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Abstract

We present a general approach for collaborative filterirfg) (@3ing spectral regularization to learn
linear operators mapping a set of “users” to a set of possiefred “objects”. In particular, sev-
eral recent low-rank type matrix-completion methods fora@€& shown to be special cases of our
proposed framework. Unlike existing regularization-lth€&, our approach can be used to incor-
porate additional information such as attributes of thesiebjects—a feature currently lacking
in existing regularization-based CF approaches—using lpound well-knownkernel methods
We provide novel representer theorems that we use to dewelopestimation methods. We then
provide learning algorithms based on low-rank decompmsitand test them on a standard CF data
set. The experiments indicate the advantages of genaglize existing regularization-based CF
methods to incorporate related information about usersobjetts. Finally, we show that certain
multi-task learning methods can be also seen as specia ohsar proposed approach.

Keywords: collaborative filtering, matrix completion, kernel metlspdpectral regularization

1. Introduction

Collaborative filtering (CF) refers to the task of predicting prefereméesgiven “user” for some
“objects” (e.g., books, music, products, people, etc.) based on hisfeeiopsly revealed
preferences—typically in the form of purchases or ratings—as well @setvealed preferences
of other users. In a book recommender system, for example, one might kkgygest new books
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to a new user based on what she and other users have recentlysaatchaated. The ultimate goal
of CF is to infer the preferences of users in order to offer them newctshje

A number of CF methods have been developed in the past (Breese ef8l.HExkerman et al.,
2000; Salakhutdinov et al., 2007). Recently there has been interestisi@jregularization-based
methods (Srebro and Jaakkola, 2003). This work adds to that literayudeveloping a novel
general approach to regularization-based CF methods.

Recent regularization-based CF methods assume that the only data avaitabie revealed
preferences, where no other information such as background inioman the objects or users is
given. In this case, one may formulate the problem as that of inferringdhieists of a partially
observedpreference matrix each row represents a user, each column represents an object (e.g.,
books or movies), and entries in the matrix represent a given user’g tangiven object. When
the only information available is a set of observed user/object ratings nitreown entries in the
matrix must be inferred from the known ones—of which there are typically fesv relative to the
size of the matrix.

To make useful predictions within this setting, regularization-based CF nmethalle certain
assumptions about threlatednes®f the objects and users. The most common assumption is that
the preference function can be decomposed into a small number of faesu#ing in the search
for a low-rank matrix which approximates the partially observed matrix ofgpesices (Srebro and
Jaakkola, 2003). The rank constraint can be interpreted as a figgtitar on the hypothesis space.
Since the rank constraint gives rise to a non-convex set of matricegsuoeiated optimization
problem will be a difficult non-convex problem for which only heuristicalithms exist (Srebro and
Jaakkola, 2003). An alternative formulation, proposed by Srebrb €G05), suggests penalizing
the predicted matrix by itsace normthat is, the sum of its singular values. An added benefit of the
trace norm regularization is that, with a sufficiently large regularizationpeter, the final solution
will be low-rank (Fazel et al., 2001; Bach, 2008).

However, a key limitation of current regularization-based CF methods ighbgtdo not take
advantage of additional information, such as known attributes of eacl{aige gender, age) and
object (e.g., book’s author, genre), which is often available. Intuithsalgh information might be
useful to guide the inference of preferences, in particular for us®t®bjects with very few known
ratings. For example, at the extreme, users and objects with no prior ratingst be considered
in the standard CF formulation, while their attributes alone could provide sosie paeference
inference.

The main contribution of this paper is to develop a general framework foCEhsetting when
user/object attribute information is potentially available and, in particular, wgecseveral specific
algorithms based on new “representer” theorems. More precisely wetkld CF, while typically
seen as a problem of matrix completion, can be thought of more generéiheasoperator esti-
mation where the desired operator maps from a Hilbert space of users to atldjflaee of objects.
Equivalently, this can be viewed as learning a bilinear form between aser®bjects. We then
developspectral regularizatiorbased methods to learn such linear operators. When dealing with
operators, rather than matrices, one may also work with infinite dimensionsjrajlone to con-
sider arbitrary feature space, possibly induced by some kernel fan&inong key theoretical con-
tributions of this paper are new representer theorems, allowing us to dev&logeneral methods
that learn finitely many parameters even when working in infinite dimensionabbgect feature
space. These representer theorems generalize the classicalmeprdssorem for minimization of
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an empirical loss penalized by the norm in a Reproducing Kernel HilbextS(RKHS) to more
general penalty functions and function classes.

We also show that, with the appropriate choice of kernels for both usdrstgacts, we may
consider a number of existing machine learning methods as special casggyeheral framework.
In particular, we show that several CF methods such as rank-comstraptimization, trace-norm
regularization, and those based on Frobenius norm regularizatioalld@ncast as special cases of
spectral regularization on operator spaces. Moreover, particubgcehof kernels lead to specific
sub-cases such as regular matrix completion and multi-task learning. Inéh#icmpplication
of collaborative filtering with the presence of attributes, we show that enexglization of these
sub-cases leads to better predictive performance.

The outline of the paper is as follows. In Section 2, we review the notion a@ingpact op-
erator on Hilbert Space, and we show how to cast the collaborative fijterioblem within this
framework. We then introduce spectral regularization and discuss d&ukvoonstraint, trace norm
regularization, and Frobenius norm regularization are all specias cdspectral regularization. In
Section 3, we show how our general framework encompasses many @xstthods with proper
choice of the loss function, the kernels, and the spectral regulanz&edtion 4, we provide three
representer theorems for operator estimation with spectral regularizatibmltbw for efficient
learning algorithms. Finally in Section 5 we present a number of algorithms esadide several
techniques to improve efficiency. We test these algorithms in Section 6 oretigraRamples and
a widely used movie database.

2. Learning Compact Operators with Spectral Regularization

In this section we propose a mathematical formulation for a general CF problth spectral
regularization. We then show in Section 3 how several learning problembec@ast under this
general framework.

2.1 A General CF Formulation

We consider a general CF problem in which our goal is to model the preferof a user described
by x for an item described by. We denote by andy the data objects containing all relevant or
available information; this could, for example, include a unique identif@rthei-th user or object.
Of course, the users and objects may additionally be characterized tan lattributes, in which
casex ory might contain some representation of this extra information. Ultimately, we would like
to consider such attribute information as encoded in some positive definitel ketween users, or
equivalently between objects. This naturally leads us to model the uselsnasnés in a Hilbert
spaceX, and the objects they rate as elements of another Hilbert gpace

We assume that our observation data is in the formatihgs from users to objects, a real-
valued score representing the user’s preference for the objectnafisexly, similar methods can be
applied when the observations are binary, specifying for instance ahetmot a user considered
or selected an object.

Given a series oN observationgx, yi,ti)i—1,...n IN X x 9 x R, wheret; represents the rating
of userx; for objecty;, the generalized CF problem is then to infer a functianX x 9 — R that
can then be used to predict the rating of any userX for any objecty € 9 by f (x,y). Note that
in our notationx; andy; represent the user and object corresponding ta-theating available. If
several ratings of a user for different objects are available, as is caiprtite case, severat’s
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will be identical in X—a slight abuse of notation. We denote ly and 9y the linear spans of
{xi,i=1,...,N}and{y;,i =1,...,N} in X and?’, with respective dimensiomay andm.

In the present paper, we uniquely consider learning preferenagidus f(-,-) that take the
form of a linear operator fronx to ©; that is, bilinear forms otk x 7,

f(X,y) = <X7 Fy>x ) (1)

for some compact operatbr. We now denote by, (97, X) the set of compact operators frokto
9. For an introduction to relevant concepts in functional analysis, seegp A.

In the general case we consider belowy ibnd9” are not Hilbert spaces, one could also first map
(implicitly) usersx and objectsy into possibly infinite dimensional Hilbert feature spagegs(x)
andW¥, (y) and use kernels. We refer the reader to Appendix A for basic definigindgproperties
related to compact operators that are useful below. The inferenbéepracan now be stated as
follows:

Given a training set of ratings, how may we estimate a “good” compactaipeF to predict
future ratings?

We estimate the operatér in (1) from the training data using a standard regularization and
statistical machine learning approach. In particular, we propose to dieirperator as the solution
of an optimization problem oveB, (9, X) whose objective function balances a data fitting term
Rn(F), which is small for operators that can correctly explain the training dataaviggularization
term Q(F) that controls the complexity of the desired operator. We now describe tiveserms
in more details.

2.2 Data Fitting Term

Given aloss functior?(t’,t) that quantifies how good a predictitre R is if the true value i$ € R,
we consider a fitting term equal to the empirical risk, that is, the mean loss@acon the training
set:

N
Ru(F) = 3 £06.Fyie ). @

The particular choice of the loss function should typically depend on theigergproblem to be
solved and on the nature of the variabte® be predicted. See more details in Section 3. In
particular, while the representer theorems presented in Section 4 doetbng convexity with
respect to this choice, the algorithms presented in Section 5 do.

2.3 Regularization Term

For the regularization term, we focus on a class of spectral functionsediedis follows.

Definition 1 A functionQ : By (9", X) — RU{+} is called aspectral penalty functioifiit can be
written as:

d
QF) = 3 s (@i(F). ©)

where for any > 1,5 : R* — R U{+0} is a non-decreasing penalty function satisfyiii@)s= 0,

gooey
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Note that, by the spectral theorem presented in Appendix A, any compeaxdtor can be decom-
posed into singular vectors, with singular values being a sequence ttattitezero.

Spectral penalty functions include as special cases several funcftenseencountered in matrix
completion problems:

e For a given integer, consider takings =0 fori =1,....r, 541(u) =0 foru= 0, and
S+1(u) = 400 whenu > 0. This leads to the function:

Q(F) = (4)

0 if rank(F) <r,
4o otherwise.

In other words, the set of operatdfghat satisfyQ(F) < +o is the set of operators with rank
smaller tharr.

e Takings(u) = ufor all i results in the trace norm penalty (see Appendix A):
F if FeB X
+oo otherwise,

where we note withB, (9, X) the set of operators with finite trace norm. Such operators are
referred to as trace class operators.

e Takings(u) = u? for all i results in the squared Hilbert-Schmidt norm penalty (also called
squared Frobenius norm for matrices, see Appendix A):

(6)

O(F) = [F5 ifFeB(Y,X),
+00 otherwise,

where we note witl3, (9, X) the set of operators with finite squared Hilbert-Schmidt norm.
Such operators are referred to as Hilbert Schmidt operators.

These particular functions can be combined together in different waysexample, we may
constrain the rank to be smaller thanvhile penalizing the trace norm of the matrix, which can
be obtained by setting(u) =ufori=1,...,r ands.1(u) = 4o if u> 0. Alternatively, if we
want to penalize the Frobenius norm while constraining the rank, we(s¢t=u? fori =1,...,r
ands1(u) = 4o if u> 0. We state these two choices @fexplicitly since we use these in the
experiments (see Section 6) or to design efficient algorithms (see Section 5)

|IF ]2 if rank(F) <r,
400 otherwise.
|F|3 if rank(F) <r,
+00 otherwise.

Trace+Rank Penalty: Q(F) = { @)

Frobenius+Rank Penalty: Q(F) = {
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2.4 Operator Inference

With both a fitting term and a regularization term, we can now formally define dereince ap-
proach. It consists of finding an operakarif there exists one, that solves the following optimization
problem:

F € argminRy(F) +AQ(F), (8)

FeBo(9.X)

wherel € R, is a parameter that controls the trade-off between fitting and regularizatidnyhere
Ru(F) and Q(F) are respectively defined in (2) and (3). We note that if the set
{F € By(7,X),Q(F) < +} is not empty, then necessarily the solutierof this optimization
problem must satisf@(F) < oo.

We show in Sections 4 and 5 how problem (8) can be solved in practicetinydar for Hilbert
spaces of infinite dimensions. Before exploring such implementation-relateskisn the following
section we provide several examples of algorithms that can be deriyedtasilar cases of (8) and
highlight their relationships to existing methods.

3. Examples and Related Approaches

The general formulation (8) can result in a variety of practical algorithoterdially useful in
different contexts. In particular, three elements can be tailored to oadigydar needs: the loss
function, the kernels (or equivalently the Hilbert spaces), and thdrgppenalty term. We start this
section by some generalities about the possible choices for these elengetiisinsonsequences,
before highlighting some particular combinations of choices relevant flardiit applications.

1. The loss function. The choice of¢ defines the empirical risk through (2). It is a classical
component of many machine learning methods, and should typically depethe dype of
data to be predicted (e.qg., discrete or continuous) and of the final olgjedtihe algorithm
(e.g., classification, regression or ranking). The choicéaio influences the algorithm, as
discussed in Section 5. As a deeper discussion about the loss functidy farmgential to the
current work, we only consider the square loss here, knowing that otnvex losses may
be considered.

2. The spectral penalty function. The choice of2(F) defines the type of constraint we impose
on the operator that we seek to learn. In Section 2.3, we gave sevarapks of such con-
straints including the rank constraint (4), the trace norm constrainti®)Hilbert-Schmidt
norm constraint (6), or the trace norm constraint over low-rankaipes (7). The choice of a
particular penalty might be guided by some considerations about the prablensolved, for
example, finding low-rank operators as a way to discover low-dimensiataait structures
in the data. On the other hand, from an algorithmic perspective, the chibtbe spectral
penalty may affect the efficiency or feasibility of our learning algorithm. t&lerpenalty
functions, such as the rank constraint for example, will lead to nonecoproblems because
the corresponding penalty function (4) is itself not convex. Howeverséme rank constraint
can vastly reduce the number of parameters to be learned. These algoddmsiderations
are discussed in more detail in Section 5.

3. The kernels. Our choice of kernels defines the inner products (i.e., embeddings) oféne
and objects in their respective Hilbert spaces. We may use a variety sibf@mg&ernels

808



COLLABORATIVE FILTERING VIA OPERATORESTIMATION WITH SPECTRAL REGULARIZATION

depending on the problem to be solved and on the available attributesstimghg the choice
of a particular kernel has no influence on the algorithm, as we show laiere(er, it can
easily influence the running time of these algorithms). In the current wagkpaus on two
basic kernels (Dirac kernels and attribute kernels) and in Section 3.4 wesdisombining
these.

e The first kernel we consider is tHairac kernel. When two users (resp. two objects)
are compared, the Dirac kernel returns 1 if they are the same user @lgept), and O
otherwise. In other words, the Dirac kernel amounts to representingthues (resp. the
objects) by orthonormal vectors i (resp. in9"). This kernel can be used whether or
not attributes are available for users and objects. We dendtg K);esp.kg) the Dirac
kernel for the users (resp. objects).

e The second kernel we consider is a kernel betwagributes when attributes are avail-
able to describe the users and/or objects. We call this an “attribute keflies$’would
typically be a kernel between vectors, such as the inner product ouss@a RBF ker-
nel, when the descriptions of users and/or objects take the form of sexft@al-valued
attributes, or any kernel on structured objects (Shawe-Taylor antiaDiig, 2004). We
denote bykt (resp.kZ) the attributes kernel for the users (resp. objects).

In the following section we illustrate how specific combinations of loss, sdegoérzalty and
kernels can be relevant for various settings. In particular the choieerpéls leads to new methods
for a range of different estimation problems; namely, matrix completion, multitesking, and
pairwise learning. In Section 3.4 we consider a new representation thasaflterpolation between
these particular problem formulations.

3.1 Matrix Completion

When the Dirac kernel is used for both users and objects, then we ganize the datdx;,i =
1,...,n} intony groups of identical data points and similafly;,i = 1,...,n} into ny groups. Since
we use the Dirac kernel, we can represent each of these groupsdigitinents of the canonical basis
(ug,...,un,) and (vl,...,vny) of R™ andR", respectively. A bilinear form using Dirac kernels
only depends on the identities of the users and the objects, and we onigt phedratingt; based
on the identities of the groups in both spaces. If we assume that eachbjesdrfmair is observed
at most once, the data can be re-arranged inbg & ny incomplete matrix where the learning
objective would be to “complete” the missing entries in this matrix (indeed, in thiteggnt is not
possible to generalize to never seen point&iand?").

In this case, our bilinear form framework exactly corresponds to complétie matrix, since
the bilinear function ok andy is exactly equal tQJiTMVj wherex = u; (i.e., X is thei-th person)
andy = vj (i.e.,y is the j-th object). Thus, théi, j)-th entry of the matrixM can be assimilated to
the value of the bilinear form defined by the matkixover the pair(u;,v;). Moreover the spectral
regularizer corresponds to the corresponding spectral functior afimplete matris € R™ =N,

In this context, finding a low-rank approximation of the observed entriesniratix is an ap-
pealing strategy, which corresponds to taking the rank penalty consfdainbmbined with, for
example, the square loss error. This however leads to non-convex agitoniproblems with mul-
tiple local minima, for which only local search heuristics are known (SrabibJaakkola, 2003).
To circumvent this issue, convex spectral penalty functions can bédevad. Indeed, in the case
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of binary preferences, combining the hinge loss function with the traca penalty (5) leads to
the maximum margin matrix factorization (MMMF) approach proposed by Srebal. (2005),

which can be rewritten as a semi-definite program. For the sake of effjciBeanie and Srebro
(2005) proposed to add a constraint on the rank of the matrix, resultingnam-aonvex problem
that can nevertheless be handled efficiently by classical gradiergriddschniques; in our setting,
this corresponds to changing the trace norm penalty (5) by the penalty (7)

3.2 Multi-Task Learning

It may be the case that we have attributes only for objedts, similarly, only for users). In that
case, for a finite number of usefs;,i =1,...,N} organized imy groups, we aim to estimate a
separate function on objecfgy) for each of theny usersi. Considering the estimation of each
of thesef;’s as alearning task one can possibly learn afl’s simultaneouslysing amulti-task
learningapproach.

In order to adapt our general framework to this scenario, it is naturadnsider the attribute
kerneIkZ for the objects, whose attributes are available, and the Dirac k@n‘elr the users, for
which no attributes are used. Again the choice of the loss function dejpenit& precise task to
be solved, and the spectral penalty function can be chosen to entongesharing of information
between different tasks.

In particular, taking the rank penalty function (4) enforces a decomposifithe tasks (learning
eachf;) into a limited number of factors. This results in a method for multi-task learningthars a
low-rank representation of the predictor functidnsThe resulting problem, however, is not convex
due to the use of the non-convex rank penalty function. A natural atbeeria then to replace the
rank constraint by the trace norm penalty function (5), resulting in aeooptimization problem
when the loss function is convex. Recently, a similar approach was indeptyproposed by Amit
et al. (2007) in the context of multiclass classification and by Argyriou €2808) for multi-task
learning.

Alternatively, another strategy to enforce some constraints among theigasksonstrain the
variance of the different classifiers. Evgeniou et al. (2005) shawatthis strategy can be for-
mulated in the framework of support vector machines by considermmglé-task kernelthat is, a
kernelkmuiti—task OVer the product spack x 9 defined between any two user/object pgks/) and
(x.y') by:

kutti—task(06Y)  (X,¥)) = (kg (x,X) +€) K] (¥,Y) , (9)

wherec > 0 controls how the variance of the classifiers is constrained compared tmitheof
each classifier. As explained in Appendix A, estimating a function over théugt spacexX x &
by penalizing the RKHS norm of the kernel (9) is a particular case of eneal framework, where
we take the Hilbert-Schmidt norm (6) as spectral penalty function, andenthe kernels between
users and between objects are respectikgix, x') +c andkz (y,Y). Whenc =0, thatis, when we
take a Dirac kernel for the users and an attribute kernel for the objbetspenalizing the Hilbert-
Schmitt norm amounts to estimating independent models for each user, asextia Evgeniou
et al. (2005). Combining two Dirac kernels for users and objects, cégply, and penalizing the
Hilbert-Schmitt norm would not be useful, since the optimal solution would bk floats other
than training pairs. On the other hand, replacing the Hilbert-Schmidt nofimedeby another
penalty, such as the trace norm (5), would be an interesting extensiantikernelk? (x,x') +c
and kZ (y,y') are used: this would constrain both the variance of the predictor funcfjosusd
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their decomposition into a small number of factors, a potentially nice approadme multi-task
learning applications.

3.3 Pairwise Learning

When attributes are available for both users and objects then it is possikkettraelattributes kernels
for each. Combining this choice with the Hilbert-Schmidt penalty (6) results ssidal machine
learning algorithms (e.g., an SVM if the hinge loss is taken as the loss funcfiph¢dto thetensor
productof X and¢’. This strategy is a classical approach to learn a function over pairsirspo
(see, e.g., Jacob and Vert, 2008). Replacing the Hilbert-Schmidt noandiher spectral penalty
function, such as the trace norm, would result in new algorithms for leatomgank functions
over pairs.

3.4 Combining the Attribute and Dirac Kernels

As illustrated in the previous subsections, the setting of the application oftermdees the com-
bination of kernels to be used for the users and the objects: typically, tvax Rernels for the
standard CF setting without attributes, one Dirac and one attributes kermelfti-task problems,
and two attributes kernels when attributes are available for both userdbputisoand one wishes to
learn over pairs.

There are many situations, however, where the attributes available tabdetba users and/or
objects are certainly useful for the inference task, but on the otherd@not fully characterize the
users and/or objects. For example, if we just know the age and gendgsersf we would like to use
this information to model their preferences, but would also like to allow fodiption of different
preferences for different users even when they share the sanamdggender. In our setting, this
means that we may want to use the attributes kernel in order to use knowuntettritom the users
and objects during inference, but also the Dirac kernel to incorporatéth that different users
and/or objects remain different even when they share many or all of tidiudes.

This naturally leads us to consider the following convex combinations of Rinalcattributes
kernels (Abernethy et al., 2006):

K" =2k +(1-)k3,

where 0<n <1 and 0< { < 1. These kernels interpolate between the Dirac kermets@ and{ =
0) and the attributes kernelg & 1 and{ = 1). Combining this choice of kernels with, for example,
the trace norm penalty function (5), allows us to continuously interpolatedaetwifferent settings
corresponding to different “corners” in tH@,{) square: standard CF with matrix completion at
(0,0), multi-task learning at0,1) and (1,0), and learning over pairs &f,1). The extra degree
of freedom created when and { are allowed to vary continuously between 0 and 1 provides a
principled way to optimally balance the influence of the attributes in the functionatson process.
Note that our representational framework encompasses simpler ngtprafahes to include at-
tribute information for collaborative filtering: for example, one could coas@wbmpleting matrices
using matrices of the fortdV +UAR,I +UpSL, whereUV T is a low-rank matrix to be optimized,
Ua andV, are the given attributes for the first and second domainsRan&@, are parameters to
be learned. This formulation corresponds to adding an unconstrainecitdntermuV ', and the
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simpler linear predictor from the concatenation of attribtlﬂg@l + UASX (Jacob and Vert, 2008).
Our approach implicitly adds a fourth cross-product tergTV, , whereT is estimated from data.
This exactly corresponds to imposing that the low rank matrix has a decompasftioh includes

Ua andVy as columns. Our combination of Dirac and attribute kernels has the advaithge-

ing specific weights) and{ that control the trade-off between the constrained and unconstrained
low-rank matrices.

4. Representer Theorems

We now present the key theoretical results of this paper and discusthkeayeneral optimization
problem (8) can be solved in practice. A first difficulty with this problem id tha optimization
space(F € By (9, X) : Q(F) < »} can be of infinite dimension. We note that this can occur even
under a rank constraint, because the{det By (9, X) : rankF) <R} is not included into any
finite-dimensional linear subspaceifand " have infinite dimensions. In this section, we show
that the optimization problem (8) can be rephrased as a finite-dimensiaidépr, and propose
practical algorithms to solve it in Section 5. While, as we show in Section 4.1efbamulation

of the problem as a finite-dimensional problem is a simple instance of thesesyee theorem
when the Hilbert-Schmidt norm is used as a penalty function, we prove tio8ekc2 a generalized
representer theorem that is valid with any spectral penalty function.

4.1 The Case of the Hilbert-Schmidt Penalty Function

In the particular case where the penalty functi(i) is the Hilbert-Schmidt norm (6), then the set
{FeB(7,X): Q(F) <} is the set of Hilbert-Schmidt operators. As recalled in Appendix A,
this set is a Hilbert space isometric through (1) to the reproducing keriftrHspace#{;, of the

kernel:
ke (06X, (v,Y)) = (X) (VY )y »
and the isometry translates framto f as:

115, = IIF 1> =Q(F).
As aresult, in that case the problem (8) is equivalent to:

minRy(f) +A| /2. 10
f%RN( )+ TS (10)

Therefore the representer theorem for optimization of empirical riskalized by the RKHS norm
(Aronszajn, 1950; Satkopf et al., 2001) can be applied to show that the solution of (10) naxdbss
lives in the linear span of the training data. With our notations this translates mtltbwing
result:

Theorem 2 If F is a solution of the problem:

min )RN(F)+)\§10i(F)2,

FEB(Y X
then it is necessarily in the linear spanpf ®@y; : i =1,...,N}, thatis, it can be written as:
N
F= ZlGiXi Vi, (11)
=
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for somea € RN,

For the sake of completeness, and to highlight why this result is specific tdilibert-Schmidt
penalty function (6), we rephrase here, with our notations, the main arganrethe proof of
Scholkopf et al. (2001). Any operatdt in B, (9", X) can be decomposed Bs= Fs+ F, , whereFs
is the projection of onto the linear span dfx;®y; : i=1,...,N}. F, being orthogonal to each
Xi ®Y; in the training set, one easily gefy (F) = Ry(Fs), while ||F ||? = || Fs||?+ || F. || by the
Pythagorean theorem. As a result a minimizesf the objective function must be such that= 0,
that is, must be in the linear span of the training tensor products.

4.2 A Representer Theorem for General Spectral Penalty Functios

Let us now move on to the more general situation (8) where a generatalfeaction Q(F) is
used as regularization. Theorem 2 is usually not valid in such a caseodisiqpeaks down because
it is not true thaQ(F) = Q(Fs) + Q(F, ) for generak), or even thaf)(F) > Q(Fs).

The following theorem, whose proof is presented in Appendix B, can &e ag a generalized
representer theorem. It shows that a solution of (8), if it exists, caxjeneled over a finite basis
of dimensionmy x my (wheremy andm, are the underlying dimensions of the subspaces where
the data lie), and that it can be found as the solution of a finite-dimensiotialination problem
(with no convexity assumptions on the loss):

Theorem 3 For any spectral penalty functiof : By (9, .X) — RU {4}, consider the optimiza-
tion problem:
min  Ry(F) +AQ(F). 12
Eoamin (F) (F) (12)
If the set of solutions is not empty, then there is a solution BG® 9y, that is, there exists

o € R™*My gych that:
my My

F :i;;aijui®vj, (13)

where(us,...,un,) and (vl, ) ..,vmy) form orthonormal bases ofy and 94, respectively. More-
over, in that case the coefficierdscan be found by solving the following finite-dimensional opti-
mization problem:

min Ry (diag(XaYT)) FAQ(a), (14)

acR™ My

whereQ(a) refers to the spectral penalty function applied to the matriseen as an operator
fromR™ to R™, and X< RN*™ and Y e RN*™x denote any matrices that satisfyKXX" and
G=YY for the two Nx N Gram matrices K and G defined by, K (xi,x;) - and Gj = (¥i,¥;),,
for0<i,j <N.

This theorem shows that, as soon as a spectral penalty function is usedrtd the complexity
of the compact operators, a solution can be searched in the finite-dimaingiaceXy ® 9N, which
in practice boils down to an optimization problem over the set of matrices ohsize m,. The
dimension of this space might however be prohibitively large for real-waplplications where,
for example, tens of thousands of users are confronted to a databtm®isands of objects. A
convenient way to obtain an important decrease in complexity (at the expémossibly losing
convexity) is by constraining the rank of the operator through an adeqlmeice of a spectral
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penalty. Indeed, the set of non-zero singular componerfsasd an operator is equal to the set of
non-zero singular values of in (13) seen as a matrix. Consequently any constraint on the rank of
F as an operator results in a constraintoas a matrix, from which we deduce:

Corollary 4 If, in Theorem 3, the spectral penalty functi@nis infinite on operators of rank larger
thanr (i.e.,0r11(u) = +oo for u > 0), then the matria € R™*™ in (13) has rank at most .

As a result, if a rank constraint raffk) < r is added to the optimization problem then the
representer theorem still holds but the dimension of the paramétromes x (my + my) instead
of my x my, which is usually beneficial. We note, however, that when a rank camistsaadded
to the Hilbert-Schmidt norm penalty, then the classical representer Theébaad the expansion of
the solution oveN vectors (11) are not valid anymore, only Theorem 3 and the exparikmrén
be used. More importantly, this will likely have algorithmic/efficiency conseges.

5. Algorithms

In this section we explain how the optimization problem (14) can be solved oiipea We first
consider a general formulation, then we specialize to the situation wherexisand manyy’s are

identical; that is, we are in a matrix completion setting where it may be advansgeconsider
other formulations that take into account some group structure explicitly.

5.1 Convex Dual of Spectral Regularization

When the loss is convex, we can derive the convex dual problem, waithe helpful for actually
solving the optimization problem. As in the classical representer theoremsothdaiso provide
an alternative proof of the representer theorem in that particular situation

Foralli=1,...,N, we let denotey;(vi) = ¢ (v;,t;) the loss corresponding to predictigdor the
i-th data point. We now assume that edghs convex (this is usually met in practice). Following
Bach et al. (2005), we lep;’(a;) denote its Fenchel conjugate defined}gi$a;) = max,cr 0V —
Yi(vi). Minimizers of the optimization problem defining the conjugate function are oéfred
to as Fenchel duals to; (Boyd and Vandenberghe, 2003). In particular, we have the following
classical examples:

o Least-squares regressiowe have;(vi) = 5(t —v)? andyy; (o) = 20+ ajt;.

e Logistic regressionwe havey;(vi) = log(1+exp(—yivi)), wherey; € {—1,1}, andy; (a;) =
(1+ajt)) log(1+ aiti) — aitjlog(—ait;) if ajt; € (—1,0), 4+ otherwise.

We also assume that the spectral regularization is such that foedl, s = s, wheres is
a convexfunction such thas(0) = 0. In this situation, we hav@(A) = YicyS(0i(A)). We can
also define a Fenchel conjugate ffA), which is also a spectral functid®*(B) = 5y S"(0i(B))
(Lewis and Sendov, 2002).

Some special cases of interest $0v) are:

1. Note that results on functions of eigenvalues of symmetric matricebeartended to functions of singular values
of rectangular matrices by using the equivalence between the singllardecomposition of and the eigenvalue

decomposition 0( A?T 'g ) (Stewart and Sun, 1990).
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e 5(0) = |o] leads to the trace norm and theiit) = 0 if |t| is less than 1, and o otherwise.
e s(0) = 30? leads to the Frobenius/Hilbert Schmidt norm and tiigm) = 312.

e 5(0) = elog(1+ €°/¢) 4 elog(1 + e 9/¢) is a smooth approximation 96|, which becomes
tighter wherne is closer to zero. We haves (1) = (1+1)log(1+T1) + 1(1—1)log(1—1).
Moreover,s(0) =T < (s°)/(1) = 0 = Zlog -1,

Once the representer theorem has been applied, our optimization prodotebe cewritten in
theprimal form in (14):
N
i i(XaY D)i) +AQ(a). 15
BN Wi((XaY i) +AQ(a) (15)
We can now form the Lagrangian, associated with added constreinidiag XaY ") and corre-
sponding Lagrange multipligd € RN:

L(v,a,B) = le Vi) ZB. — (XaY ")) +AQ(a),

and minimize with respect teandW to obtain thedual problem, which is to maximize:
N 1 :
-3 Ui(B) A (—AxT Dlag(B)Y> . (16)
i=

Once the optimal dual variablgis found (there are as many of those as there are observations),
then we can go back to (which may or may not be of smaller size), by Fenchel duality, that is,
a is among the Fenchel duals e}f%XT Diag(B)Y. Thus, when the functiosis differentiable and
strictly convex (which implies that the Fenchel dual is unique), then we otitaiprimal variables

a in closed form from the dual variabl§s Whens s not differentiable, for example, for the trace
norm then, following Amit et al. (2007), we can find the primal variables bty that once is
known, the singular vectors ofare known and we can find the singular values by solving a reduced
convex optimization problem.

5.1.1 GOMPUTATIONAL COMPLEXITY

Note that for optimization, we have two strategies, following the same two stratggiegular
kernel methods: using the primal problem in Eq. (15) of dimensigm, < nyn, (the actual
dimension of the underlying data) or using the dual problem in Eq. (1L&)wdakionN (the number
of ratings). The choice between those two formulations is problem depende

5.2 Collaborative Filtering

In the presence of (many) identical columns and rows, which is often tbe icacollaborative
filtering situations, the kernel matricés and L have some columns (and thus rows) which are
identical. In such cases, it is computationally more desirable to instead coti@desrnel matrices
(with their square-root decompositiort6)= XX andl =YY" as the kernel matrices for all distinct
elements ofX and?y” (let ny andny be their sizes). Then each observatigny;,t;) corresponds to

a pair of indiceqa(i),b(i)) in {1,...,nx} x {1,...,ny}, and the primal problem becomes:
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acRMxMy

n
min lejh (6;(i)XGYT6b(i)) +AQ(a),
i=

whered, is a vector with only zeroes except at positiorirhe dual function is

N * * 1~T N T
—i;llJi (Bi) —AQ" | =3 X i;Biaa(i)ab(i)Y :

Similar to usual kernel machines and the general case presented abmgthe primal or the
dual formulation for optimization depends on the number of available ratihgempared to the
ranksmy andmy of the kernel matrice& andL. Indeed, the number of variables in the primal
formulation ismym,,, while in the dual formulation it i$\.

5.3 Low-rank Constrained Problem

We approximate the spectral norm by an infinitely differentiable spectraitifon. Since we con-
sider in this paper only infinitely differentiable loss functions, our probleitindgs of minimizing
an infinitely differentiable convex functio®(W) over rectangular matrices of sigex q for cer-
tain integersp andg. As a result of our spectral regularization, we hope to obtain (appraeiya
low-rank matrices. In this context, it has proved advantageous to cotmideank decompositions
of the formW = UV " whereU andV havem < min{p,q} columns (Burer and Monteiro, 2005;
Burer and Choi, 2006). Specifically, instead of optimizing a low-rahkirectly, we can optimize
U andV jointly in training. Burer and Monteiro (2005) have shown thaniE min{p,q} then the
non-convex problem of minimizinG(UV ") with respect tdJ andV " has no local minima.

We now prove a stronger result in the context of twice differentiabletfons, namely that if
the global optimum ofs has rank < min{p,q}, then the low-rank constrained problem with rank
r+1 (or any larger rank, for that matter) has no local minimum and its global mininouragponds
to the global minimum o6G. The following theorem makes this precise (see Appendix C for proof).

Proposition 5 Let G be a twice differentiable convex function on matrices of sizg with compact
level sets. Letn» 1and(U,V) € RP*Mx R9*M a |ocal optimum of the function HRP*™ x R9*M —
R defined by HU,V) = G(UV "), that is, U is such thaflH (U,V) = 0 and the Hessian of H at
(U,V) is positive semi-definite. If U or V is rank deficient, thee=NJV " is a global minimum of
G, thatis,d0G(N) = 0.

The previous proposition shows that if we have a local minimum for the napkeblem and
if the solution is rank deficient, then we have a solution of the global optimizatiololggm. This
naturally leads to a sequence of reduced problems of increasing dimenssonaller tharr + 1,
wherer is the rank of the global optimum. However, the number of iterations of eattiredbcal
minimizations and the final rank cannot be bounded a priori in general.

Note that using a low-rank representation to solve the trace-norm regpadgoroblem leads
to a non-convex minimization problem with no local minima, while simply using the low-ra
representatiomwithoutthe trace norm penalty and potentially with a Frobenius norm penalty, may
lead to local minima. That is, instead of Eq. (14) with the trace norm, we cantsiddollowing
formulation:
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min Ry (diag(XaB™Y ")) +A S [la(: B 2,
. LB C )) z laG IR
wherea (:,k) and(:,k) are thek-th columns ofa and. In the simulation section, we compare
the two approaches on a synthetic example, and show that the convexdtiomsolved through a
sequence of non-convex formulations leads to better predictive peafare.

5.4 Kernel Learning for Spectral Functions

In our collaborative filtering context, there are two potentially useful sesiof kernel learning:
learning the attribute kernels, or learning the weigh@nd{ between Dirac kernels and attribute
kernels. In this section, we show how multiple kernel learning (MKL) (lai®t et al., 2004; Bach
et al., 2004) may be extended to spectral regularization.

We first prove a computationally useful fact about our particular objedtinction:

Proposition 6 The dual solution of the optimization problem in Eq. (16) depends only anaitréx
K®G.

Proof It suffices to show that for all matrice® then the positive singular values Xf BY only

depend orK ® G. The largest singular value is defined as the maximura'of ' BY bover unit
Ta\XT ThH

norm vectorsa andb. By a change of variable, it is equivalent to maximi ;)T);HW%H b) _

ve\:;tf(aaé)?((rgc(:)b/:g%) with respect toa"andb (Golub and Loan, 1996). Thus the largest positive

singular value is indeed a function Bf® G. Results for other singular values may be obtained
similarly. |

This shows that the natural kernel matrix to be learned in our context isribreekker product
K® G. We thus follow Lanckriet et al. (2004) and considdrkernel matriceKj,...,Ky for
X andM kernel matricesG,,...,Gy for 9. One possibility could be to follow Lanckriet et al.
(2004) and to learn a convex combination of the matri€e® Gk by minimizing with respect to
the combination weights the optimal value of the problem in Eq. (16). Howewike the usual
Hilbert norm regularization, this does not lead to a convex problem inrgend/e thus focus on
the alternative formulation of the MKL problem (Bach et al., 2004): we wwrsthe sum of the
predictor functions associated with each of the individual kernel pKirsGy) and penalize by the
sum of the norms.

That is, if we let denoteXy,..., Xy andYi,...,Y\ the respective square roots of matrices
Ki,...,Ky andGg,..., Gy, we look for predictor functions which are sums of igossible atomic
predictor functions, and we penalize by the sum of spectral functiomdtéon the following opti-
mization problem:

M
min W XkaYk +AY Qag).
VK,akeRm&X"le I(k_ > Z
We form the Lagrangian:
n N M M
L(V,01,...,0m,B) =Y Wivi) =S Bi(vi (XY i) +A S Q(o),
24007 2P 2 DU EA ),
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and minimize w.r.tv andas, ..., 0y to obtain the dual problem, which is to maximize
- > WiB)- Z)\Q —3 X Diag(B)¥ | -
u

In the case of the trace norm, we obtain support kernels (Bach et ait),28@t is, only a sparse
combination of matrices ends up being used. Note that in the dual formulateye,ithonly one3
to optimize, and thus it is preferable to use the dual formulation rather thamithal jormulation.

6. Experiments

In this Section we present several experimental findings for the algoréinchsnethods discussed
above. Much of the present work was motivated by the problem of caolidle filtering and we
therefore focus solely within this domain. As discussed in Section 3, by egiegtor estimation
and spectral regularization as a framework for CF, we may use potentially imfmrmation to
predict preferences. Our primary goal how is to show that, as one vhoyle, such capabilities do
improve prediction accuracy.

6.1 Data Sets and Metrics

We present several plots created by experimenting on synthetic datarfiticsal data set was gen-
erated as follows: (1) sample i.i.d. multivariate featurefof dimension 6, (2) generate i.i.d. mul-
tivariate features foy of dimension 6 as well, (3) sampiefrom a random bilinear form ix and

y plus some noise, (4) restrict the observed feature space to only 3dg&bubothx andy. Since
part of the data is discarded, the label cannot be perfectly predictdtelignown features. On the
other hand, since we keep some of them, knowing and using these attribotd work better than
not using them. In other words, we expect that settjrandZ to be values other than 0 or 1 should
provide better performance.

We also experimented with the well-known MovieLens 100k data set from tbegkens Re-
search Group at the University of Minnesota. This data set consistdinfis of 1682 movies by
943 users. Each user provided a rating, in the form of a score {io)3,4,5}, for a small sub-
set of the movies. Each user rated at least 20 movies, and the total nuimbengs available is
exactly 100,000, averaging about 105 per user. This data set was agipropriate as it included
attribute information for both the movies and the users. Each movie was labgledtieast one
among 19 genres (e.g., action or adventure), while the users’ attributededcage, gender, and
an occupation among a list of 21 occupations (e.g., administrator or artisokVerted the users’
age attribute to a set of binary features identifying one of five age ca¢sgor

All test set accuracies are measured as the root mean squaredverewesl over 10-fold cross
validations. In particular, we focus on the comparisons of intermediatesrafueand(, compared
to the four “corners” of th&) /{—parameter space:

e 1 = 0,{ = 0: matrix completion
e N =0,{=1andn =1, = 0: multi-task learning on users or objects

e N =1,{ = 1: pairwise learning
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Figure 1: Comparison between two spectral penalties: the trace normaidfthe Frobenius norm
(right), each with an additional fixed rank constraint as described itidde6.3. Each
surface plot displays performance values over a rangg afd ( values, all obtained
using the synthetic data set. The minimal value achieved by the trace norm22 @4i@
the one achieved by the rank constraint is 0.1540.

6.2 Results

We now summarize a number of experimental results for several of thenaéotioned algorithms.

6.2.1 TRACENORM VERSUSL OW-RANK

In Figure 1, we present two performance plots overtj\@parameter space, both obtained using the
synthetic data set. The left plot displays the results when using the travespectral penalty. Here
we used the low rank decomposition formulation described in Section 5.3 wydPréposition 5)
has no local minima. The plot on the right uses the same rank-constraimedldtion, but with

a Frobenius norm penalty instead. The trace norm constrained algorétiormps slightly better.
Moreover, best predictive performance is achieved in both cases mitlute of the square and not
at any of the four corners.

6.2.2 KERNEL LEARNING

In Figure 2, we show the test set accuracy as a function of the reqilariparameter, when we use
the kernels corresponding to the four corners as the four basisl&e¥ide can see that we recover
similar performance (error of 0.14 instead of 0.12) than by searchingativge and{’s. The same
algorithm could also be used to learn kernels on the attributes.
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Figure 2: Learning the kernel: test set accuracy vs. regularizatimnyger. Minimum value is
0.14.

6.2.3 FERFORMANCE ONMOVIELENS DATA

Figure 3 shows the predictive accuracy in RMSE on the MovieLens dgtalstained by 10-fold
cross-validation. The heat plot provides some insight on the relative vdu both movies and
users, of the given attribute kernels versus the simple identity kernels.carners have higher
values than some of the values inside the square, showing that the bestebla¢dween attribute
and Dirac kernels is achieved fqr{ well inside the interior of0, 1] x [0, 1].

7. Conclusions

We have presented a method for solving a generalized matrix completion morofiiere we have
attributes describing the matrix dimensions. The problem is formalized as thieprof inferring a
linear compact operator between two general Hilbert spaces, whiehajzes the classical finite-
dimensional matrix completion problem. We introduced the notion of spectralarézation for
operators, which generalizes various spectral penalizations for nstaod we proved a general
representer theorem for this setting. Various approaches, suchmdarstdow rank matrix comple-
tion, are special cases of our method. This framework is particularlyareiéaer CF applications
where attributes are available for users and/or objects, and preliminpeyigents confirm the
benefits of our method.

An interesting direction of future research is to explore further the multitesgking algorithm
we obtained with low-rank constraint, and to study the possibility to deriiinerimplementations
that may better fit the need for large-scale applications where trainingr@atar@inuously increas-
ing. On the theoretical side, a better understanding of the effects of aodmank regularizations
and their interaction would be of considerable interest.
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Figure 3: A heat plot of performance for a range of kernel parantteices,n and{, using the
MovielLens data set.

Appendix A. Compact Operators on Hilbert Spaces

In this appendix, we recall basic definitions and properties of Hilbertesppperators. We refer
the interested reader to general books (Brezis, 1980; Berlinet ammdsiAgnan, 2003) for more
details.

Let X and 9" be two Hilbert spaces, with respective inner products denotetkby), and
(y,¥)q forx,x" € X andy,y’ € 9. We denote byB (9, X) the set of bounded operators froxito
9, that is, of continuous linear mappings frgto X. For any two element&,y) in X x 9, we
denote byx @y theirtensor productthat is, the linear operator fropi to X defined by:

Vhed, (x@y)h=(y,h),x.

We denote byBy (9, X) the set ofcompactiinear operators fron)” to X, that is, the set of linear
operators that map the unit ball 9f to a relatively compact set of. Alternatively, they can also
be defined as the limit of finite rank operators.

WhenX and?9” have finite dimensions, theBy (9, X) is simply the set of linear mappings from
9 to X, which can be represented by the set of matrices of dimensionstimdim (9). In that
case the tensor produc y is represented by the matrky ', wherey " denotes the transposeyof

For general Hilbert space$ and?9’, any compact linear operatbre By (9, X) admits aspec-
tral decomposition

(29

F= .ZLO'iUi RVj. (17)
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Here the thesingular values(oj)icy form a sequence of non-negative real numbers such that
lim o; = 0, and(u;); oy and (Vi) form orthonormal families i and?’, respectively. Although
|—00

the vectoru;);_y and (vi);cy in (17) are not uniquely defined for a given operatgrthe set of
singular values is uniquely defined. By convention we denote:§f ), 02(F), ..., the successive
singular values oF ranked by decreasing order. Ttank of F is the number ranf) € NU {4}
of strictly positive singular values.

We now describe three subclasses of compact operators of partiglelzarce in the rest of this
paper.

e The set of operators with finite rank is denotBg (9", X).
e The operator§ € By (9, X) that satisfy:

(29

Zloi(F)2<oo

are calledHilbert-Schmidtoperators. They form a Hilbert space, deno®d9", X), with
inner product(., ) ..., between basic tensor products given by:

XY X ®Y) oy = XX) 1 (V.Y) o - (18)
In particular, the Hilbert-Schmidt norm of an operatofBn(9, X) is given by:

IF 2= (_iomF)Z) .

Another useful characterization of Hilbert-Schmidt operators is the fatigwEach linear
operator : 9 — X uniquely defines a bilinear functiofy : X x 9 — R by

f (X7y) = <X7 FY>x :

The set of functionsfr associated to the Hilbert-Schmidt operators forms itself a Hilbert
space of function x 9 — R, which is the reproducing kernel Hilbert space of the product
kernel defined fof(x,y), (X,y')) € (X x %)% by

ke (%), (X)) = (6 X) (YY) o -
e The operator§ € By (9, X) that satisfy:

00

.Zloi(F) < o

are calledrace-classoperators. The set of trace-class operators is denBiéd’, X). The
trace normof an operatoF € B (9, X) is given by:

00

IF =y ai(F).

Obviously the following ordering exists among these various classes cdtope

and all inclusions are equalitiesAf and?” have finite dimensions.
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Appendix B. Proof of Theorem 3

We start with a general result about the decrease of singular valuesfpact operators composed
with projection:

Lemma 7 Let G and# be two Hilbert spaces, H a compact linear subspacg/ondy denote
the orthogonal projection onto H. Then for any compact operatorg=— # it holds that:

Vi>1, o(NuF)<oi(F).
Proof We use the classical characterization ofittle singular value:

oi(F) = max min Fx||4,
(F)= max _ min_[[Fx|ly

where1/(G) denotes the set of all linear subspaces;06f dimensioni. Now, observing that for
anyx we have|| My Fx|| 5 < ||Fx||4 proves the Lemma. [

Given atraining set of patterrig;,y;);,_; y € X x 9/, remember that we denote By and9y the
linear subspaces dof and?” spanned by the training patterpg , i = 1,...,N} and{y;, i =1,...,N},
respectively. For any operatBre By (9, .X), let us now consider the operai@r= N, FM,. By
constructionf andG agree on the training patterns, in the sense that#$ot, ..., N:

(Xi, GYi)x = (Xi, Mg FMog Vi) = (M, FMogYi) » = (X, FYi) x -

ThereforeF andG have the same empirical risk:
Ru(F) =Rn(G). (19)

Now, by denoting-* the adjoint operator, we can use Lemma 7 and the fact that the singulas value
of an operator and its adjoint are the same to obtain, fot an§:

This implies that the spectral penalty term satist¥&) < Q(F). Combined with (19), this shows
that if F is a solution to (12), the = N x, F My is also a solution. Observing th@tc Xy ® N
concludes the proof of the first part of Theorem 3, resulting in (13).

We have now reduced the optimization problenBy(9’, X) to a finite-dimensional optimiza-
tion over the matrixa of sizemy x my. Let us now rephrase the optimization problem in this
finite-dimensional space.

Let us first consider the spectral penalty tetF ). Given the decomposition (13), the non-zero
singular values oF as an operator are exactly the non-zero singular valuesasfa matrix, as soon
as(uq,...,Um,) and(vl,...,vmy) form orthonormalbases ofXy and94y, respectively. In order to
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be able to express the empirical riBk(F) we must however consider a decompositiori-adver

the training patterns, as:
N N

F=3 3 wixoyj. (20)
i=1j=1

In order to express the singular values from this expression let us uateatheGram matrices K
andG of the training patterns, that is, tihex N matrices defined far, j = 1,...,N by:

Kij = <Xi,Xj>xa Gjj = <Yi,yj>9f~

We note that by definition the ranks &f and G are respectivelyny andm,. Let us now fac-
torize these two matrices &= XX andG =YY", whereX € RN*™ andY € RN*™ are any
square roots, for example, obtained by kernel PCA or incomplete Clyotesiomposition (Fine
and Scheinberg, 2001; Bach and Jordan, 2005). The maiicslY provide a representation
of the pattern in two orthonormal bases which we denotéuy. .., uny,) and (vl,...,vmy). In
particular we have, foranyj e 1,... N:

my My
Xi®Yj= Z Z XiiYimUi @ Vm,
I=1m=1

from which we deduce:

I=1m=1 \i=

1054 rn'}’ N N
F=5% > Ziz XiYimYij | Ui @ V.
Qs
Comparing this expression to (13) we deduce that:
a=X"yy.
The empirical erroRy(F) is a function off (x,y;) for | =1,...,N. From (20), we see that:

N N
Foay) =3 > viKiGiy,
i=1j=1

and therefore the vector of predictioks = (f (xi,y1)),_; N € RN can be rewritten as:
Fy = diag KyG) = diag (XaYT) .
We can now replace the empirical riB (Fn) by Ry (diag(XaY ")) and the penalt@2(F) by Q(a)

to deduce the optimization problem (14) from (12), which concludes thaf pfolrheorem 3.

Appendix C. Proof of Proposition 5

Since the function has compact level sets, we may assume that we areég@strign open bounded
subset ofRP*9 where the second and first derivatives are uniformly bounded. WeaiteC > 0

a common upper bound of all derivatives. The gradient of the funétiaequal torlH = (DE%T\L,J),
while the Hessian off is the following quadratic form:

O2H[(dU,dV), (dU,dV)] = 2trdV ' 0GdU + 0?GUdV " +duVv',udv’ +duv'].
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COLLABORATIVE FILTERING VIA OPERATORESTIMATION WITH SPECTRAL REGULARIZATION

Without loss of generality, we may assume that the last columbksaridV are equal to zero (this
can be done by rotation & or V). The zero gradient assumption implies th#'U = 0 and
OGV = 0. While if we takedU anddV with the firstm— 1 columns equal to zero, and last columns
equal to arbitraryr andyv, then the second term in the Hessian is equal to zero. The positivity of the
first term implies that for alli andv, v OGu > 0, that is, the gradient @ atN = UV " is equal to
zero, and thus we get a stationary point and thus a global minimuen of
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