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Abstract

The problem of ranking, in which the goal is to learn a reditgd ranking function that induces a
ranking or ordering over an instance space, has recentigdanuch attention in machine learning.
We study generalization properties of ranking algorithmsisigi the notion of algorithmic stability;

in particular, we derive generalization bounds for rankafgprithms that have good stability prop-
erties. We show that kernel-based ranking algorithms tegbpm regularization in a reproducing
kernel Hilbert space have such stability properties, aecefiore our bounds can be applied to these
algorithms; this is in contrast with generalization boubdsed on uniform convergence, which in
many cases cannot be applied to these algorithms. Ourseamieralize earlier results that were
derived in the special setting of bipartite ranking (Agdraad Niyogi, 2005) to a more general
setting of the ranking problem that arises frequently inliapgions.

Keywords: ranking, generalization bounds, algorithmic stability

1. Introduction

A central focus in learning theory research has been the study ofajea&on properties of learn-
ing algorithms. Perhaps the first work in this direction was that of Vapnikaretvonenkis (1971),
who derived generalization bounds for classification algorithms basaghiborm convergence.
Since then, a large number of different tools have been developetlftyisg generalization, and
have been applied successfully to analyze algorithms for both classifi¢damming of binary-
valued functions) and regression (learning of real-valued functidws) of the most well-studied
problems in machine learning.

In recent years, a new learning problem, namely thaaoking has gained attention in machine
learning (Cohen et al., 1999; Herbrich et al., 2000; Crammer and Sigg6g, Joachims, 2002;
Freund et al., 2003; Agarwal et al., 2005; Rudin et al., 2005; Burgyes.,e2005; Cossock and
Zhang, 2006; Cortes et al., 2007; Clemencon et al., 2008). In ran&imglearns a real-valued
function that assigns scores to instances, but the scores themselveismatier; instead, what is

x. A preliminary version of this paper (which focused on the special setfifgpartite ranking) appeared in the Pro-
ceedings of the 18th Annual Conference on Learning Theory (C@LZDO05.
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important is the relative ranking of instances induced by those scorespiblem is distinct from
both classification and regression, and it is natural to ask what kindsrarglization properties
hold for algorithms for this problem.

Although there have been several recent advances in developingtatigofor various settings
of the ranking problem, the study of generalization properties of ranlkgagithms has been largely
limited to the special setting of bipartite ranking (Freund et al., 2003; Agaetall, 2005). In this
paper, we study generalization properties of ranking algorithms in a moerajesetting of the
ranking problem that arises frequently in applications. Our generalizationds are derived using
the notion of algorithmic stability; we show that a number of practical rankingrélans satisfy
the required stability conditions, and therefore can be analyzed usirgpands.

1.1 Previous Results

While ranking has been studied extensively in some form or another in fsldé/erse as social
choice theory (Arrow, 1970), statistics (Lehmann, 1975), and matherhaticaomics (Chiang and
Wainwright, 2005), the study of ranking in machine learning is relatively:nberfirst paper on the
subject appeared less than a decade ago (Cohen et al., 1999). ®imckaivever, the number of
domains in which ranking has found applications has grown quickly, ardrasult, ranking has
gained considerable attention in machine learning and learning theory it yexes.

Some of the earlier work, by Herbrich et al. (2000) and by Crammer angke&i2002), fo-
cused on the closely related but distinct problem of ordinal regressimund et al. (2003) gave
one of the first learning algorithms for ranking, termed RankBoost, whiah vased on the prin-
ciples of boosting. Since then there have been many other algorithmic deaitg for example,
Radlinski and Joachims (2005) have developed an algorithmic frameworkriking in informa-
tion retrieval applications; Burges et al. (2005) have developed ahmetwork based algorithm for
ranking; and Agarwal (2006) has developed an algorithmic framevaoniahking in a graph-based
transductive setting. More recently, there has been some interest imgpeanking functions that
emphasize accuracy at the top of the ranked list; work by Rudin (20@85dck and Zhang (2006)
and Clemencon and Vayatis (2007) falls in this category. There has asditerest in statistical
analysis of ranking; in recent work, Clemencon et al. (2008) havdestigiatistical convergence
properties of ranking algorithms—specifically, ranking algorithms baseehgpirical and convex
risk minimization—using the theory of U-statistics.

In the paper that developed the RankBoost algorithm, Freund et al3Y206o gave a ba-
sic generalization bound for the algorithm in the bipartite setting. Their bowsdderived from
uniform convergence results for the binary classification error, aamsl expressed in terms of the
VC-dimension of a class of binary classification functions derived fraencthss of ranking func-
tions searched by the algorithm. Agarwal et al. (2005) also gave aajzagion bound for bipartite
ranking algorithms based on uniform convergence; in this case, themrifinvergence result was
derived directly for the bipartite ranking error, and the resulting gdizateon bound was expressed
in terms of a new set of combinatorial parameters that measure directly théexisnpf the class
of ranking functions searched by a bipartite ranking algorithm. AgarmaiNiyogi (2005) used a
different tool, namely that of algorithmic stability (Rogers and Wagner, 1B@8squet and Elisse-
eff, 2002), to obtain generalization bounds for bipartite ranking algoritiashave good stability
properties. Unlike bounds based on uniform convergence, the stdialityd bounds depend on
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properties of the algorithm rather than the function class being sea@mhedan be applied also to
algorithms that search function classes of unbounded complexity.

As can be noted from the above discussion, the question of generalipatiperties of ranking
algorithms has so far been investigated mainly in the special setting of bipartkimga There
have been limited studies of generalization properties in more general seRorgsxample, Rudin
et al. (2005) derived a margin-based bound which is expressed in téroosering numbers and
relies ultimately on a uniform convergence result; this bound is derived fan-bipartite setting
of the ranking problem, but under the restrictive distributional assumpfien“truth” function.
Cortes et al. (2007) consider a different setting of the ranking proklednderive stability-based
generalization bounds for algorithms in this setting. However, they also implicitiyrae a “truth”
function. In addition, as we discuss later in the paper, the results of Gairdsas stated involve
some strong assumptions about the function class searched by an algoritese assumptions
rarely hold for practical ranking algorithms, which prevents the direptiegtion of their results.
We shall discuss in Section 6 how this can be remedied.

1.2 Our Results

We use the notion of algorithmic stability to study generalization properties kiimgualgorithms in
a more general setting of the ranking problem than has been considexgalgly, and that arises
frequently in applications. The notion of algorithmic stability, first studied fardéng algorithms
by Rogers and Wagner (1978), has been used to obtain generalizatiodsbfor classification
and regression algorithms that satisfy certain stability conditions (BousauakeElisseeff, 2002;
Kutin and Niyogi, 2002). Here we show that algorithmic stability can be usd$d in analyzing
generalization properties of ranking algorithms in the setting we considearfitylar, we derive
generalization bounds for ranking algorithms that have good stability grepe We show that
kernel-based ranking algorithms that perform regularization in a regpmog kernel Hilbert space
(RKHS) have such stability properties, and therefore our boundsecapgied to these algorithms.
Our techniques are based on those of Bousquet and Elisseeff (20082gd, we show that the
ranking error in our setting satisfies the same conditions that were useadltisFsthe classification
and regression bounds of Bousquet and Elisseeff (2002), arefdherssentially the same proof
techniques can be used to analyze the ranking problem we consideeddlis generalize those of
Agarwal and Niyogi (2005), which focused on bipartite ranking.

We describe the general ranking problem and the setting we consideaihid&ection 2, and
define notions of stability for ranking algorithms in this setting in Section 3. Usingethetions,
we derive generalization bounds for stable ranking algorithms in Sectiém Section 5 we show
stability of kernel-based ranking algorithms that perform regularizatiomiiREHS, and apply
the results of Section 4 to obtain generalization bounds for these algoritheetiors6 provides
comparisons with related work; we conclude with a discussion in Section 7.

2. The Ranking Problem

In the problem of ranking, one is given a finite number of examples ofraedationships among
instances in some instance spateand the goal is to learn from these examples a ranking or
ordering overX that ranks accurately future instances. Examples of ranking problesesiara
variety of domains: in information retrieval, one wants to rank documents@iogpto relevance

to some query or topic; in user-preference modeling, one wants to raks lmo movies according
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to a user’s likes and dislikes; in computational biology, one wants to rangésgaecording to their
relevance to some disease.

In the most general setting of the ranking problem, the learner is giveimigamamples in the
form of ordered pairs of instancés x') € X x X labeled with a ranking preferences R, with the
interpretation thax is to be ranked higher than (preferred ovéiif r > 0, and lower thax' if r <0
(r = 0indicates no ranking preference between the two instances); the plenatig-ordering such
a pair is proportional tdr|. Given a finite number of such examplsi,x},r1), ..., (Xm, Xp, fm)),
the goal is to learn a real-valued ranking functionX —R that ranks accurately future instancés;
is considered to rank an instarnce X higher than an instancéc X if f(x) > f(x'), and lower than
X if f(x) < f(X'). Thus, assuming that ties are broken uniformly at random, the expeatettype
(or loss) incurred by a ranking functidnon a pair of instance, xX') labeled byr can be written as

1
Ir] (' {r(fx-to)<0p + 5! {f(x)—f(x’)}> :

wherel (4, is 1 if @is true and 0 otherwise.

A particular setting of the ranking problem that has been investigated in setai id recent
years is thebipartite setting (Freund et al., 2003; Agarwal et al., 2005). In the bipartite rgnkin
problem, instances come from two categories, positive and negativeatheidés given examples of
instances labeled as positive or negative, and the goal is to learn agamiwhich positive instances
are ranked higher than negative ones. Formally, the learner is givenangr sample(S™,S™)
consisting of a sequence of ‘positive’ examp&s= (x{,...,x) and a sequence of ‘negative’
examplesS™ = (X ,...,X, ), thex; andx; being instances in some instance spacand the goal
is to learn a real-valued ranking functidrn X—R that ranks future positive instances higher than
negative ones. The bipartite ranking problem is easily seen to be a spseaif the general ranking
problem described above, since a training saniffe S~ ) € X™ x X" in the bipartite setting can
be viewed as consisting ofinexamples of the forn(1><i+,xj‘, 1),for1<i<m, 1< j<n;inother
words, mis-ranking any positive-negative pair of instances incursnatant penalty of 1. Thus,
assuming again that ties are broken uniformly at random, the expecteltypenarred by f on a
positive-negative paifx™,x") is simply

1
Lt o) —toc)<op + 51 {foer) =) 3

the penalty incurred on a pair of positive instances or a pair of negastenices is zero.

In this paper, we consider a more general setting: the learner is gianpées of instances
labeled by real numbers, and the goal is to learn a ranking in which instaaioeled by larger
numbers are ranked higher than instances labeled by smaller numbédrsaBkiag problems arise
frequently in practice: for example, in information retrieval, one is ofteemgigxamples of docu-
ments with real-valued relevance scores for a particular topic or guerijady, in computational
biology, one often receives examples of molecular structures with raste/diological activity
scores with respect to a particular target.

Formally, the setting we consider can be described as follows. The leargemen a finite
sequence of labeled training examp®s- ((x1,Y1),--., (Xm,Ym)), Where thex, are instances in
some instance spacéand they; are real-valued labels in some bounded¥®e&t R which we take
without loss of generality to bg = [0,M] for someM > 0, and the goal is to learn a real-valued
function f : X—R that ranks future instances with larger labels higher than those with smaller
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labels. The penalty for mis-ranking a pair of instances could again be takms constant for all
pairs; here we consider the more general case where the penalty isftarges-ranking a pair of
instances with a greater difference between their real-valued labelartlaysar, in our setting, the
penalty for mis-ranking a pair of instances is proportional to the absoldtreliice between their
real-valued labels. Thus, assuming again that ties are broken uniformay@om, the expected
penalty incurred byf on a pair of instance&, x') with corresponding real-valued labsisandy
can be written as

1
y-Vi ('{(yW(f(x)f(x’>><0}+2'{f(x>—f<x/>}> :

This problem can also be seen to be a special case of the generabrpnidilem described above;
atraining sampl&= ((x1,y1),--., (Xm,Ym)) € (X x %)M in this setting can be viewed as consisting
of () examples of the fornix;, x;,yi —y;), for 1<i < j<m.

In studying generalization properties of learning algorithms, one usuallyrass that both train-
ing examples and future, unseen examples are generated accordingetarsderlying random pro-
cess. We shall assume in our setting that all examplgg (both training examples and future,
unseen examples) are drawn randomly and independently accordingéo(aaknown) distribu-
tion D on X x 9.1 The quality of a ranking functiofi : X —R can then be measured by éspected
ranking error, which we denote bR(f) and define as follows:

, 1
R(f) = E(xy),x.y)~oxo [|Y—Y | <|{(YY’)(f(X)f(X’))<O}+2|{f(x)—f(x/)}>] @

Note that the expected errB( f ) is simply the expected mis-ranking penaltyfadn a pair of exam-
ples drawn randomly and independently accordin@i@ssuming that ties are broken uniformly at
random. In practice, since the distributi@his unknown, the expected error of a ranking functfon
must be estimated from an empirically observable quantity, suchasjigical ranking errorwith
respect to a sampR= ((X1,y1), ..., (Xm:Ym)) € (X x 7)™, which we denote biR(f;S) and define
as follows:

= 1mfl m

1
R(f;§) = @)i;j_lzﬂlyi—yj!('{(yi—yj>(f<m>—f<xj-)><0}+2'{f<xi>—f<Xj)}>- (2)

This is simply the average mis-ranking penalty incurredflgn the(r;) pairs (x;,X;), where 1<
i < j <m, assuming that ties are broken uniformly at random.

A learning algorithm for the ranking problem described above takes as &paining sample
Se Um_1(X x 9)Mand returns as output a ranking functityt X —R. For simplicity we consider
only deterministic algorithms. We are concerned in this paper with generalizattoperties of
such algorithms; in particular, we are interested in bounding the expectedéa learned ranking
function in terms of an empirically observable quantity such as its empirical enrthe training
sample from which it is learned. The following definitions will be useful in study.

Definition 1 (Ranking loss function) Define aranking loss functiorto be a function/ : R* x
(X x9) x (X x9)— RtU{0} that assigns to each fX—R and (x,y),(X,y) € (X x9) a
non-negative real numbeéi( f, (x,y), (X,y')), interpreted as the penalty or loss of f in its relative

1. Cortes et al. (2007) consider a similar setting as ours; howeveragsyme that only instancgs: X are drawn
randomly, and that labelse 9" are then determined according to a “truth” functitn: X—9.
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ranking of x and &given corresponding labels y and Ve shall require that be symmetric with re-
spect to(x,y) and (X, y'), thatis, that/(f, (x,y), (X,y)) = £(f,(X,y), (x.y)) for all f, (x,y), (X,y').

Definition 2 (Expected/-error) Let f: X—R be aranking function otx. Let/: RY x (X x ) x
(X x9) — R*U{0} be aranking loss function. Define thepected-errorof f, denoted by Rf),
as

Ri(f) = Eqxy)xyy~oxo [C(F,(XY), (X Y)] .

Definition 3 (Empirical ¢-error) Let f: X—R be aranking function orx, and let S= ((x1,y1), ...,
(Xm;Ym)) € (X x )™ Letl :R* x (X x 9) x (X x &) — R U{0} be a ranking loss function.
Define theempirical/-errorof f with respect to S, denoted By(f;S), as

R 1m—1 m

Rg(f;S) = ﬁ'Zi‘Zlg(f’(Xivyi)’(Xj’yj)).
i=1 j=I

2

As mentioned above, one choice for a ranking loss function could be &$€slthat simply
assigns a constant penalty of 1 to any mis-ranked pair:

1
loa(f,(xy),(X,Y)) = Ly 100)<0) + 5 =100} -

The (empirical)lg-1-error then simply counts the fraction of mis-ranked pairs, which cooredp

to the well-known Kendalt measure. However, the 0-1 loss effectively uses only the sign of the
differencey — y between labels, and ignores the magnitude of this difference; the log®ofune

use, which we term thdiscrete ranking losand denote as

1
laise(T, (x,Y), (X,Y)) = |y—Y]| <|{(yy’)(f(x)f(x’))<0}+2|{f(x)—f(x’)}> 7 3)

takes the magnitude of this difference into account. Comparing with Eq9.dheXe, we see that
the expected and empirical ranking errors we have defined are simplgriiesgondindgisc-€errors:

R(f) = Rege(f); R(F;S) =Ryye(£:9).

While our focus will be on bounding the expectégd.-)ranking error of a learned ranking function,
our results can be used also to bound the expegtearror.

Several other ranking loss functions will be useful in our study; thabdéevintroduced in the
following sections as needed.

3. Stability of Ranking Algorithms

A stable algorithm is one whose output does not change significantly with ehaaibes in the in-

put. The input to a ranking algorithm in our setting is a training sample of the $oeni(x1,v1), - - -,
(Xm,Ym)) € (X x 9")™ for somem € N; we consider changes to such a sample that consist of replac-
ing a single example in the sequence with a new example. Eard mand(x,y) € (X x %), we

useS to denote the sequence obtained frBimy replacing(x;,y;) with (x,y/).
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Several different notions of stability have been used in the study ofifit@t®n and regression
algorithms (Rogers and Wagner, 1978; Devroye and Wagner, 198K and Ron, 1999; Bous-
guet and Elisseeff, 2002; Kutin and Niyogi, 2002; Poggio et al., 2004 notions of stability
that we define below for ranking algorithms in our setting are based on tedsed earlier for
bipartite ranking algorithms (Agarwal and Niyogi, 2005) and are most ljloskated to the notions
of stability used by Bousquet and Elisseeff (2002).

Definition 4 (Uniform loss stability) Let 4 be a ranking algorithm whose output on a training
sample S we denote by, ind let/ be a ranking loss function. L§: N—R. We say that has
uniform loss stability with respect to if forall m e N, Se (X x 9)™ 1 <i<mand(X,y|) €
(X x 9), we have for allx,y), (X,y) € (X x 9,

|£(fs, (% Y), (X,¥)) = €(fs, (%), X,¥))| < B(m).

Definition 5 (Uniform score stability) Let 4 be a ranking algorithm whose output on a training
sample S we denote by. Letv : N—R. We say thatd hasuniform score stability if for all m € N,
Se(Xx9)M 1<i<mand(x,y) € (X x9), we have for all ¢ X,

[fs(¥) = fg(¥)| < v(m).

If a ranking algorithm has uniform loss stabiliB/with respect tof, then changing an input
training sample of sizen by a single example leads to a difference of at nfi{st) in the ¢-loss
incurred by the output ranking function on any pair of examgesg), (X',y’). Therefore, a smaller
value of B(m) corresponds to greater loss stability. Similarly, if a ranking algorithm haumif
score stabilityy, then changing an input training sample of sméy a single example leads to a
difference of at most(m) in the score assigned by the output ranking function to any instarke
smaller value of/(m) therefore corresponds to greater score stability.

The term ‘uniform’ in the above definitions refers to the fact that the bswmdthe difference
in loss or score are required to hold uniformly for all training sam@@€and all single-example
changes to them) and for all examplasy), (X,y') or instances. This is arguably a strong require-
ment; one can define weaker notions of stability, analogous to the hyposiaisikty considered
by Devroye and Wagner (1979), Kearns and Ron (1999), andd@®etsnd Elisseeff (2002), or
the almost-everywhere stability considered by Kutin and Niyogi (2002)¢chwivould require the
bounds to hold only in expectation or with high probability (and would theeeftgpend on the
distribution D governing the data). However, we do not consider such weaker satiostability
in this paper; we shall show later (Section 5) that several practicaingualkgorithms in fact exhibit
good uniform stability properties.

4. Generalization Bounds for Stable Ranking Algorithms

In this section we give generalization bounds for ranking algorithms thabigéxgood (uniform)
stability properties. The methods we use are based on those of Bouaquglisseeff (2002), who
derived such bounds for classification and regression algorithmsm@iarresult is the following,
which bounds the expectdekrror of a ranking function learned by an algorithm with good uniform
loss stability in terms of its empiricdterror on the training sample.
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Theorem 6 Let 4 be a symmetric ranking algoriththwhose output on a training samples X x
9 )™we denote by< and let be a bounded ranking loss function such @&t ¢( f, (x,y), (X,y)) <
B for all f : X—R and (x,y),(X,Y) € (X x9). Letp: N—R be such that? has uniform loss
stability B with respect td. Then for any0 < & < 1, with probability at leastL — & over the draw of
S (according taD™),

Re(fs) < ﬁf(fs;s)+2[3(m)+(mB(m)+B) Zln(rr1]/5)

The proof follows the proof of a similar result for classification and rsgjien algorithms by
Bousquet and Elisseeff (2002). In particular, the random variBlés) — ﬁg(fs; S), representing
the difference between the expected and empifigarors of the ranking functiofis learned from
the random sampl§, is shown to satisfy the conditions of McDiarmid’s inequality (McDiarmid,
1989), as a result of which the deviation of this difference from its ebggeealueEs. pm[R/(fs) —
ﬁg(fs; S)] can be bounded with high probability; a bound on this expected value thewsate
above result to be established. Details of the proof are provided in AppAn

A few remarks on the significance of the above result are in orderciedlyen relation to the
results of Bousquet and Elisseeff (2002). As can be seen from fimitides given in the preceding
two sections, the main difference in the formulation of the ranking problenoampared to the
problems of classification and regression is that the performance or lceskiimg is measured on
pairs of examples, rather than on individual examples. This means in particularuthike the
empirical error in classification or regression, the empirical error inirgngannot be expressed
as a sum of independent random variables. Indeed, this is the reagon teriving uniform
convergence bounds for the ranking error, the standard Hoeffdeguality used to obtain such
bounds in classification and regression can no longer be applied (Abatval., 2005). It may
initially come as a bit of a surprise, therefore, that the proof methods o$demi and Elisseeff
(2002) carry through for ranking without siginificant change. Thasom for this is that they rely
on the more general inequality of McDiarmid which, in Bousquet and Elissegbrk, is used
to capture the effect of stability, but which is also powerful enough tdureghe structure of the
ranking error; indeed, the uniform convergence bound for the (titigaranking error derived by
Agarwal et al. (2005) also made use of McDiarmid’s inequality. Thus, imega, any learning
problem in which the empirical performance measure fits the conditions ofdvicii’s inequality
should be amenable to a stability analysis similar to Bousquet and Elisseefivéigd of course
that appropriate notions of stability are defined.

Theorem 6 gives meaningful bounds wH&m) = o(1/,/m). This means the theorem cannot
be applied directly to obtain bounds on the expected ranking error, sirgecaadt possible to have
non-trivial uniform loss stability with respect to the discrete ranking lgg defined in Eqg. (3).
(To see this, note that unless an algorithm picks essentially the same rankutmh that orders
all instances the same way for all training samples of a givenrsjae which case the algorithm
trivially has uniform loss stabilitf(m) = 0 with respect to/gisc, there must be sonfee (X x 9)™,
1<i<m, (X,y]) € (X x9) and some, X € X such thatfs and fg orderx, X differently. In this
case, foy =0 andy’ = M, we get//gisc( fs, (x.Y). (X,Y)) — Laise( s, (X,Y), (X,Y))| = M, giving loss
stability B(m) = M with respect to/gisc.) However, for any ranking loséthat satisfiedgisc < ¢,

2. A symmetric ranking algorithm is one whose output is independent afrtter of elements in the training sequence
S
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Theorem 6 can be applied to ranking algorithms that have good unifornstaisiity with respect

to ¢ to obtain bounds on the expectéerror; since in this cask < Ry, these bounds apply also to

the expected ranking error. We consider below a specific ranking lassatisfies this condition,

and with respect to which we will be able to show good loss stability of certaiking algorithms;

other ranking losses which can also be used in this manner will be disdudsget sections.
Fory> 0, let they ranking loss denoted by, be defined as follows:

by(f,(xy),(X,Y))

ly—Y| if <f<X>—f<x/>y>Asgr<y—>/> <0
. , o sanv
= § y=Yl- 2,>Sgr(y ) jf 0 < (=K )-sqrty ) < y—y
e (F)—=f(X))-sgny—y)
O If Y Z ’y_Y|7

where foru € R,

1 ifu>0
sgnu) = 0 ifu=0
-1 if u<O.
Clearly, for ally > 0, we havé/yisc < ¢y. Therefore, for any ranking algorithm that has good uniform
loss stability with respect té, for somey > 0, Theorem 6 can be applied to bound the expected
ranking error of a learned ranking function in terms of its empirigarror on the training sample.
The following lemma shows that, for eveyy> 0, a ranking algorithm that has good uniform score
stability also has good uniform loss stability with respect,to

Lemma 7 Let 4 be a ranking algorithm whose output on a training sample §x x 9)™
denote by 4. Letv : N—R be such that4 has uniform score stability. Then for every > 0, 4
has uniform loss stabilitf3, with respect to thg ranking lossty, where for all me N,

2v(m)

By(m) = y

Proof Letme N, Se (X x9)™ 1<i<mand(X,y)) € (X x9). Let(x,y),(X,y) € (X x ).
We want to show

[y(fs, (%,Y), (X,¥)) — (g, (%, y), (X,¥))| < \(/m‘
NOW’ If KV( va (Xa y)a (Xlay)) = gv( fs‘,(X, y)7 (ley))’ then t”v'a”y
fy(fe (), (€.9)) — B (). Xy )| = 0 = 24,

and there is nothing to prove. Therefore assupiés, (x,y), (X,Y)) # &y(fg, (X,y), (X,Y)). With-
out loss of generality, led(fs, (x,y), (X,Y)) > ¢y(fg,(x,y), (X,¥)). There are four possibilities:

(l) )) sIYY) < 0 and O< (fg(0)—fg (ﬁ))-sgf(yfx/) <ly-y|.
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In this case, we have

(fs. (63, (.¥) = fy( T (). (4.¥)
= \y—)/\—(|y—)/|— fg (X —g(y))‘sgﬂ(y—y)>

< (y-y|- Usbtsteaty)) (g | (a0 loCorsony))
< (60— ts ]+ fsX) — f5 ()
< 2m

Y

(i) 0 < (fs(x)—fs(x;))-sgr(yfy) <|y—y| and (fg(x)ffg(i))-sgr(y#) >ly—y|.

In this case, we have

[ey(fs. (x,¥), (4,¥)) = (T, (6), (X))
= (y—y| - Tt ))-sgrty—y>>_o

Y
< (y-yI- Ky ) (g | Gttt say vy
< \1/(|f8(x)—fs(X)|+|fs(X’)—fg(x’)\)
< 2,
y
(iii) y» oY) < g gand Us®= fs( DSIVA) 5 ).

In this case, we have

‘ey( fs, (x,¥), (X,¥)) = by(fs, (%,y), (%,x/))\

= Iy—x/\—
= (\y Y- y)) Ay ¥ ) - (|Y*>/|— “é(x)*fe'oi))sgr(yfy))
< \1/(|f8(x)—fS(X)|+|fS(X’)—fg(x’)D
< 2m
Y

(V) 0 < (fs(x)—fs(x;))-sgr(yﬂ/) <ly—y| and 0< (fg-(x)—fg(i))sgr(y—v) <ly—vy|.

In this case, we have
EV( fSa (X7y)’ (X’,}/)) 7€V( fS 3 (Xay>7 (X,’y,))
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I
/N

fs(x)— fs(X))-sgny— fog (X)— 4 (X))-sgry—
y—y|— (fs(x) s(xv)) sgnly y)) _ (|y7y|7 (fg (¥) g(y))sgr(y 3/))

< i(lfs(X)—fs(X)H!fs(X’)—fs(*)\)
< (M
N Y
Thus in all casesfy(fs, (x,y), (X,¥)) — f(fs, (x ), (X,y))| < 2. u

Putting everything together, we thus get the following result which boureexpected ranking
error of a learned ranking function in terms of its empiriéaerror for any ranking algorithm that
has good uniform score stability.

Theorem 8 Let 4 be a symmetric ranking algorithm whose output on a training samplé.% x
9)™we denote by Letv : N—R be such tha# has uniform score stability, and lety > 0. Then
for any0 < 0 < 1, with probability at leastlL — & over the draw of S (according &™),

R(fs) < @y(fs:8)+4\'§lm)+<2w(m)+|v|) 2In(1/)

% m
Proof The result follows by applying Theorem 6 # with the ranking losg (using Lemma 7),
which satisfies &< ¢, <M, and from the fact thaR < ng. [ |

5. Stable Ranking Algorithms

In this section we show (uniform) stability of certain ranking algorithms thatseleanking func-

tion by minimizing a regularized objective function. We start by deriving aeganresult for

regularization-based ranking algorithms in Section 5.1. In Section 5.2 wthisseesult to show
stability of kernel-based ranking algorithms that perform regularization riepaoducing kernel
Hilbert space (RKHS). We show, in particular, stability of two such ranlkalygrithms, and apply
the results of Section 4 to obtain generalization bounds for these algorithgzsn,Ahe methods
we use to show stability of these algorithms are based on those of BousguEtisseeff (2002),
who showed similar results for classification and regression algorithmsls&/eise these stability
results to give a consistency theorem for kernel-based ranking algeritBection 5.2.3).

5.1 General Regularizers

Given a ranking loss functiof a class? of real-valued functions o, and a regularization func-
tionalN : F—R* U {0}, consider the following regularized empiridaérror of a ranking function
f € F (with respect to a sampBe (X x 9)™), with regularization parametar> 0:

~

RI(f;S) = R(Ff;S+AN(f).

We consider ranking algorithms that minimize such a regularized objectieidanthat is, ranking
algorithms that, given a training samg@eoutput a ranking functioris € ¥ that satisfies
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fs = argminRy(f;9), @)

for some fixed choice of ranking logsfunction clasgf, regularizeiN, and regularization parameter
A. It is worth noting that the parametkroften depends on the sample simewe useA here rather
thanAn, for notational simplicity. We give below a general result that will be usédulshowing
stability of such regularization-based algorithms.

Definition 9 (o-admissibility) Let ¥ be a class of real-valued functions ah Let/ be a ranking
loss and leto > 0. We say that is o-admissiblewith respect toF if for all f1, f, € F and all
(xY), (X.,y) € (X x ), we have

[(f1, (), (04 ¥) = E0F2, 00Y), (Y D] < 0 11200 = (9] +] fX) — (X)) ).

Lemma 10 Let ¥ be a convex class of real-valued functionsnLet ¢ be a ranking loss such
that 2(f, (x,y),(X,Yy)) is convex in f, and leb > 0 be such that is o-admissible with respect
to 7. LetA > 0, and let N: # —R* U {0} be a functional defined ot such that for all samples
Se (X x9)™, the regularized empirical-error FA{‘}(f;S) has a minimum (not necessarily unique) in
F. Let4 be aranking algorithm defined by Eq. (4), and let$(x1, Y1), - - ., (Xm,Ym)) € (X x 9™,
1<i<m,and(xX,y) € (X x 9). For brevity, denote & fs, f' = fg, and letAf = f' — f. Then
we have that for any € [0, 1],

N(f)—N(f +tAf)+N(f') = N(f' —tAf)
to
<5 );(\Au X)|+285 ()| + 181 ()] ).

The proof follows that of a similar result for regularization-based algoritiior classification
and regression (Bousquet and Elisseeff, 2002); it is based cruociallye convexity of the ranking
loss/. Details are provided in Appendix B.

As we shall see below, the above result can be used to establish stabiétyahcegularization-
based ranking algorithms.

5.2 Regularization in Hilbert Spaces

Let ¥ be a reproducing kernel Hilbert space (RKHS) of real-valued funstimn X, with kernel
K: X x X—R. Then the reproducing property gf gives that for allf ¢ ¥ and allx € X,

FOI = [(F. Kokl (5)
whereKy : X—R is defined as
Ke(X) = K(x,X),

and (-,-)x denotes the RKHS inner product iA. In particular, applying the Cauchy-Schwartz
inequality to Eq. (5) then gives that for dlle F and allx € X,

Tl < I fllk IRl
= [Ifllk vVK(Xxx), (6)
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where|| - ||k denotes the RKHS norm iff .

Further details about RKHSs can be found, for example, in expositiokabgsler (1999) and
Evgeniou et al. (2000). We shall consider ranking algorithms that parfegularization in the
RKHS ¥ using the squared norm ifi as a regularizer. Specifically, Ibt: ¥ —R* U {0} be the
regularizer defined by

N(f) = [Ifllk-

We show below that, if the kerndl is such thak(x,x) is bounded for alk € X, then a ranking
algorithm that minimizes an appropriate regularized error gvemwith regularizerN as defined
above, has good uniform score stability.

Theorem 11 Let ¥ be an RKHS with kernel K such that for albxx, K(x,x) < k? < o, Let/ be a
ranking loss such that( f, (x,y), (X,y)) is convex in f and is o-admissible with respect t¢. Let
A > 0, and let4Z be a ranking algorithm that, given a training sample S, outputs a ranking functio

fs € F that satisfies §= argmirgc ﬁg f:S) +A||f||2 +. Then4 has uniform score stability,
F K

where for all me N,
_ 8ok?

v(im = ——.

Am

Proof Letme N, S= ((X1,Y1),---, Xm,Ym)) € (X x 9™, 1 <i <m, and(X,y]) € (X x ).
Applying Lemma 10 witht = 1/2, we get (using the notation of Lemma 10) that

IR = I F+ 2O IR+ TR — 11— 34511
o

< )\m(m_l)J;(!Af(Xi)|+2\Af(xj)\+|Af<xif)0_ 7)

Note that sincef is a vector spacedf € 7, (f + 3Af) € F, and(f' — JAf) € 7, so that||f +
IAf||k and| f' — 3Af ||k are well-defined. Now, we have

IFIIR — 1T+ 2AF2 + (1112 — || — 1A 2
. 1 .
= ||f|!§+Hf'Hﬁ—§Hf+f'Hﬁ
1 1 . .
= EHfH§+§HfIHﬁ—<f»f'>K
1
— It

Combined with Eq. (7), this gives

2latiz < Am(r‘n’_l); (18 06| +21810g)| +[aF04)] )

Since (as noted abovA)f € 7, by Eq. (6), we thus get that

1 2 o v Sy a4
SB[ < Am(m_l)nAfHKJ;(W<<x.,y»>+zw<<xpx,>+w«xpxi))
4ok
< Toafl,
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which gives

80K
< —.
IAfllk < 5= (8)

Thus, by Egs. (6) and (8), we have for ak X,

8ok?

[fs() = fs ([ = [Af ()] < ——.

Am

The result follows. [ |

This gives the following generalization bound for kernel-based rankiggrithms:

Corollary 12 Under the conditions of Theorem 11, we have that for@Gryd < 1, with probability
at least1 — 6 over the draw of S (according t®™), the expected ranking error of the ranking
function tlearned by4 is bounded by

. ) 320k? 160K? 2In(1/9)
R(fs) < Ry(fsS+ m +< )\ +M> —m
Proof The result follows from Theorem 11, by applying Theorem 8 with 1. |

Under the conditions of the above results, a kernel-based rankingtafganinimizing a regular-
ized empiricall-error also has good uniform loss stability with respect;tthis follows from the
following simple lemma

Lemma 13 Let ¥ be a class of real-valued functions af) and let4 be a ranking algorithm that,
given a training sample S, outputs a ranking functigr 7 . If 4 has uniform score stability and
£ is a ranking loss that ig-admissible with respect t@, then4 has uniform loss stabilitfp with
respect to/, where for all me N,

B(m) = 2ov(m).

Proof Letme N, Se (X x9)™ 1<i<mand(X,y) € (X x9). Let(x,y),(X,y) € (X x ).
Then we have

[e(fs, (%), (X,Y)) — £(fg, (%), (X,¥))|

IN

o I1s(x) = fs (9] +| fs(X) — fs (X))

< 20v(m),

where the first inequality follows frora-admissibility and the second from uniform score stability.
|

3. We note that the proof of Lemma 7 in Section 4 really amounts to showihg,t L_admissible with respect to the
set of all ranking functions oJX; the result then follows by the observation in Lemma 13.
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Corollary 14 Under the conditions of Theorem 14 has uniform loss stabilitf with respect td,
where for all me N,

1602K?2
B(M) =
Proof Immediate from Theorem 11 and Lemma 13. [ |

This leads to the following additional bound for kernel-based rankingriglhgos that minimize a
regularized empirical-error where/ is bounded and satisfiégisc < ¢:

Corollary 15 Under the conditions of Theorem 11, if in addition the ranking léssatisfies
laise(f, (X, y), (X,Y)) < L(f,(x,y),(X,y)) <Bforall f: Xx—R and(xy),(X,y) € (X x %), then
we have that for an@ < 6 < 1, with probability at leastL — & over the draw of S (according t6™),

the expected ranking error of the ranking functigni€arned by4 is bounded by

R(fs) < ﬁg(fs;S)—F

32022 1602K?2 2In(1/d
+ +B) /2N
Am A

Proof The result follows from Corollary 14, by applying Theorem 6 and théettetR< R,. W

The results of both Corollary 12 and Corollary 15 show that a largedaggation parameter
A leads to better stability and, therefore, a tighter confidence interval in shéting generalization
bound. In particular, whew is independent ok, one must hava > im in order for either of
these bounds to be meaningful. In practice, the ranking ldss@simized by kernel-based ranking
algorithms tend to be larger than the ldgs and therefore Corollary 12 tends to provide tighter
bounds on the expected ranking error than Corollary 15. Below we Ibwkoespecific algorithms
that minimize two different (regularized) ranking losses.

5.2.1 HNGE RANKING LoOss

Consider the following ranking loss function, which we refer to ashinge ranking losslue to its
similarity to the hinge loss in classification:

(1,069, 0Y) = (Iy=YI= (1) = F()) -sgny—y))

)
+

where fora € R,

B a if a>0
a = 0 otherwise

We consider a ranking algorithrf, that minimizes the regularizefd-error in an RKHST . Specif-

ically, let 4, be a ranking algorithm which, given a training sample (X x 9)™, outputs a ranking
function fs € ¥ that satisfies (for some fixed> 0)

fs = argmin {R,(1:S)+A|fIZ}
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We note that this algorithm has an equivalent quadratic programming formusativlar to SVMs
in the case of classification. In particular, the problem of minimiRﬁ\th;S) is equivalent to that
of minimizing

m-1 m

foHK+CZ
= |+1

yi —Yjl = (F(xi) — F(x}) -sgn(yi —yj))
0

subject to
&ij
&ij

forall1<i < j <m,whereC=1/(Am(m—1)). The dual formulation of this problem obtained by
introducing Lagrange multipliers leads to a quadratic program similar to thanhebdtéor SVMs;
for example, see the related algorithms described by Herbrich et al.,(2008), Joachims (2002),
Rakotomamonjy (2004), and Agarwal (2006).

It can be verified that,(f, (x,y), (X,Yy’)) is convex inf, and that}, is 1-admissible with respect
to F (the proof of 1-admissibility is similar to the proof of Lemma 7 which, as noted edrie
Footnote 3, effectively show#admissibility of they ranking loss/y). Thus, ifK(x,x) < k2 for all
X € X, then from Corollary 12 we get that for any0d < 1, with probability at least - & over the
draw of S (according toD™), the expected ranking error of the ranking functigriearned by the
above algorithn#, is bounded by

>
>

5 rc.q, 3% (162 2In(1/3)
R(fS) < Rfl(fsls)‘f‘m-i-()\—l-M) T

5.2.2 LEAST SQUARESRANKING LoOss

Consider now the followingeast squares ranking loss

b £,009), () = (ly=yI=sgrty—y)-(F() = F(x)))". (©)

Let 454 be a ranking algorithm that minimizes the regularizggerror in an RKHS¥, that is, given
atraining sampl& e (X x 9)™, the algorithm4sq outputs a ranking functiofis € # that satisfies
(for some fixed\ > 0)

fs = argmin {@Sq(f;8)+)\\\f\\ﬁ}.

It can be verified thatsq( f, (X,Y), (X,Y')) is convex inf. Now, we claim that the effective search
space 0f4sq on training samples of sizais actuallyF, = {f cF ‘ 112 < 'V'TZ } that is, that for
any training sampl&= ((X1,Y1), ..., (Xm,Ym)) € (X x 9)™, the ranking functiorfs returned by4s

2 < 'V'TZ To see this, note that for the zero functifye F which assigngo(x) = 0 for
all x € X, we have

m-1

m
Ri(foiS) + ATl = S (Iyi—yjl-0)?+A-0
=+

()IJ +1

\ =
I

N3

IA
<
B
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Therefore, by definition ofs,
R, (fsS) +Afs|z < M2,
SinceRy,(fs;S) > 0, this implies

M2
fgllz < —.
sl < =

It is easily verified that the effective search sp#geas a convex set. The following lemma shows

that if K(x,x) < k? for all x € X, thenlsq is (2M + %% )-admissible with respect {8,

Lemma 16 Let F be an RKHS with kernel K such that for allexx, K(x,x) < k2 < co. LetA > 0,
and let f, = {f eF ‘ 112 < 'V'Tz } Then the least squares ranking losg, defined in Eq. (9)

above, is(2M + 4\'%") -admissible with respect t@,.

Proof First, note that for any € 7, and anyx € X, we have from Eq. (6) that
KM

e

Now, let f1, f; € %, and let(x,y), (X,¥Y) € (X x 9). Then we have,

Ol < k[fllk <

Fsal F1,(6), (4.Y)) = fsq( F2, (063, (€.Y)

= (=¥~ (00— 160) — ((y-¥) — (20— £20)) |

= \2<y—>/>—<1<x—fl<%>>—<f f20) || (f200 = f20)) = (f() — fa(¥))|
< (2y=yI+ 00+ 0]+ Falx |+\f2><'|) (|f1 f (9] +| () — f2(X)]

4kM
< (M=) (100 - R+ 1R0¢) = 204)]).
where the second equality follows from the identdy — b?| = |a+-b| - |a—b). [ |

An analysis of the proof of Lemma 10 shows that if a regularization-baesekimrg algorithm
minimizing a regularized-error in some convex function clagsis such that the ranking function
returned by it for training samples of a given sizealways lies in some effective search space
Fn C ¥ that is also convex, then the result of the lemma holds even when forngattie loss
function/ is o,-admissible, for some, > 0, only with respect to the smaller function clags.
This in turn implies more general versions of Theorem 11 and Corollarynl®hich the same
results hold even if a ranking algorithm minimizing a regularizegror in an RKHST is such that
for eachm, £ is o-admissible with respect to a convex subggtC ¥ that serves as an effective
search space for training samples of simeThus, from Lemma 16 and the discussion preceding
it, it follows that if K(x,x) < k2 for all x € X, then we can apply (the more general version of)
Corollary 12 withoy, = (2M + 4KM) (recall thatA = A, may depend on the sample sin¢to get
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that for any 0< & < 1, with probability at least + & over the draw ofS (according toD™), the
expected ranking error of the ranking functibslearned by the algorithmisyis bounded by

R(fs) < ﬁgl(fs;8)+6£;\Kr?\A(l+\2/;)+<?)2K)\2'\A<1+\2;\>+M> 2'”(:]/5).

5.2.3 ONSISTENCY

We can also use the above results to show consistency of kernel-tmagedgr algorithms. In
particular, letR; () denote the optimal expectéeerror in an RKHS# (for a given distribution
D):

R = inf Ry(f).

J(F) = it R(f)

Then for bounded loss functiodiswe can show that with an appropriate choice of the regularization
parametel, the expected-errorR,( fs) of the ranking functiorfslearned by a kernel-based ranking
algorithm that minimizes a regularized empiricagrror in & converges (in probability) to this
optimal value. To show this, we shall need the following simple lemma:

Lemma 17 Let f: X—R be a fixed ranking function, and Iébe a bounded ranking loss function
such that0 < /(f,(x,y),(X,y)) <Bforall f: X—R and(x,y),(X,y) € (X x9). Then for any
0 < 8 < 1, with probability at leastL — & over the draw of & (X x 9")™ (according toD™),

2In(1/3)

RIS < Ri(f)+By/ =

The proof involves a simple application of McDiarmid’s inequality to the rand@mable

~

R/(f;S); details are provided in Appendix C. We then have the following consisterstyt:

Theorem 18 Let ¥ be an RKHS with kernel K such that for allexX, K(x,x) < K2 < c. Let
¢ be a ranking loss such thdf f, (x,y),(X,y)) is convex in f and is g-admissible with respect
to #. Furthermore, let? be bounded such th& < /(f,(x,y),(X,y)) <B for all f : X—R and
(x.y),(X,y) € (X x9), and let { be any fixed function iff that satisfies

R(7) < RI(F)+ (10

(Note that such a function; fexists by definition of R¥).) LetA > 0, and letA4 be a ranking
algorithm that, given a training sample S, outputs a ranking functige ff that satisfies §=

argmirke ¢ {ﬁg(f;S)Jr)\HfHﬁ}. Then we have that for any < & < 1, with probability at least
1— 6 over the draw of S (according ™),

Ri(fs) < RI(F)+MIf/ 1K+

1 320%k? 1602K?2 2In(2/d
— 4+ + +2B (2/9) i
m Am A m

Thus, ifA = 0(1) andA = oo(%]) (for example, i\ = m~1/4), then R(fs) converges in probability

to the optimal value R ¥ ) (as m—w).
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Proof As in Corollary 15, we can use Corollary 14 and apply Theorem 6 \gl'rth get that with
probability at least + 3,

R(fs) < Ri(fs;S+

32022 1602K?2 2In(2/3
+ +B)/2NE/0) (11)
Am A m

Now,

-~

Ri(fsS Ri(fsS) +A| fsl|

<
< R(f7:9+AIF IR,

where the first inequality is due to non-negativity|id&||z and the second inequality follows from
the definition offs. Applying Lemma 17 tof; with %, we thus get that with probability at least
1-3,

R(fsS < (Rz(fj)JrB 2'”(”2]/6)> +A|FIE (12)

Combining the inequalities in Eqgs. (11-12), each of which holds with probalititeast 1— 2,
together with the condition in Eq. (10), gives the desired result. [ |

6. Comparisons With Related Work

In the above sections we have derived stability-based generalizatio®&ar ranking algorithms
in a setting that is more general than what has been considered prevenglizave shown that
kernel-based ranking algorithms that perform regularization in an RKHEisrsetting satisfy the
required stability conditions. In this section we discuss how our results telatber recent studies.

6.1 Comparison with Stability Bounds for Classification/Regression

As pointed out earlier, our stability analysis of ranking algorithms is basedsamilar analysis for
classification and regression algorithms by Bousquet and Elissee)2B@refore it is instructive
to compare the generalization bounds we obtain here with those obtained indtat 8uch a
comparison shows that the bounds we obtain here for ranking areiwglgrdo those obtained for
classification and regression, differing only in constants (and, ofsequn the precise definition
of stability, which is problem-dependent). The difference in constants imwhebounds is due
in part to the difference in loss functions in ranking and classificatioréesjon, and in part to a
slight difference in definitions of stability (in particular, our definitions aréeinms of changes to
a training sample that consist of replacing one element in the sample with a mewvbite the
definitions of Bousquet and Elisseeff are in terms of changes that tohs&snoving one element
from the sample). As discussed in Section 4, the reason that we are alii#aio bounds for
ranking algorithms using the same methods as those of Bousquet and Elissaefthe power of
McDiarmid’s inequality, which was used by Bousquet and Elisseeff to capie effect of stability
but is also general enough to capture the structure of the ranking proble
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It is also instructive to compare our bounds with those obtained for bipaatiténg algorithms
(Agarwal and Niyogi, 2005). In particular, the bounds for kerneddshranking algorithms in the
bipartite setting differ from our bounds in that the sample siw@ our case is replaced with the
term mn/(m+ n), wherem,n denote the numbers of positive and negative examples, respectively,
in the bipartite setting. This suggests that in general, the effective sampla sa&king is the ratio
between the number of pairs in the training samplaif the bipartite setting) and the total number
of examplesifi+ n); indeed, in our setting, this ratio {3)) /m= m/2, which fits our bounds.

6.2 Comparison with Uniform Convergence Bounds

While uniform convergence bounds for ranking have not been e@xplicitly in the setting we

consider, it is not hard to see that the techniques used to derive sudddm the settings of
Agarwal et al. (2005) and Clemencon et al. (2008) can be extenddatamaimilar bounds in our
setting. The crucial difference between such bounds and thosedénithis paper is that uniform
convergence bounds depend on the complexity of the function clasheddry an algorithm. As
discussed in the context of bipartite ranking (Agarwal and Niyogi, 20083 means that such
bounds can quickly become uninformative in high dimensions; in the casedidn classes whose
complexity cannot be bounded (such as the RKHS corresponding to ssi@atkernel), uniform

convergence bounds cannot be applied at all. In both these casetalthiy analysis provides a
more useful viewpoint.

6.3 Comparison with Cortes et al. (2007)

The work that is perhaps most closely related to ours is that of Cortes @08I7), who study
“magnitude-preserving” ranking algorithms—most of which perform laggation in an RKHS—
and also use algorithmic stability to derive generalization bounds for suohtalgs. The setting
considered by Cortes et al. is similar to ours: the learner is given a finiteeseq of labeled
training examples$(x1,y1), . - ., (Xm,Ym)) € (X x R)™, and the goal is to learn a real-valued function
f : X—R that ranks future instances with larger labels higher than those with smakgs.lathe
term “magnitude-preserving” comes from their view of the magnitude of tHerdiice(y —y’) in
the labels of two examplg,y), (X,¥') as not just a penalty for mis-ranking the pairx'), but as

a quantity to be explicitly preserved Hy in the sense thdtf (x) — f (X)) be close tqy—Y/).

There are three important differences between our work and thatrté<Cet al. (2007). First,
Cortes et al. implicitly assume the existence of a “truth” function: their reswdtdenived under that
assumption that only instances X are drawn randomly, and that labgls " are then determined
according to a “truth” functiorf* : X—¢/. In our work, we make the more general distributional
assumption that all examplés,y) are drawn randomly according to a joint distributionbrx 9.

Second, Cortes et al. consider only the notion of uniform loss stability; dibeyot consider
uniform score stability. As a consequence, the bounds they obtaimkingpalgorithms performing
regularization in an RKHS are similar to our bound in Corollary 15, which deuthe expected
ranking errorR(fs) of a learned ranking functiotfis in terms of the empirical-error R;(fs;S),
where/ is the loss minimized by the algorithfnIn contrast, our bound in Corollary 12, which

4. Cortes et al. do not actually bound the expected ranking B(rgy) (which in our view is the primary performance
measure of a ranking function in our setting); their results simply givetswn the expecteerrorR,( fs), where
£ again is the loss minimized by the algorithm. However,fg¢. < ¢, one can easily deduce boundsRifs) from
these results.
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makes use of the notion of score stability, bounds the expectedRéri¢rin terms of the empirical
El—errorﬁgl(fg; S). As mentioned in Section 5.2, tifg loss tends to be smaller than many of the
loss functions minimized by kernel-based ranking algorithms in practice @ndds never greater
than the hinge ranking lo€g), thus leading to tighter bounds for the same algorithms.

The third and most important difference between our work and that de€et al. is that the
results of Cortes et al. involve certain strong assumptions on the functies séamrched by an
algorithm. In particular, they assume that the function classearched by a ranking algorithm
is bounded in the sense thatM’ > 0 such that for allf € F and allx € X, |f(x) — f*(x)| < M’
(where, as mentioned abovE, : X—R is the truth function in their setting). No RKH$ satisfies
this condition, and so their results as stated do not apply to the kernel-tzassenly algorithms they
consider. On closer inspection, one notices that for the loss functionsttiogr to be 1-admissible,
they do not actually need this assumption. For the loss functions they sha’fadmissible,
however, a non-trivial fix is required. We expect that an approawties to that of separating out the
effective search space, as we have done in the case of the leastssquking loss in Section 5.2.2,
should work; indeed, in the case of the least squares ranking losspiagsa bounded label space
Y, it is easy to see from the observations in Section 5.2.2| fi{aj — y| is bounded for allf in the
effectivesearch space (and &@hi,y) € (X x 9)).

6.4 Comparison with Rudin et al. (2005)

Rudin et al. (2005) studied a different setting of the ranking problem, iciwbne assumes the
existence of a pair-wise “truth” function: X x X—{0, 1} that assigns a binary ranking preference
(X, X') to each pair of instances, X'), such that(x,x') = 1 = (X, x) = 0: if T(x,X') = 1, thenx

is to be ranked higher that; if Ti(X',x) = 1, thenx' is to be ranked higher thag and if i(x,x) =
T(X,x) = 0, then there is no ranking preference betwgemdx'. The training sample given to
a learner in this setting consists of a finite number of instamges. , Xy, each drawn randomly
and independently according to some (unknown) distributioX ptogether with the corresponding
ranking preferences(x,x;) fori, j € {1,...,m},i # j. Rudin et al. derived a generalization bound
for this setting using techniques inspired by the works of Cucker and Si2@02), Koltchinskii
and Panchenko (2002), and Bousquet (2003). Their boundessgd in terms of covering numbers,
is a margin-based bound, which is of interest when the learned rankictjda has zero empirical
error on the training sample.

Noting that the labely;,y; corresponding to a pair of instancgsx; in our setting are used
in our results only in the form of ranking preferendgs—y;), we can clearly view the setting of
Rudin et al. as a special case of ours: the ranking preferépcey;), which are random variables
in our setting, get replaced by the deterministic preferemcrsx;). All quantities can be adapted
accordingly; for example, the expected ranking error of a rankingtiom f : X —R in this setting
(with respect to a distributio® on X) becomes

1
R(f) = Exx)~oxo [|"(X,X/)! <|{n(x7x’)(f(x)f(X’))<O}+2|{f(x)—f(x’)}>] :

In fact, rather than restrict ourselves to binary preferences, wexdtand the setting of Rudin et al.
to allow real-valued preferences, requiring tiiat, x') = —1(X, x) for all x,x' € X; if ttakes values
in [-M, M], we get the same results as we have derived in our setting (with the probafititie
being over the random draw of instances only).
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We can also consider another extension of interest in the pair-wise tnttido setting, where
we may not have access to the preferences for all pairs of instances trathing sample, but
rather are given preferences for only a limited number of pairs; in this, ¢he learner receives
a sequence of instanc&s= (x1,...,Xm), and preferences(x;,x;) for only a subset of pairk C
{(i,]) | 1<i< j<m}. Itis interesting then to consider a model in which not only the instances in
Sbut also the pairs i for which the ranking preferences are provided may be chosenmando
If the instances irs are drawn randomly and independently according to some distribition
X, and the seE is drawn randomly (independently & from some distributionZ;, on the set
of possible (undirected) edge sets for a grapmowvertices{1,...,m} (for example,E could be
obtained by including each edge with some fixed probability B, < 1, or by selecting at random
a subset ofi;, edges for soma, < (g‘)) then under some natural conditionsBg, we can extend
our technigues to obtain generalization bounds in this setting too. In the reznaihthis section
we discuss some details of this extension.

In particular, the empirical ranking error of a ranking functibn X—R in the above setting,
with respect to a training sample= (S E, 1sg)) whereSandE are as above arm s is the
restriction ofrtto {(x;,%;) | (i,j) € E}, is given by

~ 1 1
R(E;T) = E > Iﬂ(ij)(l{nm,xj)(f(xi)f(xj>><0}+2'{f<xi>—f<xj>}>-
(i.})eE

Given a loss functiorf that assigns for any ranking functidn any pair of instancegx,x') and
anyr € [-M,M] a non-negative los4 f,x,X,r), the expected and empiric&errors can be defined
similarly:

R(f) = Exx)unxo [L(F,XX (X, X))];
1

R(f;T) = — z O(F, %, X, TU(X;, Xj)) -
Bl fee

A ranking algorithm4 in this setting, which given a training samgleutputs a ranking functiofir,
has uniform loss stabilitf with respect t if forall me N, Se X™ E C {(i,]) |1<i< ] <m},
T X x X—[—-M,M], 1<i <mandx € X, we have for alk,x € X and allr € [-M,M],

[e(fr, %X r) —£(fri,x, X, r)| < B(m),

whereT = (SE,Tsg)) as above and’ = (S,E, g g)), with S being the sequence obtained
from Shy replacingx with X. Then we can show the following bound for ranking algorithms with
good loss stability in this setting:

Theorem 19 Lett: X x X—[—M,M] be a pair-wise truth function such thatx,x') = —1(X,x)

for all x,x' € X. Let4 be a symmetric ranking algorithm in the pair-wise truth function setting
whose output on a training sample ¥ (S E,mjgg)) we denote by+f, and let/ be a bounded
ranking loss function such that< ¢(f,x,x,r) <Bforall f : X—R, x,X € X andre [-M,M]. Let
B:N—R be such thatd has uniform loss stabilit} with respect td as defined above. L& be any
distribution onX, and let{Ey} be any family of distributions on the sets of possible (undirected)
edge sets for a graph on m verticgk ..., m} that satisfies the following conditiort s > 1 and a
sequenceédn) satisfyingdm > 0, limm_.. dm = 0, such that for all mPg..z,, (|E| < m®) < dm. Then
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for any0 < & < 1, for all m large enough such that, < % we have with probability at leadt— o
over the draw of S E) according toD™ x Ep,

R 2 2
Ri(fr) < Re(fr;T)+2B(m)+ \/; <4m(B(m))2+BBB(m) + % + rrI:l) In(2/9).
The proof makes use of McDiarmid’s inequality and is similar to that of Thed@gewith two
main differences. First, McDiarmid’s inequality is first applied to obtain a boconditioned on
an edge seE with |[E| > m®; the bound on the probability th#E| < m® then allows us to obtain
the unconditional bound. Second, the constapta the application of McDiarmid’s inequality are
different for eaclk, and depend on the degrees of the corresponding vertices in thevgthtge
setE; the sumzkcﬁ is then bounded using a bound on the sum of squares of degrees phadgea
to de Caen (1998). Details of the proof are provided in Appendix D.
The condition orEy, in the above theorem states that with high probability (probability at least
1-dm), an edge seE drawn according t@, has at leasin® edges for soms > 1, that is, |E|
is super-linear irm.> Thus, in the pair-wise truth function setting, we need not have access to
the ranking preferencex(x;,x;) for all (3) pairs of instances i having the preferences for any
super-linear number of pairs (where the pairs are selected indepgnaethe instances them-
selves) suffices to give a generalization bound (albeit with a corréépgiy slower convergence
rate, as quantified by th@é—l term in the bound above). Below we give examples of two families
of distributions{ £} that satisfy the above condition.

Example 1 Fix any1 < s< 2, and letEy, be the distribution that corresponds to selecting a ran-
dom subset ofi, edges, withom = min((3), [m®]). Then for large enough mym, = [mf], and
PEme(‘E‘ < ms) =0.

Example 2 Fix any 1 < s< 2, and letE,, be the distribution that corresponds to including each
edge with a fixed probability o with pn = min (1, -25). Then for large enough m,p= —2,
and assuming without loss of generality thatn2, it is easy to show using a Chernoff bound that
in this case Pe.z, (|[E| < m®) < e ™/4_ Indeed, for any such m, let,zbe the random variable
equal to the number of edgés|. Then 7, is a binomial random variable with parametef$) and

Pm = -5, and

E[Zm] = (r;) Pm

> 2,

where the inequality follows from our assumption thatr2 The Chernoff bound for deviations be-
low the mean of a binomial random variable tells us that for @ryd < 1, P(Zm < (1—8)E[Zny]) <
e ElZn®/2_Thus we have

P(Zn<m) = P(Zm<<1—%>2ms>

5. Note that in the statement of Theorem 19 we reqjiieto be super-linear im by a polynomial factor; a smaller
super-linear growth also leads to a generalization bound, but with a skomeergence rate.
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IN

P(Zm < (1— %)E[Zm])

e_E[Zm](:’zl)z/z
e /4,

VANVAN

Comparing the bound in Theorem 19 with that of Theorem 6, it is worth notiaighie effective
sample size in the above setting becom&s'. This is consistent with the discussion in Section 6.1,
in that the ratio between the number of pairs in the training sample and the totatnaf@xamples
in this case is (with high probability) at least/m = m>1,

7. Discussion

Our goal in this paper has been to study generalization properties angaalkorithms in a setting
where ranking preferences among instances are indicated by reathlalels on the instances.
This setting of the ranking problem arises frequently in practice and is nmavergl than those
considered previously. We have derived generalization boundsuiding algorithms in this set-
ting using the notion of algorithmic stability; in particular, we have shown thadtingralgorithms
that exhibit good stability properties also have good generalization piemeand have applied our
results to obtain generalization bounds for kernel-based ranking algaritiat perform regulariza-
tion in a reproducing kernel Hilbert space. Such algorithms often cdrenanalyzed using uniform
convergence results.

The main difference in the mathematical formulation of ranking problems as cethfraclas-
sification or regression problems is that the loss function in ranking is vpiai- rather than ‘point-
wise’. Indeed, ranking often resembles weighted ‘classification on’ paiith the weights being
given by the corresponding ranking preferences (although leamnegl-valued function that in-
duces a total ordering on the instance space is not quite the same as |eabitiagy-valued func-
tion on instance pairs that simply decides which of two instances should kedraiigher, Cohen
et al. 1999; Balcan et al. 2007; Ailon and Mohri 2008). Howeverggelivation bounds from clas-
sification cannot be applied directly to ranking, due to dependences afm@mgstance pairs. As
discussed earlier, the reason that we are able to obtain bounds forgatdgorithms using the same
methods as those used by Bousquet and Elisseeff (2002) for clagsifiaad regression algorithms
lies in the power of McDiarmid’s inequality, which was used by BousquetEss$eeff to capture
the effect of stability but is also general enough to capture the strudttiie canking problems we
consider. A comparison of our results with those of Bousquet and Hiig28682) and Agarwal and
Niyogi (2005) suggests that the effective sample size in ranking is piopal to the ratio between
the number of pairs in the training sample and the total number of examples; hise camaller
than the number of examplesif ranking preferences are provided for less thapairs.

The notions of uniform stability studied in this paper correspond most clégehose studied
by Bousquet and Elisseeff (2002). These notions are strict in that¢lggyre changes in a sample
to have bounded effect uniformly over all samples and replacementadriefine weaker notions
of stability, analogous to the hypothesis stability considered by Devroy@agder (1979), Kearns
and Ron (1999), and Bousquet and Elisseeff (2002), or the almesgveliere stability considered
by Kutin and Niyogi (2002), which would require the bounds to hold onlyXpestation or with
high probability. Such notions would lead to a distribution-dependent treamsevpposed to the
distribution-free treatment obtained with uniform stability, and it would be pagity interesting
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to see if making distributional assumptions in ranking can mitigate the reducedessiz® effect
discussed above.

For the sake of simplicity and to keep the focus on the main ideas involved iniagghability
techniques to ranking, we have focused in this paper on bounding tleetedpranking error in
terms of the empirical ranking error. In classification and regressidnilistanalysis has also been
used to provide generalization bounds in terms of the leave-one-outBoosquet and Elisseeff,
2002; Kearns and Ron, 1999), and with a slight change in definitiortaloiisy, similar results can
be obtained in the case of ranking as well. In particular, in this case wetoeedine (for a ranking
algorithm which given a training samp&returns a ranking functiofis) a ‘leave-two-out’ ranking
error as follows:

R(fsS) = (,}1)1_2 E(Fiis (%, Y1), (X5, Y1) »
2/ 1ISi<)<m

where S\l denotes the sequence obtained by removingitthend jth examples from a sample
S=((X1,¥1),---,(Xm,Ym)) € (X x 9)™. Then, defining notions of stability in terms of changes to
a sample that consist of removing two examples rather than replacing om@lexane can obtain
very similar generalization bounds for ranking algorithms in terms of the aleave-two-out error
as those we have derived in terms of the empirical error.

An open question concerns the analysis of other ranking algorithms usredgbrithmic sta-
bility framework. For example, it has been shown that the AdaBoost algofibh classification is
stability-preserving, in the sense that stability of base classifiers implies stabilitg final learned
classifier (Kutin and Niyogi, 2001). It would be interesting if a similar resalild be shown for
the RankBoost ranking algorithm (Freund et al., 2003), which is basdtiedsame principles of
boosting as AdaBoost.

Finally, it is also an open question to analyze generalization propertiesikihgaalgorithms
in even more general settings of the ranking problem. For example, a moeeatjsetting would
be one in which a finite number of instancas. ..., xn € X are drawn randomly and independently
according to some distributio® on X, and then pair-wise ranking preferenegsc [—M, M| for
i < j are drawn from a conditional distribution, conditioned on the correspgrahir of instances
(%i,Xj). We are not aware of any generalization bounds for such a setting.
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Appendix A. Proof of Theorem 6

Our main tool will be the following powerful concentration inequality of McDidd (1989), which
bounds the deviation of any function of a sample for which a single charige sample has limited
effect.
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Theorem 20 (McDiarmid 1989) Let X, ..., Xy be independent random variables, each taking val-
ues inaset A. Lep: A"—R be such that for each < k < m, there existsc> 0 such that

sup
..... eAx €A

(p(xl7"’7xm)_(p(xlw'-7Xk—17xlkaxk+17"-7xm) < Ck -

Then for any > 0,
P(q;(xl,...,xm) E (X, .. ,xm)]zg> X

Before we apply McDiarmid’s inequality to prove Theorem 6, we shall nbedollowing technical
lemma. In the following, we shall drop explicit references to distributionsrevhiear from context,
replacing, for exampleg x vyo|. ..] with simply Ex v)[. . .].

Lemma 21 Let 4 be a symmetric ranking algorithm whose output on a training sample_$ x
9)™we denote by and let/ be a ranking loss function. Then for dll<i < j < m, we have

Esuom [Ri(f9) - Ri(fs;S)|
= Esuom ().~ | £ s O, (X, Y)) = (s, (4%, 04, ¥)))]

Proof DenotingS= ((X1,Y1),...,(Xm, Ym)), we have by linearity of expectation,

1m—1 m

EsR(fsS] = (Y 3 Es[i(fe 060 06.Y)].
2, .4

2

By symmetry, the term in the summation is the same for, §ll Therefore, for all I<i < j <m,
we get

Es[Ri(fs'S)] = Es|t(fs,(X.%). (4.Y))]
= ES(()(il7Yil)7(Xj'/7le)) [5( fs, (X, Y), (Xj,YJ'))] .

Interchanging the roles @i, ) with (X/,Y/) and (X}, Y;) with (X],Y]), we get

ES[ﬁé(fsi 5)} = Esxy).xv) [f(fsli,(Xi/,Y) (levY]/)):|
Since by definition
Es[Rz(fs)] = Bsx.x).¢v)) [f(f& (XY, (Xj/7Y]/)):|

the result follows. [ |

Proof (of Theorem 6)
Let@: (X x 9)"—=R be defined as follows:

®S) = R(fs)—R(fsS).
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We shall show thap satisfies the conditions of McDiarmid’s inequality (Theorem 20). &et
((X1,Y1)5-- - (Xm,Ym)) € (X x 9)™ Then for each X k < m, we have for anyx,,y;) € (X x ¥):

®S -S| = |(Rife)~R(1s9) - (Rifs) - Ril1s: S |

< [Rlfs)~Ri(fs)| + RS - Re(f: ).
Now,
R(f) = Ri(fs)| = [Eqyoom [ATs, (%,¥), (X)) = €T, (X,Y), (X', Y) |
< .o [T 06Y), (X Y) = €T, (XY, (X, Y)|
< B(m),
and

Rifs9) —Ri(fa )|
< (1, 06,30, 06.93)) = (T, 430 (43.37))|
(2) 1<i<j<mi£k, j#k

3 005 06 630~ 0030, ()

1
+ =SB
1§i<j§;,i;£k,j;ék[3<m) (2) i;

= 7 (B m-))pm + (m-2j8)

IN

3 -
—
N

—
N
~—

B

Thus we have
B
o -0 < 2(pm+2).
Therefore, applying McDiarmid’s inequality tg we get for any > 0,

Ps((Ri(fs) ~R(fs9)) —Es[R(fs) ~Ri(fs:S)| > ¢)
< o262 /m(2(B(m)+§))?
_ o me/2AmB(m)+B)?

Now, by Lemma 21, we have (for any<li < j <m),
Es [Rg( fs) — Ry(fs; S)}

= Bsyx. [ (fs, (X, Y7), (X5, Y])) — €(fgi, (X, Y), (x;,Y;))}

< Es (oo o | [Es 04X, 04, Y)) = (s, (4%, (%), Y)) |

+ Es((w,\q'),(xj’,v{))H (fg, O, X), (X],Y)) = £(fga, (4, Y), (X[, Y)))
2B(m).

|

IN
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Thus we get for ang > 0,
Ps (Re(fs) —Ri(fs;S) —2B(m) > s) < @ MEP/2AMB(m)+B)?

The result follows by setting the right hand side equa tmd solving fore. |

Appendix B. Proof of Lemma 10

Proof (of Lemma 10)
Recall that a convex functiop: U—R satisfies for alu,v € U and for allt € [0, 1],
Qu+t(v—u)) —eu) < t(e(v) —@u)).

Since/(f,(x,y),(X,y)) is convex inf, we have thaR(f;S) is convex inf. Therefore for any
t € [0,1], we have

R(FHAES-R(£9 < t(R(f9-R(F;9), (13)
and also (interchanging the roles band f'),
R(f —taf;S) —R(f;S) < t(@(f;S)—FAQ(fi;S)). (14)
Adding Egs. (13) and (14), we get
R(f+tAf;S) —R(F;9 +Ri(f —tAf; 9 —Ri(f;S) < 0. (15)

Now, since¥ is convex, we have th_a(tf +tAf) e F and(fi —tAf) € F. Sincef minimizes
R} (f;S) in 7 and f! minimizesR)(f;S) in #, we thus have

R)(f;9) —R)(f+tAf;S) < 0, (16)
R)(f;S)-R)(f'—tAf;S) < O. (17)

Adding Egs. (15), (16) and (17), we get
)\(N(f)—N(f+tAf)+N(fi)—N(fi—tAf))
< ﬁz(fi;S)—@(fi;éH@(fi_mf;s)_@(fi_mf;S)
1 .
= (m)é(g(fla(xivyi) s (X5,Y5)) — ( X, Y05 (X5,Y5))

2) J#i
fl—tAf, (X,Y), (X, ;) E(fi—tAf,(xi,yi),(Xj,yj)))

= (i) > ((aftm,yi),(xj,yj))—afi—tAf,<xi,yi>,<xj,yj>>)
2/ |#

(A =tAT, 04,30, 0,90)) = €1 0430, 0,31)) ) )
< (t:);(lm‘( )|+ 2181 ()| +[8T(4)])

where the last inequality follows hy-admissibility. The result follows. |
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Appendix C. Proof of Lemma 17

The proof is a simple application of McDiarmid’s inequality.
Proof (of Lemma 17)
Let@: (X x 9")™—=R be defined as follows:

®S) = R(f:9).
Then by linearity of expectation,
1 m-1 m
Esw@m[(P(S)} ) Zl Y E(xm.06.¥)~ 05D f(f,(N,Yi)a(XjaYi))}
2) i=1 j=i+1

= R(f).

We shall show thap satisfies the conditions of McDiarmid’s inequality (Theorem 20). &et
((X1,¥1), - -+ (Xm,Ym)) € (X x 9)™. Then for each K k < m, we have for anyx,y,) € (X x9):

o9 - @S| = [R(f;9~R(F;S

1
“my O0F, (4, i) (X —L(f, (%, Y1), (X,
< ). ) = 07 G )|

1
< ——(m-1)B
(2)
2B
o
Therefore, applying McDiarmid’s inequality tg we get for any > 0,

Ps.om (RU(1; 9 —Ri(f) >¢) < e2/mTF
o TE?/ 2B
The result follows by setting the right hand side equal smd solving fore. .

Appendix D. Proof of Theorem 19

The proof of this result also makes use of McDiarmid’s inequality and is similéinggroof of
Theorem 6 in Appendix A, with two main differences. First, McDiarmid’s in&gw is first applied

to obtain a bound conditioned on an edgeEseiith |E| > m®; the bound on the probability thgE| <

n then allows us to obtain the unconditional bound. Second, the constantthe application of
McDiarmid’s inequality are different for eadh and depend on the degrees of the corresponding
vertices in the graph with edge g€t the sumzkcﬁ is then bounded using a bound on the sum of
squares of degrees in a graph due to de Caen (1998).

Proof (of Theorem 19)

Letme N, and fix any edge sdfy C {(i,]) | 1 <i < j < m} with |[Eg] > m®. Letgg, : X™"—R be
defined as follows:

P5(S) = R(fr)—R(fr;T),
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whereT = (S Eo, T(sg,)). We shall show thape, satisfies the conditions of McDiarmid’s inequality
(Theorem 20). LeB= (Xq,...,Xm) € X™. Then for each K k < m, we have for any € X:

06,9~ @e(S)| = | (ReFr) = Re(friT) ) = (Rl ) — Rl T9))|
< |R(f) = R |+ [RU( i) = R 7).
Now,
[R(Fr) = Re(fr)| = [Epoox [£FT. XX T, X') = (i X, XX, X)) |
< E(Xx,)He(fT,x,x’,n(x,x’))—Z(ka,x,x’,n(x,x’))H
< B(m),
and

R(fr;T) —ﬁg(ka;Tk)‘
1
< =
IBol (i j)eelmax jk

1
e Y %30 TG, ) = (P X, XK 06, X0)|
(i.K)eEo

1
_{_7
Eol o e,

‘f(fT,Xi,Xj,TT(Xi,Xj)) _g(kaaXhXbT[(XivXj))’

‘f(fnxk’xjaﬂ(xkvxj)) —ﬁ(ka,ﬁ,Xj»ﬂ(Xﬁ,Xj))‘

1 1
< L Bm + = Y B+~ 3 B
|Eol (i,j)eEOZ;ék,j;ék |Eol (iJ()ZGEo |Eo| (k~j)z€Eo

dy
< m)+ —B,

whered is the degree of vertekin the graph with edge s&y. Thus we have

(pEo(S) - (pEo(g) < Gk,

where
d
Ck = 2[3(m)+’E—Z|B.
Now,
m
de = 2|,
K=1

and using a bound on the sum of squares of degrees in a graph du€ae¢1998), we have

m 2|E
S & < [Eol <’0’+m—2> .
& m-—1
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Therefore,

M s

G = 3 (m +|EO|B>

M
o

— ampm+ T 5o B 5 o
K= K=1
2 20
< 4m(B(m))2+8BR(M) + ni? - (EO' 2
< 2B B2

y(m)

where the last inequality follows singBg| > nm®. Thus, applying McDiarmid’s inequality t@g,,
we get for anye > 0,

Ps((R(fr) ~ Re(friT)) ~ Es[Re(fr) ~Ri(friT) | E=Bo| 2| E=Ep) < e/,
Now, as in Theorem 6, we can show that
Es[R(fr) = R(friT) [E=Eo| < 2B(m).
Thus we get for ang > 0,
Ps(Ri(fr) ~ Re(friT) ~2B(m) > [E=Eo) < e/,

Since the above bound holds for BY with |Eg| > n°, we have

Pse) (Re(fr) ~R(FriT)=2B(m) 2 ¢) < Pe(|E| < )+ =M
< &4 e ZNm)

Thus formlarge enough such tha, < g, we get

~ 6 5
Pse) (Ré(fT) —Ry(fr;T) —2B(m) > e) < 3 1 e27/¥m)

Setting the second term on the right hand side equ%tmd solving fore gives the desired resull
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