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Abstract

We address classification problems for which the trainirsfiginces are governed by an input dis-
tribution that is allowed to differ arbitrarily from the tiedistribution—problems also referred to
as classification under covariate shift. We derive a sahuti@t is purely discriminative: neither
training nor test distribution are modeled explicitly. Tir@blem of learning under covariate shift
can be written as an integrated optimization problem. htgting the general optimization prob-
lem leads to a kernel logistic regression and an exponanbdekl classifier for covariate shift. The
optimization problem is convex under certain conditions; findings also clarify the relationship
to the known kernel mean matching procedure. We report oprérpnts on problems of spam
filtering, text classification, and landmine detection.

Keywords: covariate shift, discriminative learning, transfer léagn

1. Introduction

Most machine learning algorithms are constructed under the assumptiondhaitting data is
governed by the exact same distribution which the model will later be exposeth practice,
control over the data generation process is often less perfect. Tralatagnay be obtained under
laboratory conditions that cannot be expected after deployment oftensyspam filters may be
used by individuals whose distribution of inbound emails diverges frondigtabution reflected in
public training corpora; image processing systems may be deployed torfaredgraphic regions
where vegetation and lighting conditions result in a distinct distribution of ipptterns.

The case of distinct training and test distributions in a learning problem ders teferred to
ascovariate shiftandsample selection biasalbeit the term sample selection bias actually refers
to a case in which each training instance is originally drawn from the test distnit) but is then
selected into the training sample with some probability, or discarded otherwise.

The covariate shift model and tmissing at randontase in the sample selection bias model
allow for differences between the training and test distribution of instaricesconditional distri-
bution of the class variable given the instance is constant over traininggsinget.

In the covariate shiftproblem setting, a training sample is available in maXix with row
vectorsxi, ..., Xm. This training sample is governed by an unknown distribupéxiA). Vectory
with elementys, ..., ym are the labels for training examples and are drawn according to an unknow
target concepp(y|x). In addition, unlabeled test data becomes available in m&trixvith rows
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Xm+1,---,Xmen. The test data is governed by a different unknown distributf®|8). Training
and test distribution may differ arbitrarily, but there is only one unknowgetaconditional class
distributionp(y|x).

In discriminative learning tasks such as classification, the classifiersigaa produce the
correct output given the input. It is widely accepted that this is besbpagd by discriminative
learners that directly maximize a quality measure of the produced output.lidased optimization
criteria such as the joint likelihood of input and output, by contrast, additioaasess how well
the classifier models the distribution of input values. This amounts to addintadehe criterion
that is irrelevant for the task at hand.

We contribute a discriminative model for learning under different trainind st distribu-
tions. The model directly characterizes the divergence between traimihtgst distribution, with-
out the intermediate—intrinsically model-based—step of estimating training andisé#bution.
We formulate the search for all model parameters as an integrated optimizatidarp. This com-
plements the predominant procedure of first estimating the bias of the trasmngles and then
learning the classifier on a weighted version of the training sample. We slaihthintegrated
optimization can be convex, depending on the model type; it is convex faxjhenential model.
We derive a Newton gradient descent procedure, leading to a Kegigtic regression and an ex-
ponential model classifier for covariate shift.

After reviewing models for differing training and test distributions in Sectipw@ introduce
our integrated model in Section 3. We derive primal and kernelized clasdifiediffering training
and test distributions in Sections 4 and 5. In Section 6, we analyze thexitynvkthe integrated
optimization problem. Section 7 describes an approximation to the joint optimizatidtepr and
Section 8 reveals a new interpretation of kernel mean matching and an#tgzesationship to
our model. In Section 9 we discuss different tuning procedures fonilegunder covariate shift.
Section 10 provides empirical results and Section 11 concludes.

The discriminative model for the logistic loss is described in a prior conéergrublication
(Bickel et al., 2007). Our original results showed that the resulting optiroizaroblem is not con-
vex. New findings (Section 6) show that the integrated optimization problenmdact be convex
when the loss function is chosen appropriately. Section 7 describesstdag®-approximation that
allows to train virtually any type of classifier under covariate shift. The neati8n 8 character-
izes the relation to kernel mean matching. New experiments include the etjgbtemget model.
Section 10 uses an experimental setting that differs from the setting ofIRitké (2007) in the
parameter tuning process. In some cases, the new setting has improveddhemance of baseline
methods.

2. Prior Work

If training and test distributions were known, then the loss on the test distribcould be mini-
mized by weighting the loss on the training distribution with an instance-speaifiorfaProposi-
tion 1 (Shimodaira, 2000) illustrates that the scaling factor has %

Proposition 1 The expected loss with respect@@quals the expected loss with respech taith
weightsm% for the loss incurred by each provided that the support of(g|0) is contained in the
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support of gx|A):

p(x|8)
P(X[A)

After expanding the expected value into its integfdl f (x),y)p(x,y|8)d8, the joint distribution
p(x,y|A) is decomposed int@(x|A)p(y|x,A). Sincep(y|x,A) = p(y|x) = p(y|x,0) is the global
conditional distribution of the class variable given the instance, Propoditioltows. All instances
X with positive p(x|0) are integrated over. Hence, Equation 1 holds as long as»eath positive
p(x|B) also has a positive(x|A); otherwise, the denominator vanishes. This shows that covariate
shift can only be compensated for as long as the training distribution citveeesitire support of the
test distribution. If a testinstance had zero density under the training disbribthe test-to-training
density ratio which it would need to be scaled with would incur a zero denonminato

Both, p(x|0) and p(x|A) are unknown, bup(x|0) is reflected inXt, as isp(x|A) in X_.. A
straightforward approach to compensating for covariate shift is to fitsiio estimatep(%|0) and
p(x|A) from the test and training data, respectively, using kernel density estim@imodaira,
2000; Sugiyama and Mler, 2005). In a second step, the estimated density ratio is used to re-
sample the training instances, or to train with weighted examples.

This method decouples the problem. First, it estimates training and test distréouliois step
is intrinsically model-based and only loosely related to the ultimate goal of aectiessification.
In a subsequent step, the classifier is derived given fixed weightse 8ie parameters of the final
classifier and the parameters that control the weights are not indepetidenlecomposition into
two optimization steps cannot generally find the optimal setting ojdiiné parameter vector.

A line of work on learning under sample selection bias has meandered fesidtistics and
econometrics community into machine learning (Heckman, 1979; Zadroz@s).28ample selec-
tion bias relies on a model of the data generation process. Test instaaasan undep(x|0).
Training instances are drawn by first samplinffom the test distributiorp(x|6). A selector vari-
ableo then decides whetharis moved into the training set(= 1) or moved into the rejected set
(o0 = —1). For instances in the training set £ 1) a label is drawn fronp(y|x), for the instances
in the rejected set the labels are unknown. A typical scenario for sampletisa bias is credit
scoring. The labeled training sample consists of customers who wheregylean in the past and
the rejected sample are customers that asked for but where not givam. &lew customers asking
for a loan reflect the test distribution.

In the missing at randontase, the selector variable is only dependent,dout not ony; that
is, p(o = 1|x,y,0,A) = p(o = 1/x,0,A). The distribution of the selector variable then maps the test
onto the training distribution:

Eixgall(F00.y)] = Emw[ e<f<x>,y>] 1)

P(x|A) O p(x|8)p(c = 1/x,6,A).
Proposition 2 (Zadrozny, 2004; Bickel and Scheffer, 2007) sags rtiinimizing the loss on in-
stances weighted by(o|x, 6,)\)‘1 in fact minimizes the expected loss with respedi.to

Proposition 2 The expected loss with respectttcs proportional to the expected loss with respect
to A with weights go = 1|x,8,A)~* for the loss incurred by eack, provided that the support of
p(x|8) is contained in the support of(p|A):

Exy~ell(f(X),¥)] O Epyma 5 = 0(£(x),y)] -

(0=1x,6,A)
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When the model is implementeg(oc = 1|x,6,A) is learned by discriminating the training
against the rejected examples; in a second step the target model is legrfaidwing Propo-
sition 2 and weighting training examples b{/0|x,6,)\)’1. No test examples drawn directly from
p(x|8) are needed to train the model, only labeled selected and unlabeled rejeateplex are
required. This is in contrast to the covariate shift model that requiresleardpawn from the test
distribution, but no selection process is assumed and no rejected examgpleseded. Covariate
shift models can be applied to learning under sample selection bias in the missind@m setting
by treating the selected examples as labeled sample and the union of selemeddithe labels)
and rejected examples as unlabeled sample.

Propensity scores (Rosenbaum and Rubin, 1983; Lunceford andi&g 2004) are applied in
settings related to sample selection bias; the training data is again assumedawié&dm the test
distributionp(x|0) followed by a selection process. The difference to the setting of sampétieale
bias is that the selectemhd the rejected examples are labeled. Weighting the selected examples
by the inverse of the propensity scapéo = 1|x,A,0)~1 and weighting the rejected examples by
p(o = —1|x,A,8) "1 results in two unbiased samples with respect to the test distribution.

Propensity scoring can precede a variety of analysis steps. This dhe training of a target
model on re-weighted data or just a statistical analysis of the two re-weightagles. A typical
application for propensity scores is the analysis of the success of a nedatenent. Patients are
selected to be given the treatment and some other patients are selected iotttithlegcoup. If the
selector variable is not independenbofpatients may be chosen for an experimental therapy only
if they meet specific requirements), the outcome (e.g., ratio of cured patrits®) two groups
cannot be compared directly, propensity scores have to be applied.

Maximum entropy density estimation under sample selection bias has been diyddedlik
et al. (2005). Bickel and Scheffer (2007) impose a Dirichlet propeiss on several learning prob-
lems with related sample selection bias. Elkan (2001) and Japkowicz ane:B{@fl02) investigate
the case of training data that is only biased with respect to the class raticabhi® seen as sample
selection bias where the selection only dependg.on

Kernel mean matching (Huang et al., 2007) is a two-step method that firstfieights for the
training instances such that the first momentum of training and test sets—-thairisnean value—
matches in feature space. The subsequent training step uses thess.wdathhing the means in
feature space is equivalent to matching all moments of the distributions if areahkernel is used.
Huang et al. (2007) derive a quadratic program from Equation 2 #irabe solved with standard
optimization tools®(-) is a mapping into a feature space @$ a regularization parameter.

ming, |43, a®06) — 13m0 (x| @)

subject tooj € [0,B] and |2 ™ ai—1| <¢

Cortes et al. (2008) theoretically analyze the error that gets introducedtbmating sample
selection bias from data. Their analysis covers the kernel mean matclicgdoire and a cluster-
based estimation technique.

KLIEP (Sugiyama et al., 2008) estimates resampling weights for the trainimgpaa by min-
imizing the Kullback-Leibler divergence between the test distribution and #ighted training
distribution. Tsuboi et al. (2008) derive an extension to KLIEP fordasgale applications and
reveal a close relationship to kernel mean matching.
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3. Integrated Model

Our goal is to find model parametems for a probabilistic classification modef (x) =
argmax p(y|x;w). The model should correctly predict labels of the test datalrawn fromp(x|6).
A regular maximum a posteriorestimationw’ = argmay, p(y|X.;w)p(w), would only use the
training datay, X ) governed byp(x|A). By ignoring the test data, this estimate will not generally
result in a model that predicts the missing labels of the test data with a minimunbegause the
training distributionp(x|A) is different from the test distributiop(x|0).

In the following we devise a probabilistic model that accounts for the diffsxdretween train-
ing and test distribution. Before we describe the model we define a joint ddti rathat is a
concatenation of the matricés andX+. The model is based on a binary selector variabl@iven
an instance vectar from the joint matrixX of all available instances, selector variabldecides
whetherx is drawn into the test dafér (s= —1) or into the training datX_ (s= 1) in which case
y is determined. The variabkeis governed by the distributiop(s|x;Vv). Parametev characterizes
the discrepancy between the training and test distribution. Based on thé fmodeve can now
describe the generative process underlying our model:

1. Draw parameter vectovsandw from prior distributionsp(v) and p(w);

2. For each row in matrix X draw binary variables from distributionp(s|x;v); accordingly,
the likelihood of the vector of all selector variabkeis p(s|X;v) = [1™]" p(s|xi;V);

3. For all selected training examples (all examplewith 5 = 1) draw vectory of all labels
from p(y|s, X;w, V).

This generative process corresponds to the following factorizationeofaiint probability of the
vector of labelg, vector of selector variables and parameter vectovsandw:

p(y,s,w,v[X) = p(yls,X;w,v)p(s|X;V)p(w)p(V). 3)

3.1 Maximum A Posteriori Parameter Inference

For parameter inference we want to find parametefsat maximize the posterior probability given

all available data (Equation 4). The available data are the data m@ttixe label vectoy, and

the selection vectas, that splits the data matrix into training and test data. Because the parameter
v is unknown and is not needed for the final classifier the best we can toingegrate it out
(Equation 5).

w* = argmay, p(wly,s,X) (4)
= argmay, / p(w,vly,s, X)dv. (5)

Integrating ovew is computationally infeasible. In Equation 6, the integral is therefore approx
imated by the single assignment of values to the parameters which maximizes tééopegshe
maximum a posteriol(MAP) estimator. In our case, the MAP estimator naturally assigns values to
all parametersy andv.

(Wuap, Viap) = argmay, , p(w, v|y,s, X) (6)
= argmay,, p(Y,s,w,V|X) (7)
= argmay,, p(y[s, X;w,Vv)p(s|X;Vv)p(w)p(v). (8)
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Equation 7 follows from multiplication with a constapty, s|X) and from application of the chain
rule. Equation 8 applies the factorization from the generative procdsguztion 3.

The class-label posterig(y|x; wyap) is conditionally independent &f,.» givenwy,-. However,
Wyar @ndvy,e are dependent. Assigning a single MAP valudwov] instead of integrating over
Vv is a common approximation. However, sequential maximizatiop(sfX;v) over parameters
v followed by maximization ofp(y|s, X;w,v) over parametersy with fixed v would amount to
an additional degree of approximation and will not generally coincide withrthgimum of the
product in Equation 8. Such a sequential maximization corresponds togHerpinant two-step
procedure for learning under covariate shift.

In the next sections we will discuss the likelihood functigig|s, X;w,v) andp(s|X;Vv) and the
optimization problem for parameter inference based on maximization of Equgation

3.2 Label Likelihood and Discriminative Weighting Factors

In order to define the label likelihood we first derive a discriminative eggion forg&(!g; which
will no longer include any density on instances. Whga= —1) > 0, which is implied by the test
set not being empty, the definition s&llows us to rewrite the test distribution p&|8) = p(x|s=
—1,0). Since test instances are only dependent on pararfidiet not on parametex, equation
p(x|s=—1,0) = p(x|s= —1,6,A) follows. By an analogous argumen(x|A) = p(x|s= 1,6,A)
whenp(s= 1) > 0. This implies Equation 9.

In Equation 10, Bayes' rule is applied twice; the two term®©f|6,A) cancel each other out in
Equation 11. Sincg(s= —1|x,0,A) = 1— p(s= 1/x,0,A), Equation 12 follows.

The conditionalp(s = 1|x,0,A) discriminates trainingg= 1) against test instances-£ —1).

p(x|8) 1
ooy — PHE= RN T ©
p(s= —1/x,0,\)p(x|6,\) p(s=1/6,A) (10)
p(s=—1/6,A) p(s=1/x,0,\)p(x|B,A)
p(s=1/|6,A) p(s=—1|x,6,A) (11)
p(s=—1|6,A) p(s=1|x,6,A)
p(s=1/6,A) 1
- oo (pe=TEn Y- 42

The significance of Equation 12 is that it shows how the optimal example weittgdest-to-
training ratio p&}g) can be determined without knowledge of either training or test density. The
right hand side 01? Equation 12 can be evaluated based on a model thahdiates training against
test examples and outputs how much more likely an instance is to occur in thetshan it is

to occur in the training data. Instead of potentially high-dimensional dengiig8) andp(x|A), a
conditional distribution of the single binary variatd@eeds to be modeled.

The expressiorp(s|x,6,A) in Equation 12 corresponds to the parametric mqug)x;v) of
Equation 3. With this model we can predict test-to-training density ratios fdraireng data inX
according to Equation 12.

Since our goal is discriminative training, the likelihood functjay| X, ; w) (not taking training-
test differencev into account) would bé]; p(yi|xi;w). By using this likelihoodp(y|X;w) instead
of p(y|s,X;w,Vv), one would wrongly assume that the training ddtawas governed by the test
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distribution. Intuitively, pﬁilfi dictates how many times, on averagehould occur irX if X, was

governed by the test distributidh When the individual conditional likelihood of is p(y|x;w),
then the likelihood o% occurrences of is p(y|x;w)? ) . Using a parametric modgl(s|x; V),
according to Equation 12 the test-to-training r%ﬁém can be expressed &s

p?ész_—% (p(szl V) 1) |

Therefore, we define the likelihood function@as

m p(s=1) ( 1 i 71)
p(y|s, X;w,V) = rlp(yilxi; W) PE—IARE =T 7/ (13)
1=

As an immediate corollary of Manski and Lerman (1977), the likelihood funatf@quation 13
has the property that when the true valdiés given, its maximizer ovew is a consistent estimator
of the true parameter* that has produced labels for the test data under the test distritfuticmat
is, as the sample grows, the maximizer of Equation 13 converges in probabtlity taue valuev*
of parametew.

For the statistical analysis of case-control studies, Prentice and P9K8)(&stimate the ratio
of two odds ratios with a discriminative model using a formula similar to EquatioMii&.double
odds ratio is a statistical measure of the relative risk of an incidence (e.g.chamcer) given a
specific exposure (e.g., cigarette smoking) based on data from a esttiosstudy.

3.3 Optimization Problem for Integrated Model

The likelihood function p(s|X;v) resolves top(s = 1/x;;v) for all training instances and
p(s = —1|x;;Vv) for all test instances:

m
p(s|X;v) = |_|p(54 = 1/xi;V) |_| p(s = —1|xi;V). (14)
i= i=m+1
Equation 15 summarizes Equations 6 to 8 and Equation 16 inserts the likeliho@tsrBdua-
tions 13 and 14).

p(w,vly,sX) O p(yls,X;w,v)p S\X'v p(w)p(v) (15)

<|_|p yilxi;w ( P l>> (16)
( p(s = 1fxi;v) nﬁn p(s = 1|Xi;V)> P(W)P(V).
i=mH-1

Using a logistic model fop(s = 1|x;v), we notice that Equation 12 can be simplified as in
Equation 17.

p(s=1) 1 p(s=1) T
—-1)] = ———exp(—V X). 17
p(s=-1) \ 1/(1+exp(—vTx)) p(s=—1) N ) (27
1. For a simplified presentation we drop the conditioning in the prior ratiojghpts|6,\) = p(s).
2. The variablesin the prior ratio PS=Y_ 4oes not need an indébecause at this point it is not conditionedxgn

p(s=—1)

2143



BICKEL, BRUCKNER AND SCHEFFER

Optimization Problem 1 is derived from Equation 16 in logarithmic form, using timead-
elsvTx; andw'x; and a logistic model fop(s = 1|x;v). Negative log-likelihoods are abbreviated
L (YiwTxi) = —log p(yi|xi; w) andfy (svTx;) = —log p(si|xi; V), respectively; this notation empha-
sizes the duality between likelihoods and empirical loss functions. The regatian terms corre-
spond to Gaussian priors erandw with variances? andag,.

Optimization Problem 1 Over allw andv, minimize

il p(S:l) eXH—VTX')E ( .WTX_)_i_nH—nE ( 'VTX')—}—LWTW-F iVTV
i; p(s= 1) i) wYi i i; v(SV ' X 262 202 .

4. Primal Learning Algorithm

We derive a Newton gradient descent method that directly minimizes Optimizatbierh 1 in the
attribute space. To this end, we need to derive the gradient and the iekiia objective function.
The update rule assumes the form of a set of linear equations that haeestdvbd for the update
vector[Ay,Ay] . It depends on the current parametersv] T, all combinations of training and test
data, and resulting coefficients. In order to express the update rulsiagla equation in matrix
form, we define

XL Xr 0
X_[o 0 xJ’

whereX_ and Xy are the matrices of training vectors and test vectors, respectively.

Theorem 3 The update step for the Newton gradient descent minimization of Optimizatbn P
lem Lis[V/,W]T « [v,w]T +[Ay,An] " with

T Av _ . V
(XAX' +9) [AW =—-Xg—-S wl (18)
The definitions of coefficientd, S, andg—and the proof of the theorem—can be found in Ap-
pendix A.

Given the parametaw, a test instance is classified ag (x;w) = signwTx).

5. Kernelized Learning Algorithm

We derive a kernelized version of the integrated classifier for diffaraiging and test distributions.
A transformatiord® maps instances into a target space in which a kernel funkiorx;) calculates
the inner produc®(x;) T ®(x;). The update rule (Equation 18) thus becomes

(O)ADX)T +5) [m - —(D(X)g—S[\XI]. (19)
®(X) is defined by
O(X) ®(X7) O
q’(x):[ oL 0T CD(XL)}



DISCRIMINATIVE LEARNING UNDER COVARIATE SHIFT

According to the Representer Theorem, the optimal separator is a lineamzdioib of exam-
ples. Parameter vectorssandg in the dual space weight the influence of all examples:

[ - ol

Equation 19 can therefore be rewritten as Equation 20. We now multipK) T from the
left to both sides and obtain Equation 21. We replace all resulting oco@senf d(X)Td(X)
by the kernel matrixK and arrive at Equation 225 is replaced by§ such thatd(X)TS®(X) =
d(X)Td(X)S, that is,Sij = oy2 fori = 1,...,m+nandSmintimini = Oy fori=1,....m
Equation 22 is satisfied when Equation 23 is satisfied. Equation 23 is the uptiafer the dual
Newton gradient descent.

@OAGX)T+ 51000 [,%| = ~6(x)g-50() 3] (20)
ST (@X)AB)T+59(X) [42] = ~0(x)Te(x)g- 0(x)™800 5. (21)
(KAK +KS') :2;: = —Kg-KS' [g} (22)

(AK +S) _ig_ = —g—S’[g]. (23)

Given the parameters, test instaxas classified byf (x; 3) = sign(3 % Bik(x, i)).

6. Convexity Analysis and Solving the Optimization Problens

The following theorem specifies sufficient conditions for convexity oti@jzation Problem 1.
With this theorem we can easily check whether the integrated classifienfariate shift is convex
for specific models of the negative log-likelihood functions. The negdtigdikelihood function

4y itself and its first and second derivatives are needed. Equationd332an Appendix A define
shorthand notation which we will use in the following.

Theorem 4 Optimization Problem 1 is convex if the loss functigis convex and, is log-convex
and non-negative. The log-convexity condition is equivalent to

bl — 02> 0. (24)

Proof Looking at Optimization Criterion 1 we immediately see that the regularizers axexolf
¢y is convex, the second term is convex as well. We therefore only needlyrarthe convexity of

the term . 4
i; pF()(sS:_—i) exp(—V X ) lw(Yiw ;).

A sum is convex if the single summands are convex. And a sufficient comddroconvexity of
a function is that it is non-negative and log-convex. The above esijoress non-negative a4, is
non-negative. This means we only need to check whether

p(s=1)

o(s= 1) V' Xi +logdy,

log
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is convex. The prior ratio is assumed to be constant. The second term isdirtetherefore convex
and the third term is the log-convexity condition&f. The second derivative of Idg is

000 0202,

thus log/yy is convex iféyy, — 6(5 is non-negative. [ |

In order to check Optimization Criterion 1 for convexity we need to choosestaad the nega-
tive log-likelihood/,, and/,, and derive their first and second derivatives. These derivatiers so
needed to actually minimize Optimization Criterion 1 with the Newton update step&denithe
last section.

We use a logistic model, (svTx) = log(1+ exp(—sv'x)); the abbreviations of Appendix A
can now be expanded:

exp(—svTx) exp(—svTx)
1+exp(—svTx) (1+exp(—svTxi))

For the target classifier, we detail the derivations for logistic and fooesptial models of,,.
For the logistic model the derivatives 4f are the same as fdy, only v needs to be replaced by

w ands by y;. For an exponential model witk, (yiwTx) = exp(—yiwx) the abbreviations are
expanded as follows:

0,iS%ij = SXijs Ly XijXik = 5 X Xik-

Coui¥iXi) = —eXP(—YiW Xi)YiXijs Lo iXijXik = EXP(—YiW X)X Xik-
Using Theorem 4 we can now easily check the convexity of the integratesifeda with logistic
model and with exponential model féy.

Corollary 5 With a logistic model for,,, the condition of Equation 24 is violated and therefore
Optimization Problem 1 with logistic model féy, may not convex in general.

Proof Inserting the logistic function into Equation 24 we get the following solution.
exp(—yiw'xi)
(1+exp(—yiwTx))?2

The fraction in Equation 25 is always positive, the difference term isyaweegative which
violates the condition of Equation 24. |

il —Ugi = (Iog(1+ exp(—yiw X)) —exp(—yiw ' x; )) . (25)

Empirically, we find that it is a good choice to select the parameters of a regdlogistic
regression classifier as starting point for the Newton gradient search.

One can easily show that the condition of Equation 24 is violated wfes chosen as hinge
loss or quadratic loss.

Corollary 6 Optimization Problem 1 with exponential model f@ris convex.

Proof The exponential loss is non-negative and its logarithm is linear and thersfovex. W

This means the global optimum of Optimization Problem 1 with exponential modé|,foan
easily be found by Newton gradient descent.
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7. Two-Stage Approximation to Integrated Model

The previous sections describe a complete solution to the learning probben covariate shift.
Optimization Problem 1 is convex for the exponential model; solving it using ffieeat proce-
dures derived in Sections 4 and 5 produces a globally optimal solution.

For the logistic model, unfortunately, convexity cannot be guaranteedhédfmore, the regu-
larized regression classifier is deeply embedded in Optimization Problerwauld not be easy to
replace it by a different type of classifier such as, for instance, isidadree. We will now discuss
an approximation to Optimization Problem 1 which solves two consecutive optimizatiblems.
The first optimization problem produces example-specific weights; thedetep generates a clas-
sifier from the weighted examples. Both optimization problems are convexfponential, logistic,
and hinge loss as well as for many other loss functions. But most sigrifictire two-stage ap-
proximation is conceptually simple: the second optimization step can be cartibg any learning
procedure that is able to scale the loss incurred by each example usaugilped weight factors.
Example-specific weights can easily be incorporated into virtually any leamgthod. Further-
more, as a result of the decompaosition into two optimization problems parameteg tetomes
much easier because cross-validation can be used (cf. Section 9).

The derivation in Section 3.1 approximates the integral e\®r simultaneously selecting a pair
of values which maximize the posterior. This leads to the joint MAP hypothesizy@andw. In the
resulting optimization probleny, andw are free parameters. At a higher degree of approximation,
one may factorize the posterior (Equation 26) and at first approximate tbgrah overv by the
maximum ofp(v]y, s, X) (Equations 29 and 30). Subsequently, the posterior wisrmaximized
given fixed parameteng,.» (Equations 27 and 28).

Wt = argma&,/p(w,wy,s,x)dv

= argmay, / p(wly,s, X;v)p(vly,s X)dv (26)
~ argmay, p(W|y,s, X; Viap) (27)
= argmay, p(Y\S X;W7VMAP’) p(W) (28)
with vy = argmax p(vly,s, X) (29)
= argmay p(sly, X; V) p(V). (30)

This results in two optimization problems. Only parametés free in the first stage (Optimization
Problem 2). The test-to-training ratio (Equation 17) can be derived fnr@emesulting value o¥.

Optimization Problem 2 Overv, minimize

m+-n

1
Lu(SVTXi) + sV V.
i; ’ " 20}

In the second stage (Optimization Problem 3), the target model parametees optimized with
constant parametersand constant example weights. The parametene the result of Optimiza-
tion Problem 2.

Optimization Problem 3 Overw (v is constant), minimize

m
p(s=1) Ty S R
i; o(s exp(—V ' Xi)lw(Yiw x.)+202w w.

w

5= 1)
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The criterion of Optimization Problem 3 weights the lég$y;w " x;) that each example incurs such
that the sample is matched to the test distribution. The last %ﬁWTW is the regularizer of the
regression. Optimization Problem 3 can easily be adapted to virtually any fygessification
mechanism by inserting the appropriate loss functigtyiwx;) and regularizer. Operationally,
an arbitrary classification procedure is applied to a sample that is eithenglkshfrom the train-
ing data according to sampling distributiqﬂ% exp(—VvTx), or the classifier is applied to the

training data with the example-specific loss scaled accordiq%i@% exp(—VvTx).

8. Relationship to Kernel Mean Matching

Huang et al. (2007) motivate the kernel mean matching algorithm as a predbat minimizes the
distance between the means of unlabeled and weighted labeled data in $pattee If the kernel
is universal this is equivalent to minimizing the difference of the distributioige. derive a new
interpretation for kernel mean matching that shows its relation to Optimizatioridindband the
above two-stage approximation.

Using a hinge loss fofy (s (v'x; + b)) in Optimization Problem 2 and an explicit offset param-

eterb we obtain a regular support vector machine. The kernel matrix of this S\{I\ﬁéi&’ Eg }
(LT)

and the target variables age= {—1,1}. An SVM can heuristically be simplified by setting the dual
parameterst; for the unlabeled examples to a fixed vale This can be interpreted as a mixture
between an SVM and a Rocchio classifier. Bheorresponding to the labeled examplgs{1) are
trained with an SVM,; setting; of all unlabeled examples;(= —1) to I approximates the negative
class (the unlabeled examples) by their centroid in feature space in ancerdith the Rocchio
classifier (Joachims, 1997).

The SVM optimization criterion with fixed; = ' for examples witls = —1 is

min oK oL — PalK 1+ %%IK(TT)l— of1—nm
oL

subject tooj € [0,02] andy" o =31, T =m;

vectora, denotes all elements withi=1,...,m. We can drop the constant ternms;r(l is constant
because of the second constraint) and arrive at Optimization Problem 4.

Optimization Problem 4

min oK o —TalK 1)1 subjectton; € [0,02] anda1=m.
aL

This is the dual objective of kernel mean matching. The only differencetdtbang et al. (2007)
relax the second constraint up to a small constatiteir constraint isn(1—¢) < a1 <m(1+¢).
Empirically we find that setting to zero has no impact on the performance. The paranagter
corresponds to paramet®iin Equation 2.

In order to solve the second stage (Optimization Problem 3), kernel meahintptives not use
re-weighting factorsrf(’(si;_li) exp(—vTx; — b) but directly uses the dual parameters as weights.

To sum up, kernel mean matching can be interpreted as a variant of OptimiRatiblem 2.
It discriminates training against test examples using a partially Rocchio-gigteximation to the
SVM optimization criterion.
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9. Parameter Tuning

Optimization Problem 1 relies on hyper-parametgfindo?, that need to be tuned. For the two-
stage approximation of Section 7 and reference methods like kernel meahingatiwo similar
parameters need to be specified. In addition to the regularization pararketeet parameters
need to be tuned for non-linear kernels. Parameter tuning for covahiftten®dels is much more
difficult than for regular prediction models because in the covariate #itfhg there is no labeled
data available drawn from the test distribution. Parameter tuning by regoks-galidation on the
labeled training data is inappropriate because the labeled training data isveohgd by the test
distribution.

In the following paragraphs we describe different tuning proceduves procedures require
prior knowledge and one does not require prior knowledge on theripgrameters. The tuning
procedures with prior knowledge can be used for all described mod#is. one without prior
knowledge cannot be used for kernel mean matching and the one-statp ofdptimization
Problem 1.

A typical setting with prior knowledge on the hyper-parameters is when tferelifce between
training and test data is introduced by a covariate shift over time and thedigitibution shifts
constantly over time. The most recent data is the unlabeled test data andaheéatia has been
labeled and is the training data. In this setting the parameters can be tunditimgdpe labeled
training data into two consecutive parts. The tuning models are learned @atheith earlier
timestamps and the hyper-parametefsand o3, and kernel parameters are optimized on the part
with later timestamps.

Another setting with prior knowledge is when in addition to the pair of trainingtastiset an
additional pair of training and fully labeled test set from a different dométin a similar magnitude
of covariate shift is available. This additional set can be used to tune tanpters. Due to
the similar magnitude of the covariate shift the optimal parameters for the additiomeain are
assumed to be a good choice for the parameters of the target domain.

For some two-stage models for covariate shift there is no prior knowledgeseary to tune
hyper-parameters. Sugiyama et al. (2008) propose to tune the regulzfrthe KLIEP model with
cross-validation. In this manner the first stage paranwgtéand kernel parameters) of the two-stage
model of Section 7 can be tuned as follows. The training and the test dddathrgplit into training
and tuning folds and the hold-out likelihood of the tuning folds is optimized wiith gearch on
a2 (and kernel parameters). The hold-out likelihood measures the pvedjiformance of the
modelp(s|x; v) with respect to predicting the selector variablaf the hold out examples. Once the
regularizer of the first stage is tuned, the second stage paraajetand kernel parameters) can
be tuned with cross-validation on weighted training data (Sugiyama diil#iM2005). The data
of training folds as well as the data of tuning folds are weighted with the estinraiethg-to-test
ratio.

Kernel mean matching does not provide out-of-sample predictions and #rsfeine difficult
to tune the regularization paramegwith cross-validation. The one-stage model of Optimization
Problem 1 is also difficult to tune with cross-validation because there is adbiidinal influence
between the parametes$ ando?,.

In order to compare the one-stage model and kernel mean matching to thevathsetiage
models we use tuning procedures based on prior knowledge in the empitid#s in the next
section.
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10. Empirical Results

We study the benefit of two versions of the integrated classifier for @ieashift and other reference
methods on spam filtering, text classification, and landmine detection probléméirst integrated
classifier uses a logistic model féy (“integrated log model”), the second an exponential model for
4y (“integrated exp model”), is a logistic model in both cases.

The first baseline is a classifier trained uniitassumption with logistié,,. All other reference
methods consist of a two-stage procedure: first, the difference hetvadeing and test distribution
is estimated, the classifier is trained on weighted data in a second step. Tinel seethod is
kernel mean matching (Huang et al., 2007); weesety/m— 1/,/mas proposed by the authors. In
the third method, separate density estimatep{®fA) andp(x|0) are obtained using kernel density
estimation (Shimodaira, 2000), the bandwidth of the kernel is chosendiicgao the rule-of-thumb
of Silverman (1986).

The last two reference methods rely on the two-stage approximation of OptiimniBaoblems 2
and 3 with a logistic regression (“two-stage LR”) and an exponential mddssifier (“two-stage
exp model”) as their second stages. The example weights are computedirgdo Equation 17
using a logistic model in the first stage(s = 1|x;V) is estimated by training a logistic regression
that discriminates training from test examples.

The baselines differ in the first stage, the second stage is based ontia legjsession classifier
with weighted examples in all cases but the two-stage exponential modéhbad®e use a maxi-
mum likelihood estimate of for p We use tuning procedures that rely on prior knowledge
(cf. Section 9). Short descrlptlons of ti1e respective tuning data céoubd below. For all experi-
ments we tune the regularization parameters of all methods (and the varaaoesper of the RBF
kernels for the landmine experiments) by maximizing AUC on the tuning set.

We use the spam filtering data of Bickel et al. (2007); the collection contaies different
inboxes with test emails (5270 to 10964 emails, depending on inbox) aneéboktsaining emails
compiled from various different sources. We use a fixed set of 1@@dlle as training data. We
randomly select between 32 and 2048 emails from one of the original isbowée repeat this
process 10 times for 2048 test emails and 20 to 640 times for 1024 to 32 test éksdilming data
we use the labeled emails from an additional inbox different from the teskéash

The performance measure is the rate by which theAUC risk is reduced over thig baseline
(Bickel and Scheffer, 2007); it is computed as 3&% We use linear kernels for all methods.
We analyze the rank of the kernel matrix and find that it fulfills the uniNdssanel requirement of
kernel mean matching; this is due to the high-dimensionality of the data.

Figure 1 (top row) shows the results for various numbers of unlabelaohgbes. The left col-
umn of Figure 1 compares the integrated classifiers for covariate shift tethel mean matching
and kernel density estimation baselines. The right column compares thatetkglassifiers (Op-
timization Problem 1) with the two-stage approximations (Optimization Problems 2 )anthg
results for a specific number of unlabeled examples are averaged®t@640 random test sam-
ples and averaged over all nine inboxes. Averaged over all usdiiglbox sizes the absolute AUC
of theiid classifier is 0.994. Error bars indicate standard errors of thWC risk.

The integrated and two-step logistic regression and exponential modéteamai mean match-
ing perform similarly well. The differences to thigl baseline are highly significant. For 1048
examples the + AUC risk is even reduced by an average of 30% with the integrated erpahe
model classifier! The kernel density estimation procedure is not able tdheeiad baseline. The
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Figure 1: Average reduction of-1AUC risk over nine users for spam filtering (top row) and Cora
Machine Learning/Networkinglassification before and after 1996 (second row) and av-
erage increase of AUC for landmine detection over 812 pairs of mine fietdm row)
depending on the number of unlabeled test examples.
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convex integrated exponential model performs slightly better than its twe-afggroximation; for
larger number of test examples (512 to 2048) this difference is statisticafiifisant according

to a paired-test with significance level of 5%. For the logistic model, the two-stage optimizatio
performs similarly well as the integrated version.

We now study text classification using computer science papers from thal@ta set. The task
is to discriminate Machine Learning from Networking papers. We selecp@p2rs written before
1996 from both classes as training examples and 1285 papers writted @8teas test examples.
For parameter tuning we apply an additional time split on the training data; weotmdime papers
written before 1995 and tune on papers written 1995 (cf. Section 9).

Title and abstract are transformed irtfaf vectors, the number of distinct words is about
40,000. We again use linear kernels (rank analysis verifies the uali\ensel property) and aver-
age the results over 20 to 640 random test samples for different si@24 {ar 20 samples to 32
for 640 samples) of test sets. The resulting AUC risk is shown in Figure 1 (second row). The
average absolute AUC of thid classifier is 0.998. The methods based on discriminative density es-
timates significantly outperform all other methods. Kernel mean matching isgspéaged because
its average performance lies far below tlikbaseline. The integrated models reduce theAUC
risk by 15% for 1024 test examples.

In a third set of experiments we study the problem of detecting landmines tnndata set
of Xue et al. (2007). The collection contains data of 29 mine fields in difteregions. Binary
labels (landmine or safe ground) and nine dimensional feature vectoasted from radar images
are provided. There are about 500 examples for each mine field. Eaod fields has a distinct
distribution of input patterns, varying from highly foliated to desert areas

We enumerate all 29 28 pairs of mine fields, using one field as training and the other as test
data. For tuning we hold out 4 of the 812 pairs. Results are increasethevid baseline, averaged
over all 29x 28— 4 combinations. We use RBF kernels with kernel widtB for all methods. The
results are displayed in Figure 1 (bottom row). The average absolute gz iid baseline is
0.64 with a standard deviation of 0.07; note, that the error bars are mudlersthan the absolute
standard deviation because they indicate the standard error différencego theiid baseline.

For this problem, the exponential model classifiers and kernel mean masignificantly out-
perform all other methods on average. Considering only methods with logisgiet model, kernel
mean matching is better than all other methods. Integrated logistic regresditmaaatage logistic
regression are still significantly better than titebaseline except for 32 and 64 test examples. The
integrated classifiers are slightly better than the two-stage variants.

11. Conclusion

We derived a discriminative model for learning under differing trainingd st distributions. The
contribution of each training instance to the optimization problem ideally needsveighted with
its test-to-training density ratio. We show that this ratio can be expressedeuwitiodeling either
training or test density—by a discriminative model that characterizes hovih mace likely an
instance is to occur in the test sample than it is to occur in the training sample.

We described a generative model whose parameters can be estimated wittva\j® hypoth-
esis of both the parameters of the test-to-training model and the final clas€iffgmizing these
dependent parameters sequentially incurs an additional approximatioeEp solving the joint
optimization problem. We derived a primal and a kernelized Newton gradésceait procedure for
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the joint optimization problem. Theorem 4 specifies the condition for the capvekOptimiza-
tion Problem 1. Checking the condition using popular loss functions as motighe negative
log-likelihoods reveals that Optimization Problem 1 is convex with exponentisl los

We gave a new interpretation for kernel mean matching and show that it ibasss on a
discriminative model similar to Optimization Problem 2.

Empirically, we found that the integrated and the two-stage models as wellrasl| keean
matching outperform thed baseline and the kernel density estimation model in almost all cases.
In some cases, the integrated models perform slightly better than their tweoestagterparts. The
performance of kernel mean matching depends on the problem; for boétbuee problems it did
not beat theid baseline, for the others it yielded comparable results to the integrated models.

The two-stage model is conceptually simpler than the integrated model, and nuageércases
have the greatest practical utility. The main advantage compared to the fatbgradel is that regu-
larization parameters can be tuned without prior knowledge by crossatialid Another advantage
of the two-stage model is that in the second stage, after the example-speaggits have been
derived, virtually any learning mechanism can be employed to producentdeckassifier from the
weighted training sample. This comes at the cost of only a marginal lossfofp@nce compared
to the integrated model.
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Appendix A. Newton Gradient Descent—Proof of Theorem 3

In this Appendix, we derive Newton gradient descent updates for Ogatiiiz Problem 1 and
thereby prove Theorem 3. We abbreviate

_ 00y (svTxi) 0%0y(svTXi)
E\,’i:&,(SVTXi), E(,JSXU:VT]', (,CiXinik:W (31)
0l (YW X 0%l (YW X
Curi =l (YW TX0); Loy Y _W(a\INjI); &’,(,,ixijxak—v(;\(lv;wk'): (32)
_ p(s=1) Ty,
wi_ip(s:—l) exp(—V' Xi)

and denote the objective function of Optimization Problem 1 by
m+n

m 1 1
Fv,w) = bwi lyit+ —=WTw+—v'v.
(v,w) i;(*)i w,i + i; v,i T 20_\%/ + 20_\2/
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We compute the gradient with respecttandw.

aFg‘\ZW) _ —Zu)iéw.x.]—i— Zlev.ax”
(w leiﬁw.ylxlﬂr a2
The Hessian is the matrix of second derivatives.
W _ me.x.mﬁmgfvmmw 50ik
m —i;wie(/v,iyixijxik

We can rewrite the gradient g + Sm and the Hessian @A X + Susing the following defini-
tions, wherdl is the dimensionality oK+ andX,.

g = —wilw+ 4 for i=1,...,m
Omi = Ly myi for i=1,...,n;
Ominti = Wik, Yi for i=1,...,m
S =0,° for i=1,....d;
Sitid+ = Ow’ for i=1,...,d;
dllag (@xlwi+4€7;) 0 — dllag (wily,¥i)
i i=
A— 0 _dliag (40 mei) 0
i=1...n
_ dlag (mKW,y.) 0 . dl,ag (wigu )
i=1,..., 1=1,....m

The update step for the Newton gradient descent minimization of OptimizatitteRrd isjv’,w'|T
v, W] T +[Ay,Ay] T with

(XAXT +9) [ﬁvvv] — _Xg-S m .
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