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Abstract
We address classification problems for which the training instances are governed by an input dis-
tribution that is allowed to differ arbitrarily from the test distribution—problems also referred to
as classification under covariate shift. We derive a solution that is purely discriminative: neither
training nor test distribution are modeled explicitly. Theproblem of learning under covariate shift
can be written as an integrated optimization problem. Instantiating the general optimization prob-
lem leads to a kernel logistic regression and an exponentialmodel classifier for covariate shift. The
optimization problem is convex under certain conditions; our findings also clarify the relationship
to the known kernel mean matching procedure. We report on experiments on problems of spam
filtering, text classification, and landmine detection.
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1. Introduction

Most machine learning algorithms are constructed under the assumption that the training data is
governed by the exact same distribution which the model will later be exposedto. In practice,
control over the data generation process is often less perfect. Trainingdata may be obtained under
laboratory conditions that cannot be expected after deployment of a system; spam filters may be
used by individuals whose distribution of inbound emails diverges from thedistribution reflected in
public training corpora; image processing systems may be deployed to foreign geographic regions
where vegetation and lighting conditions result in a distinct distribution of inputpatterns.

The case of distinct training and test distributions in a learning problem has been referred to
ascovariate shiftandsample selection bias—albeit the term sample selection bias actually refers
to a case in which each training instance is originally drawn from the test distribution, but is then
selected into the training sample with some probability, or discarded otherwise.

The covariate shift model and themissing at randomcase in the sample selection bias model
allow for differences between the training and test distribution of instances; the conditional distri-
bution of the class variable given the instance is constant over training andtest set.

In the covariate shiftproblem setting, a training sample is available in matrixXL with row
vectorsx1, . . . ,xm. This training sample is governed by an unknown distributionp(x|λ). Vectory
with elementsy1, . . . ,ym are the labels for training examples and are drawn according to an unknown
target conceptp(y|x). In addition, unlabeled test data becomes available in matrixXT with rows
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xm+1, . . . ,xm+n. The test data is governed by a different unknown distribution,p(x|θ). Training
and test distribution may differ arbitrarily, but there is only one unknown target conditional class
distributionp(y|x).

In discriminative learning tasks such as classification, the classifier’s goal is to produce the
correct output given the input. It is widely accepted that this is best performed by discriminative
learners that directly maximize a quality measure of the produced output. Model-based optimization
criteria such as the joint likelihood of input and output, by contrast, additionally assess how well
the classifier models the distribution of input values. This amounts to adding a term to the criterion
that is irrelevant for the task at hand.

We contribute a discriminative model for learning under different training and test distribu-
tions. The model directly characterizes the divergence between training and test distribution, with-
out the intermediate—intrinsically model-based—step of estimating training and testdistribution.
We formulate the search for all model parameters as an integrated optimization problem. This com-
plements the predominant procedure of first estimating the bias of the training sample, and then
learning the classifier on a weighted version of the training sample. We show that the integrated
optimization can be convex, depending on the model type; it is convex for theexponential model.
We derive a Newton gradient descent procedure, leading to a kernellogistic regression and an ex-
ponential model classifier for covariate shift.

After reviewing models for differing training and test distributions in Section 2, we introduce
our integrated model in Section 3. We derive primal and kernelized classifiers for differing training
and test distributions in Sections 4 and 5. In Section 6, we analyze the convexity of the integrated
optimization problem. Section 7 describes an approximation to the joint optimization problem and
Section 8 reveals a new interpretation of kernel mean matching and analyzesthe relationship to
our model. In Section 9 we discuss different tuning procedures for learning under covariate shift.
Section 10 provides empirical results and Section 11 concludes.

The discriminative model for the logistic loss is described in a prior conference publication
(Bickel et al., 2007). Our original results showed that the resulting optimization problem is not con-
vex. New findings (Section 6) show that the integrated optimization problem can in fact be convex
when the loss function is chosen appropriately. Section 7 describes a two-stage approximation that
allows to train virtually any type of classifier under covariate shift. The new Section 8 character-
izes the relation to kernel mean matching. New experiments include the exponential target model.
Section 10 uses an experimental setting that differs from the setting of Bickel et al. (2007) in the
parameter tuning process. In some cases, the new setting has improved the performance of baseline
methods.

2. Prior Work

If training and test distributions were known, then the loss on the test distribution could be mini-
mized by weighting the loss on the training distribution with an instance-specific factor. Proposi-
tion 1 (Shimodaira, 2000) illustrates that the scaling factor has to bep(x|θ)

p(x|λ) .

Proposition 1 The expected loss with respect toθ equals the expected loss with respect toλ with
weightsp(x|θ)

p(x|λ) for the loss incurred by eachx, provided that the support of p(x|θ) is contained in the
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support of p(x|λ):

E(x,y)∼θ[ℓ( f (x),y)] = E(x,y)∼λ

[

p(x|θ)

p(x|λ)
ℓ( f (x),y)

]

. (1)

After expanding the expected value into its integral
R

ℓ( f (x),y)p(x,y|θ)dθ, the joint distribution
p(x,y|λ) is decomposed intop(x|λ)p(y|x,λ). Sincep(y|x,λ) = p(y|x) = p(y|x,θ) is the global
conditional distribution of the class variable given the instance, Proposition1 follows. All instances
x with positivep(x|θ) are integrated over. Hence, Equation 1 holds as long as eachx with positive
p(x|θ) also has a positivep(x|λ); otherwise, the denominator vanishes. This shows that covariate
shift can only be compensated for as long as the training distribution coversthe entire support of the
test distribution. If a test instance had zero density under the training distribution, the test-to-training
density ratio which it would need to be scaled with would incur a zero denominator.

Both, p(x|θ) and p(x|λ) are unknown, butp(x|θ) is reflected inXT , as isp(x|λ) in XL. A
straightforward approach to compensating for covariate shift is to first obtain estimates ˆp(x|θ) and
p̂(x|λ) from the test and training data, respectively, using kernel density estimation (Shimodaira,
2000; Sugiyama and M̈uller, 2005). In a second step, the estimated density ratio is used to re-
sample the training instances, or to train with weighted examples.

This method decouples the problem. First, it estimates training and test distributions. This step
is intrinsically model-based and only loosely related to the ultimate goal of accurate classification.
In a subsequent step, the classifier is derived given fixed weights. Since the parameters of the final
classifier and the parameters that control the weights are not independent, this decomposition into
two optimization steps cannot generally find the optimal setting of thejoint parameter vector.

A line of work on learning under sample selection bias has meandered from the statistics and
econometrics community into machine learning (Heckman, 1979; Zadrozny, 2004). Sample selec-
tion bias relies on a model of the data generation process. Test instances are drawn underp(x|θ).
Training instances are drawn by first samplingx from the test distributionp(x|θ). A selector vari-
ableσ then decides whetherx is moved into the training set (σ = 1) or moved into the rejected set
(σ = −1). For instances in the training set (σ = 1) a label is drawn fromp(y|x), for the instances
in the rejected set the labels are unknown. A typical scenario for sample selection bias is credit
scoring. The labeled training sample consists of customers who where given a loan in the past and
the rejected sample are customers that asked for but where not given a loan. New customers asking
for a loan reflect the test distribution.

In themissing at randomcase, the selector variable is only dependent onx, but not ony; that
is, p(σ = 1|x,y,θ,λ) = p(σ = 1|x,θ,λ). The distribution of the selector variable then maps the test
onto the training distribution:

p(x|λ) ∝ p(x|θ)p(σ = 1|x,θ,λ).

Proposition 2 (Zadrozny, 2004; Bickel and Scheffer, 2007) says that minimizing the loss on in-
stances weighted byp(σ|x,θ,λ)−1 in fact minimizes the expected loss with respect toθ.

Proposition 2 The expected loss with respect toθ is proportional to the expected loss with respect
to λ with weights p(σ = 1|x,θ,λ)−1 for the loss incurred by eachx, provided that the support of
p(x|θ) is contained in the support of p(x|λ):

E(x,y)∼θ[ℓ( f (x),y)] ∝ E(x,y)∼λ

[

1
p(σ = 1|x,θ,λ)

ℓ( f (x),y)

]

.
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When the model is implemented,p(σ = 1|x,θ,λ) is learned by discriminating the training
against the rejected examples; in a second step the target model is learned by following Propo-
sition 2 and weighting training examples byp(σ|x,θ,λ)−1. No test examples drawn directly from
p(x|θ) are needed to train the model, only labeled selected and unlabeled rejected examples are
required. This is in contrast to the covariate shift model that requires samples drawn from the test
distribution, but no selection process is assumed and no rejected examples are needed. Covariate
shift models can be applied to learning under sample selection bias in the missing at random setting
by treating the selected examples as labeled sample and the union of selected (ignoring the labels)
and rejected examples as unlabeled sample.

Propensity scores (Rosenbaum and Rubin, 1983; Lunceford and Davidian, 2004) are applied in
settings related to sample selection bias; the training data is again assumed to be drawn from the test
distributionp(x|θ) followed by a selection process. The difference to the setting of sample selection
bias is that the selectedand the rejected examples are labeled. Weighting the selected examples
by the inverse of the propensity scorep(σ = 1|x,λ,θ)−1 and weighting the rejected examples by
p(σ =−1|x,λ,θ)−1 results in two unbiased samples with respect to the test distribution.

Propensity scoring can precede a variety of analysis steps. This can bethe training of a target
model on re-weighted data or just a statistical analysis of the two re-weightedsamples. A typical
application for propensity scores is the analysis of the success of a medical treatment. Patients are
selected to be given the treatment and some other patients are selected into the control group. If the
selector variable is not independent ofx (patients may be chosen for an experimental therapy only
if they meet specific requirements), the outcome (e.g., ratio of cured patients)of the two groups
cannot be compared directly, propensity scores have to be applied.

Maximum entropy density estimation under sample selection bias has been studiedby Dudik
et al. (2005). Bickel and Scheffer (2007) impose a Dirichlet processprior on several learning prob-
lems with related sample selection bias. Elkan (2001) and Japkowicz and Stephen (2002) investigate
the case of training data that is only biased with respect to the class ratio, this can be seen as sample
selection bias where the selection only depends ony.

Kernel mean matching (Huang et al., 2007) is a two-step method that first finds weights for the
training instances such that the first momentum of training and test sets—that is, their mean value—
matches in feature space. The subsequent training step uses these weights. Matching the means in
feature space is equivalent to matching all moments of the distributions if a universal kernel is used.
Huang et al. (2007) derive a quadratic program from Equation 2 that can be solved with standard
optimization tools.Φ(·) is a mapping into a feature space andB is a regularization parameter.

minα

∥

∥

1
m ∑m

i=1 αiΦ(xi)− 1
n ∑m+n

i=m+1 Φ(xi)
∥

∥

2 (2)

subject toαi ∈ [0,B] and
∣

∣

1
m ∑m

i=1 αi−1
∣

∣≤ ε

Cortes et al. (2008) theoretically analyze the error that gets introduced by estimating sample
selection bias from data. Their analysis covers the kernel mean matching procedure and a cluster-
based estimation technique.

KLIEP (Sugiyama et al., 2008) estimates resampling weights for the training examples by min-
imizing the Kullback-Leibler divergence between the test distribution and the weighted training
distribution. Tsuboi et al. (2008) derive an extension to KLIEP for large-scale applications and
reveal a close relationship to kernel mean matching.
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3. Integrated Model

Our goal is to find model parametersw for a probabilistic classification modelf (x) =
argmaxy p(y|x;w). The model should correctly predict labels of the test dataXT drawn fromp(x|θ).
A regular maximum a posterioriestimationw′ = argmaxw p(y|XL;w)p(w), would only use the
training data(y,XL) governed byp(x|λ). By ignoring the test data, this estimate will not generally
result in a model that predicts the missing labels of the test data with a minimum errorbecause the
training distributionp(x|λ) is different from the test distributionp(x|θ).

In the following we devise a probabilistic model that accounts for the difference between train-
ing and test distribution. Before we describe the model we define a joint data matrix X that is a
concatenation of the matricesXL andXT . The model is based on a binary selector variables: Given
an instance vectorx from the joint matrixX of all available instances, selector variables decides
whetherx is drawn into the test dataXT (s=−1) or into the training dataXL (s= 1) in which case
y is determined. The variables is governed by the distributionp(s|x;v). Parameterv characterizes
the discrepancy between the training and test distribution. Based on the model for s we can now
describe the generative process underlying our model:

1. Draw parameter vectorsv andw from prior distributionsp(v) andp(w);

2. For each rowx in matrix X draw binary variables from distributionp(s|x;v); accordingly,
the likelihood of the vector of all selector variabless is p(s|X;v) = ∏m+n

i=1 p(si |xi ;v);

3. For all selected training examples (all examplesxi with si = 1) draw vectory of all labels
from p(y|s,X;w,v).

This generative process corresponds to the following factorization of the joint probability of the
vector of labelsy, vector of selector variabless, and parameter vectorsv andw:

p(y,s,w,v|X) = p(y|s,X;w,v)p(s|X;v)p(w)p(v). (3)

3.1 Maximum A Posteriori Parameter Inference

For parameter inference we want to find parametersw that maximize the posterior probability given
all available data (Equation 4). The available data are the data matrixX, the label vectory, and
the selection vectors, that splits the data matrix into training and test data. Because the parameter
v is unknown and is not needed for the final classifier the best we can do isto integrate it out
(Equation 5).

w∗ = argmaxw p(w|y,s,X) (4)

= argmaxw

Z

p(w,v|y,s,X)dv. (5)

Integrating overv is computationally infeasible. In Equation 6, the integral is therefore approx-
imated by the single assignment of values to the parameters which maximizes the posterior—the
maximum a posteriori(MAP) estimator. In our case, the MAP estimator naturally assigns values to
all parameters,w andv.

(wMAP,vMAP) = argmaxw,v p(w,v|y,s,X) (6)

= argmaxw,v p(y,s,w,v|X) (7)

= argmaxw,v p(y|s,X;w,v)p(s|X;v)p(w)p(v). (8)
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Equation 7 follows from multiplication with a constantp(y,s|X) and from application of the chain
rule. Equation 8 applies the factorization from the generative process ofEquation 3.

The class-label posteriorp(y|x;wMAP) is conditionally independent ofvMAP givenwMAP. However,
wMAP andvMAP are dependent. Assigning a single MAP value to[w,v] instead of integrating over
v is a common approximation. However, sequential maximization ofp(s|X;v) over parameters
v followed by maximization ofp(y|s,X;w,v) over parametersw with fixed v would amount to
an additional degree of approximation and will not generally coincide with themaximum of the
product in Equation 8. Such a sequential maximization corresponds to the predominant two-step
procedure for learning under covariate shift.

In the next sections we will discuss the likelihood functionsp(y|s,X;w,v) andp(s|X;v) and the
optimization problem for parameter inference based on maximization of Equation8.

3.2 Label Likelihood and Discriminative Weighting Factors

In order to define the label likelihood we first derive a discriminative expression forp(x|θ)
p(x|λ) which

will no longer include any density on instances. Whenp(s=−1) > 0, which is implied by the test
set not being empty, the definition ofsallows us to rewrite the test distribution asp(x|θ) = p(x|s=
−1,θ). Since test instances are only dependent on parameterθ but not on parameterλ, equation
p(x|s= −1,θ) = p(x|s= −1,θ,λ) follows. By an analogous argument,p(x|λ) = p(x|s= 1,θ,λ)
whenp(s= 1) > 0. This implies Equation 9.

In Equation 10, Bayes’ rule is applied twice; the two terms ofp(x|θ,λ) cancel each other out in
Equation 11. Sincep(s=−1|x,θ,λ) = 1− p(s= 1|x,θ,λ), Equation 12 follows.

The conditionalp(s= 1|x,θ,λ) discriminates training (s= 1) against test instances (s=−1).

p(x|θ)

p(x|λ)
= p(x|s=−1,θ,λ)

1
p(x|s= 1,θ,λ)

(9)

=
p(s=−1|x,θ,λ)p(x|θ,λ)

p(s=−1|θ,λ)

p(s= 1|θ,λ)

p(s= 1|x,θ,λ)p(x|θ,λ)
(10)

=
p(s= 1|θ,λ)

p(s=−1|θ,λ)

p(s=−1|x,θ,λ)

p(s= 1|x,θ,λ)
(11)

=
p(s= 1|θ,λ)

p(s=−1|θ,λ)

(

1
p(s= 1|x,θ,λ)

−1

)

. (12)

The significance of Equation 12 is that it shows how the optimal example weights, the test-to-
training ratio p(x|θ)

p(x|λ) , can be determined without knowledge of either training or test density. The
right hand side of Equation 12 can be evaluated based on a model that discriminates training against
test examples and outputs how much more likely an instance is to occur in the test data than it is
to occur in the training data. Instead of potentially high-dimensional densitiesp(x|θ) andp(x|λ), a
conditional distribution of the single binary variables needs to be modeled.

The expressionp(s|x,θ,λ) in Equation 12 corresponds to the parametric modelp(s|x;v) of
Equation 3. With this model we can predict test-to-training density ratios for thetraining data inXL

according to Equation 12.
Since our goal is discriminative training, the likelihood functionp(y|XL;w) (not taking training-

test differencev into account) would be∏i p(yi |xi ;w). By using this likelihoodp(y|XL;w) instead
of p(y|s,X;w,v), one would wrongly assume that the training dataXL was governed by the test
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distribution. Intuitively, p(x|θ)
p(x|λ) dictates how many times, on average,x should occur inXL if XL was

governed by the test distributionθ. When the individual conditional likelihood ofx is p(y|x;w),

then the likelihood ofp(x|θ)
p(x|λ) occurrences ofx is p(y|x;w)

p(x|θ)
p(x|λ) . Using a parametric modelp(s|x;v),

according to Equation 12 the test-to-training ratiop(x|θ)
p(x|λ) can be expressed as1

p(s= 1)

p(s=−1)

(

1
p(s= 1|x;v)

−1

)

.

Therefore, we define the likelihood function as2

p(y|s,X;w,v) =
m

∏
i=1

p(yi |xi ;w)
p(s=1)

p(s=−1)

(

1
p(si=1|xi ;v)−1

)

. (13)

As an immediate corollary of Manski and Lerman (1977), the likelihood functionof Equation 13
has the property that when the true valuev∗ is given, its maximizer overw is a consistent estimator
of the true parameterw∗ that has produced labels for the test data under the test distributionθ. That
is, as the sample grows, the maximizer of Equation 13 converges in probability tothe true valuew∗

of parameterw.
For the statistical analysis of case-control studies, Prentice and Pyke (1979) estimate the ratio

of two odds ratios with a discriminative model using a formula similar to Equation 12.This double
odds ratio is a statistical measure of the relative risk of an incidence (e.g., lung cancer) given a
specific exposure (e.g., cigarette smoking) based on data from a retrospective study.

3.3 Optimization Problem for Integrated Model

The likelihood function p(s|X;v) resolves to p(si = 1|xi ;v) for all training instances and
p(si =−1|xi ;v) for all test instances:

p(s|X;v) =
m

∏
i=1

p(si = 1|xi ;v)
m+n

∏
i=m+1

p(si =−1|xi ;v). (14)

Equation 15 summarizes Equations 6 to 8 and Equation 16 inserts the likelihood models (Equa-
tions 13 and 14).

p(w,v|y,s,X) ∝ p(y|s,X;w,v)p(s|X;v)p(w)p(v) (15)

=

(

m

∏
i=1

p(yi |xi ;w)
p(s=1)

p(s=−1)

(

1
p(si=1|xi ;v)−1

)

)

(16)

(

m

∏
i=1

p(si = 1|xi ;v)
m+n

∏
i=m+1

p(si =−1|xi ;v)

)

p(w)p(v).

Using a logistic model forp(s = 1|x;v), we notice that Equation 12 can be simplified as in
Equation 17.

p(s= 1)

p(s=−1)

(

1
1/(1+exp(−vTx))

−1

)

=
p(s= 1)

p(s=−1)
exp(−vTx). (17)

1. For a simplified presentation we drop the conditioning in the prior ratio, thatis, p(s|θ,λ) = p(s).

2. The variables in the prior ratio p(s=1)
p(s=−1)

does not need an indexi because at this point it is not conditioned onxi .
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Optimization Problem 1 is derived from Equation 16 in logarithmic form, using linear mod-
elsvTxi andwTxi and a logistic model forp(s= 1|x;v). Negative log-likelihoods are abbreviated
ℓw(yiwTxi) =− logp(yi |xi ;w) andℓv(sivTxi) =− logp(si |xi ;v), respectively; this notation empha-
sizes the duality between likelihoods and empirical loss functions. The regularization terms corre-
spond to Gaussian priors onv andw with variancesσ2

v andσ2
w.

Optimization Problem 1 Over allw andv, minimize

m

∑
i=1

p(s= 1)

p(s=−1)
exp(−vTxi)ℓw(yiwTxi)+

m+n

∑
i=1

ℓv(sivTxi)+
1

2σ2
w

wTw+
1

2σ2
v
vTv.

4. Primal Learning Algorithm

We derive a Newton gradient descent method that directly minimizes Optimization Problem 1 in the
attribute space. To this end, we need to derive the gradient and the Hessian of the objective function.
The update rule assumes the form of a set of linear equations that have to be solved for the update
vector[∆v,∆w]T. It depends on the current parameters[v,w]T, all combinations of training and test
data, and resulting coefficients. In order to express the update rule as asingle equation in matrix
form, we define

X =

[

XL XT 0
0 0 XL

]

,

whereXL andXT are the matrices of training vectors and test vectors, respectively.

Theorem 3 The update step for the Newton gradient descent minimization of Optimization Prob-
lem 1 is[v′,w′]T← [v,w]T +[∆v,∆w]T with

(XΛXT +S)

[

∆v

∆w

]

=−Xg−S
[

v
w

]

. (18)

The definitions of coefficientsΛ, S, andg—and the proof of the theorem—can be found in Ap-
pendix A.

Given the parameterw, a test instancex is classified asf (x;w) = sign(wTx).

5. Kernelized Learning Algorithm

We derive a kernelized version of the integrated classifier for differingtraining and test distributions.
A transformationΦ maps instances into a target space in which a kernel functionk(xi ,x j) calculates
the inner productΦ(xi)

TΦ(x j). The update rule (Equation 18) thus becomes

(Φ(X)ΛΦ(X)T +S)

[

∆v

∆w

]

= −Φ(X)g−S
[

v
w

]

. (19)

Φ(X) is defined by

Φ(X) =

[

Φ(XL) Φ(XT) 0
0 0 Φ(XL)

]

.
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According to the Representer Theorem, the optimal separator is a linear combination of exam-
ples. Parameter vectorsα andβ in the dual space weight the influence of all examples:

[

v
w

]

= Φ(X)

[

α

β

]

.

Equation 19 can therefore be rewritten as Equation 20. We now multiplyΦ(X)T from the
left to both sides and obtain Equation 21. We replace all resulting occurrences ofΦ(X)TΦ(X)
by the kernel matrixK and arrive at Equation 22;S is replaced byS′ such thatΦ(X)TSΦ(X) =
Φ(X)TΦ(X)S′, that is,S′i,i = σ−2

v for i = 1, . . . ,m+ n andS′m+n+i,m+n+i = σ−2
w for i = 1, . . . ,m.

Equation 22 is satisfied when Equation 23 is satisfied. Equation 23 is the updaterule for the dual
Newton gradient descent.

(Φ(X)ΛΦ(X)T +S)Φ(X)

[

∆α

∆β

]

= −Φ(X)g−SΦ(X)

[

α

β

]

, (20)

Φ(X)T(Φ(X)ΛΦ(X)T +S)Φ(X)

[

∆α

∆β

]

= −Φ(X)TΦ(X)g−Φ(X)TSΦ(X)

[

α

β

]

, (21)

(KΛK +KS′)
[

∆α

∆β

]

= −Kg−KS′
[

α

β

]

, (22)

(ΛK +S′)
[

∆α

∆β

]

= −g−S′
[

α

β

]

. (23)

Given the parameters, test instancex is classified byf (x;β) = sign(∑m
i=1 βik(x,xi)).

6. Convexity Analysis and Solving the Optimization Problems

The following theorem specifies sufficient conditions for convexity of Optimization Problem 1.
With this theorem we can easily check whether the integrated classifier for covariate shift is convex
for specific models of the negative log-likelihood functions. The negativelog-likelihood function
ℓw itself and its first and second derivatives are needed. Equations 31 and 32 in Appendix A define
shorthand notation which we will use in the following.

Theorem 4 Optimization Problem 1 is convex if the loss functionℓv is convex andℓw is log-convex
and non-negative. The log-convexity condition is equivalent to

ℓwℓ′′w− ℓ′2w ≥ 0. (24)

Proof Looking at Optimization Criterion 1 we immediately see that the regularizers are convex. If
ℓv is convex, the second term is convex as well. We therefore only need to analyze the convexity of
the term

m

∑
i=1

p(s= 1)

p(s=−1)
exp(−vTxi)ℓw(yiwTxi).

A sum is convex if the single summands are convex. And a sufficient condition for convexity of
a function is that it is non-negative and log-convex. The above expression is non-negative asℓw is
non-negative. This means we only need to check whether

log
p(s= 1)

p(s=−1)
−vTxi + logℓw,i
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is convex. The prior ratio is assumed to be constant. The second term is linear and therefore convex
and the third term is the log-convexity condition ofℓw. The second derivative of logℓw is

ℓ−1
w ℓ′′w + ℓ−2

w ℓ′2w ,

thus logℓw is convex ifℓwℓ′′w− ℓ′2w is non-negative.

In order to check Optimization Criterion 1 for convexity we need to choose models of the nega-
tive log-likelihoodℓv andℓw and derive their first and second derivatives. These derivations are also
needed to actually minimize Optimization Criterion 1 with the Newton update steps derived in the
last section.

We use a logistic modelℓv(sivTx) = log(1+ exp(−sivTx)); the abbreviations of Appendix A
can now be expanded:

ℓ′v,isixi j =− exp(−sivTxi)

1+exp(−sivTxi)
sixi j ; ℓ′′v,ixi j xik =

exp(−sivTxi)

(1+exp(−sivTxi))2xi j xik.

For the target classifier, we detail the derivations for logistic and for exponential models ofℓw.
For the logistic model the derivatives ofℓw are the same as forℓv, only v needs to be replaced by
w andsi by yi . For an exponential model withℓw(yiwTx) = exp(−yiwTx) the abbreviations are
expanded as follows:

ℓ′w,iyixi j =−exp(−yiwTxi)yixi j ; ℓ′′w,ixi j xik = exp(−yiwTxi)xi j xik.

Using Theorem 4 we can now easily check the convexity of the integrated classifier with logistic
model and with exponential model forℓw.

Corollary 5 With a logistic model forℓw, the condition of Equation 24 is violated and therefore
Optimization Problem 1 with logistic model forℓw may not convex in general.

Proof Inserting the logistic function into Equation 24 we get the following solution.

ℓw,iℓ
′′
w,i− ℓ′2w,i =

exp(−yiwTxi)

(1+exp(−yiwTx))2

(

log(1+exp(−yiwTx))−exp(−yiwTxi)
)

. (25)

The fraction in Equation 25 is always positive, the difference term is always negative which
violates the condition of Equation 24.

Empirically, we find that it is a good choice to select the parameters of a regular, iid logistic
regression classifier as starting point for the Newton gradient search.

One can easily show that the condition of Equation 24 is violated whenℓw is chosen as hinge
loss or quadratic loss.

Corollary 6 Optimization Problem 1 with exponential model forℓw is convex.

Proof The exponential loss is non-negative and its logarithm is linear and therefore convex.

This means the global optimum of Optimization Problem 1 with exponential model forℓw can
easily be found by Newton gradient descent.
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7. Two-Stage Approximation to Integrated Model

The previous sections describe a complete solution to the learning problem under covariate shift.
Optimization Problem 1 is convex for the exponential model; solving it using the efficient proce-
dures derived in Sections 4 and 5 produces a globally optimal solution.

For the logistic model, unfortunately, convexity cannot be guaranteed. Furthermore, the regu-
larized regression classifier is deeply embedded in Optimization Problem 1. Itwould not be easy to
replace it by a different type of classifier such as, for instance, a decision tree. We will now discuss
an approximation to Optimization Problem 1 which solves two consecutive optimization problems.
The first optimization problem produces example-specific weights; the second step generates a clas-
sifier from the weighted examples. Both optimization problems are convex for exponential, logistic,
and hinge loss as well as for many other loss functions. But most significantly, the two-stage ap-
proximation is conceptually simple: the second optimization step can be carried out by any learning
procedure that is able to scale the loss incurred by each example using prescribed weight factors.
Example-specific weights can easily be incorporated into virtually any learning method. Further-
more, as a result of the decomposition into two optimization problems parameter tuning becomes
much easier because cross-validation can be used (cf. Section 9).

The derivation in Section 3.1 approximates the integral overv by simultaneously selecting a pair
of values which maximize the posterior. This leads to the joint MAP hypothesis overv andw. In the
resulting optimization problem,v andw are free parameters. At a higher degree of approximation,
one may factorize the posterior (Equation 26) and at first approximate the integral overv by the
maximum ofp(v|y,s,X) (Equations 29 and 30). Subsequently, the posterior overw is maximized
given fixed parametersvMAP′ (Equations 27 and 28).

w∗ = argmaxw

Z

p(w,v|y,s,X)dv

= argmaxw

Z

p(w|y,s,X;v)p(v|y,s,X)dv (26)

≈ argmaxw p(w|y,s,X;vMAP′) (27)

= argmaxw p(y|s,X;w,vMAP′)p(w) (28)

with vMAP′ = argmaxv p(v|y,s,X) (29)

= argmaxv p(s|y,X;v)p(v). (30)

This results in two optimization problems. Only parameterv is free in the first stage (Optimization
Problem 2). The test-to-training ratio (Equation 17) can be derived fromthe resulting value ofv.

Optimization Problem 2 Overv, minimize

m+n

∑
i=1

ℓv(sivTxi)+
1

2σ2
v
vTv.

In the second stage (Optimization Problem 3), the target model parametersw are optimized with
constant parametersv and constant example weights. The parametersv are the result of Optimiza-
tion Problem 2.

Optimization Problem 3 Overw (v is constant), minimize
m

∑
i=1

p(s= 1)

p(s=−1)
exp(−vTxi)ℓw(yiwTxi)+

1
2σ2

w
wTw.
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The criterion of Optimization Problem 3 weights the lossℓw(yiwTxi) that each example incurs such
that the sample is matched to the test distribution. The last term1

2σ2
w
wTw is the regularizer of the

regression. Optimization Problem 3 can easily be adapted to virtually any type of classification
mechanism by inserting the appropriate loss functionℓw(yiwTxi) and regularizer. Operationally,
an arbitrary classification procedure is applied to a sample that is either resampled from the train-
ing data according to sampling distributionp(s=1)

p(s=−1) exp(−vTxi), or the classifier is applied to the

training data with the example-specific loss scaled according top(s=1)
p(s=−1) exp(−vTxi).

8. Relationship to Kernel Mean Matching

Huang et al. (2007) motivate the kernel mean matching algorithm as a procedure that minimizes the
distance between the means of unlabeled and weighted labeled data in featurespace. If the kernel
is universal this is equivalent to minimizing the difference of the distributions.We derive a new
interpretation for kernel mean matching that shows its relation to Optimization Problem 2 and the
above two-stage approximation.

Using a hinge loss forℓv(si(vTxi +b)) in Optimization Problem 2 and an explicit offset param-

eterb we obtain a regular support vector machine. The kernel matrix of this SVM is
[

K (LL) K (LT)

KT

(LT) K (TT)

]

and the target variables aresi ∈ {−1,1}. An SVM can heuristically be simplified by setting the dual
parametersαi for the unlabeled examples to a fixed valuem

n . This can be interpreted as a mixture
between an SVM and a Rocchio classifier. Theαi corresponding to the labeled examples (si = 1) are
trained with an SVM; settingαi of all unlabeled examples (si =−1) to m

n approximates the negative
class (the unlabeled examples) by their centroid in feature space in accordance with the Rocchio
classifier (Joachims, 1997).

The SVM optimization criterion with fixedαi = m
n for examples withsi =−1 is

min 1
2αT

L K (LL)αL− m
n αT

L K (LT)1+ 1
2

m2

n2 1K(TT)1−αT

L 1−nm
n

αL

subject toαi ∈
[

0,σ2
v

]

and∑m
i=1 αi = ∑n

i=1
m
n = m;

vectorαL denotes all elementsαi with i = 1, . . . ,m. We can drop the constant terms (αT

L 1 is constant
because of the second constraint) and arrive at Optimization Problem 4.

Optimization Problem 4

min 1
2αT

L K (LL)αL− m
n αT

L K (LT)1 subject toαi ∈
[

0,σ2
v

]

andαT

L 1 = m.
αL

This is the dual objective of kernel mean matching. The only difference is that Huang et al. (2007)
relax the second constraint up to a small constantε, their constraint ism(1− ε)≤ αT

L 1≤m(1+ ε).
Empirically we find that settingε to zero has no impact on the performance. The parameterσ2

v
corresponds to parameterB in Equation 2.

In order to solve the second stage (Optimization Problem 3), kernel mean matching does not use
re-weighting factorsp(s=1)

p(s=−1) exp(−vTxi−b) but directly uses the dualαi parameters as weights.
To sum up, kernel mean matching can be interpreted as a variant of Optimization Problem 2.

It discriminates training against test examples using a partially Rocchio-style approximation to the
SVM optimization criterion.
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9. Parameter Tuning

Optimization Problem 1 relies on hyper-parametersσ2
v andσ2

w that need to be tuned. For the two-
stage approximation of Section 7 and reference methods like kernel mean matching two similar
parameters need to be specified. In addition to the regularization parameterskernel parameters
need to be tuned for non-linear kernels. Parameter tuning for covariate shift models is much more
difficult than for regular prediction models because in the covariate shift setting there is no labeled
data available drawn from the test distribution. Parameter tuning by regular cross-validation on the
labeled training data is inappropriate because the labeled training data is not governed by the test
distribution.

In the following paragraphs we describe different tuning procedures; two procedures require
prior knowledge and one does not require prior knowledge on the hyper-parameters. The tuning
procedures with prior knowledge can be used for all described models.The one without prior
knowledge cannot be used for kernel mean matching and the one-stage model of Optimization
Problem 1.

A typical setting with prior knowledge on the hyper-parameters is when the difference between
training and test data is introduced by a covariate shift over time and the inputdistribution shifts
constantly over time. The most recent data is the unlabeled test data and the older data has been
labeled and is the training data. In this setting the parameters can be tuned by splitting the labeled
training data into two consecutive parts. The tuning models are learned on thepart with earlier
timestamps and the hyper-parametersσ2

v andσ2
w and kernel parameters are optimized on the part

with later timestamps.
Another setting with prior knowledge is when in addition to the pair of training andtest set an

additional pair of training and fully labeled test set from a different domainwith a similar magnitude
of covariate shift is available. This additional set can be used to tune the parameters. Due to
the similar magnitude of the covariate shift the optimal parameters for the additional domain are
assumed to be a good choice for the parameters of the target domain.

For some two-stage models for covariate shift there is no prior knowledge necessary to tune
hyper-parameters. Sugiyama et al. (2008) propose to tune the regularizer of the KLIEP model with
cross-validation. In this manner the first stage parameterσ2

v (and kernel parameters) of the two-stage
model of Section 7 can be tuned as follows. The training and the test data areboth split into training
and tuning folds and the hold-out likelihood of the tuning folds is optimized with grid search on
σ2

v (and kernel parameters). The hold-out likelihood measures the predictive performance of the
modelp(s|x;v) with respect to predicting the selector variablesof the hold out examples. Once the
regularizer of the first stage is tuned, the second stage parameterσ2

w (and kernel parameters) can
be tuned with cross-validation on weighted training data (Sugiyama and Müller, 2005). The data
of training folds as well as the data of tuning folds are weighted with the estimatedtraining-to-test
ratio.

Kernel mean matching does not provide out-of-sample predictions and it is therefore difficult
to tune the regularization parameterB with cross-validation. The one-stage model of Optimization
Problem 1 is also difficult to tune with cross-validation because there is a bidirectional influence
between the parametersσ2

v andσ2
w.

In order to compare the one-stage model and kernel mean matching to the othertwo-stage
models we use tuning procedures based on prior knowledge in the empiricalstudies in the next
section.
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10. Empirical Results

We study the benefit of two versions of the integrated classifier for covariate shift and other reference
methods on spam filtering, text classification, and landmine detection problems.The first integrated
classifier uses a logistic model forℓw (“integrated log model”), the second an exponential model for
ℓw (“integrated exp model”);ℓv is a logistic model in both cases.

The first baseline is a classifier trained underiid assumption with logisticℓw. All other reference
methods consist of a two-stage procedure: first, the difference between training and test distribution
is estimated, the classifier is trained on weighted data in a second step. The second method is
kernel mean matching (Huang et al., 2007); we setε =

√
m−1/

√
m as proposed by the authors. In

the third method, separate density estimates forp(x|λ) andp(x|θ) are obtained using kernel density
estimation (Shimodaira, 2000), the bandwidth of the kernel is chosen according to the rule-of-thumb
of Silverman (1986).

The last two reference methods rely on the two-stage approximation of Optimization Problems 2
and 3 with a logistic regression (“two-stage LR”) and an exponential model classifier (“two-stage
exp model”) as their second stages. The example weights are computed according to Equation 17
using a logistic model in the first stage,p(s= 1|x;v) is estimated by training a logistic regression
that discriminates training from test examples.

The baselines differ in the first stage, the second stage is based on a logistic regression classifier
with weighted examples in all cases but the two-stage exponential model baseline. We use a maxi-
mum likelihood estimate ofmn for p(s=1)

p(s=−1) . We use tuning procedures that rely on prior knowledge
(cf. Section 9). Short descriptions of the respective tuning data can befound below. For all experi-
ments we tune the regularization parameters of all methods (and the variance parameter of the RBF
kernels for the landmine experiments) by maximizing AUC on the tuning set.

We use the spam filtering data of Bickel et al. (2007); the collection contains nine different
inboxes with test emails (5270 to 10964 emails, depending on inbox) and one set of training emails
compiled from various different sources. We use a fixed set of 1000 emails as training data. We
randomly select between 32 and 2048 emails from one of the original inboxes. We repeat this
process 10 times for 2048 test emails and 20 to 640 times for 1024 to 32 test emails. As tuning data
we use the labeled emails from an additional inbox different from the test inboxes.

The performance measure is the rate by which the 1−AUC risk is reduced over theiid baseline
(Bickel and Scheffer, 2007); it is computed as 1− 1−AUC

1−AUCiid
. We use linear kernels for all methods.

We analyze the rank of the kernel matrix and find that it fulfills the universal kernel requirement of
kernel mean matching; this is due to the high-dimensionality of the data.

Figure 1 (top row) shows the results for various numbers of unlabeled examples. The left col-
umn of Figure 1 compares the integrated classifiers for covariate shift to thekernel mean matching
and kernel density estimation baselines. The right column compares the integrated classifiers (Op-
timization Problem 1) with the two-stage approximations (Optimization Problems 2 and 3). The
results for a specific number of unlabeled examples are averaged over 10 to 640 random test sam-
ples and averaged over all nine inboxes. Averaged over all users and inbox sizes the absolute AUC
of the iid classifier is 0.994. Error bars indicate standard errors of the 1−AUC risk.

The integrated and two-step logistic regression and exponential models andkernel mean match-
ing perform similarly well. The differences to theiid baseline are highly significant. For 1048
examples the 1−AUC risk is even reduced by an average of 30% with the integrated exponential
model classifier! The kernel density estimation procedure is not able to beat the iid baseline. The
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integrated log model
integrated exp model
iid baseline

kernel mean matching
kernel density estimation

two-stage LR
two-stage exp model

 0

 0.1

 0.2

 0.3

32 64 128 256 512 1024 2048

re
du

ct
io

n 
of

 1
-A

U
C

 r
is

k

test examples in user’s inbox

integrated models vs. reference methods
 spam filtering - average of nine users

 0

 0.1

 0.2

 0.3

32 64 128 256 512 1024 2048

re
du

ct
io

n 
of

 1
-A

U
C

 r
is

k

test examples in user’s inbox

integrated models vs. two-stage approx.
 spam filtering - average of nine users

 0

 0.1

32 64 128 256 512 1024

re
du

ct
io

n 
of

 1
-A

U
C

 r
is

k

number of test examples

integrated models vs. reference methods
 Cora before and after 1996

 0

 0.1

32 64 128 256 512 1024

re
du

ct
io

n 
of

 1
-A

U
C

 r
is

k

number of test examples

integrated models vs. two-stage approx.
 Cora before and after 1996

 0

 0.003

 0.006

32 64 128 256 512

in
cr

ea
se

 o
f A

U
C

number of test examples

integrated models vs. reference methods
 landmine detection

 0

 0.003

 0.006

32 64 128 256 512

in
cr

ea
se

 o
f A

U
C

number of test examples

integrated models vs. two-stage approx.
 landmine detection

Figure 1: Average reduction of 1−AUC risk over nine users for spam filtering (top row) and Cora
Machine Learning/Networkingclassification before and after 1996 (second row) and av-
erage increase of AUC for landmine detection over 812 pairs of mine fields (bottom row)
depending on the number of unlabeled test examples.
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convex integrated exponential model performs slightly better than its two-stage approximation; for
larger number of test examples (512 to 2048) this difference is statistically significant according
to a pairedt-test with significance level of 5%. For the logistic model, the two-stage optimization
performs similarly well as the integrated version.

We now study text classification using computer science papers from the Cora data set. The task
is to discriminate Machine Learning from Networking papers. We select 812papers written before
1996 from both classes as training examples and 1285 papers written after1996 as test examples.
For parameter tuning we apply an additional time split on the training data; we trainon the papers
written before 1995 and tune on papers written 1995 (cf. Section 9).

Title and abstract are transformed intotfidf vectors, the number of distinct words is about
40,000. We again use linear kernels (rank analysis verifies the universal kernel property) and aver-
age the results over 20 to 640 random test samples for different sizes (1024 for 20 samples to 32
for 640 samples) of test sets. The resulting 1−AUC risk is shown in Figure 1 (second row). The
average absolute AUC of theiid classifier is 0.998. The methods based on discriminative density es-
timates significantly outperform all other methods. Kernel mean matching is not displayed because
its average performance lies far below theiid baseline. The integrated models reduce the 1−AUC
risk by 15% for 1024 test examples.

In a third set of experiments we study the problem of detecting landmines usingthe data set
of Xue et al. (2007). The collection contains data of 29 mine fields in different regions. Binary
labels (landmine or safe ground) and nine dimensional feature vectors extracted from radar images
are provided. There are about 500 examples for each mine field. Each of the fields has a distinct
distribution of input patterns, varying from highly foliated to desert areas.

We enumerate all 29×28 pairs of mine fields, using one field as training and the other as test
data. For tuning we hold out 4 of the 812 pairs. Results are increases over theiid baseline, averaged
over all 29×28−4 combinations. We use RBF kernels with kernel width 0.3 for all methods. The
results are displayed in Figure 1 (bottom row). The average absolute AUCof the iid baseline is
0.64 with a standard deviation of 0.07; note, that the error bars are much smaller than the absolute
standard deviation because they indicate the standard error of thedifferencesto theiid baseline.

For this problem, the exponential model classifiers and kernel mean matchingsignificantly out-
perform all other methods on average. Considering only methods with logistictarget model, kernel
mean matching is better than all other methods. Integrated logistic regression and two-stage logistic
regression are still significantly better than theiid baseline except for 32 and 64 test examples. The
integrated classifiers are slightly better than the two-stage variants.

11. Conclusion

We derived a discriminative model for learning under differing training and test distributions. The
contribution of each training instance to the optimization problem ideally needs to be weighted with
its test-to-training density ratio. We show that this ratio can be expressed—without modeling either
training or test density—by a discriminative model that characterizes how much more likely an
instance is to occur in the test sample than it is to occur in the training sample.

We described a generative model whose parameters can be estimated with a joint MAP hypoth-
esis of both the parameters of the test-to-training model and the final classifier. Optimizing these
dependent parameters sequentially incurs an additional approximation compared to solving the joint
optimization problem. We derived a primal and a kernelized Newton gradient descent procedure for
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the joint optimization problem. Theorem 4 specifies the condition for the convexity of Optimiza-
tion Problem 1. Checking the condition using popular loss functions as modelsof the negative
log-likelihoods reveals that Optimization Problem 1 is convex with exponential loss.

We gave a new interpretation for kernel mean matching and show that it is alsobased on a
discriminative model similar to Optimization Problem 2.

Empirically, we found that the integrated and the two-stage models as well as kernel mean
matching outperform theiid baseline and the kernel density estimation model in almost all cases.
In some cases, the integrated models perform slightly better than their two-stage counterparts. The
performance of kernel mean matching depends on the problem; for one out of three problems it did
not beat theiid baseline, for the others it yielded comparable results to the integrated models.

The two-stage model is conceptually simpler than the integrated model, and may in some cases
have the greatest practical utility. The main advantage compared to the integrated model is that regu-
larization parameters can be tuned without prior knowledge by cross-validation. Another advantage
of the two-stage model is that in the second stage, after the example-specificweights have been
derived, virtually any learning mechanism can be employed to produce the final classifier from the
weighted training sample. This comes at the cost of only a marginal loss of performance compared
to the integrated model.
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Appendix A. Newton Gradient Descent—Proof of Theorem 3

In this Appendix, we derive Newton gradient descent updates for Optimization Problem 1 and
thereby prove Theorem 3. We abbreviate

ℓv,i =ℓv(sivTxi); ℓ′v,isixi j =
∂ℓv(sivTxi)

∂v j
; ℓ′′v,ixi j xik =

∂2ℓv(sivTxi)

∂v jvk
; (31)

ℓw,i =ℓw(yiwTxi); ℓ′w,iyixi j =
∂ℓw(yiwTxi)

∂w j
; ℓ′′w,ixi j xik =

∂2ℓw(yiwTxi)

∂w jwk
; (32)

ωi =
p(s= 1)

p(s=−1)
exp(−vTxi)

and denote the objective function of Optimization Problem 1 by

F(v,w) =
m

∑
i=1

ωiℓw,i +
m+n

∑
i=1

ℓv,i +
1

2σ2
w

wTw+
1

2σ2
v
vTv.
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We compute the gradient with respect tov andw.

∂F(v,w)

∂v j
= −

m

∑
i=1

ωiℓw,ixi j +
m+n

∑
i=1

ℓ′v,isixi j +
1

σ2
v
v j

∂F(v,w)

∂w j
=

m

∑
i=1

ωiℓ
′
w,iyixi j +

1
σ2

w
w j .

The Hessian is the matrix of second derivatives.

∂2F(v,w)

∂v j∂vk
=

m

∑
i=1

ωiℓw,ixi j xik +
m+n

∑
i=1

ℓ′′v,ixi j xik +
1

σ2
v

δ jk

∂2F(v,w)

∂v j∂wk
= −

m

∑
i=1

ωiℓ
′
w,iyixi j xik

∂2F(v,w)

∂w j∂wk
=

m

∑
i=1

ωiℓ
′′
w,ixi j xik +

1
σ2

w
δ jk.

We can rewrite the gradient asXg+S
[

v
w

]

and the Hessian asXΛXT +Susing the following defini-

tions, whered is the dimensionality ofXT andXL.

gi =−ωiℓw,i + ℓ′v,i for i = 1, . . . ,m;

gm+i =−ℓ′v,m+i for i = 1, . . . ,n;

gm+n+i = ωiℓ
′
w,iyi for i = 1, . . . ,m;

Si,i = σ−2
v for i = 1, . . . ,d;

Sd+i,d+i = σ−2
w for i = 1, . . . ,d;

Λ =













diag
i=1,...,m

(

ωiℓw,i + ℓ′′v,i

)

0 − diag
i=1,...,m

(ωiℓ
′
w,iyi)

0 diag
i=1,...,n

(

ℓ′′v,m+i

)

0

− diag
i=1,...,m

(ωiℓ
′
w,iyi) 0 diag

i=1,...,m
(ωiℓ

′′
w,i)













.

The update step for the Newton gradient descent minimization of Optimization Problem 1 is[v′,w′]T←
[v,w]T +[∆v,∆w]T with

(XΛXT +S)

[

∆v

∆w

]

=−Xg−S
[

v
w

]

.
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