved by Benjamini et al. (2006) is actually slightly sharper than Theorem
11. Namely, if G(·) is moreover supposed to be coordinate-wise left-continuous, it is possibleto
prove that Theorem 11 still holds whenp0,h in the RHS of(6) is replaced by the slightly better̃ph =
(p−h, p̃h(p−h)) , defined as the collection of p-valuesp where ph has been replaced bỹph(p−h) =
max

{
p∈ [0,1]

∣∣ p≤ α|R(p−h, p)|G(p−h, p)
}
. This improvement then permits to get rid of the “+1”

in the denominator of G3 . Here, we opted for simplicity and a more straightforward statement,
noting that this improvement is not crucial.

Remark 15 The one-stage step-up procedure of Finner et al. (2009) (see previous discussion in Sec-
tion 3.1.2)—for which there is no result proving nonasymptotic FDR control up to our knowledge—
can also be interpreted intuitively as an adaptive version of the LSU using estimator G2 , where the
choice of parameter k0 is data-dependent. Namely, assume that we want to reject at least i null
hypotheses whenever p(i) is lower than the standard LSU threshold times the estimator G2 wherein

parameter k0 = i is used. This corresponds to the inequality p(i) ≤
k(1−p(i))

m−i+1 , which, solved in p(i) ,
gives the threshold collection of Finner et al. (2009). Remember from Section 3.1.2 that this thresh-
old collection must actually be modified in order to be useful, since it otherwisealways leads to
reject all hypotheses. The modification leading to FDR09-η consists in capping the estimatedπ−1

0
at a levelη , that is, usingmin(η,G2) instead of G2 in the above reasoning. In fact, the proof
of Finner et al. (2009) relies on a result which is essentially a reformulation of Theorem 11 for a
specific form of estimator.

Remark 16 The estimators Gi , i = 1,2,3,4 are not necessarily larger than 1, and to this extent
can in some unfavorable cases result in the final procedure being actually more conservative than
the standard LSU. This can only happen in the situation where eitherπ0 is close to 1 (“sparse
signal”) or the alternative hypotheses are difficult to detect (“weak signal”); if such a situation is
anticipated, it is more appropriate to use the regular non-adaptive LSU.

For the Storey-λ estimator, we can control precisely the probability that such an unfavorable
case arises by using Hoeffding’s inequality (Hoeffding, 1963): assumingthe true nulls are i.i.d.
uniform on(0,1) and the false nulls i.i.d. of c.d.f. F(·), we write by definition of G1

P [G1(p) < 1] = P

[
1
m

m

∑
h∈H

(1{ph > λ}−P [ph > λ]) > (1−π0)(F(λ)−λ)−m−1

]

≤ exp(−2(mc2 +1)),

where we denoted c= (1−π0)(F(λ)−λ) , and assumed additionally c> m−1 . The behavior of the
bound mainly depends on c , which can get small only ifπ0 is close to 1 (sparse signal) or F(λ) is
close toλ (weak signal), illustrating the above point. In general, provided c> 0 does not depend
on m , the probability that the Storey procedure fails to outperform the LSU vanishes exponentially
as m tends to infinity.
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3.3 Theoretical Robustness of the Adaptive Procedures under Maximal Dependence

For the different procedures proposed above, the theory only provides the correct FDR control under
independence between thep-values. An important issue is to know how robust this control is when
dependence is present (as it is often the case in practice). However, the analytic computation of
the FDR under dependence is generally a difficult task, and this issue is often tackled empirically
through simulations in a pre-specified model (we will do so in Section 3.4).

In this short section, we present theoretical computations of the FDR for the previously intro-
duced adaptive step-up procedures, under the maximally dependent model where all thep-values
are in fact equal, that isph ≡ p1 for all h∈ H (andm0 = m). It corresponds to the case where we
performm times the same test, with the samep-value. Albeit relatively trivial and limited, this case
leads to very simple FDR computations and provides at least some hints concerning the robustness
under dependence of the different procedures studied above.

Proposition 17 Suppose that we observe m identical p-valuesp = (p1, ..., pm) = (p1, ..., p1) with
p1 ∼U([0,1]) and assume m= m0. Then, the following holds:

FDR(BR-1S-λ) = min
(
λ,α(1−λ)m

)
,

FDR(FDR09-η) = αη−1,

FDR(Storey-λ) = min
(
λ,α(1−λ)m

)
+

(
α(1−λ)(1+m−1)−λ

)
+

,

FDR(Quant-k0/m) =
α

(1+α)− (k0−1)m−1 ,

FDR(BKY06-λ) = FDR(BR-2S-λ) = FDR(Storey-λ).

Interestingly, the above proposition suggests specific choices of the parametersλ, η andk0 to
ensure control of the FDR at levelα under maximal dependence:

• For BR-1S-λ, puttingλ2 = α/(α+m−1), Proposition 17 gives that FDR(BR-1S-λ) = λ when-
everλ ≤ λ2. This suggests to takeλ = α , and is thus in accordance with the default choice
proposed in Section 3.1.

• For FDR09-η, no choice ofη < 1 will lead to the correct FDR control under maximal depen-
dence. However, the largerη , the smaller the FDR in this situation. Note that FDR(FDR09-12)=
2α.

• For Storey-λ, BKY06-λ and BR-2S-λ, puttingλ1 = α/(1+α+m−1), we have FDR= λ for
λ1 ≤ λ ≤ λ2. This suggests to chooseλ = α within these three procedures. Furthermore, note
that the standard choiceλ = 1/2 for Storey-λ leads to a very poor control under maximal
dependence: FDR(Storey-12) = min(αm,1)/2.

• For Quant-k0/m, we see that the value ofk0 maximizing the FDR while maintaining it
below α is k0 = ⌊αm⌋+ 1. Remark also that the standard choicek0 = ⌊m/2⌋ leads to
FDR(Quant-k0/m) = 2α/(1+2α+2m−1) ≃ 2α.

Nevertheless, we would like to underline that the above computations should be interpreted with
caution, as the maximal dependence case is very specific and cannot possibly give an accurate idea
of the behavior of the different procedures when the correlation between thep-values are strong
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but not equal to 1 . For instance, it is well-known that the LSU procedurehas FDR far belowα
for strong positive correlations, but its FDR is equal toα in the above extreme model (see Finner
et al., 2007, for a comprehensive study of the LSU under positive dependence). Conversely, the
FDR of some adaptive procedures can be higher under moderate dependence than under maximal
dependence. This behavior appears in the simulations of the next section,illustrating the complexity
of the issue.

3.4 Simulation Study

How can we compare the different adaptive procedures defined above? For a fixedλ, it holds
pointwise thatG1 ≥ G4 ≥ G3 , which shows that the adaptive procedure [Storey-λ] is always less
conservative than [BR-2S-λ], itself less conservative than [BKY06-λ] (except in the marginal cases
where the one-stage adaptive procedure is more conservative than thestandard step-up procedure,
as delineated earlier for example in Lemma 10). It would therefore appear that one should always
choose [Storey-λ] and disregard the other ones. However, an important point made by Benjamini
et al. (2006) for introducingG3 as a better alternative to the (already known earlier)G1 is that, on
simulations with positively dependent test statistics, the plug-in procedure using G1 with λ = 1/2
had very poor control of the FDR, while the FDR was still controlled for the plug-in procedure
based onG3. While the positively dependent case is not covered by the theory, it is ofcourse very
important to ensure that a multiple testing procedure is sufficiently robust in practice so that the
FDR does not vary too much in this situation.

In order to assess the quality of our new procedures, we compare herethe different methods
on a simulation study following the setting used by Benjamini et al. (2006). LetXi = µi + εi , for
i,1 ≤ i ≤ m, whereε is a R

m-valued centred Gaussian random vector such thatE(ε2
i ) = 1 and

for i 6= j, E(εiε j) = ρ, whereρ ∈ [0,1] is a correlation parameter. Thus, whenρ = 0 the Xi ’s
are independent, whereas whenρ > 0 theXi ’s are positively correlated (with a constant pairwise
correlation). For instance, theεi ’s can be constructed by takingεi :=

√ρ U +
√

1−ρ Zi , whereZi ,
1≤ i ≤ mandU are all i.i.d∼N (0,1).

Considering the one-sided null hypotheseshi : “µi ≤ 0” against the alternatives “µi > 0” for
1 ≤ i ≤ m, we define thep-valuespi = Φ(Xi), for 1≤ i ≤ m, whereΦ is the standard Gaussian
distribution tail. We choose a common mean ¯µ for all false hypotheses, that is, fori,1 ≤ i ≤ m0,
µi = 0 and fori,m0+1≤ i ≤m, µi = µ̄ ; thep-values corresponding to the null means follow exactly
a uniform distribution.

Note that the caseρ = 1 andm= m0 (i.e.,π0 = 1) corresponds to the maximally dependent case
studied in Section 3.3.

We compare the following step-up multiple testing procedures: first, the one-stage step-up pro-
cedures defined in Section 3.1:

- [BR08-1S-α] The new procedure of Theorem 9, with parameterλ = α ,

- [FDR09-12] The procedure proposed in Finner et al. (2009) and described in Section 3.1.2,
with η = 1

2 .

Secondly, the adaptive plug-in step-up procedures defined in Section 3.2:

- [Median LSU] The procedure [Quant-k0
m ] with the choicek0

m = 1
2 ,

- [BKY06-α] The procedure [BKY06-λ] with the parameter choiceλ = α ,
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- [BR08-2S-α] The procedure [BR08-2S-λ] with the parameter choiceλ = α ,

- [Storey-λ] With the choicesλ = 1/2 andλ = α .

Finally, we used as oracle reference [LSU Oracle], the step-up procedure with the threshold collec-
tion ∆(i) = αi/m0, using “oracle” prior knowledge ofπ0.

The parameter choiceλ = α for [Storey-λ] comes from the relationship (delineated in Sec-
tion 3.1) ofG3,G4 to G1, and from the discussion of the maximally dependent case in Section 3.3.
Note that the procedure studied by Benjamini et al. (2006) is actually [BKY06-α/(1+ α)] in our
notation (up to a minor modification explained in Remark 14). Thefore, the procedure [BKY06-α]
used in our simulations is not srictly the same as in Benjamini et al. (2006), but itis very close.

The three most important parameters in the simulation are the correlation coefficient ρ, the
proportion of true null hypothesesπ0, and the alternative mean ¯µ which represents the signal-to-
noise ratio, or how easy it is to distinguish alternative hypotheses. We present in Figures 2, 3,
and 4 results of the simulations for one varying parameter (π0, µ̄ andρ, respectively), the others
being kept fixed. Reported are, for the different methods: the FDR, and the power relative to the
reference [LSU-Oracle]. Remember the absolute power is defined as themean proportion of false
null hypotheses that are correctly rejected; for each procedure the relative power is the ratio of its
absolute power to that of [LSU-Oracle]. Each point is estimated by an average of 105 simulations,
with fixed parametersm= 100 andα = 5% .

3.4.1 UNDER INDEPENDENCE(ρ = 0)

Remember that under independence of thep-values, the procedure [LSU] has a FDR equal toαπ0

and that the procedure [LSU Oracle] has a FDR equal toα (provided thatα ≤ π0). The other
procedures have their FDR upper bounded byα (in an asymptotical sense only for [FDR09-1

2]).
The situation where thep-values are independent corresponds to the first row of Figures 2 and

3 and the leftmost point of each graph in Figure 4. It appears that in the independent case, the
following procedures can be consistently ordered in terms of (relative) power over the range of
parameters studied here:

[Storey-12] ≻ [Storey-α] ≻ [BR08-2S-α] ≻ [BKY06-α],

the symbol “≻” meaning “is (uniformly over our experiments) more powerful than”.
Next, the procedures [median-LSU] and [FDR09-1

2] appear both consistently less powerful than
[Storey-12], and [FDR09-12] is additionally also consistently less powerful than [Storey-α]. Their re-
lation to the remaining procedures depends on the parameters; both [median-LSU] and [FDR09-12]
appear to be more powerful than the remaining procedures whenπ0 > 1

2, and less efficient other-
wise. We note that [median-LSU] also appears to perform better when ¯µ is low (i.e., the alternative
hypotheses are harder to distinguish).

Concerning our one-stage procedure [BR08-1S-α], we note that it appears to be indistinguish-
able from its two-stage counterpart [BR08-2S-α] when π0 > 1

2 , and significantly less powerful
otherwise. This also corresponds to our expectations, since in the situationπ0 < 1

2 , there is a much
higher likelihood that more than 50% hypotheses are rejected, in which caseour one-stage threshold
family hits its “cap” at levelα (see, e.g., Fig. 1; a similar qualitative explanation applies to under-
stand the behavior of [FDR09-1

2]). This is precisely to improve on this situation that we introduced
the two-stage procedure, and we see that the latter does in fact improve substantially the one-stage
version in that specific region.

2853



BLANCHARD AND ROQUAIN

The fact that [Storey-12] is uniformly more powerful than the other procedures in the independent
case corroborates the simulations reported in Benjamini et al. (2006). Generally speaking, under
independence we obtain a less biased estimate forπ−1

0 when considering Storey’s estimator based on
a “high” threshold likeλ = 1

2 . Namely, higherp-values are less likely to be “contaminated” by false
null hypotheses; conversely, if we take a lower thresholdλ, there will be more false null hypotheses
included in the set ofp-values larger thanλ , leading to a pessimistic bias in the estimation ofπ−1

0 .
This qualitative reasoning is also consistent with the observed behavior of[median-LSU], since the
set ofp-values larger than the median is much more likely to be “contaminated” whenπ0 < 1

2 .

However, the problem with [Storey-1
2] is that the corresponding estimation ofπ−1

0 exhibits much
more variability than its competitors when there is a substantial correlation between thep-values. As
a consequence it is a very fragile procedure. This phenomenon was already pinpointed in Benjamini
et al. (2006) and we study it next.

3.4.2 UNDER POSITIVE DEPENDENCE(ρ > 0)

Under positive dependence, remember that it is known theoretically from Benjamini and Yekutieli
(2001) that the FDR of the procedure [LSU] (resp. [LSU Oracle]) is still bounded byαπ0 (resp.α),
but without equality in general. However, we do not know from a theoretical point of view if the
adaptive procedures have their FDR upper bounded byα. In fact, it was pointed out by Farcomeni
(2007), in another work reporting simulations on adaptive procedures,that one crucial point to this
respect seems to be the variability of estimate ofπ−1

0 . Estimates of this quantity that are not robust
with respect to positive dependence will result in failures for the corresponding multiple testing
procedure.

The situation where thep-values are positively dependent corresponds to the second and third
rows (ρ = 0.2,0.5 , respectively) of Figures 2 and 3 and to all the graphs of Figure 4 (except the
leftmost points corresponding toρ = 0).

The most striking fact is that [Storey-1
2] does not control the FDR at the desired level any longer

under positive dependence, and can even be off by quite a large factor. This is in accordance with
the experimental findings of Benjamini et al. (2006). Therefore, although this procedure was the
favorite in the independent case, it turns out to be not robust, which is very undesirable for practical
use where it is generally impossible to guarantee that thep-values are independent. The procedure
[median-LSU] appears to have higher power than the remaining ones in the situations studied in
Figure 3, especially with a low signal-to-noise ratio. Unfortunately, other situations appearing in
Figures 2 and 4 show that [median-LSU] can exhibit a poor FDR control insome parameter regions,
most notably whenπ0 is close to 1 and positive dependence is present (see, e.g., Figure 4, bottom
row). In a majority of practical situations, this is an important drawback sinceit is difficult to rule
out a priori thatπ0 is close to 1 (i.e., there is only a small proportion of false hypotheses), or that
dependence is present. Additionally, from the inspection of the behavior of the power of [median-
LSU] in Figures 2 and 4, it appears that the parameter settingπ0 = 0.5 (which is the fixed value
used in Figure 3) is actually noticeably the most favorable for [median-LSU]under dependence.
For other values ofπ0, this procedure is often clearly outperformed in terms of power, in particular
by [Storey-α] and [BR-2S-α]. (At this point we have no satisfying explanation to this peculiar “peak
of power” atπ0 = 0.5 observed specifically for the [median-LSU] procedure under dependence.) For
all of these reasons, our conclusion is that [median-LSU] is also not robust enough in general to be
reliable.
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Figure 2: FDR and power relative to oracle as a function of the true proportion π0 of null hypothe-
ses . Target FDR isα = 5% , total number of hypothesesm= 100 . The mean for the al-
ternatives is ¯µ= 3. From top to bottom: pairwise correlation coefficientρ ∈ {0,0.2,0.5}.
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Figure 3: FDR and power relative to oracle as a function of the common alternative hypothesis
meanµ̄ . Target FDR isα = 5% , total number of hypothesesm= 100 . The proportion
of true null hypotheses isπ0 = 0.5. From top to bottom: pairwise correlation coefficient
ρ ∈ {0,0.2,0.5}.
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Figure 4: FDR and power relative to oracle as a function of the pairwise correlation coefficient
ρ .Target FDR isα = 5% , total number of hypothesesm= 100 . The mean for the alterna-
tives isµ̄= 3. From top to bottom: proportion of true null hypothesesπ0 ∈ {0.2,0.5,0.8}.
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The other remaining procedures seem to exhibit a robust control of the FDR under dependence,
or at least their FDR appears to be very close to the target level (exceptfor [FDR09-12] whenρ and
π0 are close to 1). For these procedures, it seems that the qualitative conclusions concerning power
comparison found in the independent case remain true. To sum up:

• the best overall procedure seems to be [Storey-α]: its FDR seems to be under or only slightly
over the target level in all situations, and it exhibits globally a power superior to other proce-
dures.

• then come in order of power, our two-stage procedure [BR08-2S-α], then [BKY06-α].

• like in the dependent case, [FDR09-1
2] ranks second whenπ0 > 1

2 but tends to perform no-
ticeably poorer ifπ0 gets smaller. Its FDR is also not controlled if very strong correlations
are present.

The overall conclusion we draw from these experiments is that for practical use, we recom-
mend in priority [Storey-α], then as close seconds [BR08-2S-α] or [FDR09-12] (the latter when it
is expected thatπ0 > 1/2 , and that there are no very strong correlations present). The procedu-
dre [BKY06-α] is also competitive but appears to be in most cases noticeably outperformedby the
above ones. These procedures all exhibit good robustness to dependence for FDR control as well as
comparatively good power. The fact that [Storey-α] performs so well and seems to hold the favorite
position has up to our knowledge not been reported before (it was not included in the simulations of
Benjamini et al., 2006) and came somewhat as a surprise to us.

Remark 18 As pointed out earlier, the fact that [FDR09-1
2] performs sub-optimally forπ0 < 1

2
appears to be strongly linked to the choice of parameterη = 1

2 . Namely, the implicit estimator of
π−1

0 in the procedure is capped atη (see Remark 15). Choosing a higher value forη will reduce
the sub-optimality region but increase the variability of the estimate and thus decrease the overall
robustness of the procedure (if dependence is present; and also under independence if only a small
number m of hypotheses are tested, as for this procedure the convergence of the FDR towards its
asymptotically controlled value becomes slower asη grows towards 1).

Remark 19 Another two-stage adaptive procedure was introduced in Sarkar (2008a), which is
very similar to a plug-in procedure using [Storey-λ]. In fact, in the experiments presented in Sarkar
(2008a), the two procedures are almost equivalent, corresponding toλ = 0.995. We decided not to
include this additional procedure in our simulations to avoid overloading the plots. Qualitatively,
we observed that the procedures of Sarkar (2008a) or [Storey-0.995] are very similar in behavior
to [Storey-12]: very performant in the independent case but very fragile with respect to deviations
from independence.

Remark 20 One could formulate the concern that the observed FDR control for [Storey-α] could
possibly fail with other parameters settings, for example whenπ0 and/or ρ are close to one. We
performed additional simulations to this respect (a more detailed report is available on the authors’
web pages), which we summarize briefly here. We considered the following cases:π0 = 0.95 and
varyingρ ∈ [0,1] ; ρ = 0.95and varyingπ0 ∈ [0,1] ; finally (π0,ρ) varying both in[0.8,1]2 , using a
finer discretization grid to cover this region in more detail. In all the above cases Storey-α still had
its FDR very close to (or below)α. Note also that the caseρ ≃ 1 andπ0 ≃ 1 is in accordance with

2858



ADAPTIVE FDR CONTROL UNDER INDEPENDENCE ANDDEPENDENCE

the result of Section 3.3, stating thatFDR(Storey-α) = α whenρ = 1 andπ0 = 1 . Finally, we also
performed additional experiments for different choices of the number ofhypotheses to test (m= 20
and m= 104) and different choices of the target level (α = 10%,1%). In all of these cases were the
results qualitatively in accordance with the ones already presented here.

4. New Adaptive Procedures with Provable FDR Control under Arbitrary
Dependence

In this section, we consider from a theoretical point of view the problem ofconstructing multiple
testing procedures that are adaptive toπ0 under arbitrary dependence conditions of thep-values. The
derivation of adaptive procedures that have provably controlled FDRunder dependence appears to
have been only studied scarcely (see Sarkar, 2008a, and Farcomeni,2007). Here, we propose to
use a two-stage procedure where the first stage is a multiple testing with either controlled FWER or
controlled FDR. The first option is relatively straightfoward and is intended as a reference. In the
second case, we use Markov’s inequality to estimateπ−1

0 . Since Markov’s inequality is general but
not extremely precise, the resulting procedures are obviously quite conservative and are arguably
of a limited practical interest. However, we will show that they still provide an improvement, in a
certain regime, with respect to the (non-adaptive) LSU procedure in the PRDS case and with respect
to the family of (non-adaptive) procedures proposed in Theorem 7 in thearbitrary dependence case.

For the purposes of this section, we first recall the formal definition for PRDS dependence of
Benjamini and Yekutieli (2001):

Definition 21 (PRDS condition) Remember that a set D⊂ [0,1]H is said to be nondecreasing if
for all x,y ∈ [0,1]H , if x ≤ y coordinate-wise, x∈ D implies y∈ D. Then, the p-value familyp =
(ph,h ∈ H ) is said to be positively regression dependent on each one fromH0 (PRDS onH0 in
short) if for any nondecreasing measurable set D⊂ [0,1]H and for all h∈ H0, the function u∈
[0,1] 7→ P [p ∈ D | ph = u] is nondecreasing.

On the one hand, it was proved by Benjamini and Yekutieli (2001) that the LSU still has controlled
FDR at levelπ0α (i.e., Theorem 6 still holds) under the PRDS assumption. On the other hand, under
totally arbitrary dependence this result does not hold, and Theorem 7 provides a family of threshold
collection resulting in controlled FDR at the same level in this case.

Our first result concerns a two-stage procedure where the first stage R0 is any multiple testing
procedure with controlled FWER, and where we (over-) estimatem0 via the straightforward estima-
tor (m−|R0|) . This should be considered as a form of baseline reference for this type of two-stage
procedure.

Theorem 22 Let R0 be a nonincreasing multiple testing procedure and assume that its FWER is
controlled at levelα0 , that is,P [R0∩H0 6= /0] ≤ α0 . Then the adaptive step-up procedure R with
data-dependent threshold collection∆(i) = α1(m−|R0|)−1β(i) has FDR controlled at levelα0+α1

in either of the following dependence situations:

• the p-value family(ph,h∈H ) is PRDS onH0 and the shape function is the identity function.

• the p-values have unspecified dependence andβ is a shape function of the form (3).

Here it is clear that the price for adaptivity is a certain loss in FDR control for being able to use the
information of the first stage. If we chooseα0 = α1 = α/2 , then this procedure will outperform its
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non-adaptive counterpart (using the same shape function) only if thereare more than 50% rejected
hypotheses in the first stage. Only if it is expected that this situation will occurdoes it make sense
to employ this procedure, since it will otherwise perform worse than the non-adaptive procedure.

Our second result is a two-stage procedure where the first stage has controlled FDR. First intro-
duce, for a fixed constantκ ≥ 2 , the following function: forx∈ [0,1],

Fκ(x) =





1 if x≤ κ−1

2κ−1

1−
√

1−4(1−x)κ−1
otherwise

.

If R0 denotes the first stage, we propose usingFκ(|R0|/m) as an (under-)estimation ofπ−1
0 at the

second stage. We obtain the following result:

Theorem 23 Let β be a fixed shape function, andα0,α1 ∈ (0,1) such thatα0 ≤ α1. Denote by
R0 the step-up procedure with threshold collection∆0(i) = α0β(i)/m. Then the adaptive step-up
procedure R with data-dependent threshold collection∆1(i) = α1β(i)Fκ(|R0|/m)/m has FDR upper
bounded byα1 +κα0 in either of the following dependence situations:

• the p-value family(ph,h∈H ) is PRDS onH0 and the shape function is the identity function.

• the p-values have unspecified dependence andβ is a shape function of the form (3).

For instance, in the PRDS case, the procedureR of Theorem 23, used withκ = 2, α0 = α/4
andα1 = α/2, corresponds to the adaptive linear step-up procedure at levelα/2 with the following
estimator forπ−1

0 :
1

1−
√

(2|R0|/m−1)+

,

where|R0| is the number of rejections of the LSU procedure at levelα/4.
Whether in the PRDS or arbitrary dependence case, with the above choiceof parameters, we

note thatR is less conservative than the non-adaptive step-up procedure with threshold collection
∆(i) = αβ(i)/m if F2(|R0|/m) ≥ 2 or equivalently whenR0 rejects more thanF−1

2 (2) = 62,5% of
the null hypotheses. Conversely,R is more conservative otherwise, and we can lose up to a factor 2
in the threshold collection with respect to the standard one-stage version. Therefore, here again this
adaptive procedure is only useful in the cases where it is expected thata “large” proportion of null
hypotheses can easily be rejected. In particular, when we use Theorem23 under unspecified depen-
dence, it is relevant to choose the shape functionβ from a distributionν concentrated on the large
numbers of{1, . . . ,m}. Finally, note that it is not immediate to see if this procedure will improve on
the one of Theorem 22. Namely, with the above choice of parameters, procedure of Theorem 22 has
the advantage of using a better estimator ofπ−1

0 of the form(1−x)−1 ≥ (1−
√

(2x−1)+)−1 in the
second round (withx = |R0|/m coming from the first round), but it has the drawback to use a first
round controlling the FWER at levelα/2 which can be much more conservative than controlling
the FDR at levelα/4.

To explore this issue, we performed the two above procedures, in a favorable situation whereπ0

is small. Namely, we considered the simulation setting of Section 3.4 withρ = 0.1, m0 = 100 and
m= 1000 (henceπ0 = 10%) andα = 5% . The common value ¯µ of the positive means varies in the
range[0,5] . Larger values of ¯µ correspond to a very large proportion of hypotheses that are easy to
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reject, which favors the first stage of the two above procedures. A positively correlated family of
Gaussians satisfies the PRDS assumption (see Benjamini and Yekutieli, 2001), so that we use the
identity shape function (linear step-up), and compare our procedures against the standard LSU. For
the FWER-controlled first stage of Theorem 22, we chose a standard Holm procedure (see Holm,
1979), which is a step-down procedure with threshold collectiont(i) = αm/(m− i +1) . In Figure
5, we report the relative power to the oracle LSU, and the False Non-discovery Rate (FNR), which
is the converse of the FDR for type II errors, that is, the average of theratio of non-rejected false
hypotheses over the total number of non-rejected hypotheses. Since weare in a situation whereπ0

is small, the FNR might actually be a more relevant criterion than the raw power: inthis situation,
because of the small number of non-rejected hypotheses, two differentprocedures could have their
power very similar and close to 1, but noticeably different FNRs.

The conclusion is that there exists an (unfortunately relatively small) regionwhere the adaptive
procedures improve over the standard LSU in terms of power. In terms of FNR, the improvement
is more noticeable and over a larger region. Finally, our two-stage adaptive procedure of Theorem
23 appears to outperform consistently the baseline of Theorem 22. These results are still unsatis-
fying to the extent that the adaptive procedure improves over the non-adaptive one only in a region
limited to some quite particular cases, and underperforms otherwise. Nevertheless, this demon-
strates theoretically the possibility of provably adaptive procedures under dependence. Again, this
theme appears to have been theoretically studied in only a handful of previous works until now, and
improving significantly the theory in this setting is still an open challenge.

Remark 24 Some theoretical results for two-stage procedures under possible dependence using a
first stage with controlled FWER or controlled FDR appeared earlier (Farcomeni, 2007). However,
it appears that in this reference, it is implicitly assumed that the two stages areactually independent,
because the proof relies on a conditioning argument wherein FDR control for the second stage still
holds conditionally on the first stage output. This is the case for example if the two stages are
performed on separate families of p-values corresponding to a new independent observation. Here
we specifically wanted to take into account that we use the same collection of p-values for the two
stages, and therefore that the two stages cannot assumed to be independent. In this sense the result
of Theorem 22 is novel with respect to that of Farcomeni (2007).

Remark 25 The theoretical problem of adaptive procedures under arbitrary dependence was also
considered by Sarkar (2008a) using two-stage procedures. However, the procedures proposed there
were reported not to yield any significant improvement over non-adaptive procedures.

5. Conclusion and Discussion

We proposed several adaptive multiple testing procedures that provablycontrol the FDR under dif-
ferent hypotheses on the dependence of thep-values. Firstly, we introduced the one- and two-stage
proceduresBR-1SandBR-2Sand we proved their theoretical validity when thep-values are inde-
pendent. The procedureBR-2Sis less conservative in general (except in marginal situations) than the
adaptive procedure proposed by Benjamini et al. (2006). Extensivesimulations showed that these
new procedures appear to be robustly controlling the FDR even in a positive dependence situation,
which is a very desirable property in practice. This is an advantage with respect to the [Storey-12]
procedure, which is less conservative but breaks down under positive dependence. Moreover, our
simulations showed that the choice of parameterλ = α instead ofλ = 1/2 in the Storey procedure
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Figure 5: Relative power to oracle and false non-discovery rate (FNR)of the different procedures,
as a function of the common alternative hypothesis mean ¯µ . Parameters areα = 5% ,m=
1000 ,π0 = 10% ,ρ = 0.1 . “BR08-dep-Holm” corresponds to the procedure of Theorem
22 usingα1 = α0 = α/2 and Holm’s step-down for the first step, and “BR08-dep” to
the procedure of Theorem 23 withκ = 2, α0 = α/4 andα1 = α/2 . The shape function
β is the identity function. Each point is estimated by an average over 104 independent
repetitions.

resulted in a much more robust procedure under positive dependence,at the price of being slightly
more conservative. This fact is supported by a theoretical investigation of the maximally dependent
case. These properties do not appear to have been reported before, and put forward Storey-α as a
procedure of considerable practical interest.

Secondly, we presented what we think is among the first examples of adaptive multiple testing
procedures with provable FDR control in the PRDS case and under unspecified dependence. An
important difference with respect to earlier works on this topic is that the procedures we introduced
here are both theoretically founded and can be shown to improve over non-adaptive procedures in
certain (admittedly limited) circumstances. Although their interest at this point is mainly theoretical,
this shows in principle that adaptivity can improve performance in a theoretically rigorous way even
without the independence assumption.

The proofs of the results have been built upon the notion ofself-consistencyand other technical
tools introduced in a previous work (Blanchard and Roquain, 2008). Webelieve these tools allow
for a more unified approach than in the classical adaptive multiple testing literature, avoiding in
particular to deal explicitly with the reorderedp-values, which can be somewhat cumbersome.

Another advantage of this approach is that it can be extended in a relatively straightforward
manner to the case ofweighted FDR, that is, the quantity (2) where the cardinality measure|.| has
been replaced by a general measureW(R) = ∑h∈Rwh (with W(H ) = ∑h∈H wh = m). This allows
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in particular to recover results very similar to those of Benjamini and Heller (2007) and can also be
used to prove that a (generalized) Storey estimator can be used to controlthe weighted FDR. The
modifications needed to include this generalizations are relatively minor; we omitthe details here
and refer the reader to Blanchard and Roquain (2008) to see how the case of weighted FDR can be
handled using the same technical tools.

There remains a vast number of open issues concerning adaptive procedures. We first want to
underline once more that the theory for adaptive procedures under dependence is still underdevel-
oped. It might actually be too restrictive to look for procedures having theoretically controlled FDR
uniformly over arbitrary dependence situations such as what we studied inSection 4. An interesting
future theoretical direction could be to prove that some of the adaptive procedures showing good
robustness in our simulations actually have controlled FDR under some types of dependence, at
least when thep-values are in some sense not too far from being independent.

6. Proofs

This section collects proofs for all the stated results, following their order of appearance in the text.

6.1 Proofs for Section 3

The following proofs use the notationp0,h andp−h defined at the beginning of Section 3.2.

6.1.1 PROOF OFTHEOREM 9

Let R denote a nonincreasing self-consistent procedure with respect to∆ defined in (4). By defini-
tion, R satisfies

R⊂
{

h∈H | ph ≤ min

(
(1−λ)

α|R|
m−|R|+1

,λ
)}

.

Therefore, we have

FDR(R) = ∑
h∈H0

E

[
1{h∈ R(p)}

|R(p)|

]

≤ ∑
h∈H0

E




1
{

ph ≤ (1−λ) α|R(p)|
m−|R(p)|+1

}

|R(p)|




≤ ∑
h∈H0

E




1
{

ph ≤ (1−λ) α|R(p)|
m−|R(p0,h)|+1

}

|R(p)|




= ∑
h∈H0

E


E




1
{

ph ≤ (1−λ) α|R(p)|
m−|R(p0,h)|+1

}

|R(p)|

∣∣∣∣p−h






≤ (1−λ)α ∑
h∈H0

E

[
1

m−|R(p0,h)|+1

]
,

The second inequality above comes from|R(p)| ≤ |R(p0,h)|, which itself holds because|R| is
coordinate-wise nonincreasing in eachp-value. The last inequality is obtained with Lemma 27
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of Section 7 withU = ph, g(U) = |R(p−h,U)| andc = (1−λ)α
m−|R(p0,h)|+1, because the distribution ofph

conditionally onp−h is (by independence) identical to its marginal distribution, hence stochastically
lower bounded by a uniform variable on[0,1]; |R| is coordinate-wise nonincreasing; and because
p0,h depends only on thep-values ofp−h. Finally, since the threshold collection ofR is upper
bounded byλ, we get

(1−λ)E [m/(m−|R(p0,h)|+1)] ≤ EG1(p0,h),

whereG1 is the Storey estimator with parameterλ. We then useEG1(p0,h) ≤ π−1
0 (see proof of

Corollary 13) to conclude. �

6.1.2 PROOF OFLEMMA 10

DenoteG(t) = π0t +(1−π0)F(t) the c.d.f. of thep-values under the random effects mixture model.
Let us denote bŷtm the threshold of the LSU procedure. The proportion of rejected hypotheses from
the initial pool is then exactlŷGm(t̂m) , whereĜm is the empirical cdf of thep-values. It was proved
by Genovese and Wasserman (2002) under the random effects model, that asm tends to infinity
the LSU threshold̂tm converges in probability tot⋆, which is the largest pointt ∈ [0,1] such that
G(t) = α−1t . SinceĜm converges in probability uniformly toG , we deduce that the proportion
of rejected hypotheses converges toα−1t∗ in probability; hence, ift∗ > α2 , the probability that the
proportion of rejected hypotheses is less thatα+1/m converges to zero; and conversely converges
to 1 if t∗ < α2 .

The definition oft∗ and the expression forG in the Gaussian mean shift model imply the fol-
lowing relation whenevert∗ > 0 :

µ= Φ−1
(t⋆)−Φ−1

(
α−1−π0

1−π0
t⋆

)
.

It is easily seen that ifπ0 < (1+α)−1 , the quantityµ∗ in the statement of the lemma is well defined
and we havet∗ > α2 for µ> µ∗. This gives the first part of the result.

Conversely, ifπ0 > (1+ α)−1 we havet∗ = 0 , and if π0 < (1+ α)−1 but µ < µ∗ , we have
t∗ < α2 ; this leads to the second part of the result. �

6.1.3 PROOF OFTHEOREM 11

By definition of self-consistency, the procedureR satisfies

R⊂ {h∈H | ph ≤ α|R|G(p)/m}.

Therefore,

FDR(R) = ∑
h∈H0

E

[
1{h∈ R(p)}

|R(p)|

]
≤ ∑

h∈H0

E

[
1{ph ≤ α|R(p)|G(p)/m}

|R(p)|

]
.

SinceG is nonincreasing, we get:

FDR(R) ≤ ∑
h∈H0

E

[
1{ph ≤ α|R(p)|G(p0,h)/m}

|R(p)|

]

= ∑
h∈H0

E

[
E

[
1{ph ≤ α|R(p)|G(p0,h)/m}

|R(p)|

∣∣∣∣p−h

]]
≤ α

m ∑
h∈H0

EG(p0,h).
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The last step is obtained with Lemma 27 of Section 7 withU = ph, g(U) = |R(p−h,U)| andc =
αG(p0,h)/m, because the distribution ofph conditionally onp−h is (by independence) identical to its
marginal distribution, hence stochastically lower bounded by a uniform variable; |R| is coordinate-
wise nonincreasing; andp0,h depends only on thep-values ofp−h. �

6.1.4 PROOF OFCOROLLARY 12

AssumingH0 6= /0 without loss of generality, forh0 ∈ H0 we want to upper boundE [G(p0,h0)]
appearing in the bound of Theorem 11. Letp̃0,h0 denote the family ofp-valuesp0,h0 where allp-
valuesph , h∈H \H0 have been replaced by zero. SinceG is nonincreasing, we haveE [G(p0,h0)]≤
E [G(p̃0,h0)] . Now, for anyh ∈ H0 \ {h0} , denotep̃′

0,h0
the family p̃0,h0 , where the variableph

has been replaced byuh , an independent uniform variable on[0,1] . Since bothph and uh are
independent of the otherp-values,ph is stochastically lower bounded byuh andG is nonincreasing,
we have

E
[
G(p̃0,h0)

∣∣p−h
]
≤ E

[
G(p̃′

0,h0
)
∣∣p−h

]
,

hence also in unconditional expectation. Iterating this reasoning in succession for allh∈H0\{h0} ,
we have finally replacedp0,h0 by a family ofm0−1 independent uniform variables andm−m0 +1
zeros, while only increasing the expected value, so that (now using thatG is permutation invariant)

E [G(p0,h0)] ≤ Ep∼DU(m,m0−1) [G(p)] ,

which, combined with (6), entails the desired result. �

6.1.5 PROOF OFCOROLLARY 13

First, we prove that the sufficient condition of Theorem 11 holds for the nonincreasing estimatorsGi ,
i = 1,3,4. To that end, we reproduce here without major changes the arguments used by Benjamini
et al. (2006). The bound forG1 is obtained using Lemma 30 (see below) withk = m0 andq= 1−λ:
for all h∈H0,

E [G1(p0,h)] ≤ m(1−λ)E

[(
∑

h′∈H0\{h}
1{ph′ > λ}+1

)−1]
≤ π−1

0 .

The proof forG3 andG4 is deduced from the one ofG1 becauseG3 andG4 are smaller thanG1

pointwise.
Secondly, forG2 we use a somewhat more direct argument than Benjamini et al. (2006), namely

using Corollary 12 and proving thatγ(G2,m) ≤ 1. Takep ∼ DU(m,m0−1). On the one hand, if
k0 ≤ m−m0 +1, we havep(k0) = 0, and thereforeπ0G2(p) = π0m/(m−k0 +1) ≤ 1 pointwise. On
the other hand, ifk0 ≥ m−m0 +2, we havep(k0) = q(k0−m+m0−1), whereq(1) ≤ ... ≤ q(m0−1) are the
(m0−1) orderedp-values ofp corresponding to uniform variables. Thus,

π0E [G2(p)] = mπ0
1−E

[
q(k0−m+m0−1)

]

m−k0 +1
= mπ0

1− (k0−m+m0−1)/m0

m−k0 +1
= 1.

6.1.6 PROOF OFPROPOSITION17

Let us first consider adaptive one-stage procedures: for any step-up procedureRof threshold∆(i) =
αβ(i)/mwe easily derive that the probability thatR makes any rejection is

P [∃i | pi ≤ ∆(i)] = P [∃i | p1 ≤ ∆(i)] = P [p1 ≤ ∆(m)] = ∆(m),
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which is FDR(R) becausem0 = m. The results forBR-1S-λ andFDR09-η follow.
With the same reasoning, we find that for any plug-in adaptive linear step-up procedureR that

uses an estimatorG(p),
FDR(R) = P [p1 ≤ αG(p)] . (7)

Next, for the Storey plug-in procedure, we haveG1(p1, ..., p1) = (1−λ)m/(m1{p1 > λ}+ 1), so
that applying (7), we get

FDR(Storey-λ) = P [p1 ≤ αG1(p)]

= P [p1 ≤ λ, p1 ≤ α(1−λ)m]+P [p1 > λ, p1 ≤ α(1−λ)m/(m+1)]

= min

(
λ,α(1−λ)m

)
+

(
α(1−λ)m

m+1
−λ

)

+

.

For the quantile procedure, we have

P [p1 ≤ α(1− p1)m/(m−k0 +1)] = P [p1((1+α)m−k0 +1) ≤ αm] =
α

1+α− (k0−1)/m
.

For the BKY06 procedure, we simply remark that since the linear step-up procedure of levelλ
rejects all the hypotheses whenp1 ≤ λ and rejects no hypothesis otherwise, the estimatorG1 and
G3 are equal in this case. The proof forBR-2S-λ is similar. �

6.2 Proofs for Section 4

We begin with a technical lemma that will be useful for proving both Theorem 22 and 23. It is
related to techniques previously introduced by Blanchard and Roquain (2008).

Lemma 26 Assume R is a multiple testing procedure satisfying the self-consistency condition:

R⊂
{

h∈H | ph ≤ αG(p)β(|R|)/m
}

,

where G(p) is a data-dependent factor. Then the following inequality holds:

FDR(R) ≤ α+E

[ |R∩H0|
|R| 1{|R| > 0}1

{
G(p) > π−1

0

}]
, (8)

under either of the following conditions:

• the p-value family(ph,h ∈ H ) is PRDS onH0 , R is nonincreasing andβ is the identity
function.

• the p-values have unspecified dependence andβ is a shape function of the form (3).

Proof. We have

FDR(R) = E

[ |R∩H0|
|R| 1{|R| > 0}

]

= E

[ |R∩H0|
|R| 1{|R| > 0}1

{
G≤ π−1

0

}]
+E

[ |R∩H0|
|R| 1{|R| > 0}1

{
G > π−1

0

}]

≤ ∑
h∈H0

E

[
1{ph ≤ αβ(|R|)/m0}

|R|

]
+E

[ |R∩H0|
|R| 1{|R| > 0}1

{
G > π−1

0

}]
.

2866



ADAPTIVE FDR CONTROL UNDER INDEPENDENCE ANDDEPENDENCE

The desired conclusion will therefore hold if we establish that for anyh∈H0 , andc > 0 :

E

[
1{ph ≤ cβ(|R|)}

|R|

]
≤ c.

Under unspecified dependence, this is a direct consequence of Lemma 29 of Section 7 withU = ph

andV = β(|R|). For the PRDS case, we note that since|R(p)| is coordinate-wise nonincreasing in
eachp-value, for anyv > 0, D = {z ∈ [0,1]H | |R(z)| < v} is a measurable nondecreasing set, so
that the PRDS property implies thatu 7→ P [|R| < v | ph = u] is nondecreasing. This implies that
u 7→ P [|R| < v | ph ≤ u] by the following argument (see also Lehmann, 1966, cited by Benjamini
and Yekutieli, 2001, and Blanchard and Roquain, 2008): puttingγ = P [ph ≤ u | ph ≤ u′] ,

P
[
p ∈ D | ph ≤ u′

]
= E

[
P [p ∈ D | ph] | ph ≤ u′

]

= γE [P [p ∈ D | ph] | ph ≤ u]+ (1− γ)E
[
P [p ∈ D | ph] | u < ph ≤ u′

]

≥ E [P [p ∈ D | ph] | ph ≤ u] = P [p ∈ D | ph ≤ u] .

We can then apply Lemma 28 of Section 7 withU = ph andV = |R|. �

6.2.1 PROOF OFTHEOREM 22

By definition of a step-up procedure, the two-stage procedureR satisfies the assumption of Lemma
26 for G(p) = (1− |R0|

m )−1 , whereR0 is the first stage with FWER controlled at levelα0 . Further-
more, it is easy to check that|R| is nonincreasing as a function of eachp-value (since|R0| is). Then,
we can apply Lemma 26, and from inequality (8) we deduce

FDR(R) ≤ α1 +E

[ |R∩H0|
|R| 1

{
1− |R0|

m
< π0

}]

≤ α1 +P [R0∩H0 6= /0]

≤ α0 +α1 .

In the case whereR0 rejects all hypotheses, we assumed implicitly that the second stage also does.
�

6.2.2 PROOF OFTHEOREM 23

Assumeπ0 > 0 (otherwise the result is trivial). By definition of a step-up procedure, the two-stage
procedureR satisfies the assumption of Lemma 26 forG(p) = Fκ(|R0|/m) , whereR0 is the first
stage. Furthermore, it is easy to check that|R| is nonincreasing as a function of eachp-value (since
|R0| is). Then, we can apply Lemma 26, and from inequality (8) we deduce

FDR(R) ≤ α1 +E

[ |R∩H0|
|R| 1

{
Fκ(|R0|/m) > π−1

0

}]

≤ α1 +m0E

[
1
{

Fκ(|R0|/m) > π−1
0

}

|R0|

]
.

For the second inequality, we have used the two following facts:
(i) Fκ(|R0|/m) > π−1

0 implies |R0| > 0,
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(ii) because of the assumptionα0 ≤ α1 andFκ ≥ 1 , the output of the second step is necessarily
a set containing at least the output of the first step. Hence|R| ≥ |R0| .

Let us now concentrate on further bounding this second term. For this, first consider the gen-
eralized inverse ofFκ , F−1

κ (t) = inf {x | Fκ(x) > t} . SinceFκ is a nondecreasing left-continuous
function, we haveFκ(x) > t ⇔ x > F−1

κ (t) . Furthermore, the expression ofF−1
κ is given by:

∀t ∈ [1,+∞),F−1
κ (t) = κ−1t−2− t−1 +1 (providing in particular thatF−1

κ (π−1
0 ) > 1−π0). Hence

m0E

[
1
{

Fκ(|R0|/m) > π−1
0

}

|R0|

]
≤ m0E

[
1
{
|R0|/m> F−1

κ (π−1
0 )

}

|R0|

]

≤ π0

F−1
κ (π−1

0 )
P

[
|R0|/m≥ F−1

κ (π−1
0 )

]
. (9)

Now, by assumption, the FDR of the first stepR0 is controlled at levelπ0α0 , so that

π0α0 ≥ E

[ |R0∩H0|
|R0|

1{|R0| > 0}
]

≥ E

[ |R0|+m0−m
|R0|

1{|R0| > 0}
]

= E
[(

1+(π0−1)Z−1)1{Z > 0}
]
,

where we denoted byZ the random variable|R0|/m. Hence by Markov’s inequality, for allt >
1−π0,

P [Z ≥ t] ≤ P
[(

1+(π0−1)Z−1)1{Z > 0} ≥ 1+(π0−1)t−1] ≤ π0α0

1+(π0−1)t−1 ;

choosingt = F−1
κ (π−1

0 ) and using this into (9), we obtain

m0E

[
1
{

Fκ(|R0|/m) > π−1
0

}

|R0|

]
≤ α0

π2
0

F−1
κ (π−1

0 )−1+π0
.

If we want this last quantity to be less thanκα0 , this yields the conditionF−1
κ (π−1

0 ) ≥ κ−1π2
0 −

π0 + 1 , and this is true from the expression ofF−1
κ (note that this is how the formula forFκ was

determined in the first place). �

7. Probabilistic Lemmas

The three following lemmas have been established in a previous work (see Blanchard and Roquain,
2008, Lemma 3.2).

Lemma 27 Let g: [0,1] → (0,∞) be a nonincreasing function. Let U be a random variable which
is stochastically lower bounded by a uniform variable on[0,1], that is,∀u∈ [0,1], P [U ≤ u] ≤ u .
Then, for any constant c> 0, we have

E

[
1{U ≤ cg(U)}

g(U)

]
≤ c.
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Lemma 28 Let U,V be two nonnegative real variables. Assume the following:

1. U is stochastically lower bounded by a uniform variable on[0,1], that is, ∀u ∈ [0,1],
P [U ≤ u] ≤ u .

2. The conditional distribution of V given U≤ u is stochastically decreasing in u, that is,

∀v≥ 0, ∀0≤ u≤ u′ , P [V < v |U ≤ u] ≤ P
[
V < v |U ≤ u′

]
.

Then, for any constant c> 0, we have

E

[
1{U ≤ cV}

V

]
≤ c.

Lemma 29 Let U,V be two nonnegative real variables andβ be a function of the form (3). Assume
that U is stochastically lower bounded by a uniform variable on[0,1], that is,∀u∈ [0,1], P [U ≤ u]≤
u . Then, for any constant c> 0, we have

E

[
1{U ≤ cβ(V)}

V

]
≤ c.

The following lemma was stated by Benjamini et al. (2006). It is a major point whenwe estimate
π−1

0 in the independent case. The proof is left to the reader.

Lemma 30 For any k≥2, q∈ (0,1] , let Y be a binomial random variable with parameters(k−1,q);
then the following holds:

E[1/(1+Y)] ≤ 1/kq.
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