
Journal of Machine Learning Research 10 (2009) 2507-2529 Submitted 9/08; Revised 3/09; Published 11/09

When Is There a Representer Theorem?
Vector Versus Matrix Regularizers

Andreas Argyriou A .ARGYRIOU@CS.UCL.AC.UK

Department of Computer Science
University College London
Gower Street, London, WC1E 6BT, UK

Charles A. Micchelli CAM@MATH .ALBANY .EDU

Department of Mathematics and Statistics
State University of New York
The University at Albany
Albany, New York 12222, USA

Massimiliano Pontil M .PONTIL@CS.UCL.AC.UK

Department of Computer Science
University College London
Gower Street, London, WC1E 6BT, UK

Editor: Ralph Herbrich

Abstract
We consider a general class of regularization methods whichlearn a vector of parameters on the
basis of linear measurements. It is well known that if the regularizer is a nondecreasing function of
theL2 norm, then the learned vector is a linear combination of the input data. This result, known
as therepresenter theorem, lies at the basis of kernel-based methods in machine learning. In this
paper, we prove the necessity of the above condition, in the case of differentiable regularizers.
We further extend our analysis to regularization methods which learn a matrix, a problem which
is motivated by the application to multi-task learning. In this context, we study a more general
representer theorem, which holds for a larger class of regularizers. We provide a necessary and
sufficient condition characterizing this class of matrix regularizers and we highlight some concrete
examples of practical importance. Our analysis uses basic principles from matrix theory, especially
the useful notion of matrix nondecreasing functions.
Keywords: kernel methods, matrix learning, minimal norm interpolation, multi-task learning,
regularization

1. Introduction

Regularization in Hilbert spaces is an important methodology for learning from examples and has a
long history in a variety of fields. It has been studied, from different perspectives, in statistics (see
Wahba, 1990, and references therein), in optimal estimation (Micchelli andRivlin, 1985) and re-
cently has been a focus of attention in machine learning theory, see, for example (Cucker and Smale,
2001; De Vito et al., 2004; Micchelli and Pontil, 2005a; Shawe-Taylor andCristianini, 2004; Vapnik,
2000) and references therein. Regularization is formulated as anoptimization probleminvolving an
error termand aregularizer. The regularizer plays an important role, in that it favors solutions with
certain desirable properties. It has long been observed that certain regularizers exhibit an appealing
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property, called therepresenter theorem, which states that there exists a solution of the regulariza-
tion problem that is a linear combination of the data. This property has importantcomputational
implications in the context of regularization with positive semidefinitekernels, because it transforms
high or infinite-dimensional problems of this type into finite dimensional problems of the size of the
number of available data (Schölkopf and Smola, 2002; Shawe-Taylor and Cristianini, 2004).

The topic of interest in this paper will be to determine the conditions under whichrepresenter
theorems hold. In the first half of the paper, we describe a property which a regularizer should
satisfy in order to give rise to a representer theorem. It turns out that thisproperty has a simple
geometric interpretation and that the regularizer can be equivalently expressed as anondecreasing
function of the Hilbert space norm. Thus, we show that this condition, whichhas already been
known to be sufficient for representer theorems, is alsonecessary. In the second half of the paper,
we depart from the context of Hilbert spaces and focus on a class of problems in whichmatrix
structureplays an important role. For such problems, which have recently appeared in several
machine learning applications, we show a modified version of the representer theorem that holds
for a class of regularizers significantly larger than in the former context. As we shall see, these
matrix regularizers are important in the context of multi-task learning: the matrix columns are the
parameters of different regression tasks and the regularizer encourages certain dependences across
the tasks.

In general, we consider problems in the framework ofTikhonov regularization(Tikhonov and
Arsenin, 1977). This approach finds, on the basis of a set of input/output data(x1,y1), . . . , (xm,ym)∈
H ×Y , a vector inH as the solution of an optimization problem. Here,H is a prescribed Hilbert
space equipped with the inner product〈·, ·〉 andY ⊆ R a set of possible output values. The opti-
mization problems encountered in regularization are of the type

min
{

E
(

(〈w,x1〉, . . . ,〈w,xm〉) ,(y1, . . . ,ym)
)

+ γΩ(w) : w∈H
}

, (1)

whereγ > 0 is a regularization parameter. The functionE : R
m×Y m→R is called anerror function

andΩ :H → R is called aregularizer. The error function measures the error on the data. Typically,
it decomposes as a sum of univariate functions. For example, in regression, a common choice
would be the sum of square errors,∑m

i=1(〈w,xi〉−yi)
2. The functionΩ, called the regularizer, favors

certain regularity properties of the vectorw (such as a small norm) and can be chosen based on
available prior information about the target vector. In some Hilbert spacessuch as Sobolev spaces
the regularizer is a measure of smoothness: the smaller the norm the smoother thefunction.

This framework includes several well-studied learning algorithms, such asridge regression
(Hoerl and Kennard, 1970), support vector machines (Boser et al.,1992), and many more—see
Scḧolkopf and Smola (2002) and Shawe-Taylor and Cristianini (2004) and references therein.

An important aspect of the practical success of this approach is the observation that, for certain
choices of the regularizer, solving (1) reduces to identifyingmparameters and not dim(H ). Specif-
ically, when the regularizer is the square of the Hilbert space norm, the representer theorem holds:
there exists a solution ˆw of (1) which is a linear combination of the input vectors,

ŵ =
m

∑
i=1

cixi , (2)

whereci are some real coefficients. This result is simple to prove and dates at leastfrom the 1970’s,
see, for example, Kimeldorf and Wahba (1970). It is also known that it extends to any regular-
izer that is anondecreasingfunction of the norm (Scḧolkopf et al., 2001). Several other variants
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and results about the representation form (2) have also appeared in recent years (De Vito et al.,
2004; Dinuzzo et al., 2007; Evgeniou et al., 2000; Girosi et al., 1995; Micchelli and Pontil, 2005b;
Steinwart, 2003; Wahba, 1992). Moreover, the representer theoremhas been important in machine
learning, particularly within the context of learning in reproducing kernelHilbert spaces (Aronszajn,
1950)—see Scḧolkopf and Smola (2002) and Shawe-Taylor and Cristianini (2004) and references
therein.

Our first objective in this paper is to derive necessary and sufficient conditions for representer
theorems to hold. Even though one is mainly interested in regularization problems, it is more
convenient to studyinterpolationproblems, that is, problems of the form

min
{

Ω(w) : w∈H ,〈w,xi〉 = yi , ∀i = 1, . . . ,m
}

. (3)

Thus, we begin this paper (Section 2) by showing how representer theorems for interpolation and
regularization relate. On one side, a representer theorem for interpolation easily implies such a the-
orem for regularization with the same regularizer and any error function.Therefore,all representer
theorems obtained in this paper apply equally to interpolation and regularization. On the other side,
though, the converse implication is true under certain weak qualifications on the error function.

Having addressed this issue, we concentrate in Section 3 on proving that an interpolation prob-
lem (3) admits solutions representable in the form (2)if and only ifthe regularizer isa nondecreasing
function of the Hilbert space norm. That is, we provide a complete characterization of regularizers
that give rise to representer theorems, which had been an open question.Furthermore, we dis-
cuss how our proof is motivated by a geometric understanding of the representer theorem, which
is equivalently expressed as a monotonicity property of the regularizer. We note that for simplicity
throughout the paper we shall assume thatΩ is differentiable. However our results are constructive
and it should be possible to extend them to the non-differentiable case.

Our second objective is to formulate and study the novel question of representer theorems for
matrix problems. To make our discussion concrete, let us consider the problem of learning n linear
regression vectors, represented by the parametersw1, . . . ,wn ∈ R

d, respectively. Each vector can
be thought of as a “task” and the goal is tojointly learn thesen tasks. In such problems, there is
usually prior knowledge thatrelatesthese tasks and it is often the case that learning can improve if
this knowledge is appropriately taken into account. Consequently, a good regularizer should favor
such task relations and involveall tasks jointly.

In the case of interpolation, this learning framework can be formulated concisely as

min{Ω(W) : W ∈ Md,n , w⊤
t xti = yti , ∀i = 1, . . . ,mt , t = 1, . . . ,n} , (4)

whereMd,n denotes the set ofd×n real matrices and the column vectorsw1, . . . ,wn ∈ R
d form the

matrix W. Each taskt has its own input dataxt1, . . . ,xtmt ∈ R
d and corresponding output values

yt1, . . . ,ytmt ∈ Y .
An important feature of such problems that distinguishes them from the type (3) is the appear-

ance ofmatrix productsin the constraints, unlike the inner products in (3). In fact, as we will
discuss in Section 4.1, problems of the type (4) can be written in the form (3).Consequently, the
representer theorem applies if the matrix regularizer is a nondecreasing function of the Frobenius
norm.1 However, the optimal vector ˆwt for each task can be represented as a linear combination of

1. Defined as‖W‖2 =
√

tr(W⊤W).
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only those input vectors corresponding to this particular task. Moreover, with such regularizers it
is easy to see that each task in (4) can be optimized independently. Hence, these regularizers are of
no practical interest if the tasks are expected to be related.

This observation leads us to formulate amodified representer theorem, which is appropriate for
matrix problems, namely,

ŵt =
n

∑
s=1

ms

∑
i=1

c(t)
si xsi ∀ t = 1, . . . ,n, (5)

wherec(t)
si are scalar coefficients, fort,s = 1, . . . ,n, i = 1, . . . ,ms. In other words, we now allow

for all input vectorsto be present in the linear combination representing each column of the op-
timal matrix. As a result, this definition greatly expands the class of regularizers that give rise to
representer theorems.

Moreover, this framework can be used in many applications where matrix optimization prob-
lems are involved. Our immediate motivation, however, has been more specific than that, namely
multi-task learning. Learning multiple tasks jointly has been a growing area of interest in machine
learning and other fields, especially during the past few years (Abernethy et al., 2009; Argyriou
et al., 2006, 2008a, 2007; Candès and Recht, 2009; Cavallanti et al., 2008; Izenman, 1975; Maurer,
2006a,b; Srebro et al., 2005; Wolf et al., 2007; Xiang and Bennett, 2005; Xiong et al., 2006; Yuan
et al., 2007). For instance, some of these approaches use regularizers which involve thetrace norm2

of matrixW. There have been several motivations for the trace norm, derived from kernel learning,
maximum likelihood, matrix factorization or graphical models. Another motivation isthat under
conditions a small trace norm favors low-rank matrices. This means that the tasks (the columns of
W) are related in that they all lie in a low-dimensional subspace ofR

d. In the case of the trace norm,
the representer theorem (5) is known to hold—see Abernethy et al. (2009), Argyriou et al. (2008a)
and Amit et al. (2007); see also the discussion in Section 4.1.

It is natural, therefore, to ask a question similar to that in the standard Hilbertspace (or single-
task) setting. That is, under which conditions on the regularizer a representer theorem holds. In
Section 4.2, we provide an answer byproving a necessary and sufficient condition for representer
theorems(5) to hold for problem(4), expressed as a simple monotonicity property. This property is
analogous to the one in the Hilbert space setting, but its geometric interpretationis now algebraic
in nature. We also give a functional description equivalent to this property, that is,we show that the
regularizers of interest are the matrix nondecreasing functions of the quantity W⊤W.

Our results cover matrix problems of the type (4) which have already been studied in the litera-
ture. But they also point towards some new learning methods that may perform well in practice and
can now be made computationally efficient. Thus, we close the paper with a discussion of possible
regularizers that satisfy our conditions and have been used or can be used in the future in machine
learning problems.

1.1 Notation

Before proceeding, we introduce the notation used in this paper. We useNd as a shorthand for the
set of integers{1, . . . ,d}. We useRd to denote the linear space of vectors withd real components.
The standard inner product in this space is denoted by〈·, ·〉, that is,〈w,v〉 = ∑i∈Nd

wivi , ∀w,v∈ R
d,

2. Equal to the sum of the singular values ofW.
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wherewi ,vi are thei-th components ofw,v respectively. More generally, we will consider Hilbert
spaces which we will denote byH , equipped with an inner product〈·, ·〉.

We also letMd,n be the linear space ofd× n real matrices. IfW,Z ∈ Md,n we define their
Frobenius inner product as〈W,Z〉 = tr(W⊤Z), where tr denotes the trace of a matrix. WithSd we
denote the set ofd×d real symmetric matrices and withSd

+ (Sd
++) its subset of positive semidefinite

(definite) ones. We use≻ and� for the positive definite and positive semidefinite partial orderings,
respectively. Finally, we letOd be the set ofd×d orthogonal matrices.

2. Regularization Versus Interpolation

The line of attack which we shall follow in this paper will go throughinterpolation. That is, our
main concern will be to obtain necessary and sufficient conditions for representer theorems that
hold for interpolation problems. However, in practical applications one encountersregularization
problems more frequently than interpolation problems.

First of all, the family of the former problems is more general than that of the latter ones.
Indeed, an interpolation problem can be simply obtained in the limit as theregularization parameter
goes to zero (Micchelli and Pinkus, 1994). More importantly, regularization enables one to trade
off interpolation of the data against smoothness or simplicity of the model, whereas interpolation
frequently suffers fromoverfitting.

Thus, frequently one considers problems of the form

min
{

E
(

(〈w,x1〉, . . . ,〈w,xm〉) ,(y1, . . . ,ym)
)

+ γΩ(w) : w∈H
}

, (6)

whereγ > 0 is called the regularization parameter. This parameter is not known in advance but can
be tuned with techniques likecross validation, see, for example, Wahba (1990). Here, the function
Ω : H → R is a regularizer, E : R

m×Y m → R is an error function andxi ∈ H ,yi ∈ Y ,∀i ∈ Nm,
are given input and output data. The setY is a subset ofR and varies depending on the context,
so that it is typically assumed equal toR in the case of regression or equal to{−1,1} in binary
classification problems. One may also consider the associated interpolation problem, which is

min
{

Ω(w) : w∈H ,〈w,xi〉 = yi , ∀i ∈ Nm
}

. (7)

Under certain assumptions, the minima in problems (6) and (7) are attained (the latter whenever
the constraints in (7) are satisfiable). Such assumptions could involve, forexample, lower semicon-
tinuity and boundedness of sublevel sets forΩ and boundedness from below forE . These issues will
not concern us here, as we shall assume the following about the error functionE and the regularizer
Ω, from now on.

Assumption 1 The minimum(6) is attained for anyγ > 0, any input and output data{xi ,yi : i ∈Nm}
and any m∈ N. The minimum(7) is attained for any input and output data{xi ,yi : i ∈ Nm} and any
m∈ N, whenever the constraints in(7) are satisfiable.

The main objective of this paper is to obtainnecessary and sufficientconditions onΩ so that the
solution of problem (6) satisfies alinear representer theorem.

Definition 2 We say that a class of optimization problems such as(6) or (7) satisfies thelinear
representer theoremif, for any choice of data{xi ,yi : i ∈ Nm} such that the problem has a solution,
there existsa solution that belongs tospan{xi : i ∈ Nm}.
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In this section, we show that the existence of representer theorems for regularization problems is
equivalent to the existence of representer theorems for interpolation problems, under a quite general
condition that has a simple geometric interpretation.

We first recall a lemma from (Micchelli and Pontil, 2004, Sec. 2) which statesthat (linear or
not) representer theorems for interpolation lead to representer theorems for regularization, under no
conditions on the error function.

Lemma 3 LetE : R
m×Y m → R, Ω : H → R satisfying Assumption 1. Then if the class of inter-

polation problems(7) satisfies the linear representer theorem, so does the class of regularization
problems(6).

Proof Consider a problem of the form (6) and let ˆw be a solution. We construct an associated
interpolation problem

min
{

Ω(w) : w∈H ,〈w,x1〉 = 〈ŵ,x1〉, . . . ,〈w,xm〉 = 〈ŵ,xm〉
}

. (8)

By hypothesis, there exists a solution ˜w of (8) that lies in span{xi : i ∈ Nm}. But thenΩ(w̃) ≤ Ω(ŵ)
and hence ˜w is a solution of (6). The result follows.

This lemma requires no special properties of the functions involved. Its converse, in contrast,
requires assumptions about the analytical properties of the error function. We provide one such
natural condition in the theorem below, but other conditions could conceivably work too. The main
idea in the proof is, based on a single input, to construct a sequence of appropriate regularization
problems for different values of the regularization parameterγ. Then, it suffices to show that letting
γ → 0+ yields a limit of the minimizers that satisfies an interpolation constraint.

Theorem 4 LetE : R
m×Y m → R andΩ : H → R. Assume thatE ,Ω are lower semicontinuous,

thatΩ has bounded sublevel sets and thatE is bounded from below. Assume also that, for some v∈
R

m\{0},y∈ Y m, there exists auniqueminimizer ofmin{E(av,y) : a∈ R} and that this minimizer
does not equal zero. Then if the class of regularization problems(6) satisfies the linear representer
theorem, so does the class of interpolation problems(7).

Proof Fix an arbitraryx 6= 0 and leta0 be the minimizer of min{E(av,y) : a ∈ R}. Consider the
problems

min

{

E

(

a0

‖x‖2〈w,x〉v,y

)

+ γΩ(w) : w∈H

}

,

for everyγ > 0, and letwγ be a solution in the span ofx (known to exist by hypothesis). We then
obtain that

E(a0v,y)+ γΩ(wγ) ≤ E

(

a0

‖x‖2〈wγ,x〉v,y

)

+ γΩ(wγ) ≤ E (a0v,y)+ γΩ(x) . (9)

Thus,Ω(wγ) ≤ Ω(x) and so, by the hypothesis onΩ, the set{wγ : γ > 0} is bounded. Therefore,
there exists a convergent subsequence{wγℓ : ℓ∈N}, with γℓ → 0+, whose limit we call ¯w. By taking
the limit inferior asℓ → ∞ on the inequality on the right in (9), we obtain

E

(

a0

‖x‖2〈w̄,x〉v,y

)

≤ E (a0v,y) .
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Consequently,

a0

‖x‖2〈w̄,x〉 = a0

or, using the hypothesis thata0 6= 0,
〈w̄,x〉 = ‖x‖2.

In addition, sincewγ belongs to the span ofx for everyγ > 0, so does ¯w. Thus, we obtain that
w̄ = x. Moreover, from the definition ofwγ we have that

E

(

a0

‖x‖2〈wγ,x〉v,y

)

+ γΩ(wγ) ≤ E (a0v,y)+ γΩ(w) ∀w∈H such that〈w,x〉 = ‖x‖2

and, combining with the definition ofa0, we obtain that

Ω(wγ) ≤ Ω(w) ∀w∈H such that〈w,x〉 = ‖x‖2.

Taking the limits inferior asℓ → ∞, we conclude that ¯w = x is a solution of the problem

min{Ω(w) : w∈H ,〈w,x〉 = ‖x‖2} .

Moreover, this assertion holds even whenx = 0, since the hypothesis implies that 0 is a global min-
imizer of Ω. Indeed, any regularization problem of the type (6) with zero inputs,xi = 0,∀i ∈ Nm,
admits a solution in their span. Thus, we have shown thatΩ satisfies property (13) in the next sec-
tion and the result follows immediately from Lemma 9 below.

We now comment on some commonly used error functions. The first is thesquare loss,

E(z,y) = ∑
i∈Nm

(zi −yi)
2 ,

for z,y∈ R
m. It is immediately apparent that Theorem 4 applies in this case.

The second function is thehinge loss,

E(z,y) = ∑
i∈Nm

max(1−ziyi ,0) ,

where the outputsyi are assumed to belong to{−1,1} for the purpose of classification. In this case,
we may selectyi = 1,∀i ∈ Nm, andv = (1,−2,0, . . . ,0)⊤ for m≥ 2. Then the functionE(·v,y) is
the one shown in Figure 1.

Finally, thelogistic loss,
E(z,y) = ∑

i∈Nm

log
(

1+e−ziyi
)

,

is also used in classification problems. In this case, we may selectyi = 1,∀i ∈ Nm, andv= (2,−1)⊤

for m= 2 or v = (m−2,−1, . . . ,−1)⊤ for m> 2. In the latter case, for example, setting to zero the
derivative ofE(·v,y) yields the equation(m−1)ea(m−1) +ea−m+2 = 0, which can easily be seen
to have a unique solution.

Summarizing, we obtain the following corollary.
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Figure 1: Hinge loss along the direction(1,−2,0, . . . ,0).

Corollary 5 If E : R
m×Y m → R is the square loss, the hinge loss (for m≥ 2) or the logistic loss

(for m≥ 2) andΩ : H → R is lower semicontinuous with bounded sublevel sets, then the class of
problems(6) satisfies the linear representer theorem if and only if the class of problems(7) does.

Note also that the condition onE in Theorem 4 is rather weak in that an error functionE may
satisfy it without being convex. At the same time, an error function that is “tooflat”, such as a
constant loss, will not do.

We conclude with a remark about the situation in which the inputsxi arelinearly independent.3

It has a brief and straightforward proof, which we do not present here.

Remark 6 Let E be the hinge loss or the logistic loss andΩ : H → R be of the formΩ(w) =
h(‖w‖), where h: R+ →R is a lower semicontinuous function with bounded sublevel sets. Then the
class of regularization problems(6) in which the inputs xi , i ∈Nm, are linearly independent, satisfies
the linear representer theorem.

3. Representer Theorems for Interpolation Problems

The results of the previous section allow us to focus on linear representertheorems for interpolation
problems of the type (7). We are going to consider the case of a Hilbert spaceH as the domain of
an interpolation problem. Interpolation constraints will be formed as inner products of the variable
with the input data.

In this section, we consider the interpolation problem

min{Ω(w) : w∈H ,〈w,xi〉 = yi , i ∈ Nm}. (10)

We coin the termadmissibleto denote the class of regularizers we are interested in.

Definition 7 We say that the functionΩ : H → R is admissibleif, for every m∈ N and any data
set{(xi ,yi) : i ∈ Nm} ⊆H ×Y such that the interpolation constraints are satisfiable, problem(10)

3. This occurs frequently in practice, especially when the dimensionalityd is high.
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admits a solutionŵ of the form
ŵ = ∑

i∈Nm

cixi , (11)

where ci are some real parameters.

We say thatΩ : H → R is differentiable if, for everyw ∈ H , there is a unique vector denoted by
∇Ω(w) ∈H , such that for allp∈H ,

lim
t→0

Ω(w+ t p)−Ω(w)

t
= 〈∇Ω(w), p〉.

This notion corresponds to the usual notion of directional derivative onR
d and in that case∇Ω(w)

is the gradient ofΩ atw.
In the remainder of the section, we always assume that Assumption 1 holds for Ω. The following

theorem provides a necessary and sufficient condition for a regularizer to be admissible.

Theorem 8 Let Ω : H → R be a differentiable function anddim(H ) ≥ 2. ThenΩ is admissible if
and only if

Ω(w) = h(〈w,w〉) ∀ w∈H , (12)

for some nondecreasing function h: R+ → R.

It is well known that the above functional form is sufficient for a representer theorem to hold,
see, for example, Schölkopf et al. (2001). Here we show that it is also necessary.

The route we follow to prove the above theorem is based on a geometric interpretation of rep-
resenter theorems. This intuition can be formally expressed as condition (13) in the lemma below.
Both condition (13) and functional form (12) express the property thatthe contours ofΩ arespheres
(or regions between spheres), which is apparent from Figure 2.

Lemma 9 A functionΩ : H → R is admissible if and only if it satisfies the property that

Ω(w+ p) ≥ Ω(w) ∀ w, p∈H such that〈w, p〉 = 0. (13)

Proof Suppose thatΩ satisfies property (13), consider arbitrary dataxi ,yi , i ∈ Nm, and letŵ be a
solution to problem (10). We can uniquely decompose ˆw asŵ = w̄+ p wherew̄ ∈ L := span{xi :
i ∈ Nm} and p ∈ L⊥. From (13) we obtain thatΩ(ŵ) ≥ Ω(w̄). Also w̄ satisfies the interpolation
constraints and hence we conclude that ¯w is a solution to problem (10).

Conversely, ifΩ is admissible choose anyw ∈ H and consider the problem min{Ω(z) : z∈
H ,〈z,w〉 = 〈w,w〉}. By hypothesis, there exists a solution belonging in span{w} and hencew is a
solution to this problem. Thus, we have thatΩ(w+ p) ≥ Ω(w) for everyp such that〈w, p〉 = 0.

It remains to establish the equivalence of the geometric property (13) to condition (12), which
says thatΩ is a nondecreasing function of theL2 norm.
Proof of Theorem 8Assume first that (13) holds and dim(H ) < ∞. In this case, we only need to
consider the case thatH = R

d since (13) can always be rewritten as an equivalent condition onR
d,

using an orthonormal basis ofH .
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w+p

w

0

Figure 2: Geometric interpretation of Theorem 8. The functionΩ should not decrease when moving
to orthogonal directions. The contours of such a function should be spherical.

First we observe that, sinceΩ is differentiable, this property implies the condition that

〈∇Ω(w), p〉 = 0, (14)

for all w, p∈ R
d such that〈w, p〉 = 0.

Now, fix any w0 ∈ R
d such that‖w0‖ = 1. Consider an arbitraryw ∈ R

d \ {0}. Then there
exists an orthogonal matrixU ∈ Od such thatw = ‖w‖Uw0 and det(U) = 1 (see Lemma 20 in
the appendix). Moreover, we can writeU = eD for some skew-symmetric matrixD ∈ Md,d (see
Example 6.2.15 in Horn and Johnson, 1991). Consider now the pathz : [0,1] → R

d with

z(λ) = ‖w‖eλDw0 ∀ λ ∈ [0,1].

We have thatz(0) = ‖w‖w0 andz(1) = w. Moreover, since〈z(λ),z(λ)〉 = 〈w,w〉, we obtain that

〈z′(λ),z(λ)〉 = 0 ∀ λ ∈ (0,1).

Applying (14) withw = z(λ), p = z′(λ), it follows that

dΩ(z(λ))

dλ
= 〈∇Ω(z(λ)),z′(λ)〉 = 0.

Consequently,Ω(z(λ)) is constant and henceΩ(w) = Ω(‖w‖w0). Settingh(ξ) = Ω(
√

ξw0), ∀ξ ∈
R+, yields (12). In addition,h must be nondecreasing in order forΩ to satisfy property (13).

For the case dim(H ) = ∞ we can argue similarly using instead the path

z(λ) =
(1−λ)w0 +λw
‖(1−λ)w0 +λw‖

‖w‖
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which is differentiable on(0,1) when w /∈ span{w0}. We confirm equation (12) for vectors in
span{w0} by a limiting argument on vectors not in span{w0} sinceΩ is continuous.

Conversely, ifΩ(w) = h(〈w,w〉) andh is nondecreasing, property (13) follows immediately.

The assumption of differentiability is crucial for the above proof and we postpone the issue of
removing it to future work. Nevertheless, property (13) follows immediately from functional form
(12) without any assumptions.

Remark 10 Let Ω : H → R be a function of the form

Ω(w) = h(〈w,w〉) ∀ w∈H ,

for some nondecreasing function h: R+ → R. ThenΩ is admissible.

We also note that we could modify Definition 7 by requiring thatanysolution of problem (10)
be in the linear span of the input data. We call such regularizersstrictly admissible. Then with minor
modifications to Lemma 9 (namely, requiring that equality in (13) holds only ifp = 0) and to the
proof of Theorem 8 (namely, requiringh to be strictly increasing) we have the following corollary.

Corollary 11 Let Ω : H → R be a differentiable function and dim(H ) ≥ 2. ThenΩ is strictly
admissible if and only ifΩ(w) = h(〈w,w〉), ∀w∈H , where h: R+ → R is strictly increasing.

Theorem 8 can be used to verify whether the linear representer theoremcan be obtained when
using a regularizerΩ. For example, the function‖w‖p

p = ∑i∈Nd
|wi |

p is not admissible for any
p > 1, p 6= 2, because it cannot be expressed as a function of the Hilbert space norm. Indeed, if we
choose anya∈ R and letw = (aδi1 : i ∈ Nd), the requirement that‖w‖p

p = h(〈w,w〉) would imply
thath(a2) = |a|p,∀a∈ R, and hence that‖w‖p = ‖w‖.

4. Matrix Learning Problems

In this section, we investigate how representer theorems and results like Theorem 8 can be extended
in the context of optimization problems which involve matrices.

4.1 Exploiting Matrix Structure

As we have already seen, our discussion in Section 3 applies to any Hilbert space. Thus, we may
consider the finite Hilbert space ofd×n matricesMd,n equipped with the Frobenius inner product
〈·, ·〉. As in Section 3, we could consider interpolation problems of the form

min{Ω(W) : W ∈ Md,n,〈W,Xi〉 = yi ,∀i ∈ Nm} (15)

whereXi ∈ Md,n are prescribed input matrices andyi ∈ Y are scalar outputs, fori ∈ Nm. Then
Theorem 8 states that such a problem admits a solution of the form

Ŵ = ∑
i∈Nm

ciXi , (16)

whereci are some real parameters, if and only ifΩ can be written in the form

Ω(W) = h(〈W,W〉) ∀ W ∈ Md,n, (17)
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whereh : R+ → R is nondecreasing.
However, in machine learning practice, optimization problems of the form (15)occur most

frequently in a more special form. That is, usually the constraints of (15) use the structure inherent
in matrices—and hence the matrix variable cannot be regarded as a vector variable. Thus, in many
recent applications, some of which we shall briefly discuss below, it is natural to consider problems
like

min{Ω(W) : W ∈ Md,n , w⊤
t xti = yti , ∀i ∈ Nmt , t ∈ Nn} . (18)

Here,wt ∈ R
d denote the columns of matrixW, for t ∈ Nn, andxti ∈ R

d,yti ∈ Y are prescribed
inputs and outputs, fori ∈ Nmt , t ∈ Nn. In addition, the desired representation form for solutions of
such matrix problems is different from (16). In this case, one may encounter representer theorems
of the form

ŵt = ∑
s∈Nn

∑
i∈Nms

c(t)
si xsi ∀t ∈ Nn, (19)

wherec(t)
si are scalar coefficients fors, t ∈ Nn, i ∈ Nms.

To illustrate the above, consider the problem of multi-task learning and problems closely related
to it (Abernethy et al., 2009; Ando and Zhang, 2005; Argyriou et al., 2006, 2008a, 2007; Candès
and Recht, 2009; Cavallanti et al., 2008; Izenman, 1975; Maurer, 2006a,b; Raina et al., 2006; Srebro
et al., 2005; Xiong et al., 2006; Yuan et al., 2007, etc.). In learning multiple tasks jointly, each task
may be represented by a vector of regression parameters that corresponds to the columnwt in our
notation. There aren tasks andmt data examples{(xti ,yti) : i ∈ Nmt} for thet-th task. The learning
algorithm used is

min
{

E
(

w⊤
t xti ,yti : i ∈ Nmt , t ∈ Nn

)

+ γΩ(W) : W ∈ Md,n
}

, (20)

whereE : R
M ×Y M → R,M = ∑t∈Nn

mt . The error term expresses the objective that the regression
vector for each task should fit well the data for this particular task. Note, however, that this term
need not separate as the sum of functions of the individual task vectors. The choice of the regularizer
Ω is important in that it captures certain relationships between the tasks. One common choice is the
trace norm, which is defined to be the sum of the singular values of a matrix or, equivalently,

Ω(W) = ‖W‖1 := tr(W⊤W)
1
2 .

Regularization with the trace norm learns the tasks as one joint optimization problem and can be
seen as a convex relaxation of regularization with the rank (Fazel et al., 2001). It has been shown
that for certain configurations of the input data the low rank solution can berecovered using the
trace norm approach (Candès and Recht, 2009; Recht et al., 2008). More generally, regardlessof
the rank of the solution, it has been demonstrated that this approach allows for accurate estimation
of related tasks even when there are onlyfewdata points available for each task.

Thus, it is natural to consider optimization problems of the form (18). In fact, these problems
can be seen as instances of problems of the form (15), because the quantity w⊤

t xti can be written as
the inner product betweenW and a matrix having all its columns equal to zero except for thet-th
column being equal toxti . It is also easy to see that (15) is a richer class since the corresponding
constraints are less restrictive.

Despite this fact, by focusing on the class (18) we concentrate on problemsof more practical
interest and we can obtain representer theorems for a richer class of regularizers, which includes

2518



WHEN IS THERE A REPRESENTERTHEOREM? VECTOR VERSUSMATRIX REGULARIZERS

the trace norm and other useful functions. In contrast, regularization with the functional form (17)
is not a satisfactory approach since it ignores matrix structure. In particular, regularization with the
Frobenius norm (and a separable error function) corresponds to learning each taskindependently,
ignoring relationships among the tasks.

A representer theorem of the form (19) for regularization with the trace norm has been shown
in Argyriou et al. (2008a). Related results have also appeared in Abernethy et al. (2009) and Amit
et al. (2007). We repeat here the statement and the proof of this theorem,in order to better motivate
our proof technique of Section 4.2.

Theorem 12 If Ω is the trace norm then problem(18) (or problem(20)) admits a solutionŴ of the

form (19), for some c(t)si ∈ R, i ∈ Nms,s, t ∈ Nn.

Proof Let Ŵ be a solution of (18) and letL := span{xsi : s∈ Nn, i ∈ Nms}. We can decompose the
columns ofŴ asŵt = w̄t + pt , ∀t ∈ Nn, wherew̄t ∈ L andpt ∈ L⊥. HenceŴ = W̄+P, whereW̄ is
the matrix with columns ¯wt andP is the matrix with columnspt . Moreover we have thatP⊤W̄ = 0.
From Lemma 21 in the appendix, we obtain that‖Ŵ‖1 ≥ ‖W̄‖1. We also have that ˆw⊤

t xti = w̄⊤
t xti ,

for everyi ∈ Nmt , t ∈ Nn. Thus,W̄ preserves the interpolation constraints (or the value of the error
term) while not increasing the value of the regularizer. Hence, it is a solutionof the optimization
problem and the assertion follows.

A simple but important observation about this and related results is that each task vectorwt is
a linear combination of the data forall the tasks. This contrasts to the representation form (16)
obtained by using Frobenius inner product constraints. Interpreting (16) in a multi-task context, by
appropriately choosing theXi as described above, would imply that eachwt is a linear combination
of only the data for taskt.

Finally, in some applications the following variant, similar to the type (18), has appeared,

min{Ω(W) : W ∈ Md,n , w⊤
t xi = yti , ∀i ∈ Nm, t ∈ Nn} . (21)

Problems of this type correspond to a special case in multi-task learning applications in which the
input data are the same for all the tasks. For instance, this is the case with collaborative filtering
or applications in marketing where the same products/entities are rated by all users/consumers (see,
for example, Aaker et al., 2004; Evgeniou et al., 2005; Lenk et al., 1996;Srebro et al., 2005, for
various approaches to this problem).

4.2 Characterization of Matrix Regularizers

Our objective in this section will be to state and prove a general representer theorem for problems
of the form (18) or (21) using a functional form analogous to (12). The key insight used in the
proof of Argyriou et al. (2008a) has been that the trace norm is defined in terms of a matrix function
that preserves the partial ordering of matrices. That is, it satisfies Lemma 21, which is a matrix
analogue of the geometric property (13). To prove our main result (Theorem 15), we shall build on
this observation in a way similar to the approach followed in Section 3.

We shall focus on the interpolation problems (18) and (21). First of all, observe that, by defini-
tion, problems of the type (18) include those of type (21). Conversely, consider a simple problem of
type (18) with two constraints,W11 = 1,W22 = 1. If the set of matrices satisfying these constraints
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also satisfied constraints of the formw⊤
t x1 = yt1 for somex1 ∈ R

d,yt1 ∈ Y , thenx1 would have to
be the zero vector. Therefore, the class of problems (18) is strictly larger than the class (21).

However, it turns out that with regard to representer theorems of the form (19) there is no
distinction between these two classes of problems. In other words, the representer theorem holds
for the same regularizersΩ, independently of whether each task has its own specific inputs or the
inputs are the same across the tasks. More importantly, we can connect the existence of representer
theorems to a geometric property of the regularizer, in a way analogous to property (13) in Section
3. These facts are stated in the following proposition.

Proposition 13 The following statements are equivalent:

(a) Problem(21)admits a solution of the form(19), for every data set{(xi ,yti) : i ∈Nm, t ∈Nn}⊆
R

d ×Y and every m∈ N, such that the interpolation constraints are satisfiable.

(b) Problem(18) admits a solution of the form(19), for every data set{(xti ,yti) : i ∈ Nmt , t ∈
Nn} ⊆ R

d×Y and every{mt : t ∈ Nn} ⊆ N, such that the interpolation constraints are satis-
fiable.

(c) The functionΩ satisfies the property

Ω(W+P) ≥ Ω(W) ∀ W,P∈ Md,n such that W⊤P = 0. (22)

Proof We will show that (a)=⇒ (c), (c) =⇒ (b) and (b)=⇒ (a).
[(a) =⇒ (c)] Consider anyW ∈ Md,n. Choosem= n and the input data to be the columns of

W. In other words, consider the problem

min{Ω(Z) : Z ∈ Md,n,Z
⊤W = W⊤W} .

By hypothesis, there exists a solutionẐ = WC for someC ∈ Mn,n. Since(Ẑ−W)⊤W = 0, all
columns ofẐ−W have to belong to the null space ofW⊤. But, at the same time, they have to lie
in the range ofW and hence we obtain thatẐ = W. Therefore, we obtain property (22) after the
variable changeP = Z−W.

[(c) =⇒ (b)] Consider arbitraryxti ∈ R
d,yti ∈ Y ,∀i ∈ Nmt , t ∈ Nn, and letŴ be a solution to

problem (18). We can decompose the columns ofŴ asŵt = w̄t + pt , wherew̄t ∈ L := span{xsi, i ∈
Nms,s∈ Nn} andpt ∈ L⊥, ∀t ∈ Nn. By hypothesisΩ(Ŵ) ≥ Ω(W̄). SinceŴ interpolates the data,
so doesW̄ and thereforeW̄ is a solution to (18).

[(b) =⇒ (a)] Trivial, since any problem of type (21) is also of type (18).

We remark in passing that, by a similar proof, property (22) is also equivalent to representer
theorems (19) for the class of problems (15).

The above proposition provides us with a criterion for characterizing all regularizers satisfying
representer theorems of the form (19), in the context of problems (15),(18) or (21). Our objective
will be to obtain a functional form analogous to (12) that describes functions satisfying property
(22). This property does not have a simple geometric interpretation, unlike (13) which describes
functions with spherical contours. The reason is that matrix products aremore difficult to tackle
than inner products.
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Similar to the Hilbert space setting (12), where we requiredh to be a nondecreasing real func-
tion, the functional description of the regularizer now involves the notion ofamatrix nondecreasing
function.

Definition 14 We say that the function h: Sn
+ → R is nondecreasing in the order of matrices if

h(A) ≤ h(B) for all A,B∈ Sn
+ such that A� B.

Theorem 15 Let d,n∈ N with d≥ 2n. The differentiable functionΩ : Md,n → R satisfies property
(22) if and only if there exists a matrix nondecreasing function h: Sn

+ → R such that

Ω(W) = h(W⊤W) ∀ W ∈ Md,n. (23)

Proof We first assume thatΩ satisfies property (22). From this property it follows that, for all
W,P∈ Md,n with W⊤P = 0,

〈∇Ω(W),P〉 = 0. (24)

To see this, observe that if the matrixW⊤P is zero then, for allε > 0, we have that

Ω(W+ εP)−Ω(W)

ε
≥ 0.

Taking the limit asε → 0+ we obtain that〈∇Ω(W),P〉 ≥ 0. Similarly, choosingε < 0 we obtain
that〈∇Ω(W),P〉 ≤ 0 and equation (24) follows.

Now, consider any matrixW ∈ Md,n. Let r = rank(W) and let us writeW in a singular value
decomposition as follows

W = ∑
i∈Nr

σi uiv
⊤
i ,

whereσ1 ≥ σ2 ≥ ·· · ≥ σr > 0 are the singular values andui ∈ R
d, vi ∈ R

n, ∀i ∈ Nr , are sets of
singular vectors, so thatu⊤

i u j = v⊤
i v j = δi j , ∀i, j ∈ Nr . Also, let ur+1, . . . ,ud ∈ R

d be vectors that
together withu1, . . . ,ur form an orthonormal basis ofRd. Without loss of generality, let us picku1

and consider anyunit vectorz orthogonalto the vectorsu2, . . . ,ur . Let k = d− r +1 andq∈ R
k be

the unit vector such that
z= Rq,

whereR= (u1,ur+1, . . . ,ud). We can completeq by addingd− r columns to its right in order to
form an orthogonal matrixQ∈Ok and, sinced > n, we may select these columns so that det(Q) = 1.
Furthermore, we can write this matrix asQ= eD with D ∈ M k,k a skew-symmetric matrix (see Horn
and Johnson, 1991, Example 6.2.15).

We also define the pathZ : [0,1] → Md,n as

Z(λ) = σ1ReλDe1v⊤
1 +

r

∑
i=2

σi uiv
⊤
i ∀λ ∈ [0,1],

wheree1 denotes the vector(1 0. . .0)⊤ ∈ R
k. In other words, we fix the singular values, the right

singular vectors and ther − 1 left singular vectorsu2, . . . ,ur and only allow the first left singular
vector to vary. This path has the properties thatZ(0) = W andZ(1) = σ1zv⊤1 +∑r

i=2 σi uiv⊤
i .
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By construction of the path, it holds that

Z′(λ) = σ1ReλDDe1v⊤
1

and hence

Z(λ)⊤Z′(λ) =
(

σ1ReλDe1v⊤
1

)⊤

σ1ReλDDe1v⊤
1 = σ2

1v1e⊤
1De1v⊤

1 = 0,

for everyλ ∈ (0,1), becauseD11 = 0. Hence, using equation (24), we have that

〈∇Ω(Z(λ)),Z′(λ)〉 = 0

and, since
dΩ(Z(λ))

dλ
= 〈∇Ω(Z(λ)),Z′(λ)〉, we conclude thatΩ(Z(λ)) equals a constant indepen-

dent ofλ. In particular,Ω(Z(0)) = Ω(Z(1)), that is,

Ω(W) = Ω

(

σ1zv⊤1 +
r

∑
i=2

σi uiv
⊤
i

)

.

In other words, if we fix the singular values ofW, the right singular vectors and all the left singular
vectors but one,Ω does not depend on the remaining left singular vector (because the choice ofz is
independent ofu1).

In fact, this readily implies thatΩ does not depend on the left singular vectors at all. Indeed,
fix an arbitraryY ∈ Md,n such thatY⊤Y = I . Consider the matrixY(W⊤W)

1
2 , which can be written

using the same singular values and right singular vectors asW. That is,

Y(W⊤W)
1
2 = ∑

i∈Nr

σi τiv
⊤
i ,

whereτi = Yvi , ∀i ∈ Nr . Now, we select unit vectorsz1, . . . ,zr ∈ R
d as follows:

z1 = u1

z2 ⊥ z1,u3, . . . ,ur ,τ1

...
...

zr ⊥ z1, . . . ,zr−1,τ1, . . . ,τr−1 .
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This construction is possible sinced ≥ 2n. Replacing successivelyui with zi and thenzi with τi ,
∀i ∈ Nr , and applying the invariance property, we obtain that

Ω(W) = Ω

(

∑
i∈Nr

σi uiv
⊤
i

)

= Ω

(

σ1z1v⊤
1 +σ2z2v⊤

2 +
r

∑
i=3

σi uiv
⊤
i

)

...
...

= Ω

(

∑
i∈Nr

σi ziv
⊤
i

)

= Ω

(

σ1 τ1v⊤
1 +

r

∑
i=2

σi ziv
⊤
i

)

...
...

= Ω

(

∑
i∈Nr

σi τiv
⊤
i

)

= Ω
(

Y(W⊤W)
1
2

)

.

Therefore, defining the functionh : Sn
+ → R ash(A) = Ω(YA

1
2 ), we deduce thatΩ(W) = h(W⊤W).

Finally, we show thath is matrix nondecreasing, that is,h(A) ≤ h(B) if 0 � A � B. For any

suchA,B and sinced ≥ 2n, we may defineW =





A
1
2

0
0



, P=





0
(B−A)

1
2

0



 ∈ Md,n. ThenW⊤P= 0,

A = W⊤W, B = (W+P)⊤(W+P) and thus, by hypothesis,

h(B) = Ω(W+P) ≥ Ω(W) = h(A).

This completes the proof in one direction of the theorem.
To show the converse, assume thatΩ(W) = h(W⊤W), where the functionh is matrix nondecreas-

ing. Then for anyW,P∈Md,n with W⊤P= 0, we have that(W+P)⊤(W+P) =W⊤W+P⊤P�W⊤W
and, so,Ω(W+P) ≥ Ω(W), as required.

As in Section 3, differentiability is not required for sufficiency, which follows from the last lines
of the above proof. Moreover, the assumption ond andn is not required either.

Remark 16 Let the functionΩ : Md,n → R be of the form

Ω(W) = h(W⊤W) ∀ W ∈ Md,n,

for some matrix nondecreasing function h: Sn
+ → R. ThenΩ satisfies property(22).

We conclude this section by providing a necessary and sufficient first-order condition for the
functionh to be matrix nondecreasing.

Proposition 17 Let h: Sn
+ → R be a differentiable function. The following properties are equiva-

lent:
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(a) h is matrix nondecreasing

(b) the matrix∇h(A) :=
(

∂h
∂ai j

: i, j ∈ Nn

)

is positive semidefinite, for every A∈ Sn
+.

Proof If (a) holds, we choose anyx∈ R
n, t > 0,A∈ Sn

+ and note that

h(A+ txx⊤)−h(A)

t
≥ 0.

Letting t go to zero gives thatx⊤∇h(A)x≥ 0.
Conversely, if (b) is true, we have, for everyx∈R

n,M ∈Sn
+, thatx⊤∇h(M)x= 〈∇h(M),xx⊤〉 ≥ 0

and, so,〈∇h(M),C〉 ≥ 0 for all C ∈ Sn
+. For anyA,B∈ Sn

+ such thatA� B, consider the univariate
functiong : [0,1] → R, g(t) = h(A+ t(B−A)). By the chain rule it is easy to verify thatg is nonde-
creasing. Therefore we conclude thath(A) = g(0) ≤ g(1) = h(B).

4.3 Examples

Using Proposition 13, Theorem 15 and Remark 16, one may easily verify that the representer the-
orem holds for a variety of regularizers. In particular, functional description (23) subsumes the
special case ofmonotone spectral functions.

Definition 18 Let r = min{d,n}. A functionΩ : Md,n → R is calledmonotone spectralif there
exists a function h: R

r
+ → R such that

Ω(W) = h(σ1(W), . . . ,σr(W)) ∀ W ∈ Md,n,

whereσ1(W) ≥ ·· · ≥ σr(W) ≥ 0 denote the singular values of matrix W and

h(σ1, . . . ,σr) ≤ h(τ1, . . . ,τr) wheneverσi ≤ τi for all i ∈ Nr .

Corollary 19 Assume that the functionΩ : Md,n → R is monotone spectral. ThenΩ satisfies prop-
erty (22).

Proof Clearly,Ω(W) = h
(

λ
(

(W⊤W)
1
2

))

, whereλ : Sn
+ →R

r
+ maps a matrix to the ordered vector

of its r highest eigenvalues. LetA,B ∈ Sn
+ such thatA � B. Weyl’s monotonicity theorem (Horn

and Johnson, 1985, Cor. 4.3.3) states that ifA� B then the spectra ofA andB are ordered. Thus,
λ(A

1
2 ) ≤ λ(B

1
2 ) and henceh(λ(A

1
2 )) ≤ h(λ(B

1
2 )). Applying Remark 16, the assertion follows.

We note that related results to the above corollary have appeared in Abernethy et al. (2009). They
apply to the setting of (15) when theXi are rank one matrices.

Interesting examples of monotone spectral functions are theSchatten Lp normsandprenorms,

Ω(W) = ‖W‖p := ‖σ(W)‖p ,

wherep∈ [0,+∞) andσ(W) denotes the min{d,n}-dimensional vector of the singular values ofW.
For instance, we have already mentioned in Section 4.1 that the representertheorem holds when the
regularizer is the trace norm (theL1 norm of the spectrum). But it also holds for therankof a matrix.
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Rank minimization is an NP-hard optimization problem (Vandenberghe and Boyd, 1996), but the
representer theorem has some interesting implications. First, that the problemcan be reformulated
in terms of reproducing kernels and second, that an equivalent problem in as few variables as the
total sample size can be obtained.

If we exclude spectral functions, the functions that remain are invariantunderleft multiplication
with an orthogonal matrix. Examples of such functions are Schatten norms and prenorms composed
with right matrix scaling,

Ω(W) = ‖WM‖p , (25)

whereM ∈ Mn,n. In this case, the correspondingh is the functionS 7→ ‖
√

λ(M⊤SM)‖p. To see that
this function is matrix nondecreasing, observe that ifA,B∈Sn

+ andA�B then 0�M⊤AM�M⊤BM
and henceλ(M⊤AM) ≤ λ(M⊤BM) by Weyl’s monotonicity theorem (Horn and Johnson, 1985, Cor.
4.3.3). Therefore,‖

√

λ(M⊤AM)‖p ≤ ‖
√

λ(M⊤BM)‖p.
For instance, the matrixM above can be used to select a subset of the columns ofW. In addition,

more complicated structures can be obtained by summation of matrix nondecreasing functions and
by taking minima or maxima over sets. For example, we can obtain a regularizer such as

Ω(W) = min

{

∑
k∈NK

‖W(Ik)‖1 : {I1, . . . , IK} ∈ P

}

,

whereP is the set of partitions ofNn in K subsets andW(Ik) denotes the submatrix ofW formed by
just the columns indexed byIk. This regularizer is an extension of the trace norm (K = 1) and can
be used for multi-task learning via dimensionality reduction on multiple subspaces(Argyriou et al.,
2008b).

Yet another example of a valid regularizer is the one considered in (Evgeniou et al., 2005,
Sec. 3.1), which encourages the tasks to be close to each other, namely

Ω(W) = ∑
t∈Nn

∥

∥

∥

∥

∥

wt −
1
n ∑

s∈Nn

ws

∥

∥

∥

∥

∥

2

.

This regularizer immediately verifies property (22), and so by Theorem 15it is a matrix nondecreas-
ing function ofW⊤W. One can also verify that this regularizer is the square of the form (25) with
p = 2 andM = In− 1

n11⊤, where1 denotes then-dimensional vector all of whose components are
equal to one.

Finally, it is worth noting that the representer theorem doesnot apply to a family of “mixed”
matrix norms of the form

Ω(W) = ∑
i∈Nd

‖wi‖p
2 ,

wherewi denotes thei-th row ofW andp > 1, p 6= 2.

5. Conclusion

We have characterized the classes of vector and matrix regularizers which lead to certain forms of
the solution of the associated interpolation problems. In the vector case, we have proved the neces-
sity of a well-known sufficient condition for the “standard representer theorem”, which is encoun-
tered in many learning and statistical estimation problems. In the matrix case, we have described

2525



ARGYRIOU, M ICCHELLI AND PONTIL

a novel class of regularizers which lead to a modified representer theorem. This class, which re-
lies upon the notion of matrix nondecreasing function, includes and extendssignificantly the vector
class. To motivate the need for our study, we have discussed some examples of regularizers which
have been recently used in the context of multi-task learning and collaborative filtering.

In the future, it would be valuable to study in more detail special cases of thematrix regularizers
which we have encountered, such as those based on orthogonally invariant functions. It would
also be interesting to investigate how the presence of additional constraints affects the representer
theorem. In particular, we have in mind the possibility that the matrix may be constrained to be in
a convex cone, such as the set of positive semidefinite matrices. Finally, weleave to future studies
the extension of the ideas presented here to the case in which matrices are replaced by operators
between two Hilbert spaces.
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Appendix A.

Here we collect some auxiliary results which are used in the above analysis.
The first lemma states a basic property of connectedness through rotations.

Lemma 20 Let w,v∈R
d and d≥ 2. Then there exists U∈Od with determinant1 such that v=Uw

if and only if‖w‖ = ‖v‖.

Proof If v = Uw we have thatv⊤v = w⊤w. Conversely, if‖w‖ = ‖v‖ 6= 0, we may choose
orthonormal vectors{xℓ : ℓ ∈ Nd−1} ⊥ w and {zℓ : ℓ ∈ Nd−1} ⊥ v and form the matricesR =
(

w x1 . . . xd−1
)

and S=
(

v z1 . . . zd−1
)

. We have thatR⊤R = S⊤S. We wish to solve
the equationUR = S. For this purpose we chooseU = SR−1 and note thatU ∈ Od because
U⊤U = (R−1)⊤STSR−1 = (R−1)⊤R⊤RR−1 = I . Sinced ≥ 2, in the case that det(U) = −1 we can
simply change the sign of one of thexℓ or zℓ to get det(U) = 1 as required.

The second lemma concerns the monotonicity of the trace norm.

Lemma 21 Let W,P∈ Md,n such that W⊤P = 0. Then‖W+P‖1 ≥ ‖W‖1.

Proof Weyl’s monotonicity theorem (Horn and Johnson, 1985, Cor. 4.3.3) implies that if A,B∈ Sn
+

andA� B thenλ(A)≥ λ(B) and hence trA
1
2 ≥ trB

1
2 . We apply this fact to the matricesW⊤W+P⊤P

andP⊤P to obtain that

‖W+P‖1 = tr((W+P)⊤(W+P))
1
2 = tr(W⊤W+P⊤P)

1
2 ≥ tr(W⊤W)

1
2 = ‖W‖1 .
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