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Abstract
The problem of ranking, in which the goal is to learn a real-valued ranking function that induces a
ranking or ordering over an instance space, has recently gained much attention in machine learning.
We study generalization properties of ranking algorithms using the notion of algorithmic stability;
in particular, we derive generalization bounds for rankingalgorithms that have good stability prop-
erties. We show that kernel-based ranking algorithms that perform regularization in a reproducing
kernel Hilbert space have such stability properties, and therefore our bounds can be applied to these
algorithms; this is in contrast with generalization boundsbased on uniform convergence, which in
many cases cannot be applied to these algorithms. Our results generalize earlier results that were
derived in the special setting of bipartite ranking (Agarwal and Niyogi, 2005) to a more general
setting of the ranking problem that arises frequently in applications.

Keywords: ranking, generalization bounds, algorithmic stability

1. Introduction

A central focus in learning theory research has been the study of generalization properties of learn-
ing algorithms. Perhaps the first work in this direction was that of Vapnik andChervonenkis (1971),
who derived generalization bounds for classification algorithms based onuniform convergence.
Since then, a large number of different tools have been developed for studying generalization, and
have been applied successfully to analyze algorithms for both classification(learning of binary-
valued functions) and regression (learning of real-valued functions), two of the most well-studied
problems in machine learning.

In recent years, a new learning problem, namely that ofranking, has gained attention in machine
learning (Cohen et al., 1999; Herbrich et al., 2000; Crammer and Singer,2002; Joachims, 2002;
Freund et al., 2003; Agarwal et al., 2005; Rudin et al., 2005; Burges et al., 2005; Cossock and
Zhang, 2006; Cortes et al., 2007; Clemencon et al., 2008). In ranking,one learns a real-valued
function that assigns scores to instances, but the scores themselves do not matter; instead, what is
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important is the relative ranking of instances induced by those scores. This problem is distinct from
both classification and regression, and it is natural to ask what kinds of generalization properties
hold for algorithms for this problem.

Although there have been several recent advances in developing algorithms for various settings
of the ranking problem, the study of generalization properties of ranking algorithms has been largely
limited to the special setting of bipartite ranking (Freund et al., 2003; Agarwalet al., 2005). In this
paper, we study generalization properties of ranking algorithms in a more general setting of the
ranking problem that arises frequently in applications. Our generalizationbounds are derived using
the notion of algorithmic stability; we show that a number of practical ranking algorithms satisfy
the required stability conditions, and therefore can be analyzed using ourbounds.

1.1 Previous Results

While ranking has been studied extensively in some form or another in fieldsas diverse as social
choice theory (Arrow, 1970), statistics (Lehmann, 1975), and mathematical economics (Chiang and
Wainwright, 2005), the study of ranking in machine learning is relatively new: the first paper on the
subject appeared less than a decade ago (Cohen et al., 1999). Since then, however, the number of
domains in which ranking has found applications has grown quickly, and asa result, ranking has
gained considerable attention in machine learning and learning theory in recent years.

Some of the earlier work, by Herbrich et al. (2000) and by Crammer and Singer (2002), fo-
cused on the closely related but distinct problem of ordinal regression.Freund et al. (2003) gave
one of the first learning algorithms for ranking, termed RankBoost, which was based on the prin-
ciples of boosting. Since then there have been many other algorithmic developments: for example,
Radlinski and Joachims (2005) have developed an algorithmic framework for ranking in informa-
tion retrieval applications; Burges et al. (2005) have developed a neural network based algorithm for
ranking; and Agarwal (2006) has developed an algorithmic framework for ranking in a graph-based
transductive setting. More recently, there has been some interest in learning ranking functions that
emphasize accuracy at the top of the ranked list; work by Rudin (2006), Cossock and Zhang (2006)
and Clemencon and Vayatis (2007) falls in this category. There has also been interest in statistical
analysis of ranking; in recent work, Clemencon et al. (2008) have studied statistical convergence
properties of ranking algorithms—specifically, ranking algorithms based onempirical and convex
risk minimization—using the theory of U-statistics.

In the paper that developed the RankBoost algorithm, Freund et al. (2003) also gave a ba-
sic generalization bound for the algorithm in the bipartite setting. Their bound was derived from
uniform convergence results for the binary classification error, and was expressed in terms of the
VC-dimension of a class of binary classification functions derived from the class of ranking func-
tions searched by the algorithm. Agarwal et al. (2005) also gave a generalization bound for bipartite
ranking algorithms based on uniform convergence; in this case, the uniform convergence result was
derived directly for the bipartite ranking error, and the resulting generalization bound was expressed
in terms of a new set of combinatorial parameters that measure directly the complexity of the class
of ranking functions searched by a bipartite ranking algorithm. Agarwal and Niyogi (2005) used a
different tool, namely that of algorithmic stability (Rogers and Wagner, 1978; Bousquet and Elisse-
eff, 2002), to obtain generalization bounds for bipartite ranking algorithmsthat have good stability
properties. Unlike bounds based on uniform convergence, the stability-based bounds depend on
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properties of the algorithm rather than the function class being searched,and can be applied also to
algorithms that search function classes of unbounded complexity.

As can be noted from the above discussion, the question of generalizationproperties of ranking
algorithms has so far been investigated mainly in the special setting of bipartite ranking. There
have been limited studies of generalization properties in more general settings. For example, Rudin
et al. (2005) derived a margin-based bound which is expressed in termsof covering numbers and
relies ultimately on a uniform convergence result; this bound is derived fora non-bipartite setting
of the ranking problem, but under the restrictive distributional assumption of a “truth” function.
Cortes et al. (2007) consider a different setting of the ranking problemand derive stability-based
generalization bounds for algorithms in this setting. However, they also implicitly assume a “truth”
function. In addition, as we discuss later in the paper, the results of Corteset al. as stated involve
some strong assumptions about the function class searched by an algorithm.These assumptions
rarely hold for practical ranking algorithms, which prevents the direct application of their results.
We shall discuss in Section 6 how this can be remedied.

1.2 Our Results

We use the notion of algorithmic stability to study generalization properties of ranking algorithms in
a more general setting of the ranking problem than has been considered previously, and that arises
frequently in applications. The notion of algorithmic stability, first studied for learning algorithms
by Rogers and Wagner (1978), has been used to obtain generalization bounds for classification
and regression algorithms that satisfy certain stability conditions (Bousquetand Elisseeff, 2002;
Kutin and Niyogi, 2002). Here we show that algorithmic stability can be usefulalso in analyzing
generalization properties of ranking algorithms in the setting we consider; in particular, we derive
generalization bounds for ranking algorithms that have good stability properties. We show that
kernel-based ranking algorithms that perform regularization in a reproducing kernel Hilbert space
(RKHS) have such stability properties, and therefore our bounds can be applied to these algorithms.
Our techniques are based on those of Bousquet and Elisseeff (2002); indeed, we show that the
ranking error in our setting satisfies the same conditions that were used to establish the classification
and regression bounds of Bousquet and Elisseeff (2002), and therefore essentially the same proof
techniques can be used to analyze the ranking problem we consider. Ourresults generalize those of
Agarwal and Niyogi (2005), which focused on bipartite ranking.

We describe the general ranking problem and the setting we consider in detail in Section 2, and
define notions of stability for ranking algorithms in this setting in Section 3. Using these notions,
we derive generalization bounds for stable ranking algorithms in Section 4.In Section 5 we show
stability of kernel-based ranking algorithms that perform regularization in an RKHS, and apply
the results of Section 4 to obtain generalization bounds for these algorithms. Section 6 provides
comparisons with related work; we conclude with a discussion in Section 7.

2. The Ranking Problem

In the problem of ranking, one is given a finite number of examples of order relationships among
instances in some instance spaceX , and the goal is to learn from these examples a ranking or
ordering overX that ranks accurately future instances. Examples of ranking problems arise in a
variety of domains: in information retrieval, one wants to rank documents according to relevance
to some query or topic; in user-preference modeling, one wants to rank books or movies according
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to a user’s likes and dislikes; in computational biology, one wants to rank genes according to their
relevance to some disease.

In the most general setting of the ranking problem, the learner is given training examples in the
form of ordered pairs of instances(x,x′) ∈ X ×X labeled with a ranking preferencer ∈ R, with the
interpretation thatx is to be ranked higher than (preferred over)x′ if r > 0, and lower thanx′ if r < 0
(r = 0 indicates no ranking preference between the two instances); the penaltyfor mis-ordering such
a pair is proportional to|r|. Given a finite number of such examples((x1,x′1, r1), . . . ,(xm,x′m, rm)),
the goal is to learn a real-valued ranking functionf : X→R that ranks accurately future instances;f
is considered to rank an instancex∈X higher than an instancex′ ∈X if f (x) > f (x′), and lower than
x′ if f (x) < f (x′). Thus, assuming that ties are broken uniformly at random, the expected penalty
(or loss) incurred by a ranking functionf on a pair of instances(x,x′) labeled byr can be written as

|r|
(

I {r( f (x)− f (x′))<0} +
1
2

I { f (x)= f (x′)}

)
,

whereI {φ} is 1 if φ is true and 0 otherwise.
A particular setting of the ranking problem that has been investigated in some detail in recent

years is thebipartite setting (Freund et al., 2003; Agarwal et al., 2005). In the bipartite ranking
problem, instances come from two categories, positive and negative; the learner is given examples of
instances labeled as positive or negative, and the goal is to learn a ranking in which positive instances
are ranked higher than negative ones. Formally, the learner is given a training sample(S+,S−)
consisting of a sequence of ‘positive’ examplesS+ = (x+

1 , . . . ,x+
m) and a sequence of ‘negative’

examplesS− = (x−1 , . . . ,x−n ), thex+
i andx−j being instances in some instance spaceX , and the goal

is to learn a real-valued ranking functionf : X→R that ranks future positive instances higher than
negative ones. The bipartite ranking problem is easily seen to be a specialcase of the general ranking
problem described above, since a training sample(S+,S−) ∈ Xm×X n in the bipartite setting can
be viewed as consisting ofmnexamples of the form(x+

i ,x−j ,1), for 1≤ i ≤ m, 1≤ j ≤ n; in other
words, mis-ranking any positive-negative pair of instances incurs a constant penalty of 1. Thus,
assuming again that ties are broken uniformly at random, the expected penalty incurred by f on a
positive-negative pair(x+,x−) is simply

I { f (x+)− f (x−)<0} +
1
2

I { f (x+)= f (x−)} ;

the penalty incurred on a pair of positive instances or a pair of negative instances is zero.
In this paper, we consider a more general setting: the learner is given examples of instances

labeled by real numbers, and the goal is to learn a ranking in which instances labeled by larger
numbers are ranked higher than instances labeled by smaller numbers. Such ranking problems arise
frequently in practice: for example, in information retrieval, one is often given examples of docu-
ments with real-valued relevance scores for a particular topic or query; similarly, in computational
biology, one often receives examples of molecular structures with real-valued biological activity
scores with respect to a particular target.

Formally, the setting we consider can be described as follows. The learneris given a finite
sequence of labeled training examplesS= ((x1,y1), . . . ,(xm,ym)), where thexi are instances in
some instance spaceX and theyi are real-valued labels in some bounded setY ⊆ R which we take
without loss of generality to beY = [0,M] for someM > 0, and the goal is to learn a real-valued
function f : X→R that ranks future instances with larger labels higher than those with smaller
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labels. The penalty for mis-ranking a pair of instances could again be takento be constant for all
pairs; here we consider the more general case where the penalty is larger for mis-ranking a pair of
instances with a greater difference between their real-valued labels. In particular, in our setting, the
penalty for mis-ranking a pair of instances is proportional to the absolute difference between their
real-valued labels. Thus, assuming again that ties are broken uniformly atrandom, the expected
penalty incurred byf on a pair of instances(x,x′) with corresponding real-valued labelsy andy′

can be written as

|y−y′|
(

I {(y−y′)( f (x)− f (x′))<0} +
1
2

I { f (x)= f (x′)}

)
.

This problem can also be seen to be a special case of the general ranking problem described above;
a training sampleS= ((x1,y1), . . . ,(xm,ym)) ∈ (X ×Y )m in this setting can be viewed as consisting
of
(m

2

)
examples of the form(xi ,x j ,yi −y j), for 1≤ i < j ≤ m.

In studying generalization properties of learning algorithms, one usually assumes that both train-
ing examples and future, unseen examples are generated according to some underlying random pro-
cess. We shall assume in our setting that all examples(x,y) (both training examples and future,
unseen examples) are drawn randomly and independently according to some (unknown) distribu-
tionD onX ×Y .1 The quality of a ranking functionf : X→R can then be measured by itsexpected
ranking error, which we denote byR( f ) and define as follows:

R( f ) = E((X,Y),(X′,Y′))∼D×D

[
|Y−Y′|

(
I {(Y−Y′)( f (X)− f (X′))<0} +

1
2

I { f (X)= f (X′)}

)]
. (1)

Note that the expected errorR( f ) is simply the expected mis-ranking penalty off on a pair of exam-
ples drawn randomly and independently according toD, assuming that ties are broken uniformly at
random. In practice, since the distributionD is unknown, the expected error of a ranking functionf
must be estimated from an empirically observable quantity, such as itsempirical ranking errorwith
respect to a sampleS= ((x1,y1), . . . ,(xm,ym)) ∈ (X ×Y )m, which we denote bŷR( f ;S) and define
as follows:

R̂( f ;S) =
1(m
2

)
m−1

∑
i=1

m

∑
j=i+1

|yi −y j |
(

I {(yi−y j )( f (xi)− f (x j ))<0} +
1
2

I { f (xi)= f (x j )}

)
. (2)

This is simply the average mis-ranking penalty incurred byf on the
(m

2

)
pairs(xi ,x j), where 1≤

i < j ≤ m, assuming that ties are broken uniformly at random.
A learning algorithm for the ranking problem described above takes as input a training sample

S∈ S∞
m=1(X ×Y )m and returns as output a ranking functionfS : X→R. For simplicity we consider

only deterministic algorithms. We are concerned in this paper with generalizationproperties of
such algorithms; in particular, we are interested in bounding the expected error of a learned ranking
function in terms of an empirically observable quantity such as its empirical error on the training
sample from which it is learned. The following definitions will be useful in ourstudy.

Definition 1 (Ranking loss function) Define aranking loss functionto be a functionℓ : R
X×

(X ×Y )× (X ×Y ) → R
+ ∪ {0} that assigns to each f: X→R and (x,y),(x′,y′) ∈ (X ×Y ) a

non-negative real numberℓ( f ,(x,y),(x′,y′)), interpreted as the penalty or loss of f in its relative

1. Cortes et al. (2007) consider a similar setting as ours; however, theyassume that only instancesx ∈ X are drawn
randomly, and that labelsy∈ Y are then determined according to a “truth” functionf ∗ : X→Y .
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ranking of x and x′ given corresponding labels y and y′. We shall require thatℓ be symmetric with re-
spect to(x,y) and(x′,y′), that is, thatℓ( f ,(x,y),(x′,y′)) = ℓ( f ,(x′,y′),(x,y)) for all f ,(x,y),(x′,y′).

Definition 2 (Expectedℓ-error) Let f : X→R be a ranking function onX . Letℓ : R
X ×(X ×Y )×

(X ×Y ) → R
+∪{0} be a ranking loss function. Define theexpectedℓ-errorof f , denoted by Rℓ( f ),

as

Rℓ( f ) = E((X,Y),(X′,Y′))∼D×D
[
ℓ( f ,(X,Y),(X′,Y′))

]
.

Definition 3 (Empirical ℓ-error) Let f :X→R be a ranking function onX , and let S= ((x1,y1), . . . ,
(xm,ym)) ∈ (X ×Y )m. Let ℓ : R

X × (X ×Y )× (X ×Y ) → R
+ ∪{0} be a ranking loss function.

Define theempiricalℓ-errorof f with respect to S, denoted bŷRℓ( f ;S), as

R̂ℓ( f ;S) =
1(m
2

)
m−1

∑
i=1

m

∑
j=i+1

ℓ( f ,(xi,yi),(x j ,y j)) .

As mentioned above, one choice for a ranking loss function could be a 0-1loss that simply
assigns a constant penalty of 1 to any mis-ranked pair:

ℓ0-1( f ,(x,y),(x′,y′)) = I {(y−y′)( f (x)− f (x′))<0} +
1
2

I { f (x)= f (x′)} .

The (empirical)ℓ0-1-error then simply counts the fraction of mis-ranked pairs, which corresponds
to the well-known Kendallτ measure. However, the 0-1 loss effectively uses only the sign of the
differencey−y′ between labels, and ignores the magnitude of this difference; the loss function we
use, which we term thediscrete ranking lossand denote as

ℓdisc( f ,(x,y),(x′,y′)) = |y−y′|
(

I {(y−y′)( f (x)− f (x′))<0} +
1
2

I { f (x)= f (x′)}

)
, (3)

takes the magnitude of this difference into account. Comparing with Eqs. (1-2) above, we see that
the expected and empirical ranking errors we have defined are simply the correspondingℓdisc-errors:

R( f ) ≡ Rℓdisc( f ) ; R̂( f ;S) ≡ R̂ℓdisc( f ;S) .

While our focus will be on bounding the expected (ℓdisc-)ranking error of a learned ranking function,
our results can be used also to bound the expectedℓ0-1-error.

Several other ranking loss functions will be useful in our study; these will be introduced in the
following sections as needed.

3. Stability of Ranking Algorithms

A stable algorithm is one whose output does not change significantly with smallchanges in the in-
put. The input to a ranking algorithm in our setting is a training sample of the formS= ((x1,y1), . . . ,
(xm,ym)) ∈ (X ×Y )m for somem∈ N; we consider changes to such a sample that consist of replac-
ing a single example in the sequence with a new example. For 1≤ i ≤ mand(x′i ,y

′
i) ∈ (X ×Y ), we

useSi to denote the sequence obtained fromSby replacing(xi ,yi) with (x′i ,y
′
i).
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Several different notions of stability have been used in the study of classification and regression
algorithms (Rogers and Wagner, 1978; Devroye and Wagner, 1979; Kearns and Ron, 1999; Bous-
quet and Elisseeff, 2002; Kutin and Niyogi, 2002; Poggio et al., 2004).The notions of stability
that we define below for ranking algorithms in our setting are based on thosedefined earlier for
bipartite ranking algorithms (Agarwal and Niyogi, 2005) and are most closely related to the notions
of stability used by Bousquet and Elisseeff (2002).

Definition 4 (Uniform loss stability) Let A be a ranking algorithm whose output on a training
sample S we denote by fS, and letℓ be a ranking loss function. Letβ : N→R. We say thatA has
uniform loss stabilityβ with respect toℓ if for all m ∈ N, S∈ (X ×Y )m, 1 ≤ i ≤ m and(x′i ,y

′
i) ∈

(X ×Y ), we have for all(x,y),(x′,y′) ∈ (X ×Y ),

∣∣ℓ( fS,(x,y),(x
′,y′))− ℓ( fSi ,(x,y),(x′,y′))

∣∣ ≤ β(m) .

Definition 5 (Uniform score stability) LetA be a ranking algorithm whose output on a training
sample S we denote by fS. Letν : N→R. We say thatA hasuniform score stabilityν if for all m∈N,
S∈ (X ×Y )m, 1≤ i ≤ m and(x′i ,y

′
i) ∈ (X ×Y ), we have for all x∈ X ,

| fS(x)− fSi (x)| ≤ ν(m) .

If a ranking algorithm has uniform loss stabilityβ with respect toℓ, then changing an input
training sample of sizem by a single example leads to a difference of at mostβ(m) in the ℓ-loss
incurred by the output ranking function on any pair of examples(x,y),(x′,y′). Therefore, a smaller
value ofβ(m) corresponds to greater loss stability. Similarly, if a ranking algorithm has uniform
score stabilityν, then changing an input training sample of sizem by a single example leads to a
difference of at mostν(m) in the score assigned by the output ranking function to any instancex. A
smaller value ofν(m) therefore corresponds to greater score stability.

The term ‘uniform’ in the above definitions refers to the fact that the bounds on the difference
in loss or score are required to hold uniformly for all training samplesS (and all single-example
changes to them) and for all examples(x,y),(x′,y′) or instancesx. This is arguably a strong require-
ment; one can define weaker notions of stability, analogous to the hypothesisstability considered
by Devroye and Wagner (1979), Kearns and Ron (1999), and Bousquet and Elisseeff (2002), or
the almost-everywhere stability considered by Kutin and Niyogi (2002), which would require the
bounds to hold only in expectation or with high probability (and would therefore depend on the
distributionD governing the data). However, we do not consider such weaker notions of stability
in this paper; we shall show later (Section 5) that several practical ranking algorithms in fact exhibit
good uniform stability properties.

4. Generalization Bounds for Stable Ranking Algorithms

In this section we give generalization bounds for ranking algorithms that exhibit good (uniform)
stability properties. The methods we use are based on those of Bousquet and Elisseeff (2002), who
derived such bounds for classification and regression algorithms. Ourmain result is the following,
which bounds the expectedℓ-error of a ranking function learned by an algorithm with good uniform
loss stability in terms of its empiricalℓ-error on the training sample.
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Theorem 6 LetA be a symmetric ranking algorithm2 whose output on a training sample S∈ (X ×
Y )m we denote by fS, and letℓ be a bounded ranking loss function such that0≤ ℓ( f ,(x,y),(x′,y′))≤
B for all f : X→R and (x,y),(x′,y′) ∈ (X ×Y ). Let β : N→R be such thatA has uniform loss
stabilityβ with respect toℓ. Then for any0 < δ < 1, with probability at least1−δ over the draw of
S (according toDm),

Rℓ( fS) < R̂ℓ( fS;S)+2β(m)+(mβ(m)+B)

√
2ln(1/δ)

m
.

The proof follows the proof of a similar result for classification and regression algorithms by
Bousquet and Elisseeff (2002). In particular, the random variableRℓ( fS)− R̂ℓ( fS;S), representing
the difference between the expected and empiricalℓ-errors of the ranking functionfS learned from
the random sampleS, is shown to satisfy the conditions of McDiarmid’s inequality (McDiarmid,
1989), as a result of which the deviation of this difference from its expected valueES∼Dm[Rℓ( fS)−
R̂ℓ( fS;S)] can be bounded with high probability; a bound on this expected value then allows the
above result to be established. Details of the proof are provided in Appendix A.

A few remarks on the significance of the above result are in order, especially in relation to the
results of Bousquet and Elisseeff (2002). As can be seen from the definitions given in the preceding
two sections, the main difference in the formulation of the ranking problem as compared to the
problems of classification and regression is that the performance or loss inranking is measured on
pairs of examples, rather than on individual examples. This means in particular that, unlike the
empirical error in classification or regression, the empirical error in ranking cannot be expressed
as a sum of independent random variables. Indeed, this is the reason that in deriving uniform
convergence bounds for the ranking error, the standard Hoeffdinginequality used to obtain such
bounds in classification and regression can no longer be applied (Agarwal et al., 2005). It may
initially come as a bit of a surprise, therefore, that the proof methods of Bousquet and Elisseeff
(2002) carry through for ranking without siginificant change. The reason for this is that they rely
on the more general inequality of McDiarmid which, in Bousquet and Elisseeff’s work, is used
to capture the effect of stability, but which is also powerful enough to capture the structure of the
ranking error; indeed, the uniform convergence bound for the (bipartite) ranking error derived by
Agarwal et al. (2005) also made use of McDiarmid’s inequality. Thus, in general, any learning
problem in which the empirical performance measure fits the conditions of McDiarmid’s inequality
should be amenable to a stability analysis similar to Bousquet and Elisseeff’s, provided of course
that appropriate notions of stability are defined.

Theorem 6 gives meaningful bounds whenβ(m) = o(1/
√

m). This means the theorem cannot
be applied directly to obtain bounds on the expected ranking error, since itis not possible to have
non-trivial uniform loss stability with respect to the discrete ranking lossℓdisc defined in Eq. (3).
(To see this, note that unless an algorithm picks essentially the same ranking function that orders
all instances the same way for all training samples of a given sizem, in which case the algorithm
trivially has uniform loss stabilityβ(m) = 0 with respect toℓdisc, there must be someS∈ (X ×Y )m,
1≤ i ≤ m, (x′i ,y

′
i) ∈ (X ×Y ) and somex,x′ ∈ X such thatfS and fSi orderx,x′ differently. In this

case, fory= 0 andy′ = M, we get|ℓdisc( fS,(x,y),(x′,y′))−ℓdisc( fSi ,(x,y),(x′,y′))|= M, giving loss
stability β(m) = M with respect toℓdisc.) However, for any ranking lossℓ that satisfiesℓdisc ≤ ℓ,

2. A symmetric ranking algorithm is one whose output is independent of theorder of elements in the training sequence
S.
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Theorem 6 can be applied to ranking algorithms that have good uniform lossstability with respect
to ℓ to obtain bounds on the expectedℓ-error; since in this caseR≤ Rℓ, these bounds apply also to
the expected ranking error. We consider below a specific ranking loss that satisfies this condition,
and with respect to which we will be able to show good loss stability of certain ranking algorithms;
other ranking losses which can also be used in this manner will be discussedin later sections.

For γ > 0, let theγ ranking loss, denoted byℓγ, be defined as follows:

ℓγ( f ,(x,y),(x′,y′))

=





|y−y′| if ( f (x)− f (x′))·sgn(y−y′)
γ ≤ 0

|y−y′|− ( f (x)− f (x′))·sgn(y−y′)
γ if 0 < ( f (x)− f (x′))·sgn(y−y′)

γ < |y−y′|

0 if ( f (x)− f (x′))·sgn(y−y′)
γ ≥ |y−y′| ,

where foru∈ R,

sgn(u) =





1 if u > 0
0 if u = 0

−1 if u < 0.

Clearly, for allγ > 0, we haveℓdisc≤ ℓγ. Therefore, for any ranking algorithm that has good uniform
loss stability with respect toℓγ for someγ > 0, Theorem 6 can be applied to bound the expected
ranking error of a learned ranking function in terms of its empiricalℓγ-error on the training sample.
The following lemma shows that, for everyγ > 0, a ranking algorithm that has good uniform score
stability also has good uniform loss stability with respect toℓγ.

Lemma 7 Let A be a ranking algorithm whose output on a training sample S∈ (X ×Y )m we
denote by fS. Let ν : N→R be such thatA has uniform score stabilityν. Then for everyγ > 0, A
has uniform loss stabilityβγ with respect to theγ ranking lossℓγ, where for all m∈ N,

βγ(m) =
2ν(m)

γ
.

Proof Let m∈ N, S∈ (X ×Y )m, 1≤ i ≤ m and(x′i ,y
′
i) ∈ (X ×Y ). Let (x,y),(x′,y′) ∈ (X ×Y ).

We want to show ∣∣ℓγ( fS,(x,y),(x
′,y′))− ℓγ( fSi ,(x,y),(x′,y′))

∣∣≤ 2ν(m)

γ
.

Now, if ℓγ( fS,(x,y),(x′,y′)) = ℓγ( fSi ,(x,y),(x′,y′)), then trivially

∣∣ℓγ( fS,(x,y),(x
′,y′))− ℓγ( fSi ,(x,y),(x′,y′))

∣∣ = 0 ≤ 2ν(m)

γ
,

and there is nothing to prove. Therefore assumeℓγ( fS,(x,y),(x′,y′)) 6= ℓγ( fSi ,(x,y),(x′,y′)). With-
out loss of generality, letℓγ( fS,(x,y),(x′,y′)) > ℓγ( fSi ,(x,y),(x′,y′)). There are four possibilities:

(i) ( fS(x)− fS(x′))·sgn(y−y′)
γ ≤ 0 and 0<

( fSi (x)− fSi (x′))·sgn(y−y′)
γ < |y−y′|.
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In this case, we have
∣∣∣ℓγ( fS,(x,y),(x

′,y′))− ℓγ( fSi ,(x,y),(x′,y′))
∣∣∣

= |y−y′|−
(
|y−y′|− ( fSi (x)− fSi (x′))·sgn(y−y′)

γ

)

≤
(
|y−y′|− ( fS(x)− fS(x′))·sgn(y−y′)

γ

)
−
(
|y−y′|− ( fSi (x)− fSi (x′))·sgn(y−y′)

γ

)

≤ 1
γ
(
| fS(x)− fSi (x)|+

∣∣ fS(x′)− fSi (x′)
∣∣)

≤ 2ν(m)

γ
.

(ii) 0 < ( fS(x)− fS(x′))·sgn(y−y′)
γ < |y−y′| and

( fSi (x)− fSi (x′))·sgn(y−y′)
γ ≥ |y−y′|.

In this case, we have
∣∣∣ℓγ( fS,(x,y),(x

′,y′))− ℓγ( fSi ,(x,y),(x′,y′))
∣∣∣

=
(
|y−y′|− ( fSi (x)− fSi (x′))·sgn(y−y′)

γ

)
−0

≤
(
|y−y′|− ( fS(x)− fS(x′))·sgn(y−y′)

γ

)
−
(
|y−y′|− ( fSi (x)− fSi (x′))·sgn(y−y′)

γ

)

≤ 1
γ
(
| fS(x)− fSi (x)|+

∣∣ fS(x′)− fSi (x′)
∣∣)

≤ 2ν(m)

γ
.

(iii) ( fS(x)− fS(x′))·sgn(y−y′)
γ ≤ 0 and

( fSi (x)− fSi (x′))·sgn(y−y′)
γ ≥ |y−y′|.

In this case, we have
∣∣∣ℓγ( fS,(x,y),(x

′,y′))− ℓγ( fSi ,(x,y),(x′,y′))
∣∣∣

= |y−y′|−0

≤
(
|y−y′|− ( fS(x)− fS(x′))·sgn(y−y′)

γ

)
−
(
|y−y′|− ( fSi (x)− fSi (x′))·sgn(y−y′)

γ

)

≤ 1
γ
(
| fS(x)− fSi (x)|+

∣∣ fS(x′)− fSi (x′)
∣∣)

≤ 2ν(m)

γ
.

(iv) 0 < ( fS(x)− fS(x′))·sgn(y−y′)
γ < |y−y′| and 0<

( fSi (x)− fSi (x′))·sgn(y−y′)
γ < |y−y′|.

In this case, we have
∣∣∣ℓγ( fS,(x,y),(x

′,y′))− ℓγ( fSi ,(x,y),(x′,y′))
∣∣∣
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=
(
|y−y′|− ( fS(x)− fS(x′))·sgn(y−y′)

γ

)
−
(
|y−y′|− ( fSi (x)− fSi (x′))·sgn(y−y′)

γ

)

≤ 1
γ
(
| fS(x)− fSi (x)|+

∣∣ fS(x′)− fSi (x′)
∣∣)

≤ 2ν(m)

γ
.

Thus in all cases,
∣∣ℓγ( fS,(x,y),(x′,y′))− ℓγ( fSi ,(x,y),(x′,y′))

∣∣≤ 2ν(m)
γ .

Putting everything together, we thus get the following result which bounds the expected ranking
error of a learned ranking function in terms of its empiricalℓγ-error for any ranking algorithm that
has good uniform score stability.

Theorem 8 LetA be a symmetric ranking algorithm whose output on a training sample S∈ (X ×
Y )m we denote by fS. Letν : N→R be such thatA has uniform score stabilityν, and letγ > 0. Then
for any0 < δ < 1, with probability at least1−δ over the draw of S (according toDm),

R( fS) < R̂ℓγ( fS;S)+
4ν(m)

γ
+

(
2mν(m)

γ
+M

)√
2ln(1/δ)

m
.

Proof The result follows by applying Theorem 6 toA with the ranking lossℓγ (using Lemma 7),
which satisfies 0≤ ℓγ ≤ M, and from the fact thatR≤ Rℓγ .

5. Stable Ranking Algorithms

In this section we show (uniform) stability of certain ranking algorithms that select a ranking func-
tion by minimizing a regularized objective function. We start by deriving a general result for
regularization-based ranking algorithms in Section 5.1. In Section 5.2 we usethis result to show
stability of kernel-based ranking algorithms that perform regularization in areproducing kernel
Hilbert space (RKHS). We show, in particular, stability of two such rankingalgorithms, and apply
the results of Section 4 to obtain generalization bounds for these algorithms. Again, the methods
we use to show stability of these algorithms are based on those of Bousquet and Elisseeff (2002),
who showed similar results for classification and regression algorithms. We also use these stability
results to give a consistency theorem for kernel-based ranking algorithms (Section 5.2.3).

5.1 General Regularizers

Given a ranking loss functionℓ, a classF of real-valued functions onX , and a regularization func-
tional N : F→R

+ ∪{0}, consider the following regularized empiricalℓ-error of a ranking function
f ∈ F (with respect to a sampleS∈ (X ×Y )m), with regularization parameterλ > 0:

R̂λ
ℓ ( f ;S) = R̂ℓ( f ;S)+λN( f ) .

We consider ranking algorithms that minimize such a regularized objective function, that is, ranking
algorithms that, given a training sampleS, output a ranking functionfS∈ F that satisfies
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fS = argmin
f∈F

R̂λ
ℓ ( f ;S) , (4)

for some fixed choice of ranking lossℓ, function classF , regularizerN, and regularization parameter
λ. It is worth noting that the parameterλ often depends on the sample sizem; we useλ here rather
thanλm for notational simplicity. We give below a general result that will be usefulfor showing
stability of such regularization-based algorithms.

Definition 9 (σ-admissibility) LetF be a class of real-valued functions onX . Let ℓ be a ranking
loss and letσ > 0. We say thatℓ is σ-admissiblewith respect toF if for all f 1, f2 ∈ F and all
(x,y),(x′,y′) ∈ (X ×Y ), we have

∣∣ℓ( f1,(x,y),(x
′,y′))− ℓ( f2,(x,y),(x

′,y′))
∣∣ ≤ σ

(
| f1(x)− f2(x)|+

∣∣ f1(x′)− f2(x
′)
∣∣
)

.

Lemma 10 Let F be a convex class of real-valued functions onX . Let ℓ be a ranking loss such
that ℓ( f ,(x,y),(x′,y′)) is convex in f , and letσ > 0 be such thatℓ is σ-admissible with respect
to F . Let λ > 0, and let N: F→R

+ ∪{0} be a functional defined onF such that for all samples
S∈ (X ×Y )m, the regularized empiricalℓ-error R̂λ

ℓ ( f ;S) has a minimum (not necessarily unique) in
F . LetA be a ranking algorithm defined by Eq. (4), and let S= ((x1,y1), . . . ,(xm,ym))∈ (X ×Y )m,
1≤ i ≤ m, and(x′i ,y

′
i) ∈ (X ×Y ). For brevity, denote f≡ fS, f i ≡ fSi , and let∆ f = f i − f . Then

we have that for any t∈ [0,1],

N( f )−N( f + t∆ f )+N( f i)−N( f i − t∆ f )

≤ tσ
λ
(m

2

)∑
j 6=i

(
|∆ f (xi)|+2|∆ f (x j)|+ |∆ f (x′i)|

)
.

The proof follows that of a similar result for regularization-based algorithms for classification
and regression (Bousquet and Elisseeff, 2002); it is based cruciallyon the convexity of the ranking
lossℓ. Details are provided in Appendix B.

As we shall see below, the above result can be used to establish stability of certain regularization-
based ranking algorithms.

5.2 Regularization in Hilbert Spaces

Let F be a reproducing kernel Hilbert space (RKHS) of real-valued functions onX , with kernel
K : X ×X→R. Then the reproducing property ofF gives that for allf ∈ F and allx∈ X ,

| f (x)| = |〈 f ,Kx〉K | , (5)

whereKx : X→R is defined as

Kx(x
′) = K(x,x′) ,

and 〈·, ·〉K denotes the RKHS inner product inF . In particular, applying the Cauchy-Schwartz
inequality to Eq. (5) then gives that for allf ∈ F and allx∈ X,

| f (x)| ≤ ‖ f‖K ‖Kx‖K

= ‖ f‖K

√
K(x,x) , (6)
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where‖ · ‖K denotes the RKHS norm inF .
Further details about RKHSs can be found, for example, in expositions byHaussler (1999) and

Evgeniou et al. (2000). We shall consider ranking algorithms that perform regularization in the
RKHSF using the squared norm inF as a regularizer. Specifically, letN : F→R

+ ∪{0} be the
regularizer defined by

N( f ) = ‖ f‖2
K .

We show below that, if the kernelK is such thatK(x,x) is bounded for allx ∈ X , then a ranking
algorithm that minimizes an appropriate regularized error overF , with regularizerN as defined
above, has good uniform score stability.

Theorem 11 LetF be an RKHS with kernel K such that for all x∈ X , K(x,x)≤ κ2 < ∞. Letℓ be a
ranking loss such thatℓ( f ,(x,y),(x′,y′)) is convex in f andℓ is σ-admissible with respect toF . Let
λ > 0, and letA be a ranking algorithm that, given a training sample S, outputs a ranking function

fS ∈ F that satisfies fS = argminf∈F
{

R̂ℓ( f ;S)+λ‖ f‖2
K

}
. ThenA has uniform score stabilityν,

where for all m∈ N,

ν(m) =
8σκ2

λm
.

Proof Let m∈ N, S= ((x1,y1), . . . ,(xm,ym)) ∈ (X × Y )m, 1 ≤ i ≤ m, and (x′i ,y
′
i) ∈ (X × Y ).

Applying Lemma 10 witht = 1/2, we get (using the notation of Lemma 10) that

‖ f‖2
K −‖ f + 1

2∆ f‖2
K +‖ f i‖2

K −‖ f i − 1
2∆ f‖2

K

≤ σ
λm(m−1) ∑

j 6=i

(
|∆ f (xi)|+2|∆ f (x j)|+ |∆ f (x′i)|

)
. (7)

Note that sinceF is a vector space,∆ f ∈ F , ( f + 1
2∆ f ) ∈ F , and( f i − 1

2∆ f ) ∈ F , so that‖ f +
1
2∆ f‖K and‖ f i − 1

2∆ f‖K are well-defined. Now, we have

‖ f‖2
K −‖ f + 1

2∆ f‖2
K +‖ f i‖2

K −‖ f i − 1
2∆ f‖2

K

= ‖ f‖2
K +‖ f i‖2

K − 1
2
‖ f + f i‖2

K

=
1
2
‖ f‖2

K +
1
2
‖ f i‖2

K −〈 f , f i〉K

=
1
2
‖∆ f‖2

K .

Combined with Eq. (7), this gives

1
2
‖∆ f‖2

K ≤ σ
λm(m−1) ∑

j 6=i

(
|∆ f (xi)|+2|∆ f (x j)|+ |∆ f (x′i)|

)
.

Since (as noted above)∆ f ∈ F , by Eq. (6), we thus get that

1
2
‖∆ f‖2

K ≤ σ
λm(m−1)

‖∆ f‖K ∑
j 6=i

(√
K(xi ,xi)+2

√
K(x j ,x j)+

√
K(x′i ,x

′
i)
)

≤ 4σκ
λm

‖∆ f‖K ,
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which gives

‖∆ f‖K ≤ 8σκ
λm

. (8)

Thus, by Eqs. (6) and (8), we have for allx∈ X ,

| fS(x)− fSi (x)| = |∆ f (x)| ≤ 8σκ2

λm
.

The result follows.

This gives the following generalization bound for kernel-based rankingalgorithms:

Corollary 12 Under the conditions of Theorem 11, we have that for any0< δ < 1, with probability
at least1− δ over the draw of S (according toDm), the expected ranking error of the ranking
function fS learned byA is bounded by

R( fS) < R̂ℓ1( fS;S)+
32σκ2

λm
+

(
16σκ2

λ
+M

)√
2ln(1/δ)

m
.

Proof The result follows from Theorem 11, by applying Theorem 8 withγ = 1.

Under the conditions of the above results, a kernel-based ranking algorithm minimizing a regular-
ized empiricalℓ-error also has good uniform loss stability with respect toℓ; this follows from the
following simple lemma:3

Lemma 13 LetF be a class of real-valued functions onX , and letA be a ranking algorithm that,
given a training sample S, outputs a ranking function fS∈ F . If A has uniform score stabilityν and
ℓ is a ranking loss that isσ-admissible with respect toF , thenA has uniform loss stabilityβ with
respect toℓ, where for all m∈ N,

β(m) = 2σν(m) .

Proof Let m∈ N, S∈ (X ×Y )m, 1≤ i ≤ m and(x′i ,y
′
i) ∈ (X ×Y ). Let (x,y),(x′,y′) ∈ (X ×Y ).

Then we have

∣∣ℓ( fS,(x,y),(x
′,y′))− ℓ( fSi ,(x,y),(x′,y′))

∣∣ ≤ σ
(
| fS(x)− fSi (x)|+

∣∣ fS(x′)− fSi (x′)
∣∣
)

≤ 2σν(m) ,

where the first inequality follows fromσ-admissibility and the second from uniform score stability.

3. We note that the proof of Lemma 7 in Section 4 really amounts to showing that ℓγ is 1
γ -admissible with respect to the

set of all ranking functions onX ; the result then follows by the observation in Lemma 13.
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Corollary 14 Under the conditions of Theorem 11,A has uniform loss stabilityβ with respect toℓ,
where for all m∈ N,

β(m) =
16σ2κ2

λm
.

Proof Immediate from Theorem 11 and Lemma 13.

This leads to the following additional bound for kernel-based ranking algorithms that minimize a
regularized empiricalℓ-error whereℓ is bounded and satisfiesℓdisc≤ ℓ:

Corollary 15 Under the conditions of Theorem 11, if in addition the ranking lossℓ satisfies
ℓdisc( f ,(x,y),(x′,y′)) ≤ ℓ( f ,(x,y),(x′,y′)) ≤ B for all f : X→R and (x,y),(x′,y′) ∈ (X ×Y ), then
we have that for any0< δ < 1, with probability at least1−δ over the draw of S (according toDm),
the expected ranking error of the ranking function fS learned byA is bounded by

R( fS) < R̂ℓ( fS;S)+
32σ2κ2

λm
+

(
16σ2κ2

λ
+B

)√
2ln(1/δ)

m
.

Proof The result follows from Corollary 14, by applying Theorem 6 and the fact thatR≤ Rℓ.

The results of both Corollary 12 and Corollary 15 show that a larger regularization parameter
λ leads to better stability and, therefore, a tighter confidence interval in the resulting generalization
bound. In particular, whenσ is independent ofλ, one must haveλ ≫ 1√

m in order for either of
these bounds to be meaningful. In practice, the ranking lossesℓ minimized by kernel-based ranking
algorithms tend to be larger than the lossℓ1, and therefore Corollary 12 tends to provide tighter
bounds on the expected ranking error than Corollary 15. Below we look at two specific algorithms
that minimize two different (regularized) ranking losses.

5.2.1 HINGE RANKING LOSS

Consider the following ranking loss function, which we refer to as thehinge ranking lossdue to its
similarity to the hinge loss in classification:

ℓh( f ,(x,y),(x′,y′)) =
(
|y−y′|− ( f (x)− f (x′)) ·sgn(y−y′)

)
+

,

where fora∈ R,

a+ =

{
a if a > 0
0 otherwise.

We consider a ranking algorithmAh that minimizes the regularizedℓh-error in an RKHSF . Specif-
ically, letAh be a ranking algorithm which, given a training sampleS∈ (X ×Y )m, outputs a ranking
function fS∈ F that satisfies (for some fixedλ > 0)

fS = argmin
f∈F

{
R̂ℓh( f ;S)+λ‖ f‖2

K

}
.
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We note that this algorithm has an equivalent quadratic programming formulation similar to SVMs
in the case of classification. In particular, the problem of minimizingR̂λ

ℓh
( f ;S) is equivalent to that

of minimizing
1
2
‖ f‖2

K +C
m−1

∑
i=1

m

∑
j=i+1

ξi j

subject to

ξi j ≥ |yi −y j |− ( f (xi)− f (x j) ·sgn(yi −y j))

ξi j ≥ 0

for all 1≤ i < j ≤ m, whereC = 1/(λm(m−1)). The dual formulation of this problem obtained by
introducing Lagrange multipliers leads to a quadratic program similar to that obtained for SVMs;
for example, see the related algorithms described by Herbrich et al. (1998, 2000), Joachims (2002),
Rakotomamonjy (2004), and Agarwal (2006).

It can be verified thatℓh( f ,(x,y),(x′,y′)) is convex inf , and thatℓh is 1-admissible with respect
to F (the proof of 1-admissibility is similar to the proof of Lemma 7 which, as noted earlier in
Footnote 3, effectively shows1γ -admissibility of theγ ranking lossℓγ). Thus, ifK(x,x) ≤ κ2 for all
x∈ X , then from Corollary 12 we get that for any 0< δ < 1, with probability at least 1−δ over the
draw ofS (according toDm), the expected ranking error of the ranking functionfS learned by the
above algorithmAh is bounded by

R( fS) < R̂ℓ1( fS;S)+
32κ2

λm
+

(
16κ2

λ
+M

)√
2ln(1/δ)

m
.

5.2.2 LEAST SQUARESRANKING LOSS

Consider now the followingleast squares ranking loss:

ℓsq( f ,(x,y),(x′,y′)) =
(
|y−y′|−sgn(y−y′) · ( f (x)− f (x′))

)2
. (9)

LetAsq be a ranking algorithm that minimizes the regularizedℓsq-error in an RKHSF , that is, given
a training sampleS∈ (X ×Y )m, the algorithmAsq outputs a ranking functionfS∈ F that satisfies
(for some fixedλ > 0)

fS = argmin
f∈F

{
R̂ℓsq( f ;S)+λ‖ f‖2

K

}
.

It can be verified thatℓsq( f ,(x,y),(x′,y′)) is convex inf . Now, we claim that the effective search

space ofAsq on training samples of sizem is actuallyFλ =
{

f ∈ F

∣∣∣ ‖ f‖2
K ≤ M2

λ

}
, that is, that for

any training sampleS= ((x1,y1), . . . ,(xm,ym))∈ (X ×Y )m, the ranking functionfS returned byAsq

satisfies‖ fS‖2
K ≤ M2

λ . To see this, note that for the zero functionf0 ∈ F which assignsf0(x) = 0 for
all x∈ X , we have

R̂ℓsq( f0;S)+λ‖ f0‖2
K =

1(m
2

)
m−1

∑
i=1

m

∑
j=i+1

(|yi −y j |−0)2 +λ ·0

≤ M2 .
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Therefore, by definition offS,

R̂ℓsq( fS;S)+λ‖ fS‖2
K ≤ M2 .

SinceR̂ℓsq( fS;S) ≥ 0, this implies

‖ fS‖2
K ≤ M2

λ
.

It is easily verified that the effective search spaceFλ is a convex set. The following lemma shows
that if K(x,x) ≤ κ2 for all x∈ X , thenℓsq is (2M + 4κM√

λ
)-admissible with respect toFλ.

Lemma 16 LetF be an RKHS with kernel K such that for all x∈ X , K(x,x) ≤ κ2 < ∞. Letλ > 0,

and letFλ =
{

f ∈ F

∣∣∣ ‖ f‖2
K ≤ M2

λ

}
. Then the least squares ranking lossℓsq, defined in Eq. (9)

above, is(2M + 4κM√
λ

)-admissible with respect toFλ.

Proof First, note that for anyf ∈ Fλ and anyx∈ X , we have from Eq. (6) that

| f (x)| ≤ κ‖ f‖K ≤ κM√
λ

.

Now, let f1, f2 ∈ Fλ, and let(x,y),(x′,y′) ∈ (X ×Y ). Then we have,
∣∣∣ℓsq( f1,(x,y),(x

′,y′))− ℓsq( f1,(x,y),(x
′,y′))

∣∣∣

=
∣∣∣
(
(y−y′)− ( f1(x)− f1(x

′))
)2

−
(
(y−y′)− ( f2(x)− f2(x

′))
)2∣∣∣

=
∣∣∣2(y−y′)− ( f1(x)− f1(x

′))− ( f2(x)− f2(x
′))
∣∣∣ ·
∣∣∣( f2(x)− f2(x

′))− ( f1(x)− f1(x
′))
∣∣∣

≤
(

2|y−y′|+ | f1(x)|+ | f1(x′)|+ | f2(x)|+ | f2(x′)|
)
·
(
| f1(x)− f2(x)|+ | f1(x′)− f2(x

′)|
)

≤
(

2M +
4κM√

λ

)
·
(
| f1(x)− f2(x)|+ | f1(x′)− f2(x

′)|
)

,

where the second equality follows from the identity|a2−b2| = |a+b| · |a−b|.

An analysis of the proof of Lemma 10 shows that if a regularization-based ranking algorithm
minimizing a regularizedℓ-error in some convex function classF is such that the ranking function
returned by it for training samples of a given sizem always lies in some effective search space
Fm ⊆ F that is also convex, then the result of the lemma holds even when for eachm, the loss
function ℓ is σm-admissible, for someσm > 0, only with respect to the smaller function classFm.
This in turn implies more general versions of Theorem 11 and Corollary 12,in which the same
results hold even if a ranking algorithm minimizing a regularizedℓ-error in an RKHSF is such that
for eachm, ℓ is σm-admissible with respect to a convex subsetFm ⊆ F that serves as an effective
search space for training samples of sizem. Thus, from Lemma 16 and the discussion preceding
it, it follows that if K(x,x) ≤ κ2 for all x ∈ X , then we can apply (the more general version of)
Corollary 12 withσm = (2M + 4κM√

λ
) (recall thatλ ≡ λm may depend on the sample sizem) to get

457



AGARWAL AND NIYOGI

that for any 0< δ < 1, with probability at least 1− δ over the draw ofS (according toDm), the
expected ranking error of the ranking functionfS learned by the algorithmAsq is bounded by

R( fS) < R̂ℓ1( fS;S)+
64κ2M

λm

(
1+

2κ√
λ

)
+

(
32κ2M

λ

(
1+

2κ√
λ

)
+M

)√
2ln(1/δ)

m
.

5.2.3 CONSISTENCY

We can also use the above results to show consistency of kernel-based ranking algorithms. In
particular, letR∗

ℓ(F ) denote the optimal expectedℓ-error in an RKHSF (for a given distribution
D):

R∗
ℓ(F ) = inf

f∈F
Rℓ( f ) .

Then for bounded loss functionsℓ, we can show that with an appropriate choice of the regularization
parameterλ, the expectedℓ-errorRℓ( fS) of the ranking functionfS learned by a kernel-based ranking
algorithm that minimizes a regularized empiricalℓ-error in F converges (in probability) to this
optimal value. To show this, we shall need the following simple lemma:

Lemma 17 Let f : X→R be a fixed ranking function, and letℓ be a bounded ranking loss function
such that0 ≤ ℓ( f ,(x,y),(x′,y′)) ≤ B for all f : X→R and (x,y),(x′,y′) ∈ (X ×Y ). Then for any
0 < δ < 1, with probability at least1−δ over the draw of S∈ (X ×Y )m (according toDm),

R̂ℓ( f ;S) < Rℓ( f )+B

√
2ln(1/δ)

m
.

The proof involves a simple application of McDiarmid’s inequality to the random variable
R̂ℓ( f ;S); details are provided in Appendix C. We then have the following consistencyresult:

Theorem 18 Let F be an RKHS with kernel K such that for all x∈ X , K(x,x) ≤ κ2 < ∞. Let
ℓ be a ranking loss such thatℓ( f ,(x,y),(x′,y′)) is convex in f andℓ is σ-admissible with respect
to F . Furthermore, letℓ be bounded such that0 ≤ ℓ( f ,(x,y),(x′,y′)) ≤ B for all f : X→R and
(x,y),(x′,y′) ∈ (X ×Y ), and let f∗ℓ be any fixed function inF that satisfies

Rℓ( f ∗ℓ ) ≤ R∗
ℓ(F )+

1
m

. (10)

(Note that such a function f∗ℓ exists by definition of R∗ℓ(F ).) Let λ > 0, and letA be a ranking
algorithm that, given a training sample S, outputs a ranking function fS ∈ F that satisfies fS =

argminf∈F
{

R̂ℓ( f ;S)+λ‖ f‖2
K

}
. Then we have that for any0 < δ < 1, with probability at least

1−δ over the draw of S (according toDm),

Rℓ( fS) < R∗
ℓ(F )+λ‖ f ∗ℓ ‖2

K +
1
m

+
32σ2κ2

λm
+

(
16σ2κ2

λ
+2B

)√
2ln(2/δ)

m
.

Thus, ifλ = o(1) andλ = ω( 1√
m) (for example, ifλ = m−1/4), then Rℓ( fS) converges in probability

to the optimal value R∗ℓ(F ) (as m→∞).
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Proof As in Corollary 15, we can use Corollary 14 and apply Theorem 6 withδ
2 to get that with

probability at least 1− δ
2,

Rℓ( fS) < R̂ℓ( fS;S)+
32σ2κ2

λm
+

(
16σ2κ2

λ
+B

)√
2ln(2/δ)

m
. (11)

Now,

R̂ℓ( fS;S) ≤ R̂ℓ( fS;S)+λ‖ fS‖2
K

≤ R̂ℓ( f ∗ℓ ;S)+λ‖ f ∗ℓ ‖2
K ,

where the first inequality is due to non-negativity of‖ fS‖2
K and the second inequality follows from

the definition of fS. Applying Lemma 17 tof ∗ℓ with δ
2, we thus get that with probability at least

1− δ
2,

R̂ℓ( fS;S) <

(
Rℓ( f ∗ℓ )+B

√
2ln(2/δ)

m

)
+λ‖ f ∗ℓ ‖2

K . (12)

Combining the inequalities in Eqs. (11-12), each of which holds with probabilityat least 1− δ
2,

together with the condition in Eq. (10), gives the desired result.

6. Comparisons With Related Work

In the above sections we have derived stability-based generalization bounds for ranking algorithms
in a setting that is more general than what has been considered previously,and have shown that
kernel-based ranking algorithms that perform regularization in an RKHS inthis setting satisfy the
required stability conditions. In this section we discuss how our results relateto other recent studies.

6.1 Comparison with Stability Bounds for Classification/Regression

As pointed out earlier, our stability analysis of ranking algorithms is based ona similar analysis for
classification and regression algorithms by Bousquet and Elisseeff (2002); therefore it is instructive
to compare the generalization bounds we obtain here with those obtained in that work. Such a
comparison shows that the bounds we obtain here for ranking are very similar to those obtained for
classification and regression, differing only in constants (and, of course, in the precise definition
of stability, which is problem-dependent). The difference in constants in thetwo bounds is due
in part to the difference in loss functions in ranking and classification/regression, and in part to a
slight difference in definitions of stability (in particular, our definitions are interms of changes to
a training sample that consist of replacing one element in the sample with a new one, while the
definitions of Bousquet and Elisseeff are in terms of changes that consist of removing one element
from the sample). As discussed in Section 4, the reason that we are able to obtain bounds for
ranking algorithms using the same methods as those of Bousquet and Elisseeff lies in the power of
McDiarmid’s inequality, which was used by Bousquet and Elisseeff to capture the effect of stability
but is also general enough to capture the structure of the ranking problem.
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It is also instructive to compare our bounds with those obtained for bipartite ranking algorithms
(Agarwal and Niyogi, 2005). In particular, the bounds for kernel-based ranking algorithms in the
bipartite setting differ from our bounds in that the sample sizem in our case is replaced with the
termmn/(m+ n), wherem,n denote the numbers of positive and negative examples, respectively,
in the bipartite setting. This suggests that in general, the effective sample sizein ranking is the ratio
between the number of pairs in the training sample (mnin the bipartite setting) and the total number
of examples (m+n); indeed, in our setting, this ratio is

(m
2

)
/m= m/2, which fits our bounds.

6.2 Comparison with Uniform Convergence Bounds

While uniform convergence bounds for ranking have not been derived explicitly in the setting we
consider, it is not hard to see that the techniques used to derive such bounds in the settings of
Agarwal et al. (2005) and Clemencon et al. (2008) can be extended to obtain similar bounds in our
setting. The crucial difference between such bounds and those derived in this paper is that uniform
convergence bounds depend on the complexity of the function class searched by an algorithm. As
discussed in the context of bipartite ranking (Agarwal and Niyogi, 2005), this means that such
bounds can quickly become uninformative in high dimensions; in the case of function classes whose
complexity cannot be bounded (such as the RKHS corresponding to a Gaussian kernel), uniform
convergence bounds cannot be applied at all. In both these cases, thestability analysis provides a
more useful viewpoint.

6.3 Comparison with Cortes et al. (2007)

The work that is perhaps most closely related to ours is that of Cortes et al.(2007), who study
“magnitude-preserving” ranking algorithms—most of which perform regularization in an RKHS—
and also use algorithmic stability to derive generalization bounds for such algorithms. The setting
considered by Cortes et al. is similar to ours: the learner is given a finite sequence of labeled
training examples((x1,y1), . . . ,(xm,ym)) ∈ (X ×R)m, and the goal is to learn a real-valued function
f : X→R that ranks future instances with larger labels higher than those with smaller labels. The
term “magnitude-preserving” comes from their view of the magnitude of the difference(y− y′) in
the labels of two examples(x,y),(x′,y′) as not just a penalty for mis-ranking the pair(x,x′), but as
a quantity to be explicitly preserved byf , in the sense that( f (x)− f (x′)) be close to(y−y′).

There are three important differences between our work and that of Cortes et al. (2007). First,
Cortes et al. implicitly assume the existence of a “truth” function: their results are derived under that
assumption that only instancesx∈ X are drawn randomly, and that labelsy∈Y are then determined
according to a “truth” functionf ∗ : X→Y . In our work, we make the more general distributional
assumption that all examples(x,y) are drawn randomly according to a joint distribution onX ×Y .

Second, Cortes et al. consider only the notion of uniform loss stability; theydo not consider
uniform score stability. As a consequence, the bounds they obtain for ranking algorithms performing
regularization in an RKHS are similar to our bound in Corollary 15, which bounds the expected
ranking errorR( fS) of a learned ranking functionfS in terms of the empiricalℓ-error R̂ℓ( fS;S),
whereℓ is the loss minimized by the algorithm.4 In contrast, our bound in Corollary 12, which

4. Cortes et al. do not actually bound the expected ranking errorR( fS) (which in our view is the primary performance
measure of a ranking function in our setting); their results simply give bounds on the expectedℓ-errorRℓ( fS), where
ℓ again is the loss minimized by the algorithm. However, forℓdisc≤ ℓ, one can easily deduce bounds onR( fS) from
these results.
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makes use of the notion of score stability, bounds the expected errorR( fS) in terms of the empirical
ℓ1-error R̂ℓ1( fS;S). As mentioned in Section 5.2, theℓ1 loss tends to be smaller than many of the
loss functions minimized by kernel-based ranking algorithms in practice (indeed, it is never greater
than the hinge ranking lossℓh), thus leading to tighter bounds for the same algorithms.

The third and most important difference between our work and that of Cortes et al. is that the
results of Cortes et al. involve certain strong assumptions on the function class searched by an
algorithm. In particular, they assume that the function classF searched by a ranking algorithm
is bounded in the sense that∃ M′ > 0 such that for allf ∈ F and allx ∈ X , | f (x)− f ∗(x)| ≤ M′

(where, as mentioned above,f ∗ : X→R is the truth function in their setting). No RKHSF satisfies
this condition, and so their results as stated do not apply to the kernel-basedranking algorithms they
consider. On closer inspection, one notices that for the loss functions they show to be 1-admissible,
they do not actually need this assumption. For the loss functions they show to be 4M′-admissible,
however, a non-trivial fix is required. We expect that an approach similar to that of separating out the
effective search space, as we have done in the case of the least squares ranking loss in Section 5.2.2,
should work; indeed, in the case of the least squares ranking loss, assuming a bounded label space
Y, it is easy to see from the observations in Section 5.2.2 that| f (x)−y| is bounded for allf in the
effectivesearch space (and all(x,y) ∈ (X ×Y )).

6.4 Comparison with Rudin et al. (2005)

Rudin et al. (2005) studied a different setting of the ranking problem, in which one assumes the
existence of a pair-wise “truth” functionπ : X ×X→{0,1} that assigns a binary ranking preference
π(x,x′) to each pair of instances(x,x′), such thatπ(x,x′) = 1⇒ π(x′,x) = 0: if π(x,x′) = 1, thenx
is to be ranked higher thanx′; if π(x′,x) = 1, thenx′ is to be ranked higher thanx; and if π(x,x′) =
π(x′,x) = 0, then there is no ranking preference betweenx andx′. The training sample given to
a learner in this setting consists of a finite number of instancesx1, . . . ,xm, each drawn randomly
and independently according to some (unknown) distribution onX , together with the corresponding
ranking preferencesπ(xi ,x j) for i, j ∈ {1, . . . ,m}, i 6= j. Rudin et al. derived a generalization bound
for this setting using techniques inspired by the works of Cucker and Smale (2002), Koltchinskii
and Panchenko (2002), and Bousquet (2003). Their bound, expressed in terms of covering numbers,
is a margin-based bound, which is of interest when the learned ranking function has zero empirical
error on the training sample.

Noting that the labelsyi ,y j corresponding to a pair of instancesxi ,x j in our setting are used
in our results only in the form of ranking preferences(yi − y j), we can clearly view the setting of
Rudin et al. as a special case of ours: the ranking preferences(yi −y j), which are random variables
in our setting, get replaced by the deterministic preferencesπ(xi ,x j). All quantities can be adapted
accordingly; for example, the expected ranking error of a ranking function f : X→R in this setting
(with respect to a distributionD onX ) becomes

R( f ) = E(X,X′)∼D×D

[
|π(X,X′)|

(
I {π(X,X′)( f (X)− f (X′))<0} +

1
2

I { f (X)= f (X′)}

)]
.

In fact, rather than restrict ourselves to binary preferences, we canextend the setting of Rudin et al.
to allow real-valued preferences, requiring thatπ(x,x′) =−π(x′,x) for all x,x′ ∈ X ; if π takes values
in [−M,M], we get the same results as we have derived in our setting (with the probabilities now
being over the random draw of instances only).
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We can also consider another extension of interest in the pair-wise truth function setting, where
we may not have access to the preferences for all pairs of instances in the training sample, but
rather are given preferences for only a limited number of pairs; in this case, the learner receives
a sequence of instancesS= (x1, . . . ,xm), and preferencesπ(xi ,x j) for only a subset of pairsE ⊆
{(i, j) | 1≤ i < j ≤ m}. It is interesting then to consider a model in which not only the instances in
Sbut also the pairs inE for which the ranking preferences are provided may be chosen randomly.
If the instances inS are drawn randomly and independently according to some distributionD on
X , and the setE is drawn randomly (independently ofS) from some distributionEm on the set
of possible (undirected) edge sets for a graph onm vertices{1, . . . ,m} (for example,E could be
obtained by including each edge with some fixed probability 0< pm < 1, or by selecting at random
a subset ofαm edges for someαm≤

(m
2

)
), then under some natural conditions onEm, we can extend

our techniques to obtain generalization bounds in this setting too. In the remainder of this section
we discuss some details of this extension.

In particular, the empirical ranking error of a ranking functionf : X→R in the above setting,
with respect to a training sampleT = (S,E,π|(S,E)) whereS andE are as above andπ|(S,E) is the
restriction ofπ to

{
(xi ,x j) | (i, j) ∈ E

}
, is given by

R̂( f ;T) =
1
|E| ∑

(i, j)∈E

|π(xi ,x j)|
(

I {π(xi ,x j )( f (xi)− f (x j ))<0} +
1
2

I { f (xi)= f (x j )}

)
.

Given a loss functionℓ that assigns for any ranking functionf , any pair of instances(x,x′) and
anyr ∈ [−M,M] a non-negative lossℓ( f ,x,x′, r), the expected and empiricalℓ-errors can be defined
similarly:

Rℓ( f ) = E(X,X′)∼D×D
[
ℓ( f ,X,X′,π(X,X′))

]
;

R̂ℓ( f ;T) =
1
|E| ∑

(i, j)∈E

ℓ( f ,xi ,x j ,π(xi ,x j)) .

A ranking algorithmA in this setting, which given a training sampleT outputs a ranking functionfT ,
has uniform loss stabilityβ with respect toℓ if for all m∈ N, S∈ Xm, E ⊆ {(i, j) | 1≤ i < j ≤ m},
π : X ×X→[−M,M], 1≤ i ≤ mandx′i ∈ X , we have for allx,x′ ∈ X and allr ∈ [−M,M],

∣∣ℓ( fT ,x,x′, r)− ℓ( fT i ,x,x′, r)
∣∣ ≤ β(m) ,

whereT = (S,E,π|(S,E)) as above andT i = (Si ,E,π|(Si ,E)), with Si being the sequence obtained
from Sby replacingxi with x′i . Then we can show the following bound for ranking algorithms with
good loss stability in this setting:

Theorem 19 Let π : X ×X→[−M,M] be a pair-wise truth function such thatπ(x,x′) = −π(x′,x)
for all x,x′ ∈ X . LetA be a symmetric ranking algorithm in the pair-wise truth function setting
whose output on a training sample T= (S,E,π|(S,E)) we denote by fT , and letℓ be a bounded
ranking loss function such that0≤ ℓ( f ,x,x′, r)≤ B for all f : X→R, x,x′ ∈ X and r∈ [−M,M]. Let
β : N→R be such thatA has uniform loss stabilityβ with respect toℓ as defined above. LetD be any
distribution onX , and let{Em} be any family of distributions on the sets of possible (undirected)
edge sets for a graph on m vertices{1, . . . ,m} that satisfies the following condition:∃ s> 1 and a
sequence(δm) satisfyingδm ≥ 0, limm→∞ δm = 0, such that for all m,PE∼Em (|E| < ms) ≤ δm. Then
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for any0 < δ < 1, for all m large enough such thatδm ≤ δ
2, we have with probability at least1−δ

over the draw of(S,E) according toDm×Em,

Rℓ( fT) < R̂ℓ( fT ;T)+2β(m)+

√
1
2

(
4m(β(m))2 +8Bβ(m)+

2B2

m−1
+

B2

ms−1

)
ln(2/δ) .

The proof makes use of McDiarmid’s inequality and is similar to that of Theorem6, with two
main differences. First, McDiarmid’s inequality is first applied to obtain a bound conditioned on
an edge setE with |E| ≥ ms; the bound on the probability that|E| < ms then allows us to obtain
the unconditional bound. Second, the constantsck in the application of McDiarmid’s inequality are
different for eachk, and depend on the degrees of the corresponding vertices in the graphwith edge
setE; the sum∑k c2

k is then bounded using a bound on the sum of squares of degrees in a graph due
to de Caen (1998). Details of the proof are provided in Appendix D.

The condition onEm in the above theorem states that with high probability (probability at least
1− δm), an edge setE drawn according toEm has at leastms edges for somes > 1, that is,|E|
is super-linear inm.5 Thus, in the pair-wise truth function setting, we need not have access to
the ranking preferencesπ(xi ,x j) for all

(m
2

)
pairs of instances inS; having the preferences for any

super-linear number of pairs (where the pairs are selected independently of the instancesS them-
selves) suffices to give a generalization bound (albeit with a correspondingly slower convergence
rate, as quantified by the1

ms−1 term in the bound above). Below we give examples of two families
of distributions{Em} that satisfy the above condition.

Example 1 Fix any1 < s< 2, and letEm be the distribution that corresponds to selecting a ran-
dom subset ofαm edges, withαm = min

((m
2

)
,⌈ms⌉

)
. Then for large enough m,αm = ⌈ms⌉, and

PE∼Em (|E| < ms) = 0.

Example 2 Fix any 1 < s< 2, and letEm be the distribution that corresponds to including each
edge with a fixed probability pm, with pm = min

(
1, 8

m2−s

)
. Then for large enough m, pm = 8

m2−s ,
and assuming without loss of generality that m≥ 2, it is easy to show using a Chernoff bound that
in this case,PE∼Em (|E| < ms) ≤ e−ms/4. Indeed, for any such m, let Zm be the random variable
equal to the number of edges|E|. Then Zm is a binomial random variable with parameters

(m
2

)
and

pm = 8
m2−s , and

E[Zm] =
(m

2

)
pm

= 4(m−1)ms−1

= 2(ms+(m−2)ms−1)

≥ 2ms,

where the inequality follows from our assumption that m≥ 2. The Chernoff bound for deviations be-
low the mean of a binomial random variable tells us that for any0< δ < 1, P(Zm < (1−δ)E[Zm])≤
e−E[Zm]δ2/2. Thus we have

P(Zm < ms) = P
(

Zm <
(

1− 1
2

)
2ms
)

5. Note that in the statement of Theorem 19 we require|E| to be super-linear inm by a polynomial factor; a smaller
super-linear growth also leads to a generalization bound, but with a slowerconvergence rate.
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≤ P
(

Zm <
(

1− 1
2

)
E[Zm]

)

≤ e−E[Zm]( 1
2)2/2

≤ e−ms/4 .

Comparing the bound in Theorem 19 with that of Theorem 6, it is worth noting that the effective
sample size in the above setting becomesms−1. This is consistent with the discussion in Section 6.1,
in that the ratio between the number of pairs in the training sample and the total number of examples
in this case is (with high probability) at leastms/m= ms−1.

7. Discussion

Our goal in this paper has been to study generalization properties of ranking algorithms in a setting
where ranking preferences among instances are indicated by real-valued labels on the instances.
This setting of the ranking problem arises frequently in practice and is more general than those
considered previously. We have derived generalization bounds for ranking algorithms in this set-
ting using the notion of algorithmic stability; in particular, we have shown that ranking algorithms
that exhibit good stability properties also have good generalization properties, and have applied our
results to obtain generalization bounds for kernel-based ranking algorithms that perform regulariza-
tion in a reproducing kernel Hilbert space. Such algorithms often cannotbe analyzed using uniform
convergence results.

The main difference in the mathematical formulation of ranking problems as compared to clas-
sification or regression problems is that the loss function in ranking is ‘pair-wise’ rather than ‘point-
wise’. Indeed, ranking often resembles weighted ‘classification on pairs’, with the weights being
given by the corresponding ranking preferences (although learninga real-valued function that in-
duces a total ordering on the instance space is not quite the same as learninga binary-valued func-
tion on instance pairs that simply decides which of two instances should be ranked higher, Cohen
et al. 1999; Balcan et al. 2007; Ailon and Mohri 2008). However, generalization bounds from clas-
sification cannot be applied directly to ranking, due to dependences amongthe instance pairs. As
discussed earlier, the reason that we are able to obtain bounds for ranking algorithms using the same
methods as those used by Bousquet and Elisseeff (2002) for classification and regression algorithms
lies in the power of McDiarmid’s inequality, which was used by Bousquet andElisseeff to capture
the effect of stability but is also general enough to capture the structure of the ranking problems we
consider. A comparison of our results with those of Bousquet and Elisseeff (2002) and Agarwal and
Niyogi (2005) suggests that the effective sample size in ranking is proportional to the ratio between
the number of pairs in the training sample and the total number of examples; this can be smaller
than the number of examplesm if ranking preferences are provided for less thanm2 pairs.

The notions of uniform stability studied in this paper correspond most closelyto those studied
by Bousquet and Elisseeff (2002). These notions are strict in that theyrequire changes in a sample
to have bounded effect uniformly over all samples and replacements. Onecan define weaker notions
of stability, analogous to the hypothesis stability considered by Devroye andWagner (1979), Kearns
and Ron (1999), and Bousquet and Elisseeff (2002), or the almost-everywhere stability considered
by Kutin and Niyogi (2002), which would require the bounds to hold only in expectation or with
high probability. Such notions would lead to a distribution-dependent treatment as opposed to the
distribution-free treatment obtained with uniform stability, and it would be particularly interesting
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to see if making distributional assumptions in ranking can mitigate the reduced sample size effect
discussed above.

For the sake of simplicity and to keep the focus on the main ideas involved in applying stability
techniques to ranking, we have focused in this paper on bounding the expected ranking error in
terms of the empirical ranking error. In classification and regression, stability analysis has also been
used to provide generalization bounds in terms of the leave-one-out error (Bousquet and Elisseeff,
2002; Kearns and Ron, 1999), and with a slight change in definitions of stability, similar results can
be obtained in the case of ranking as well. In particular, in this case we needto define (for a ranking
algorithm which given a training sampleS returns a ranking functionfS) a ‘leave-two-out’ ranking
error as follows:

R̃ℓ( fS;S) =
1(m
2

) ∑
1≤i< j≤m

ℓ( fS\i j ,(xi ,yi),(x j ,y j)) ,

whereS\i j denotes the sequence obtained by removing theith and jth examples from a sample
S= ((x1,y1), . . . ,(xm,ym)) ∈ (X ×Y )m. Then, defining notions of stability in terms of changes to
a sample that consist of removing two examples rather than replacing one example, one can obtain
very similar generalization bounds for ranking algorithms in terms of the aboveleave-two-out error
as those we have derived in terms of the empirical error.

An open question concerns the analysis of other ranking algorithms using the algorithmic sta-
bility framework. For example, it has been shown that the AdaBoost algorithm for classification is
stability-preserving, in the sense that stability of base classifiers implies stabilityof the final learned
classifier (Kutin and Niyogi, 2001). It would be interesting if a similar result could be shown for
the RankBoost ranking algorithm (Freund et al., 2003), which is based on the same principles of
boosting as AdaBoost.

Finally, it is also an open question to analyze generalization properties of ranking algorithms
in even more general settings of the ranking problem. For example, a more general setting would
be one in which a finite number of instancesx1, . . . ,xm ∈ X are drawn randomly and independently
according to some distributionD on X , and then pair-wise ranking preferencesr i j ∈ [−M,M] for
i < j are drawn from a conditional distribution, conditioned on the corresponding pair of instances
(xi ,x j). We are not aware of any generalization bounds for such a setting.
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Appendix A. Proof of Theorem 6

Our main tool will be the following powerful concentration inequality of McDiarmid (1989), which
bounds the deviation of any function of a sample for which a single change inthe sample has limited
effect.
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Theorem 20 (McDiarmid 1989) Let X1, . . . ,Xm be independent random variables, each taking val-
ues in a set A. Letφ : Am→R be such that for each1≤ k≤ m, there exists ck > 0 such that

sup
x1,...,xm∈A,x′k∈A

∣∣∣φ(x1, . . . ,xm)−φ(x1, . . . ,xk−1,x
′
k,xk+1, . . . ,xm)

∣∣∣ ≤ ck .

Then for anyε > 0,

P
(

φ(X1, . . . ,Xm)−E [φ(X1, . . . ,Xm)] ≥ ε
)

≤ e−2ε2/∑m
k=1 c2

k .

Before we apply McDiarmid’s inequality to prove Theorem 6, we shall needthe following technical
lemma. In the following, we shall drop explicit references to distributions where clear from context,
replacing, for example,E(X,Y)∼D [. . .] with simply E(X,Y)[. . .].

Lemma 21 LetA be a symmetric ranking algorithm whose output on a training sample S∈ (X ×
Y )m we denote by fS, and letℓ be a ranking loss function. Then for all1≤ i < j ≤ m, we have

ES∼Dm

[
Rℓ( fS)− R̂ℓ( fS;S)

]

= ES∼Dm,((X′
i ,Y

′
i ),(X

′
j ,Y

′
j ))∼D×D

[
ℓ( fS,(X

′
i ,Y

′
i ),(X

′
j ,Y

′
j ))− ℓ( fSi, j ,(X′

i ,Y
′
i ),(X

′
j ,Y

′
j ))
]
.

Proof DenotingS= ((X1,Y1), . . . ,(Xm,Ym)), we have by linearity of expectation,

ES

[
R̂ℓ( fS;S)

]
=

1(m
2

)
m−1

∑
i=1

m

∑
j=i+1

ES

[
ℓ( fS,(Xi ,Yi),(Xj ,Yj))

]
.

By symmetry, the term in the summation is the same for alli, j. Therefore, for all 1≤ i < j ≤ m,
we get

ES

[
R̂ℓ( fS;S)

]
= ES

[
ℓ( fS,(Xi ,Yi),(Xj ,Yj))

]

= ES,((X′
i ,Y

′
i ),(X

′
j ,Y

′
j ))

[
ℓ( fS,(Xi ,Yi),(Xj ,Yj))

]
.

Interchanging the roles of(Xi ,Yi) with (X′
i ,Y

′
i ) and(Xj ,Yj) with (X′

j ,Y
′
j ), we get

ES

[
R̂ℓ( fS;S)

]
= ES,((X′

i ,Y
′
i ),(X

′
j ,Y

′
j ))

[
ℓ( fSi, j ,(X′

i ,Y
′
i ),(X

′
j ,Y

′
j ))
]
.

Since by definition

ES

[
Rℓ( fS)

]
= ES,((X′

i ,Y
′
i ),(X

′
j ,Y

′
j ))

[
ℓ( fS,(X

′
i ,Y

′
i ),(X

′
j ,Y

′
j ))
]
,

the result follows.

Proof (of Theorem 6)
Let φ : (X ×Y )m→R be defined as follows:

φ(S) = Rℓ( fS)− R̂ℓ( fS;S) .
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We shall show thatφ satisfies the conditions of McDiarmid’s inequality (Theorem 20). LetS=
((x1,y1), . . . ,(xm,ym)) ∈ (X ×Y )m. Then for each 1≤ k≤ m, we have for any(x′k,y

′
k) ∈ (X ×Y ):

∣∣φ(S)−φ(Sk)
∣∣ =

∣∣∣
(

Rℓ( fS)− R̂ℓ( fS;S)
)
−
(

Rℓ( fSk)− R̂ℓ( fSk;Sk)
)∣∣∣

≤
∣∣∣Rℓ( fS)−Rℓ( fSk)

∣∣∣+
∣∣∣R̂ℓ( fS;S)− R̂ℓ( fSk;Sk)

∣∣∣ .

Now,
∣∣∣Rℓ( fS)−Rℓ( fSk)

∣∣∣ =
∣∣∣E((X,Y),(X′,Y′))

[
ℓ( fS,(X,Y),(X′,Y′))− ℓ( fSk,(X,Y),(X′,Y′))

]∣∣∣

≤ E((X,Y),(X′,Y′))

[∣∣∣ℓ( fS,(X,Y),(X′,Y′))− ℓ( fSk,(X,Y),(X′,Y′))
∣∣∣
]

≤ β(m) ,

and ∣∣∣R̂ℓ( fS;S)− R̂ℓ( fSk;Sk)
∣∣∣

≤ 1(m
2

) ∑
1≤i< j≤m,i 6=k, j 6=k

∣∣∣ℓ( fS,(xi ,yi),(x j ,y j))− ℓ( fSk,(xi ,yi),(x j ,y j))
∣∣∣

+
1(m
2

)∑
i 6=k

∣∣∣ℓ( fS,(xi ,yi),(xk,yk))− ℓ( fSk,(xi ,yi),(x
′
k,y

′
k))
∣∣∣

≤ 1(m
2

) ∑
1≤i< j≤m,i 6=k, j 6=k

β(m) +
1(m
2

)∑
i 6=k

B

=
1(m
2

)
(((m

2

)
− (m−1)

)
β(m)+(m−1)B

)

< β(m)+
2B
m

.

Thus we have
∣∣∣φ(S)−φ(Sk)

∣∣∣ ≤ 2

(
β(m)+

B
m

)
.

Therefore, applying McDiarmid’s inequality toφ, we get for anyε > 0,

PS

((
Rℓ( fS)− R̂ℓ( fS;S)

)
−ES

[
Rℓ( fS)− R̂ℓ( fS;S)

]
≥ ε
)

≤ e−2ε2/m(2(β(m)+ B
m))2

= e−mε2/2(mβ(m)+B)2
.

Now, by Lemma 21, we have (for any 1≤ i < j ≤ m),

ES

[
Rℓ( fS)− R̂ℓ( fS;S)

]

= ES,((X′
i ,Y

′
i ),(X

′
j ,Y

′
j ))

[
ℓ( fS,(X

′
i ,Y

′
i ),(X

′
j ,Y

′
j ))− ℓ( fSi, j ,(X′

i ,Y
′
i ),(X

′
j ,Y

′
j ))
]

≤ ES,((X′
i ,Y

′
i ),(X

′
j ,Y

′
j ))

[∣∣∣ℓ( fS,(X
′
i ,Y

′
i ),(X

′
j ,Y

′
j ))− ℓ( fSi ,(X′

i ,Y
′
i ),(X

′
j ,Y

′
j ))
∣∣∣
]

+ ES,((X′
i ,Y

′
i ),(X

′
j ,Y

′
j ))

[∣∣∣ℓ( fSi ,(X′
i ,Y

′
i ),(X

′
j ,Y

′
j ))− ℓ( fSi, j ,(X′

i ,Y
′
i ),(X

′
j ,Y

′
j ))
∣∣∣
]

≤ 2β(m) .
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Thus we get for anyε > 0,

PS

(
Rℓ( fS)− R̂ℓ( fS;S)−2β(m) ≥ ε

)
≤ e−mε2/2(mβ(m)+B)2

.

The result follows by setting the right hand side equal toδ and solving forε.

Appendix B. Proof of Lemma 10

Proof (of Lemma 10)
Recall that a convex functionφ : U→R satisfies for allu,v∈U and for allt ∈ [0,1],

φ(u+ t(v−u))−φ(u) ≤ t(φ(v)−φ(u)) .

Sinceℓ( f ,(x,y),(x′,y′)) is convex in f , we have that̂Rℓ( f ;S) is convex in f . Therefore for any
t ∈ [0,1], we have

R̂ℓ( f + t∆ f ;S)− R̂ℓ( f ;S) ≤ t
(

R̂ℓ( f i ;S)− R̂ℓ( f ;S)
)

, (13)

and also (interchanging the roles off and f i),

R̂ℓ( f i − t∆ f ;S)− R̂ℓ( f i ;S) ≤ t
(

R̂ℓ( f ;S)− R̂ℓ( f i ;S)
)

. (14)

Adding Eqs. (13) and (14), we get

R̂ℓ( f + t∆ f ;S)− R̂ℓ( f ;S)+ R̂ℓ( f i − t∆ f ;S)− R̂ℓ( f i ;S) ≤ 0. (15)

Now, sinceF is convex, we have that( f + t∆ f ) ∈ F and ( f i − t∆ f ) ∈ F . Since f minimizes
R̂λ

ℓ ( f ;S) in F and f i minimizesR̂λ
ℓ ( f ;Si) in F , we thus have

R̂λ
ℓ ( f ;S)− R̂λ

ℓ ( f + t∆ f ;S) ≤ 0, (16)

R̂λ
ℓ ( f i ;Si)− R̂λ

ℓ ( f i − t∆ f ;Si) ≤ 0. (17)

Adding Eqs. (15), (16) and (17), we get

λ
(

N( f )−N( f + t∆ f )+N( f i)−N( f i − t∆ f )
)

≤ R̂ℓ( f i ;S)− R̂ℓ( f i ;Si)+ R̂ℓ( f i − t∆ f ;Si)− R̂ℓ( f i − t∆ f ;S)

=
1(m
2

)∑
j 6=i

(
ℓ( f i ,(xi ,yi),(x j ,y j))− ℓ( f i ,(x′i ,y

′
i),(x j ,y j))

+ ℓ( f i − t∆ f ,(x′i ,y
′
i),(x j ,y j))− ℓ( f i − t∆ f ,(xi ,yi),(x j ,y j))

)

=
1(m
2

)∑
j 6=i

((
ℓ( f i ,(xi ,yi),(x j ,y j))− ℓ( f i − t∆ f ,(xi ,yi),(x j ,y j))

)

+
(
ℓ( f i − t∆ f ,(x′i ,y

′
i),(x j ,y j))− ℓ( f i ,(x′i ,y

′
i),(x j ,y j))

))

≤ tσ(m
2

)∑
j 6=i

(
|∆ f (xi)|+2|∆ f (x j)|+ |∆ f (x′i)|

)
,

where the last inequality follows byσ-admissibility. The result follows.
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Appendix C. Proof of Lemma 17

The proof is a simple application of McDiarmid’s inequality.
Proof (of Lemma 17)
Let φ : (X ×Y )m→R be defined as follows:

φ(S) = R̂ℓ( f ;S) .

Then by linearity of expectation,

ES∼Dm

[
φ(S)

]
=

1(m
2

)
m−1

∑
i=1

m

∑
j=i+1

E((Xi ,Yi),(Xj ,Yj ))∼D×D
[
ℓ( f ,(Xi,Yi),(Xj ,Yj))

]

= Rℓ( f ) .

We shall show thatφ satisfies the conditions of McDiarmid’s inequality (Theorem 20). LetS=
((x1,y1), . . . ,(xm,ym)) ∈ (X ×Y )m. Then for each 1≤ k≤ m, we have for any(x′k,y

′
k) ∈ (X ×Y ):

∣∣φ(S)−φ(Sk)
∣∣ =

∣∣∣R̂ℓ( f ;S)− R̂ℓ( f ;Sk)
∣∣∣

≤ 1(m
2

)∑
i 6=k

∣∣∣ℓ( f ,(xi,yi),(xk,yk))− ℓ( f ,(xi,yi),(x
′
k,y

′
k))
∣∣∣

≤ 1(m
2

)(m−1)B

=
2B
m

.

Therefore, applying McDiarmid’s inequality toφ, we get for anyε > 0,

PS∼Dm

(
R̂ℓ( f ;S)−Rℓ( f ) ≥ ε

)
≤ e−2ε2/m( 2B

m )2

= e−mε2/2B2
.

The result follows by setting the right hand side equal toδ and solving forε.

Appendix D. Proof of Theorem 19

The proof of this result also makes use of McDiarmid’s inequality and is similar tothe proof of
Theorem 6 in Appendix A, with two main differences. First, McDiarmid’s inequality is first applied
to obtain a bound conditioned on an edge setE with |E| ≥ms; the bound on the probability that|E|<
ms then allows us to obtain the unconditional bound. Second, the constantsck in the application of
McDiarmid’s inequality are different for eachk, and depend on the degrees of the corresponding
vertices in the graph with edge setE; the sum∑k c2

k is then bounded using a bound on the sum of
squares of degrees in a graph due to de Caen (1998).
Proof (of Theorem 19)
Let m∈ N, and fix any edge setE0 ⊆ {(i, j) | 1≤ i < j ≤ m} with |E0| ≥ ms. Let φE0 : Xm→R be
defined as follows:

φE0(S) = Rℓ( fT)− R̂ℓ( fT ;T) ,
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whereT = (S,E0,π|(S,E0)). We shall show thatφE0 satisfies the conditions of McDiarmid’s inequality
(Theorem 20). LetS= (x1, . . . ,xm) ∈ Xm. Then for each 1≤ k≤ m, we have for anyx′k ∈ X :

∣∣φE0(S)−φE0(S
k)
∣∣ =

∣∣∣
(

Rℓ( fT)− R̂ℓ( fT ;T)
)
−
(

Rℓ( fTk)− R̂ℓ( fTk;Tk)
)∣∣∣

≤
∣∣∣Rℓ( fT)−Rℓ( fTk)

∣∣∣+
∣∣∣R̂ℓ( fT ;T)− R̂ℓ( fTk;Tk)

∣∣∣ .

Now,
∣∣∣Rℓ( fT)−Rℓ( fTk)

∣∣∣ =
∣∣∣E(X,X′)

[
ℓ( fT ,X,X′,π(X,X′))− ℓ( fTk,X,X′,π(X,X′))

]∣∣∣

≤ E(X,X′)

[∣∣∣ℓ( fT ,X,X′,π(X,X′))− ℓ( fTk,X,X′,π(X,X′))
∣∣∣
]

≤ β(m) ,

and
∣∣∣R̂ℓ( fT ;T)− R̂ℓ( fTk;Tk)

∣∣∣

≤ 1
|E0| ∑

(i, j)∈E0,i 6=k, j 6=k

∣∣∣ℓ( fT ,xi ,x j ,π(xi ,x j))− ℓ( fTk,xi ,x j ,π(xi ,x j))
∣∣∣

+
1

|E0| ∑
(i,k)∈E0

∣∣∣ℓ( fT ,xi ,xk,π(xi ,xk))− ℓ( fTk,xi ,x
′
k,π(xi ,x

′
k))
∣∣∣

+
1

|E0| ∑
(k, j)∈E0

∣∣∣ℓ( fT ,xk,x j ,π(xk,x j))− ℓ( fTk,x′k,x j ,π(x′k,x j))
∣∣∣

≤ 1
|E0| ∑

(i, j)∈E0,i 6=k, j 6=k

β(m) +
1

|E0| ∑
(i,k)∈E0

B +
1

|E0| ∑
(k, j)∈E0

B

≤ β(m)+
dk

|E0|
B,

wheredk is the degree of vertexk in the graph with edge setE0. Thus we have
∣∣∣φE0(S)−φE0(S

k)
∣∣∣ ≤ ck ,

where

ck = 2β(m)+
dk

|E0|
B.

Now,

m

∑
k=1

dk = 2|E0| ,

and using a bound on the sum of squares of degrees in a graph due to deCaen (1998), we have

m

∑
k=1

d2
k ≤ |E0|

(
2|E0|
m−1

+m−2

)
.
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Therefore,

m

∑
k=1

c2
k =

m

∑
k=1

(
2β(m)+

dk

|E0|
B

)2

= 4m(β(m))2 +
4Bβ(m)

|E0|
m

∑
k=1

dk +
B2

|E0|2
m

∑
k=1

d2
k

≤ 4m(β(m))2 +8Bβ(m)+
2B2

m−1
+

B2(m−2)

|E0|

≤ 4m(β(m))2 +8Bβ(m)+
2B2

m−1
+

B2

ms−1
︸ ︷︷ ︸

γ(m)

,

where the last inequality follows since|E0| ≥ ms. Thus, applying McDiarmid’s inequality toφE0,
we get for anyε > 0,

PS

((
Rℓ( fT)− R̂ℓ( fT ;T)

)
−ES

[
Rℓ( fT)− R̂ℓ( fT ;T)

∣∣∣ E = E0

]
≥ ε

∣∣∣ E = E0

)
≤ e−2ε2/γ(m) .

Now, as in Theorem 6, we can show that

ES

[
Rℓ( fT)− R̂ℓ( fT ;T)

∣∣∣ E = E0

]
≤ 2β(m) .

Thus we get for anyε > 0,

PS

(
Rℓ( fT)− R̂ℓ( fT ;T)−2β(m) ≥ ε

∣∣∣ E = E0

)
≤ e−2ε2/γ(m) .

Since the above bound holds for allE0 with |E0| ≥ ms, we have

P(S,E)

(
Rℓ( fT)− R̂ℓ( fT ;T)−2β(m) ≥ ε

)
≤ PE(|E| < ms)+e−2ε2/γ(m)

≤ δm+e−2ε2/γ(m) .

Thus form large enough such thatδm ≤ δ
2, we get

P(S,E)

(
Rℓ( fT)− R̂ℓ( fT ;T)−2β(m) ≥ ε

)
≤ δ

2
+e−2ε2/γ(m) .

Setting the second term on the right hand side equal toδ
2 and solving forε gives the desired result.
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