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Abstract
We consider a general class of regularization methods whbetm a vector of parameters on the
basis of linear measurements. It is well known that if thauf@gzer is a nondecreasing function of
the L, norm, then the learned vector is a linear combination of tipei data. This result, known
as therepresenter theorendies at the basis of kernel-based methods in machine legarin this
paper, we prove the necessity of the above condition, in #se of differentiable regularizers.
We further extend our analysis to regularization methodgkvlearn a matrix, a problem which
is motivated by the application to multi-task learning. histcontext, we study a more general
representer theorem, which holds for a larger class of aeigélrs. We provide a necessary and
sufficient condition characterizing this class of matrigukarizers and we highlight some concrete
examples of practical importance. Our analysis uses basiciples from matrix theory, especially
the useful notion of matrix nondecreasing functions.

Keywords: kernel methods, matrix learning, minimal norm interpaati multi-task learning,
regularization

1. Introduction

Regularization in Hilbert spaces is an important methodology for learnimg éxaamples and has a
long history in a variety of fields. It has been studied, from differemgjpectives, in statistics (see
Wahba, 1990, and references therein), in optimal estimation (MicchellRarioh, 1985) and re-
cently has been a focus of attention in machine learning theory, seeafoipéx (Cucker and Smale,
2001; De Vito et al., 2004; Micchelli and Pontil, 2005a; Shawe-Taylor@nstianini, 2004; Vapnik,
2000) and references therein. Regularization is formulated aptamization problenmnvolving an
error termand aregularizer. The regularizer plays an important role, in that it favors solutions with
certain desirable properties. It has long been observed that cegalanigers exhibit an appealing
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property, called theepresenter theorepwhich states that there exists a solution of the regulariza-
tion problem that is a linear combination of the data. This property has impatamputational
implications in the context of regularization with positive semidefikémels because it transforms
high or infinite-dimensional problems of this type into finite dimensional problditiesize of the
number of available data (Salikopf and Smola, 2002; Shawe-Taylor and Cristianini, 2004).

The topic of interest in this paper will be to determine the conditions under whmtesenter
theorems hold. In the first half of the paper, we describe a propertyhwahiegularizer should
satisfy in order to give rise to a representer theorem. It turns out thaptbperty has a simple
geometric interpretation and that the regularizer can be equivalentlyssqut@s aondecreasing
function of the Hilbert space norm. Thus, we show that this condition, whahalready been
known to be sufficient for representer theorems, is alswessaryln the second half of the paper,
we depart from the context of Hilbert spaces and focus on a classbfemns in whichmatrix
structureplays an important role. For such problems, which have recently app@aiseveral
machine learning applications, we show a modified version of the represeetgem that holds
for a class of regularizers significantly larger than in the former contestw@ shall see, these
matrix regularizers are important in the context of multi-task learning: the madhixmns are the
parameters of different regression tasks and the regularizer egesucertain dependences across
the tasks.

In general, we consider problems in the frameworKi&honov regularizatior{Tikhonov and
Arsenin, 1977). This approach finds, on the basis of a set of inputfoddpa(x1, Y1), . . ., (Xm,Ym) €
H x 9, avector in# as the solution of an optimization problem. Hefé,is a prescribed Hilbert
space equipped with the inner prodyct) and9” C R a set of possible output values. The opti-
mization problems encountered in regularization are of the type

min{ E(((W,X1),..., (W:Xm)), (Y1, .., Ym)) +YQ(W) :we H } (1)

wherey > 0 is a regularization parameter. The functibnR™ x 9™ — R is called arerror function
andQ : # — R is called aregularizer The error function measures the error on the data. Typically,
it decomposes as a sum of univariate functions. For example, in regresscommon choice
would be the sum of square errofg? ; ((w,x;) — yi)2. The functionQ, called the regularizer, favors
certain regularity properties of the vectar(such as a small norm) and can be chosen based on
available prior information about the target vector. In some Hilbert spswes as Sobolev spaces
the regularizer is a measure of smoothness: the smaller the norm the smoofhactioa.

This framework includes several well-studied learning algorithms, suadtidge regression
(Hoerl and Kennard, 1970), support vector machines (Boser €1392), and many more—see
Schblkopf and Smola (2002) and Shawe-Taylor and Cristianini (2004) efedences therein.

An important aspect of the practical success of this approach is thevatiea that, for certain
choices of the regularizer, solving (1) reduces to identifymgarameters and not dii#/). Specif-
ically, when the regularizer is the square of the Hilbert space norm, thesemter theorem holds:
there exists a solutiow 6f (1) which is a linear combination of the input vectors,

m
W= ZlCiXi, 2)
i=
wherec; are some real coefficients. This result is simple to prove and dates drteashe 1970's,

see, for example, Kimeldorf and Wahba (1970). It is also known thatténels to any regular-
izer that is anondecreasindgunction of the norm (Sablkopf et al., 2001). Several other variants
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and results about the representation form (2) have also appeareckint years (De Vito et al.,
2004; Dinuzzo et al., 2007; Evgeniou et al., 2000; Girosi et al., 1998¢lli and Pontil, 2005b;
Steinwart, 2003; Wahba, 1992). Moreover, the representer themmerbeen important in machine
learning, particularly within the context of learning in reproducing keHildert spaces (Aronszajn,
1950)—see Sdiikopf and Smola (2002) and Shawe-Taylor and Cristianini (2004) efedences
therein.

Our first objective in this paper is to derive necessary and sufficmditions for representer
theorems to hold. Even though one is mainly interested in regularization prgbieisanore
convenient to studinterpolationproblems, that is, problems of the form

min{Q(w) :we A, (wx) =y, Vi=1,...,m}. (3)

Thus, we begin this paper (Section 2) by showing how representetethedor interpolation and
regularization relate. On one side, a representer theorem for interpodatsily implies such a the-
orem for regularization with the same regularizer and any error functioereforeall representer
theorems obtained in this paper apply equally to interpolation and regulariza@m the other side,
though, the converse implication is true under certain weak qualificationseaarrtbr function.

Having addressed this issue, we concentrate in Section 3 on provingtimegpolation prob-
lem (3) admits solutions representable in the formif(@hd only ifthe regularizer is nondecreasing
function of the Hilbert space nornThat is, we provide a complete characterization of regularizers
that give rise to representer theorems, which had been an open quéstichermore, we dis-
cuss how our proof is motivated by a geometric understanding of thesespier theorem, which
is equivalently expressed as a monotonicity property of the regularizendté that for simplicity
throughout the paper we shall assume fhas differentiable. However our results are constructive
and it should be possible to extend them to the non-differentiable case.

Our second objective is to formulate and study the novel question ofseqmer theorems for
matrix problems To make our discussion concrete, let us consider the problem of Igarfimear
regression vectors, represented by the parameters.,w, € RY, respectively. Each vector can
be thought of as a “task” and the goal isjtintly learn thesen tasks. In such problems, there is
usually prior knowledge thatlatesthese tasks and it is often the case that learning can improve if
this knowledge is appropriately taken into account. Consequently, a ggathrizer should favor
such task relations and invohed tasks jointly

In the case of interpolation, this learning framework can be formulatedsmip@s

min{QW) :W e Mgn, WXi =Wi, Vi=1,....m,t=1,...,n}, 4)

whereMgq ,, denotes the set af x n real matrices and the column vectes ..., wy € RY form the
matrix W. Each task has its own input dats,...,Xm € RY and corresponding output values
Vits -5 Yim € 0

An important feature of such problems that distinguishes them from the 3ype the appear-
ance ofmatrix productsin the constraints, unlike the inner products in (3). In fact, as we will
discuss in Section 4.1, problems of the type (4) can be written in the fornC@)sequently, the
representer theorem applies if the matrix regularizer is a nondecreasiotph of the Frobenius
norm?! However, the optimal vectos; Tor each task can be represented as a linear combination of

1. Defined ag|W||2 = /tr(W'W).
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only those input vectors corresponding to this particular talsloreover, with such regularizers it
is easy to see that each task in (4) can be optimized independently. Hesserehularizers are of
no practical interest if the tasks are expected to be related.

This observation leads us to formulatenadified representer theoremvhich is appropriate for
matrix problems, namely,

W = i icg?xsi Vt=1,....n, (5)
s=1i=

wherecg? are scalar coefficients, fars=1,....n, i = 1,...,ms. In other words, we now allow

for all input vectorsto be present in the linear combination representing each column of the op-
timal matrix. As a result, this definition greatly expands the class of regularibat give rise to
representer theorems.

Moreover, this framework can be used in many applications where matrix optiorizprob-
lems are involved. Our immediate motivation, however, has been more speaifithidit, namely
multi-task learning Learning multiple tasks jointly has been a growing area of interest in machine
learning and other fields, especially during the past few years (Attsret al., 2009; Argyriou
et al., 2006, 2008a, 2007; Carsland Recht, 2009; Cavallanti et al., 2008; Izenman, 1975; Maurer,
2006a,b; Srebro et al., 2005; Wolf et al., 2007; Xiang and Bennett,;2008g et al., 2006; Yuan
et al., 2007). For instance, some of these approaches use regslaiiehn involve therace nornt
of matrixW. There have been several motivations for the trace norm, derivetiieonel learning,
maximum likelihood, matrix factorization or graphical models. Another motivaticthas under
conditions a small trace norm favors low-rank matrices. This means thatstke(the columns of
W) are related in that they all lie in a low-dimensional subspadofin the case of the trace norm,
the representer theorem (5) is known to hold—see Abernethy et aR)28@yriou et al. (2008a)
and Amit et al. (2007); see also the discussion in Section 4.1.

It is natural, therefore, to ask a question similar to that in the standard Hipace (or single-
task) setting. That is, under which conditions on the regularizer a mmerstheorem holds. In
Section 4.2, we provide an answer prpving a necessary and sufficient condition for representer
theoremg5) to hold for problem(4), expressed as a simple monotonicity propeftyis property is
analogous to the one in the Hilbert space setting, but its geometric interpratatiow algebraic
in nature. We also give a functional description equivalent to this ptggaat is,we show that the
regularizers of interest are the matrix nondecreasing functions of thatify W™W.

Our results cover matrix problems of the type (4) which have already liedied in the litera-
ture. But they also point towards some new learning methods that maymesfelt in practice and
can now be made computationally efficient. Thus, we close the paper withussiiso of possible
regularizers that satisfy our conditions and have been used or casetieruthe future in machine
learning problems.

1.1 Notation

Before proceeding, we introduce the notation used in this paper. Wgas a shorthand for the
set of integerq1,...,d}. We useRY to denote the linear space of vectors wdtheal components.
The standard inner product in this space is denotel,by that is,(w,v) = ¥y, Wivi, Yw,v € RY,

2. Equal to the sum of the singular values/éf
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wherew;,v; are thei-th components ofv,v respectively. More generally, we will consider Hilbert
spaces which we will denote b, equipped with an inner produgt -).

We also letMy, be the linear space af x n real matrices. IW,Z € My, we define their
Frobenius inner product gsV,Z) = tr(W'Z), where tr denotes the trace of a matrix. Wahwe
denote the set af x d real symmetric matrices and wig{ (S?,) its subset of positive semidefinite
(definite) ones. We use and’- for the positive definite and positive semidefinite partial orderings,
respectively. Finally, we 1eD9 be the set ofl x d orthogonal matrices.

2. Regularization Versus Interpolation

The line of attack which we shall follow in this paper will go througiterpolation That is, our
main concern will be to obtain necessary and sufficient conditions foesepter theorems that
hold for interpolation problems. However, in practical applications one@mersregularization
problems more frequently than interpolation problems.

First of all, the family of the former problems is more general than that of ther lattes.
Indeed, an interpolation problem can be simply obtained in the limit azthuarization parameter
goes to zero (Micchelli and Pinkus, 1994). More importantly, regularinagizables one to trade
off interpolation of the data against smoothness or simplicity of the model, wharapolation
frequently suffers fronoverfitting

Thus, frequently one considers problems of the form

min{ E(((W,X1),- .., (W, Xm)), (Y1, -, Ym)) +YQ(W) :we H} (6)

wherey > 0 is called the regularization parameter. This parameter is not known in@elsancan

be tuned with techniques likeross validationsee, for example, Wahba (1990). Here, the function
Q:H — Ris aregularizer, £ : R™x 9™ — R is an error function andj € #,y; € 9,Vi € N,

are given input and output data. The $éis a subset oR and varies depending on the context,
so that it is typically assumed equal foin the case of regression or equal{te1,1} in binary
classification problems. One may also consider the associated interpolatibarpr which is

min{Q(w) :we %, (W,x) =V, Vi € Np} . (7)

Under certain assumptions, the minima in problems (6) and (7) are attainedtiigheiaenever
the constraints in (7) are satisfiable). Such assumptions could involhexdarple, lower semicon-
tinuity and boundedness of sublevel setsdand boundedness from below fBr These issues will
not concern us here, as we shall assume the following about the @naiodnE and the regularizer
Q, from now on.

Assumption 1 The minimun{6) is attained for any > 0, any input and output datgx;,y; : i € Ny}
and any me N. The minimun{7) is attained for any input and output dafa;, y; : i € Ny} and any
m € N, whenever the constraints (i) are satisfiable.

The main objective of this paper is to obtaiecessary and sufficieabnditions oM so that the
solution of problem (6) satisfieslimear representer theorem

Definition 2 We say that a class of optimization problems sucl{@or (7) satisfies thdinear
representer theoreif) for any choice of datgx;,y; : i € N} such that the problem has a solution,
there existsa solution that belongs tepar{x; : i € Ny}.
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In this section, we show that the existence of representer theoremgtitamieation problems is
equivalent to the existence of representer theorems for interpolatibleprs, under a quite general
condition that has a simple geometric interpretation.

We first recall a lemma from (Micchelli and Pontil, 2004, Sec. 2) which stéuats(linear or
not) representer theorems for interpolation lead to representer theareragdlarization, under no
conditions on the error function.

Lemma3 LetE:R"x 9™ - R, Q: H — R satisfying Assumption 1. Then if the class of inter-
polation problemg7) satisfies the linear representer theorem, so does the class of regtilamiza
problemg(6).

Proof Consider a problem of the form (6) and letbé a solution. We construct an associated
interpolation problem

min{Q(w) :w e H, (W,x1) = (W,X1),..., (W,Xm) = (W,Xm) } - (8)

By hypothesis, there exists a solutimof(8) that lies in spafx; : i € Ny}. But thenQ(W) < Q(W)
and hencevis a solution of (6). The result follows. |

This lemma requires no special properties of the functions involved. ligece®, in contrast,
requires assumptions about the analytical properties of the error fancii@® provide one such
natural condition in the theorem below, but other conditions could coalsliwork too. The main
idea in the proof is, based on a single input, to construct a sequenceroipate regularization
problems for different values of the regularization paramegt@ihen, it suffices to show that letting
y— 0% yields a limit of the minimizers that satisfies an interpolation constraint.

Theorem 4 Let £ :R"x Y™ — R andQ : # — R. Assume that, Q are lower semicontinuous,
that Q has bounded sublevel sets and ti#ais bounded from below. Assume also that, for some v
R™\ {0},y € 9™, there exists ainiqueminimizer ofmin{‘£(av,y) : a € R} and that this minimizer
does not equal zero. Then if the class of regularization probignsatisfies the linear representer
theorem, so does the class of interpolation probléms

Proof Fix an arbitraryx # 0 and letag be the minimizer of mifE(avy) : a€ R}. Consider the
problems

min{f <Hiﬁz(w,x>v,y> +yQ(w) :we }[} ,
for everyy > 0, and letwy be a solution in the span af(known to exist by hypothesis). We then
obtain that

E(aovy) +YQ(w) < T (H;(a‘o‘zmm v,y> +YQ(Wy) < E(aovy) +YQ(X) - 9)
Thus,Q(wy) < Q(x) and so, by the hypothesis @ the set{w, : y> 0} is bounded. Therefore,

there exists a convergent subsequefwe : ¢ € N}, with y, — 0, whose limit we caliv. By taking
the limit inferior as¢ — oo on the inequality on the right in (9), we obtain

g2 (H;(aﬁZWV,X)v,y) < E(aovy).
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Consequently,

a ,—

or, using the hypothesis thag = 0,
(W,x) = [[x]%.

In addition, sinceny belongs to the span offor everyy > 0, so doesv. Thus, we obtain that
w = Xx. Moreover, from the definition ofy, we have that

. <H;<a?|2<wwx>v7y> +yQ(wy) < E(aowy) +yQW)  Ywe # such thatw,x) = ||x||?

and, combining with the definition @&, we obtain that
Q(wy) < Q(w) Yw € # such thatw, x) = [|x||%.
Taking the limits inferior ag — o, we conclude thatv = x is a solution of the problem
min{Q(w) :w e A, (w,x) = [|x||?} .

Moreover, this assertion holds even whes 0, since the hypothesis implies that O is a global min-
imizer of Q. Indeed, any regularization problem of the type (6) with zero inpyts; 0,Vi € Ny,
admits a solution in their span. Thus, we have shown@hsatisfies property (13) in the next sec-
tion and the result follows immediately from Lemma 9 below. |

We now comment on some commonly used error functions. The first sjinere loss

Ezy)= Y (-7,

IS\™

for zy € R™. It is immediately apparent that Theorem 4 applies in this case.
The second function is th@inge loss

E(zy)= ) max1l-zy;,0),
1€Nm
where the outputg are assumed to belong {e-1,1} for the purpose of classification. In this case,
we may selecy; = 1,Vi € Ny, andv = (1,—-2,0,...,0)" for m> 2. Then the functior(-v,y) is
the one shown in Figure 1.
Finally, thelogistic loss
E(zy)= ) log(1+e ),
€Ny
is also used in classification problems. In this case, we may sgeledt, Vi € Ny, andv = (2,—-1)"
form=2orv=(m-2,-1,...,—1)" for m> 2. In the latter case, for example, setting to zero the
derivative ofE(-v,y) yields the equatiom— 1)eX™1 + e —m+ 2 = 0, which can easily be seen
to have a unique solution.
Summarizing, we obtain the following corollary.
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Figure 1: Hinge loss along the directi¢h —2,0,...,0).

Corollary 5 If £:R™x 9™ — R is the square loss, the hinge loss (foen?) or the logistic loss
(for m>2) andQ : H — R is lower semicontinuous with bounded sublevel sets, then the class of
problemg(6) satisfies the linear representer theorem if and only if the class of prol{lEndses.

Note also that the condition of in Theorem 4 is rather weak in that an error functibrmay
satisfy it without being convex. At the same time, an error function that is ftett) such as a
constant loss, will not do.

We conclude with a remark about the situation in which the ingusselinearly independent
It has a brief and straightforward proof, which we do not preserd.he

Remark 6 Let £ be the hinge loss or the logistic loss atd: #{ — R be of the formQ(w) =
h(|lw||), where t R, — R is a lower semicontinuous function with bounded sublevel sets. Then the
class of regularization problen($) in which the inputsixi € Ny, are linearly independent, satisfies
the linear representer theorem.

3. Representer Theorems for Interpolation Problems

The results of the previous section allow us to focus on linear represkatgems for interpolation
problems of the type (7). We are going to consider the case of a Hilbar¢ gpas the domain of
an interpolation problem. Interpolation constraints will be formed as innetyats of the variable
with the input data.

In this section, we consider the interpolation problem

min{Q(w) : we H, (W, X) =Vi,i € Np}. (10)
We coin the ternadmissibleto denote the class of regularizers we are interested in.

Definition 7 We say that the functiof : # — R is admissibleif, for every me N and any data
set{(x,Yi) i € Nn} C H x 9 such that the interpolation constraints are satisfiable, prob{&f)

3. This occurs frequently in practice, especially when the dimensiomhigigh.
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admits a solutionw of the form
W= 3 cx, (11)
where ¢ are some real parameters.

We say thaQ : # — R is differentiable if, for everyw € #, there is a unique vector denoted by
0Q(w) € A, such that for alp € #,

im Q(w+tp) —Q(w)
t—0 t

= (0Q(w), p).

This notion corresponds to the usual notion of directional derivativRand in that cas&lQ(w)
is the gradient of2 atw.

In the remainder of the section, we always assume that Assumption 1 hofdsTae following
theorem provides a necessary and sufficient condition for a regeddoibe admissible.

Theorem 8 LetQ : # — R be a differentiable function andim(#) > 2. ThenQ is admissible if
and only if

Q(w) = h((w,w)) Vwe H, (12)
for some nondecreasing function R, — R.

It is well known that the above functional form is sufficient for a reyergter theorem to hold,
see, for example, Sékkopf et al. (2001). Here we show that it is also necessary.

The route we follow to prove the above theorem is based on a geometricrétégipn of rep-
resenter theorems. This intuition can be formally expressed as conditipim ti& lemma below.
Both condition (13) and functional form (12) express the propertyttreatontours of2 arespheres
(or regions between spheres), which is apparent from Figure 2.

Lemma 9 A functionQ : # — R is admissible if and only if it satisfies the property that

Q(w+ p) > Q(w) vV w, p € A such thatiw, p) = 0. (13)

Proof Suppose tha® satisfies property (13), consider arbitrary datg;,i € Ny, and letw' be a
solution to problem (10). We can uniquely decompasasW = w-+ p wherew € L := sparf{X; :
i € Ny} andp € £+. From (13) we obtain tha®(W) > Q(Ww). Also w satisfies the interpolation
constraints and hence we conclude thas a solution to problem (10).

Conversely, ifQ is admissible choose anw € # and consider the problem mif(z) : z €
H,(z,w) = (w,w) }. By hypothesis, there exists a solution belonging in $pgrand hencev is a
solution to this problem. Thus, we have tliatw + p) > Q(w) for everyp such thatw, p) =0. W

It remains to establish the equivalence of the geometric property (13) thticom(12), which
says than is a nondecreasing function of the norm.
Proof of Theorem 8 Assume first that (13) holds and djtH) < «. In this case, we only need to
consider the case thaf = RY since (13) can always be rewritten as an equivalent conditidd®n
using an orthonormal basis 6f.
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w+p

Figure 2: Geometric interpretation of Theorem 8. The funcfdsmhould not decrease when moving
to orthogonal directions. The contours of such a function should berisph

First we observe that, sinégis differentiable, this property implies the condition that

for all w, p € RY such thatw, p) = 0.

Now, fix anywp € RY such that|wp|| = 1. Consider an arbitrarw € RY\ {0}. Then there
exists an orthogonal matrid € O% such thatw = ||w||Uwp and detU) = 1 (see Lemma 20 in
the appendix). Moreover, we can write= € for some skew-symmetric matri2 € Mdgq (see
Example 6.2.15 in Horn and Johnson, 1991). Consider now thezpd@hl] — RY with

z(\) = ||w]|e"Pwo VAe[0,1].

We have that(0) = ||w||wp andz(1) = w. Moreover, sincéz(A),z(A)) = (w,w), we obtain that
(Z(N),z(\)) =0 VAe(0,1).

Applying (14) withw = z(A), p= Z(}), it follows that

dQ(z(A))

o = (0En),Z() =o.

ConsequentlyQ(z())) is constant and hen@®(w) = Q(|w]|wo). Settingh(&) = Q(1/&wo), V& €
R, yields (12). In additionh must be nondecreasing in order forto satisfy property (13).
For the case diif#{) = c we can argue similarly using instead the path

(1—A)wo+Aw

AN = Ehwo ]

[[wi
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which is differentiable on(0,1) whenw ¢ spaqiwp}. We confirm equation (12) for vectors in
spa{wp} by a limiting argument on vectors not in sgaw} sinceQ is continuous.
Conversely, ifQ(w) = h({w,w)) andh is nondecreasing, property (13) follows immediatcly.

The assumption of differentiability is crucial for the above proof and wagmme the issue of
removing it to future work. Nevertheless, property (13) follows immediatedynffunctional form
(12) without any assumptions.

Remark 10 LetQ : # — R be a function of the form
Q(w) = h({w,wy)) Vwe H,
for some nondecreasing function R, — R. ThenQ is admissible.

We also note that we could modify Definition 7 by requiring thay solution of problem (10)
be in the linear span of the input data. We call such regularstgctly admissible Then with minor
modifications to Lemma 9 (namely, requiring that equality in (13) holds onfy=f 0) and to the
proof of Theorem 8 (namely, requiririgto be strictly increasing) we have the following corollary.

Corollary 11 LetQ : H — R be a differentiable function and dii#/) > 2. ThenQ is strictly
admissible if and only iQ(w) = h({w,w)), Yw € H, where h R, — R is strictly increasing.

Theorem 8 can be used to verify whether the linear representer thearebe obtained when
using a regularizef. For example, the functiofiw||p = ¥cy, [Wi|P is not admissible for any
p> 1 p+# 2, because it cannot be expressed as a function of the Hilbert spane imdeed, if we
choose any € R and letw = (adj; : i € Ng), the requirement thatw||h = h((w,w)) would imply
thath(a?) = |a|P,Va € R, and hence thaiw||, = ||w]|.

4. Matrix Learning Problems
In this section, we investigate how representer theorems and results ligesiin8 can be extended

in the context of optimization problems which involve matrices.

4.1 Exploiting Matrix Structure

As we have already seen, our discussion in Section 3 applies to any Hiplaed.sThus, we may
consider the finite Hilbert space dfx n matricesMq  equipped with the Frobenius inner product
(-,-). Asin Section 3, we could consider interpolation problems of the form

min{Q(W) :W € My, (W, X) =V;,Vi € Nm} (15)

whereX; € My, are prescribed input matrices agde 9 are scalar outputs, fare Ny, Then
Theorem 8 states that such a problem admits a solution of the form

W = > GXi, (16)

ieNm
wherec; are some real parameters, if and onlQitan be written in the form

Q(W) = h((W,W)) VW € Mg, (17)
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whereh: R, — R is nondecreasing.

However, in machine learning practice, optimization problems of the form ¢&&lr most
frequently in a more special form. That is, usually the constraints of (@&}he structure inherent
in matrices—and hence the matrix variable cannot be regarded as a \etidnie. Thus, in many
recent applications, some of which we shall briefly discuss below, it isalatuconsider problems
like

min{Q(W) :W € Mg n, W Xj = Yti, Vi € Nyt € Np}. (18)

Here,w € RY denote the columns of matriw/, for t € N, andx;i € RY, v € 9 are prescribed
inputs and outputs, fare Ny, ,t € Np. In addition, the desired representation form for solutions of
such matrix problems is different from (16). In this case, one may ertepepresenter theorems
of the form

=S ¥ cxgi VteNn  (19)

SENp €Ny

wherecgi) are scalar coefficients fert € Ny, i € Npy,.

To illustrate the above, consider the problem of multi-task learning and pnstdosely related
to it (Abernethy et al., 2009; Ando and Zhang, 2005; Argyriou et al062@2008a, 2007; Card
and Recht, 2009; Cavallanti et al., 2008; Izenman, 1975; Maure6@bORaina et al., 2006; Srebro
et al., 2005; Xiong et al., 2006; Yuan et al., 2007, etc.). In learning multiglestpintly, each task
may be represented by a vector of regression parameters that omdedp the colummy in our
notation. There arae tasks andn data example$(xi, i) : i € Ny } for thet-th task. The learning
algorithm used is

min{E (W %, Yt : i € Nm,t € Np) +YQW) :W € Mgn}, (20)

whereE :RM x yM R M = Sten, M. The error term expresses the objective that the regression
vector for each task should fit well the data for this particular task. Naegher, that this term
need not separate as the sum of functions of the individual task vettaeshoice of the regularizer

Q is important in that it captures certain relationships between the tasks. @maearochoice is the
trace norm which is defined to be the sum of the singular values of a matrix or, eqotixgle

QW) = [W]|y := tr(W'W)?.

Regularization with the trace norm learns the tasks as one joint optimizatiofepre@md can be
seen as a convex relaxation of regularization with the rank (Fazel eD8all) 21t has been shown
that for certain configurations of the input data the low rank solution caret®vered using the
trace norm approach (Caesl and Recht, 2009; Recht et al., 2008). More generally, regamfless
the rank of the solution, it has been demonstrated that this approach adloacctirate estimation
of related tasks even when there are dielydata points available for each task.

Thus, it is natural to consider optimization problems of the form (18). Ih taese problems
can be seen as instances of problems of the form (15), because tigyqwax; can be written as
the inner product betwed and a matrix having all its columns equal to zero except fort ithe
column being equal tg&;. It is also easy to see that (15) is a richer class since the corresponding
constraints are less restrictive.

Despite this fact, by focusing on the class (18) we concentrate on problemgre practical
interest and we can obtain representer theorems for a richer clasgutdrizers, which includes
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the trace norm and other useful functions. In contrast, regularizatitnthe functional form (17)
is not a satisfactory approach since it ignores matrix structure. In plarticegularization with the
Frobenius norm (and a separable error function) correspondsrturigeeach taskndependently
ignoring relationships among the tasks.

A representer theorem of the form (19) for regularization with the tracenrhas been shown
in Argyriou et al. (2008a). Related results have also appeared in Athgret al. (2009) and Amit
et al. (2007). We repeat here the statement and the proof of this thearerder to better motivate
our proof technique of Section 4.2.

Theorem 12 If Q is the trace norm then proble(d8) (or problem(20)) admits a solutioWV of the
form (19), for some g) €R, i €Np,steNy

Proof LetW be a solution of (18) and let := spar{Xsi : S€ Ny,i € Ny }. We can decompose the
columns ofW aswi = W, + pr, ¥t € Np, wherew; € £ andp; € L+, Hencel =W + P, whereW is

the matrix with columnsy, andP is the matrix with columng;. Moreover we have th&® W = 0.
From Lemma 21 in the appendix, we obtain tHat||; > |W]|1. We also have that{%; = W X,

for everyi € Nyt € N Thus,W preserves the interpolation constraints (or the value of the error
term) while not increasing the value of the regularizer. Hence, it is a solofitime optimization
problem and the assertion follows. |

A simple but important observation about this and related results is that eskchetetorw; is
a linear combination of the data fail the tasks. This contrasts to the representation form (16)
obtained by using Frobenius inner product constraints. Interpretgr{a multi-task context, by
appropriately choosing th§ as described above, would imply that eaglis a linear combination
of only the data for task

Finally, in some applications the following variant, similar to the type (18), hasaneq,

min{Q(W) :W € Mqn, WX = Wi, Vi € Nm,t € Np}. (21)

Problems of this type correspond to a special case in multi-task learningatpigein which the
input data are the same for all the tasks. For instance, this is the case withocaliee filtering
or applications in marketing where the same products/entities are rated bgrallcasmisumers (see,
for example, Aaker et al., 2004; Evgeniou et al., 2005; Lenk et al., 198&ro et al., 2005, for
various approaches to this problem).

4.2 Characterization of Matrix Regularizers

Our objective in this section will be to state and prove a general represhateem for problems
of the form (18) or (21) using a functional form analogous to (12)e KRy insight used in the
proof of Argyriou et al. (2008a) has been that the trace norm is defineerms of a matrix function
that preserves the partial ordering of matrices. That is, it satisfies Lerunatfich is a matrix
analogue of the geometric property (13). To prove our main result fEhe5), we shall build on
this observation in a way similar to the approach followed in Section 3.

We shall focus on the interpolation problems (18) and (21). First of aflenk that, by defini-
tion, problems of the type (18) include those of type (21). Conversehgider a simple problem of
type (18) with two constraint®)y1 = 1,Ws, = 1. If the set of matrices satisfying these constraints
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also satisfied constraints of the fomgx; = yt1 for somex; RY yi1 € , thenx; would have to
be the zero vector. Therefore, the class of problems (18) is strictlyriirge the class (21).

However, it turns out that with regard to representer theorems of tme (©®) there is no
distinction between these two classes of problems. In other words, thesesper theorem holds
for the same regularize®, independently of whether each task has its own specific inputs or the
inputs are the same across the tasks. More importantly, we can connexistea@e of representer
theorems to a geometric property of the regularizer, in a way analogousgerpy (13) in Section
3. These facts are stated in the following proposition.

Proposition 13 The following statements are equivalent:

(a) Problem(21)admits a solution of the forif19), for every data sef(x;, y:i) : i € Nm,t € Np} C
RY x 9 and every ne N, such that the interpolation constraints are satisfiable.

(b) Problem(18) admits a solution of the forr(il9), for every data se{(Xi, Vi) : i € Ny,t €
Np} C RY x 9 and every{m :t € Ny} C N, such that the interpolation constraints are satis-
fiable.

(c) The functiom satisfies the property

QW +P) > QW) VW,P € Mg, suchthat WP=0.  (22)

Proof We will show that (a)= (c), (c) = (b) and (b) = (a).
[(@) = (c)] Consider anyV € M4 . Choosen = n and the input data to be the columns of
W. In other words, consider the problem

min{Q(Z):Z € Mg, Z'W =W'W}.

By hypothesis, there exists a solutidn= WC for someC € M. Since(Z —W)'W = 0, all
columns ofZ —W have to belong to the null space\Wf. But, at the same time, they have to lie
in the range ofV and hence we obtain thdt=W. Therefore, we obtain property (22) after the
variable chang® =Z —W.

[(c) = (b)] Consider arbitrary; € RY,y;i € 9,Vi € Np,t € Ny, and letW be a solution to
problem (18). We can decompose the columné/aiswi = W, + pt, Wherew; € L := spar{xsj,i €
Nm,s€ Nn} andp € L4, ¥t € Ny, By hypothesi€Q(W) > Q(W). SinceW interpolates the data,
so doedV and therefor&V is a solution to (18).

[(b) = (a)] Trivial, since any problem of type (21) is also of type (18). |

We remark in passing that, by a similar proof, property (22) is also equivederepresenter
theorems (19) for the class of problems (15).

The above proposition provides us with a criterion for characterizingeglilarizers satisfying
representer theorems of the form (19), in the context of problems (%) or (21). Our objective
will be to obtain a functional form analogous to (12) that describes fumgtiatisfying property
(22). This property does not have a simple geometric interpretation, udl®ewhich describes
functions with spherical contours. The reason is that matrix productsiare difficult to tackle
than inner products.
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Similar to the Hilbert space setting (12), where we requiréd be a nondecreasing real func-
tion, the functional description of the regularizer now involves the noticanoétrix nondecreasing
function.

Definition 14 We say that the function :hS? — R is nondecreasing in the order of matrices if
h(A) <h(B) for all A,B € S| such that A< B.

Theorem 15 Let d,n € N with d > 2n. The differentiable functiof@ : My, — R satisfies property
(22)if and only if there exists a matrix nondecreasing functiarsth — R such that

Q(W) = h(W'W) YW € Mgp. (23)

Proof We first assume tha® satisfies property (22). From this property it follows that, for all
W,P € MgpnwithW'™P =0,
(OQ(W),P) =0. (24)

To see this, observe that if the matWk P is zero then, for alf > 0, we have that

QW +€P) — Q(W)

> 0.
€

Taking the limit ass — 0" we obtain thatJQ(W),P) > 0. Similarly, choosing < 0 we obtain
that (0Q(W),P) < 0 and equation (24) follows.
Now, consider any matri¥V € My . Letr =rankW) and let us writé/V in a singular value
decomposition as follows
W= oi UV,

1eN;
wherea; > 6, > --- > o, > 0 are the singular values angde RY, vi € R", Vi € N;, are sets of
singular vectors, so that u; = vi'vj; = §;j, Vi, j € N;. Also, leturyq,...,Uq € RY be vectors that
together withus, . .., u, form an orthonormal basis @¢. Without loss of generality, let us piak
and consider anynit vectorz orthogonato the vectors, ..., u;. Letk=d —r +1 andg € R be
the unit vector such that

z=Rqg

whereR = (u,Ur11,...,Uq). We can completg by addingd — r columns to its right in order to
form an orthogonal matriQ € Ok and, sincel > n, we may select these columns so that @et= 1.
Furthermore, we can write this matrix @s= €P with D € M a skew-symmetric matrix (see Horn
and Johnson, 1991, Example 6.2.15).

We also define the path: [0,1] — Mg, as

r
Z(\) = 01R&Pev] + %oi UiV YA €[0,1],
i=

wheree; denotes the vectqr 0. ..0)T € RX. In other words, we fix the singular values, the right
singular vectors and the— 1 left singular vectorsi,,...,u, and only allow the first left singular
vector to vary. This path has the properties #@) =W andZ(1) = 01z + 3{_,0i UiV;'.
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By construction of the path, it holds that
Z'(\) = 01RéPDeyv]

and hence

Z(\)'Z/(N) = (51Réev] ) 01RePDerv] = o3 vie[Dexv] =0,
for everyX € (0,1), becaus®;; = 0. Hence, using equation (24), we have that
(0Q(Z(1)),Z'(A)) =0

dQ(Z(A))
dA
dent ofA. In particular,Q(Z(0)) = Q(Z(1)), that is,

and, sinc = (0Q(Z(N)),Z'(N)), we conclude tha®(Z(A)) equals a constant indepen-

r
QW) =0Q <012v{ + Zoi uiviT> :
i=

In other words, if we fix the singular values\f, the right singular vectors and all the left singular
vectors but oneQ does not depend on the remaining left singular vector (because the diaiis
independent ofiy).

In fact, this readily implies tha® does not depend on the left singylar vectors at all. Indeed,
fix an arbitraryY € Mg such thaty 'Y = I. Consider the matri¥ (W'W)z, which can be written
using the same singular values and right singular vectorg.aehat is,

Y(WTW)% = z OiTiV ,
ieN;

wheret; =YV, Vi € N;. Now, we select unit vectoms, . ..,z € RY as follows:

Z1 =W
1 z,U3,...,U,Tq

Z J—Zlu"'7zf—17-[17"‘7rl'—l'
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This construction is possible since> 2n. Replacing successively with z and thenz with T,
Vi € Ny, and applying the invariance property, we obtain that

QW) = Q ( z Oi uiviT>

ieN;

r
= Q (crlzlvl +022oV5 + Zaci uiviT>
i=

-0 (I;%rci:zavf>

= Q (01T1v1+.r;0izivf>
= Q (% (o TM) =Q (Y(WTW)%) .

Therefore, defining the functiam: ST — R ash(A) = Q(YA%), we deduce tha® (W) = h(W'W).
Finally, we show thah is matrix nondecreasing, that is(A) < h(B) if 0 < A < B. For any

1
Az 0
suchA, B and sinced > 2n, we may defin®V = [ 0 |,P=| (B—A)z | € Mqy. ThenW P =0,
0 0

A=W'W, B= (W-+P)"(W+P) and thus, by hypothesis,
h(B) = Q(W+P) > Q(W) = h(A).

This completes the proof in one direction of the theorem.

To show the converse, assume Q&) = h(W'W), where the functioh is matrix nondecreas-
ing. Then foranyV,P € M4, withW'P = 0, we have thafW +P)" (W +P) =W'W+P'P - W'W
and, soQ(W +P) > Q(W), as required. [ |

As in Section 3, differentiability is not required for sufficiency, which falkofrom the last lines
of the above proof. Moreover, the assumptiondaemdn is not required either.

Remark 16 Let the functioQ : M4, — R be of the form
Q(W) =h(W'W) VW € Mg,
for some matrix nondecreasing function® — R. ThenQ satisfies property22).

We conclude this section by providing a necessary and sufficient fust-@ondition for the
functionh to be matrix nondecreasing.

Proposition 17 Let h: S} — R be a differentiable function. The following properties are equiva-
lent:
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(&) his matrix nondecreasing

(b) the matrixTh(A) := <% i, j e Nn> is positive semidefinite, for everydAS] .

Proof If (a) holds, we choose anye R",t > 0,A € S} and note that

h(A+txx) — h(A)

> 0.
i 2

Lettingt go to zero gives that" Jh(A)x > 0.

Conversely, if (b) is true, we have, for everg R",M € ST, thatx" Oh(M)x= (Oh(M),xx") >0
and, so,(00h(M),C) > 0 for allC € S.. For anyA,B € S] such thatA < B, consider the univariate
functiong: [0,1] — R, g(t) = h(A+t(B—A)). By the chain rule it is easy to verify thgtis nonde-
creasing. Therefore we conclude thé#) = g(0) < g(1) = h(B). [

4.3 Examples

Using Proposition 13, Theorem 15 and Remark 16, one may easily verif{hthaepresenter the-
orem holds for a variety of regularizers. In particular, functionalcdpsion (23) subsumes the
special case ahonotone spectral functions

Definition 18 Let r = min{d,n}. A functionQ : My, — R is called monotone spectraf there
exists a function hR', — R such that

Q(W) :h(o'l(W),...,O'r(W)) VW e Md,n,
whereog; (W) > --- > o;(W) > 0 denote the singular values of matrix W and
h(oi,...,0¢) <h(ty,...,Tr) wheneverg; <T; foralli € N;.

Corollary 19 Assume that the functidd : M4, — R is monotone spectral. Then satisfies prop-
erty (22).

Proof Clearly,Q(W)=h ()\ ((WTW)%», whereA : S] — R!, maps a matrix to the ordered vector
of its r highest eigenvalues. LétB € S} such thatA < B. Weyl's monotonicity theorem (Horn
and Johnson, 1985, Cor. 4.3.3) states th&t B then the spectra ¢k andB are ordered. Thus,
A(A%) < A(B%) and hencdn()\(A%)) < h(A(B%)). Applying Remark 16, the assertion follows. l

We note that related results to the above corollary have appeared ineneet al. (2009). They
apply to the setting of (15) when th& are rank one matrices.
Interesting examples of monotone spectral functions arS¢hatten kL normsandprenorms

QW) = [Wlp = [[a(W)][p,

wherep € [0,+) ando(W) denotes the mifd, n}-dimensional vector of the singular values/df
For instance, we have already mentioned in Section 4.1 that the reprabsenr@m holds when the
regularizer is the trace norm (the norm of the spectrum). But it also holds for ttzenk of a matrix.
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Rank minimization is an NP-hard optimization problem (Vandenberghe and, B&@s), but the
representer theorem has some interesting implications. First, that the prodofeloe reformulated
in terms of reproducing kernels and second, that an equivalent prablas few variables as the
total sample size can be obtained.

If we exclude spectral functions, the functions that remain are invauizsferleft multiplication
with an orthogonal matrix. Examples of such functions are Schatten nodrmanorms composed
with right matrix scaling,

QW) = [WMJ,, (25)

whereM € Mp . In this case, the correspondihgs the functionS— ||\/A(MTSM)||,. To see that
this function is matrix nondecreasing, observe that B ¢ S} andA < Bthen 0<M"AM <M'BM
and henca (M"AM) < A(M"BM) by Weyl's monotonicity theorem (Horn and Johnson, 1985, Cor.
4.3.3). Thereforel|\/A(MTAM)|[p < [|\/A(MTBM)|| .

For instance, the matriM above can be used to select a subset of the columfs bf addition,
more complicated structures can be obtained by summation of matrix nondegrieetions and
by taking minima or maxima over sets. For example, we can obtain a regulariteasu

QW) = min{ W2 {1,.... Ik} € 1’} ,

kGK

where? is the set of partitions df,, in K subsets an@/(ly) denotes the submatrix & formed by
just the columns indexed Hy. This regularizer is an extension of the trace nokn=(1) and can
be used for multi-task learning via dimensionality reduction on multiple subsgaoggiou et al.,
2008b).

Yet another example of a valid regularizer is the one considered in (Exgen al., 2005,
Sec. 3.1), which encourages the tasks to be close to each other, namely

2

ow) =y
teNp

This regularizer immediately verifies property (22), and so by Theoreitrid & matrix nondecreas-
ing function ofW™W. One can also verify that this regularizer is the square of the form (&8) w
p=2andM=1,— %11T, wherel denotes th@&-dimensional vector all of whose components are
equal to one.
Finally, it is worth noting that the representer theorem do&sapply to a family of “mixed”
matrix norms of the form _
aw) = 5 w5,

€Ny

wherew denotes théth row of W andp > 1, p # 2.

5. Conclusion

We have characterized the classes of vector and matrix regularizens lshatto certain forms of
the solution of the associated interpolation problems. In the vector cas@wegloved the neces-
sity of a well-known sufficient condition for the “standard representeotém”, which is encoun-
tered in many learning and statistical estimation problems. In the matrix case veveléscribed
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a novel class of regularizers which lead to a modified representer thedrkis class, which re-
lies upon the notion of matrix nondecreasing function, includes and exsaguificantly the vector
class. To motivate the need for our study, we have discussed some egahpgularizers which
have been recently used in the context of multi-task learning and collalofi#tering.

In the future, it would be valuable to study in more detail special cases ofdtrx regularizers
which we have encountered, such as those based on orthogonallmvianctions. It would
also be interesting to investigate how the presence of additional constriéutis ghe representer
theorem. In particular, we have in mind the possibility that the matrix may be coreirto be in
a convex cone, such as the set of positive semidefinite matrices. Finallgaweeto future studies
the extension of the ideas presented here to the case in which matriceplacedeby operators
between two Hilbert spaces.
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Appendix A.

Here we collect some auxiliary results which are used in the above analysis.
The first lemma states a basic property of connectedness through ratations

Lemma 20 Letwve RY and d> 2. Then there exists & O% with determinantl. such that v= Uw
if and only if[|w]| = ||v||.

Proof If v=Uw we have thatvv'v=w'w. Conversely, if[|w|| = ||v|| # 0, we may choose
orthonormal vectorgx, : £ € Ng_1} L wand{z : ¢ € Ng_1} L v and form the matriceR =
(W % ... Xg-1) andS= (v z ... z-1). We have thaR'R=S'S We wish to solve

the equationrJR = S. For this purpose we chood¢ = SR'! and note that) € OY because

UU = (R STSR!=(R1)R'RR! =1. Sinced > 2, in the case that dgi) = —1 we can

simply change the sign of one of tkeor z to get detU ) = 1 as required. [ |
The second lemma concerns the monotonicity of the trace norm.

Lemma 21 LetW,P € My, such that WP = 0. Then||W +P||1 > ||W||1.

Proof Weyl's monotonicity theorem (Horn and Johnson, 1985, Cor. 4.3.3) impli¢# thaB € S

andA > BthenA(A) > A(B) and hence #z > trB2. We apply this fact to the matric¥é'W + PP
andP'P to obtain that

W+ Pl|y = tr((W +P) (W +P))2 = tr(W' W+ P P)2 > tr(W'W)Z = |[W||y.
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