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Abstract
We present a general approach for collaborative filtering (CF) using spectral regularization to learn
linear operators mapping a set of “users” to a set of possiblydesired “objects”. In particular, sev-
eral recent low-rank type matrix-completion methods for CFare shown to be special cases of our
proposed framework. Unlike existing regularization-based CF, our approach can be used to incor-
porate additional information such as attributes of the users/objects—a feature currently lacking
in existing regularization-based CF approaches—using popular and well-knownkernel methods.
We provide novel representer theorems that we use to developnew estimation methods. We then
provide learning algorithms based on low-rank decompositions and test them on a standard CF data
set. The experiments indicate the advantages of generalizing the existing regularization-based CF
methods to incorporate related information about users andobjects. Finally, we show that certain
multi-task learning methods can be also seen as special cases of our proposed approach.

Keywords: collaborative filtering, matrix completion, kernel methods, spectral regularization

1. Introduction

Collaborative filtering (CF) refers to the task of predicting preferencesof a given “user” for some
“objects” (e.g., books, music, products, people, etc.) based on his/her previously revealed
preferences—typically in the form of purchases or ratings—as well as the revealed preferences
of other users. In a book recommender system, for example, one might like tosuggest new books
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to a new user based on what she and other users have recently purchased or rated. The ultimate goal
of CF is to infer the preferences of users in order to offer them new objects.

A number of CF methods have been developed in the past (Breese et al., 1998; Heckerman et al.,
2000; Salakhutdinov et al., 2007). Recently there has been interest in CFusing regularization-based
methods (Srebro and Jaakkola, 2003). This work adds to that literature by developing a novel
general approach to regularization-based CF methods.

Recent regularization-based CF methods assume that the only data availableare the revealed
preferences, where no other information such as background information on the objects or users is
given. In this case, one may formulate the problem as that of inferring the contents of a partially
observedpreference matrix: each row represents a user, each column represents an object (e.g.,
books or movies), and entries in the matrix represent a given user’s rating of a given object. When
the only information available is a set of observed user/object ratings, the unknown entries in the
matrix must be inferred from the known ones—of which there are typically very few relative to the
size of the matrix.

To make useful predictions within this setting, regularization-based CF methods make certain
assumptions about therelatednessof the objects and users. The most common assumption is that
the preference function can be decomposed into a small number of factors, resulting in the search
for a low-rank matrix which approximates the partially observed matrix of preferences (Srebro and
Jaakkola, 2003). The rank constraint can be interpreted as a regularization on the hypothesis space.
Since the rank constraint gives rise to a non-convex set of matrices, theassociated optimization
problem will be a difficult non-convex problem for which only heuristic algorithms exist (Srebro and
Jaakkola, 2003). An alternative formulation, proposed by Srebro et al. (2005), suggests penalizing
the predicted matrix by itstrace norm, that is, the sum of its singular values. An added benefit of the
trace norm regularization is that, with a sufficiently large regularization parameter, the final solution
will be low-rank (Fazel et al., 2001; Bach, 2008).

However, a key limitation of current regularization-based CF methods is thatthey do not take
advantage of additional information, such as known attributes of each user (e.g., gender, age) and
object (e.g., book’s author, genre), which is often available. Intuitively, such information might be
useful to guide the inference of preferences, in particular for usersand objects with very few known
ratings. For example, at the extreme, users and objects with no prior ratingscan not be considered
in the standard CF formulation, while their attributes alone could provide some basic preference
inference.

The main contribution of this paper is to develop a general framework for theCF setting when
user/object attribute information is potentially available and, in particular, to provide several specific
algorithms based on new “representer” theorems. More precisely we show that CF, while typically
seen as a problem of matrix completion, can be thought of more generally aslinear operator esti-
mation, where the desired operator maps from a Hilbert space of users to a Hilbert space of objects.
Equivalently, this can be viewed as learning a bilinear form between usersand objects. We then
developspectral regularizationbased methods to learn such linear operators. When dealing with
operators, rather than matrices, one may also work with infinite dimensions, allowing one to con-
sider arbitrary feature space, possibly induced by some kernel function. Among key theoretical con-
tributions of this paper are new representer theorems, allowing us to develop new general methods
that learn finitely many parameters even when working in infinite dimensional user/object feature
space. These representer theorems generalize the classical representer theorem for minimization of
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an empirical loss penalized by the norm in a Reproducing Kernel Hilbert Space (RKHS) to more
general penalty functions and function classes.

We also show that, with the appropriate choice of kernels for both users and objects, we may
consider a number of existing machine learning methods as special cases ofour general framework.
In particular, we show that several CF methods such as rank-constrained optimization, trace-norm
regularization, and those based on Frobenius norm regularization, canall be cast as special cases of
spectral regularization on operator spaces. Moreover, particular choices of kernels lead to specific
sub-cases such as regular matrix completion and multi-task learning. In the specific application
of collaborative filtering with the presence of attributes, we show that our generalization of these
sub-cases leads to better predictive performance.

The outline of the paper is as follows. In Section 2, we review the notion of a compact op-
erator on Hilbert Space, and we show how to cast the collaborative filtering problem within this
framework. We then introduce spectral regularization and discuss how rank constraint, trace norm
regularization, and Frobenius norm regularization are all special cases of spectral regularization. In
Section 3, we show how our general framework encompasses many existing methods with proper
choice of the loss function, the kernels, and the spectral regularizer. In Section 4, we provide three
representer theorems for operator estimation with spectral regularization that allow for efficient
learning algorithms. Finally in Section 5 we present a number of algorithms and describe several
techniques to improve efficiency. We test these algorithms in Section 6 on synthetic examples and
a widely used movie database.

2. Learning Compact Operators with Spectral Regularization

In this section we propose a mathematical formulation for a general CF problem with spectral
regularization. We then show in Section 3 how several learning problems can be cast under this
general framework.

2.1 A General CF Formulation

We consider a general CF problem in which our goal is to model the preference of a user described
by x for an item described byy. We denote byx andy the data objects containing all relevant or
available information; this could, for example, include a unique identifieri for thei-th user or object.
Of course, the users and objects may additionally be characterized by known attributes, in which
casex or y might contain some representation of this extra information. Ultimately, we would like
to consider such attribute information as encoded in some positive definite kernel between users, or
equivalently between objects. This naturally leads us to model the users as elements in a Hilbert
spaceX , and the objects they rate as elements of another Hilbert spaceY .

We assume that our observation data is in the form ofratings from users to objects, a real-
valued score representing the user’s preference for the object. Alternatively, similar methods can be
applied when the observations are binary, specifying for instance whether or not a user considered
or selected an object.

Given a series ofN observations(xi ,yi , ti)i=1,...,N in X ×Y ×R, whereti represents the rating
of userxi for objectyi , the generalized CF problem is then to infer a functionf : X ×Y → R that
can then be used to predict the rating of any userx ∈ X for any objecty ∈ Y by f (x,y). Note that
in our notationxi andyi represent the user and object corresponding to thei-th rating available. If
several ratings of a user for different objects are available, as is commonly the case, severalxi ’s
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will be identical inX—a slight abuse of notation. We denote byXN andYN the linear spans of
{xi , i = 1, . . . ,N} and{yi , i = 1, . . . ,N} in X andY , with respective dimensionsmX andmY .

In the present paper, we uniquely consider learning preference functions f (·, ·) that take the
form of a linear operator fromX to Y ; that is, bilinear forms onX ×Y ,

f (x,y) = 〈x,Fy〉X , (1)

for some compact operatorF . We now denote byB0(Y ,X ) the set of compact operators fromX to
Y . For an introduction to relevant concepts in functional analysis, see Appendix A.

In the general case we consider below, ifX andY are not Hilbert spaces, one could also first map
(implicitly) usersx and objectsy into possibly infinite dimensional Hilbert feature spacesΦX (x)
andΨY (y) and use kernels. We refer the reader to Appendix A for basic definitionsand properties
related to compact operators that are useful below. The inference problem can now be stated as
follows:

Given a training set of ratings, how may we estimate a “good” compact operator F to predict
future ratings?

We estimate the operatorF in (1) from the training data using a standard regularization and
statistical machine learning approach. In particular, we propose to definethe operator as the solution
of an optimization problem overB0(Y ,X ) whose objective function balances a data fitting term
RN(F), which is small for operators that can correctly explain the training data, witha regularization
termΩ(F) that controls the complexity of the desired operator. We now describe thesetwo terms
in more details.

2.2 Data Fitting Term

Given aloss functionℓ(t ′, t) that quantifies how good a predictiont ′ ∈ R is if the true value ist ∈ R,
we consider a fitting term equal to the empirical risk, that is, the mean loss incurred on the training
set:

RN(F) =
1
N

N

∑
i=1

ℓ(〈xi ,Fyi〉X , ti) . (2)

The particular choice of the loss function should typically depend on the precise problem to be
solved and on the nature of the variablest to be predicted. See more details in Section 3. In
particular, while the representer theorems presented in Section 4 do not need any convexity with
respect to this choice, the algorithms presented in Section 5 do.

2.3 Regularization Term

For the regularization term, we focus on a class of spectral functions defined as follows.

Definition 1 A functionΩ : B0(Y ,X ) 7→ R∪{+∞} is called aspectral penalty functionif it can be
written as:

Ω(F) =
d

∑
i=1

si (σi(F)) , (3)

where for any i≥ 1,si : R
+ 7→ R

+∪{+∞} is a non-decreasing penalty function satisfying s(0) = 0,
and(σi(F))i=1,...,d are the d singular values of F in decreasing order—d possibly infinite.
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Note that, by the spectral theorem presented in Appendix A, any compact operator can be decom-
posed into singular vectors, with singular values being a sequence that tends to zero.

Spectral penalty functions include as special cases several functionsoften encountered in matrix
completion problems:

• For a given integerr, consider takingsi = 0 for i = 1, . . . , r, sr+1(u) = 0 for u = 0, and
sr+1(u) = +∞ whenu > 0. This leads to the function:

Ω(F) =

{

0 if rank(F) ≤ r ,

+∞ otherwise.
(4)

In other words, the set of operatorsF that satisfyΩ(F) < +∞ is the set of operators with rank
smaller thanr.

• Takingsi(u) = u for all i results in the trace norm penalty (see Appendix A):

Ω(F) =

{

‖F ‖1 if F ∈ B1(Y ,X ) ,

+∞ otherwise,
(5)

where we note withB1(Y ,X ) the set of operators with finite trace norm. Such operators are
referred to as trace class operators.

• Taking si(u) = u2 for all i results in the squared Hilbert-Schmidt norm penalty (also called
squared Frobenius norm for matrices, see Appendix A):

Ω(F) =

{

‖F ‖2
2 if F ∈ B2(Y ,X ) ,

+∞ otherwise,
(6)

where we note withB2(Y ,X ) the set of operators with finite squared Hilbert-Schmidt norm.
Such operators are referred to as Hilbert Schmidt operators.

These particular functions can be combined together in different ways. For example, we may
constrain the rank to be smaller thanr while penalizing the trace norm of the matrix, which can
be obtained by settingsi(u) = u for i = 1, . . . , r andsr+1(u) = +∞ if u > 0. Alternatively, if we
want to penalize the Frobenius norm while constraining the rank, we setsi(u) = u2 for i = 1, . . . , r
andsr+1(u) = +∞ if u > 0. We state these two choices ofΩ explicitly since we use these in the
experiments (see Section 6) or to design efficient algorithms (see Section 5):

Trace+Rank Penalty: Ω(F) =

{

‖F ‖1 if rank(F) ≤ r,

+∞ otherwise.
(7)

Frobenius+Rank Penalty: Ω(F) =

{

‖F ‖2
2 if rank(F) ≤ r,

+∞ otherwise.
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2.4 Operator Inference

With both a fitting term and a regularization term, we can now formally define our inference ap-
proach. It consists of finding an operatorF̂ , if there exists one, that solves the following optimization
problem:

F̂ ∈ argmin
F∈B0(Y ,X )

RN(F)+λΩ(F) , (8)

whereλ∈R+ is a parameter that controls the trade-off between fitting and regularization,and where
RN(F) and Ω(F) are respectively defined in (2) and (3). We note that if the set
{F ∈ B0(Y ,X ) , Ω(F) < +∞} is not empty, then necessarily the solutionF̂ of this optimization
problem must satisfyΩ(F̂) < ∞.

We show in Sections 4 and 5 how problem (8) can be solved in practice in particular for Hilbert
spaces of infinite dimensions. Before exploring such implementation-related issues, in the following
section we provide several examples of algorithms that can be derived asparticular cases of (8) and
highlight their relationships to existing methods.

3. Examples and Related Approaches

The general formulation (8) can result in a variety of practical algorithms potentially useful in
different contexts. In particular, three elements can be tailored to one’s particular needs: the loss
function, the kernels (or equivalently the Hilbert spaces), and the spectral penalty term. We start this
section by some generalities about the possible choices for these elements and their consequences,
before highlighting some particular combinations of choices relevant for different applications.

1. The loss function. The choice ofℓ defines the empirical risk through (2). It is a classical
component of many machine learning methods, and should typically depend onthe type of
data to be predicted (e.g., discrete or continuous) and of the final objective of the algorithm
(e.g., classification, regression or ranking). The choice ofℓ also influences the algorithm, as
discussed in Section 5. As a deeper discussion about the loss function is only tangential to the
current work, we only consider the square loss here, knowing that other convex losses may
be considered.

2. The spectral penalty function.The choice ofΩ(F) defines the type of constraint we impose
on the operator that we seek to learn. In Section 2.3, we gave several examples of such con-
straints including the rank constraint (4), the trace norm constraint (5),the Hilbert-Schmidt
norm constraint (6), or the trace norm constraint over low-rank operators (7). The choice of a
particular penalty might be guided by some considerations about the problemto be solved, for
example, finding low-rank operators as a way to discover low-dimensionallatent structures
in the data. On the other hand, from an algorithmic perspective, the choice of the spectral
penalty may affect the efficiency or feasibility of our learning algorithm. Certain penalty
functions, such as the rank constraint for example, will lead to non-convex problems because
the corresponding penalty function (4) is itself not convex. However, the same rank constraint
can vastly reduce the number of parameters to be learned. These algorithmicconsiderations
are discussed in more detail in Section 5.

3. The kernels.Our choice of kernels defines the inner products (i.e., embeddings) of theusers
and objects in their respective Hilbert spaces. We may use a variety of possible kernels
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depending on the problem to be solved and on the available attributes. Interestingly, the choice
of a particular kernel has no influence on the algorithm, as we show later (however, it can
easily influence the running time of these algorithms). In the current work, we focus on two
basic kernels (Dirac kernels and attribute kernels) and in Section 3.4 we discuss combining
these.

• The first kernel we consider is theDirac kernel. When two users (resp. two objects)
are compared, the Dirac kernel returns 1 if they are the same user (resp. object), and 0
otherwise. In other words, the Dirac kernel amounts to representing the users (resp. the
objects) by orthonormal vectors inX (resp. inY ). This kernel can be used whether or
not attributes are available for users and objects. We denote bykXD (resp.kYD ) the Dirac
kernel for the users (resp. objects).

• The second kernel we consider is a kernel betweenattributes, when attributes are avail-
able to describe the users and/or objects. We call this an “attribute kernel”.This would
typically be a kernel between vectors, such as the inner product or a Gaussian RBF ker-
nel, when the descriptions of users and/or objects take the form of vectors of real-valued
attributes, or any kernel on structured objects (Shawe-Taylor and Cristianini, 2004). We
denote bykXA (resp.kYA ) the attributes kernel for the users (resp. objects).

In the following section we illustrate how specific combinations of loss, spectral penalty and
kernels can be relevant for various settings. In particular the choice ofkernels leads to new methods
for a range of different estimation problems; namely, matrix completion, multi-tasklearning, and
pairwise learning. In Section 3.4 we consider a new representation that allows interpolation between
these particular problem formulations.

3.1 Matrix Completion

When the Dirac kernel is used for both users and objects, then we can organize the data{xi , i =
1, . . . ,n} into nX groups of identical data points and similarly{yi , i = 1, . . . ,n} into nY groups. Since
we use the Dirac kernel, we can represent each of these groups by theelements of the canonical basis
(u1, . . . ,unX ) and

(

v1, . . . ,vnY

)

of R
nX andR

nY , respectively. A bilinear form using Dirac kernels
only depends on the identities of the users and the objects, and we only predict the ratingti based
on the identities of the groups in both spaces. If we assume that each user/object pair is observed
at most once, the data can be re-arranged into anX × nY incomplete matrix where the learning
objective would be to “complete” the missing entries in this matrix (indeed, in this context, it is not
possible to generalize to never seen points inX andY ).

In this case, our bilinear form framework exactly corresponds to completing the matrix, since
the bilinear function ofx andy is exactly equal tou⊤

i Mv j wherex = ui (i.e., x is the i-th person)
andy = v j (i.e.,y is the j-th object). Thus, the(i, j)-th entry of the matrixM can be assimilated to
the value of the bilinear form defined by the matrixM over the pair(ui ,v j). Moreover the spectral
regularizer corresponds to the corresponding spectral function of the complete matrixM ∈ R

nX×nY .
In this context, finding a low-rank approximation of the observed entries in amatrix is an ap-

pealing strategy, which corresponds to taking the rank penalty constraint(4) combined with, for
example, the square loss error. This however leads to non-convex optimization problems with mul-
tiple local minima, for which only local search heuristics are known (Srebroand Jaakkola, 2003).
To circumvent this issue, convex spectral penalty functions can be considered. Indeed, in the case
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of binary preferences, combining the hinge loss function with the trace norm penalty (5) leads to
the maximum margin matrix factorization (MMMF) approach proposed by Srebro et al. (2005),
which can be rewritten as a semi-definite program. For the sake of efficiency, Rennie and Srebro
(2005) proposed to add a constraint on the rank of the matrix, resulting in anon-convex problem
that can nevertheless be handled efficiently by classical gradient descent techniques; in our setting,
this corresponds to changing the trace norm penalty (5) by the penalty (7).

3.2 Multi-Task Learning

It may be the case that we have attributes only for objectsy (or, similarly, only for users). In that
case, for a finite number of users{xi , i = 1, . . . ,N} organized innX groups, we aim to estimate a
separate function on objectsfi(y) for each of thenX usersi. Considering the estimation of each
of these fi ’s as alearning task, one can possibly learn allfi ’s simultaneouslyusing amulti-task
learningapproach.

In order to adapt our general framework to this scenario, it is natural toconsider the attribute
kernelkYA for the objects, whose attributes are available, and the Dirac kernelkXD for the users, for
which no attributes are used. Again the choice of the loss function dependson the precise task to
be solved, and the spectral penalty function can be chosen to enforce some sharing of information
between different tasks.

In particular, taking the rank penalty function (4) enforces a decomposition of the tasks (learning
eachfi) into a limited number of factors. This results in a method for multi-task learning based on a
low-rank representation of the predictor functionsfi . The resulting problem, however, is not convex
due to the use of the non-convex rank penalty function. A natural alternative is then to replace the
rank constraint by the trace norm penalty function (5), resulting in a convex optimization problem
when the loss function is convex. Recently, a similar approach was independently proposed by Amit
et al. (2007) in the context of multiclass classification and by Argyriou et al.(2008) for multi-task
learning.

Alternatively, another strategy to enforce some constraints among the tasksis to constrain the
variance of the different classifiers. Evgeniou et al. (2005) showedthat this strategy can be for-
mulated in the framework of support vector machines by considering amulti-task kernel, that is, a
kernelkmulti−task over the product spaceX ×Y defined between any two user/object pairs(x,y) and
(x′,y′) by:

kmulti−task
(

(x,y) ,
(

x′,y′
))

=
(

kXD
(

x,x′
)

+c
)

kYA
(

y,y′
)

, (9)

wherec > 0 controls how the variance of the classifiers is constrained compared to thenorm of
each classifier. As explained in Appendix A, estimating a function over the product spaceX ×Y
by penalizing the RKHS norm of the kernel (9) is a particular case of our general framework, where
we take the Hilbert-Schmidt norm (6) as spectral penalty function, and where the kernels between
users and between objects are respectivelykXD (x,x′)+c andkYA (y,y′). Whenc= 0, that is, when we
take a Dirac kernel for the users and an attribute kernel for the objects,then penalizing the Hilbert-
Schmitt norm amounts to estimating independent models for each user, as explained by Evgeniou
et al. (2005). Combining two Dirac kernels for users and objects, respectively, and penalizing the
Hilbert-Schmitt norm would not be useful, since the optimal solution would be 0 all points other
than training pairs. On the other hand, replacing the Hilbert-Schmidt norm defined by another
penalty, such as the trace norm (5), would be an interesting extension when the kernelskXD (x,x′)+c

and kYA (y,y′) are used: this would constrain both the variance of the predictor functionsfi and
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their decomposition into a small number of factors, a potentially nice approach insome multi-task
learning applications.

3.3 Pairwise Learning

When attributes are available for both users and objects then it is possible to use the attributes kernels
for each. Combining this choice with the Hilbert-Schmidt penalty (6) results in classical machine
learning algorithms (e.g., an SVM if the hinge loss is taken as the loss function) applied to thetensor
productof X andY . This strategy is a classical approach to learn a function over pairs of points
(see, e.g., Jacob and Vert, 2008). Replacing the Hilbert-Schmidt norm byanother spectral penalty
function, such as the trace norm, would result in new algorithms for learninglow-rank functions
over pairs.

3.4 Combining the Attribute and Dirac Kernels

As illustrated in the previous subsections, the setting of the application often determines the com-
bination of kernels to be used for the users and the objects: typically, two Dirac kernels for the
standard CF setting without attributes, one Dirac and one attributes kernel for multi-task problems,
and two attributes kernels when attributes are available for both users and objects and one wishes to
learn over pairs.

There are many situations, however, where the attributes available to describe the users and/or
objects are certainly useful for the inference task, but on the other hand do not fully characterize the
users and/or objects. For example, if we just know the age and gender ofusers, we would like to use
this information to model their preferences, but would also like to allow for prediction of different
preferences for different users even when they share the same ageand gender. In our setting, this
means that we may want to use the attributes kernel in order to use known attributes from the users
and objects during inference, but also the Dirac kernel to incorporate the fact that different users
and/or objects remain different even when they share many or all of their attributes.

This naturally leads us to consider the following convex combinations of Diracand attributes
kernels (Abernethy et al., 2006):

{

kX = ηkXA +(1−η)kXD ,

kY = ζkYA +(1−ζ)kYD ,

where 0≤ η ≤ 1 and 0≤ ζ ≤ 1. These kernels interpolate between the Dirac kernels (η = 0 andζ =
0) and the attributes kernels (η = 1 andζ = 1). Combining this choice of kernels with, for example,
the trace norm penalty function (5), allows us to continuously interpolate between different settings
corresponding to different “corners” in the(η,ζ) square: standard CF with matrix completion at
(0,0), multi-task learning at(0,1) and(1,0), and learning over pairs at(1,1). The extra degree
of freedom created whenη and ζ are allowed to vary continuously between 0 and 1 provides a
principled way to optimally balance the influence of the attributes in the function estimation process.

Note that our representational framework encompasses simpler natural approaches to include at-
tribute information for collaborative filtering: for example, one could consider completing matrices
using matrices of the formUV⊤+UAR⊤

A +UAS⊤A , whereUV⊤ is a low-rank matrix to be optimized,
UA andVA are the given attributes for the first and second domains, andRA, SA are parameters to
be learned. This formulation corresponds to adding an unconstrained low-rank termUV⊤, and the
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simpler linear predictor from the concatenation of attributesUAR⊤
A +UAS⊤A (Jacob and Vert, 2008).

Our approach implicitly adds a fourth cross-product termUATV⊤
A , whereT is estimated from data.

This exactly corresponds to imposing that the low rank matrix has a decomposition which includes
UA andVA as columns. Our combination of Dirac and attribute kernels has the advantageof hav-
ing specific weightsη andζ that control the trade-off between the constrained and unconstrained
low-rank matrices.

4. Representer Theorems

We now present the key theoretical results of this paper and discuss howthe general optimization
problem (8) can be solved in practice. A first difficulty with this problem is that the optimization
space{F ∈ B0(Y ,X ) : Ω(F) < ∞} can be of infinite dimension. We note that this can occur even
under a rank constraint, because the set{F ∈ B0(Y ,X ) : rank(F) ≤ R} is not included into any
finite-dimensional linear subspace ifX andY have infinite dimensions. In this section, we show
that the optimization problem (8) can be rephrased as a finite-dimensional problem, and propose
practical algorithms to solve it in Section 5. While, as we show in Section 4.1, the reformulation
of the problem as a finite-dimensional problem is a simple instance of the representer theorem
when the Hilbert-Schmidt norm is used as a penalty function, we prove in Section 4.2 a generalized
representer theorem that is valid with any spectral penalty function.

4.1 The Case of the Hilbert-Schmidt Penalty Function

In the particular case where the penalty functionΩ(F) is the Hilbert-Schmidt norm (6), then the set
{F ∈ B0(Y ,X ) : Ω(F) < ∞} is the set of Hilbert-Schmidt operators. As recalled in Appendix A,
this set is a Hilbert space isometric through (1) to the reproducing kernel Hilbert spaceH⊗ of the
kernel:

k⊗
((

x,x′
)

,
(

y,y′
))

=
〈

x,x′
〉

X

〈

y,y′
〉

Y
,

and the isometry translates fromF to f as:

‖ f ‖2
H⊗

= ‖F ‖2 = Ω(F) .

As a result, in that case the problem (8) is equivalent to:

min
f∈H⊗

RN( f )+λ‖ f ‖2
⊗ . (10)

Therefore the representer theorem for optimization of empirical risks penalized by the RKHS norm
(Aronszajn, 1950; Scḧolkopf et al., 2001) can be applied to show that the solution of (10) necessarily
lives in the linear span of the training data. With our notations this translates into the following
result:

Theorem 2 If F̂ is a solution of the problem:

min
F∈B2(Y ,X )

RN(F)+λ
∞

∑
i=1

σi(F)2 ,

then it is necessarily in the linear span of{xi ⊗yi : i = 1, . . . ,N}, that is, it can be written as:

F̂ =
N

∑
i=1

αixi ⊗yi , (11)
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for someα ∈ R
N.

For the sake of completeness, and to highlight why this result is specific to theHilbert-Schmidt
penalty function (6), we rephrase here, with our notations, the main arguments in the proof of
Scḧolkopf et al. (2001). Any operatorF in B2(Y ,X ) can be decomposed asF = FS+F⊥, whereFS

is the projection ofF onto the linear span of{xi ⊗yi : i = 1, . . . ,N}. F⊥ being orthogonal to each
xi ⊗ yi in the training set, one easily getsRN(F) = RN(FS), while ‖F ‖2 = ‖FS‖

2 + ‖F⊥ ‖2 by the
Pythagorean theorem. As a result a minimizerF of the objective function must be such thatF⊥ = 0,
that is, must be in the linear span of the training tensor products.

4.2 A Representer Theorem for General Spectral Penalty Functions

Let us now move on to the more general situation (8) where a general spectral functionΩ(F) is
used as regularization. Theorem 2 is usually not valid in such a case. Its proof breaks down because
it is not true thatΩ(F) = Ω(FS)+Ω(F⊥) for generalΩ, or even thatΩ(F) ≥ Ω(FS).

The following theorem, whose proof is presented in Appendix B, can be seen as a generalized
representer theorem. It shows that a solution of (8), if it exists, can be expanded over a finite basis
of dimensionmX ×mY (wheremX andmY are the underlying dimensions of the subspaces where
the data lie), and that it can be found as the solution of a finite-dimensional optimization problem
(with no convexity assumptions on the loss):

Theorem 3 For any spectral penalty functionΩ : B0(Y ,X ) 7→ R∪{+∞}, consider the optimiza-
tion problem:

min
F∈B0(Y ,X ),

RN(F)+λΩ(F) . (12)

If the set of solutions is not empty, then there is a solution F inXN ⊗ YN, that is, there exists
α ∈ R

mX×mY such that:

F =
mX

∑
i=1

mY

∑
j=1

αi j ui ⊗v j , (13)

where(u1, . . . ,umX ) and
(

v1, . . . ,vmY

)

form orthonormal bases ofXN andYN, respectively. More-
over, in that case the coefficientsα can be found by solving the following finite-dimensional opti-
mization problem:

min
α∈R

mX ×mY
RN

(

diag
(

XαY⊤
))

+λΩ(α) , (14)

whereΩ(α) refers to the spectral penalty function applied to the matrixα seen as an operator
from R

mY to R
mX , and X∈ R

N×mX and Y∈ R
N×mX denote any matrices that satisfy K= XX⊤ and

G=YY⊤ for the two N×N Gram matrices K and G defined by Ki j =
〈

xi ,x j
〉

X
and Gi j =

〈

yi ,y j
〉

Y
,

for 0≤ i, j ≤ N.

This theorem shows that, as soon as a spectral penalty function is used to control the complexity
of the compact operators, a solution can be searched in the finite-dimensional spaceXN⊗YN, which
in practice boils down to an optimization problem over the set of matrices of sizemX ×mY . The
dimension of this space might however be prohibitively large for real-worldapplications where,
for example, tens of thousands of users are confronted to a database of thousands of objects. A
convenient way to obtain an important decrease in complexity (at the expense of possibly losing
convexity) is by constraining the rank of the operator through an adequate choice of a spectral
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penalty. Indeed, the set of non-zero singular components ofF as an operator is equal to the set of
non-zero singular values ofα in (13) seen as a matrix. Consequently any constraint on the rank of
F as an operator results in a constraint onα as a matrix, from which we deduce:

Corollary 4 If, in Theorem 3, the spectral penalty functionΩ is infinite on operators of rank larger
than r (i.e.,σr+1(u) = +∞ for u > 0), then the matrixα ∈ R

mX×mY in (13) has rank at most r.

As a result, if a rank constraint rank(F) ≤ r is added to the optimization problem then the
representer theorem still holds but the dimension of the parameterα becomesr×

(

mX +mY

)

instead
of mX ×mY , which is usually beneficial. We note, however, that when a rank constraint is added
to the Hilbert-Schmidt norm penalty, then the classical representer Theorem 2 and the expansion of
the solution overN vectors (11) are not valid anymore, only Theorem 3 and the expansion (13) can
be used. More importantly, this will likely have algorithmic/efficiency consequences.

5. Algorithms

In this section we explain how the optimization problem (14) can be solved in practice. We first
consider a general formulation, then we specialize to the situation where manyx’s and manyy’s are
identical; that is, we are in a matrix completion setting where it may be advantageous to consider
other formulations that take into account some group structure explicitly.

5.1 Convex Dual of Spectral Regularization

When the loss is convex, we can derive the convex dual problem, which can be helpful for actually
solving the optimization problem. As in the classical representer theorems, this could also provide
an alternative proof of the representer theorem in that particular situation.

For all i = 1, . . . ,N, we let denoteψi(vi) = ℓ(vi , ti) the loss corresponding to predictingvi for the
i-th data point. We now assume that eachψi is convex (this is usually met in practice). Following
Bach et al. (2005), we letψ∗

i (αi) denote its Fenchel conjugate defined asψ∗
i (αi) = maxvi∈R αivi −

ψi(vi). Minimizers of the optimization problem defining the conjugate function are oftenreferred
to as Fenchel duals toαi (Boyd and Vandenberghe, 2003). In particular, we have the following
classical examples:

• Least-squares regression: we haveψi(vi) = 1
2(ti −vi)

2 andψ∗
i (αi) = 1

2α2
i +αiti .

• Logistic regression: we haveψi(vi) = log(1+exp(−yivi)), whereyi ∈ {−1,1}, andψ∗
i (αi) =

(1+αiti) log(1+αiti)−αiti log(−αiti) if αiti ∈ (−1,0), +∞ otherwise.

We also assume that the spectral regularization is such that for alli ∈ N, si = s, wheres is
a convexfunction such thats(0) = 0. In this situation, we haveΩ(A) = ∑i∈N s(σi(A)). We can
also define a Fenchel conjugate forΩ(A), which is also a spectral functionΩ∗(B) = ∑i∈N s∗(σi(B))
(Lewis and Sendov, 2002).1

Some special cases of interest fors(σ) are:

1. Note that results on functions of eigenvalues of symmetric matrices canbe extended to functions of singular values
of rectangular matrices by using the equivalence between the singular value decomposition ofA and the eigenvalue

decomposition of

(

0 A
A⊤ 0

)

(Stewart and Sun, 1990).
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• s(σ) = |σ| leads to the trace norm and thens∗(τ) = 0 if |τ| is less than 1, and+∞ otherwise.

• s(σ) = 1
2σ2 leads to the Frobenius/Hilbert Schmidt norm and thens∗(τ) = 1

2τ2.

• s(σ) = ε log(1+ eσ/ε)+ ε log(1+ e−σ/ε) is a smooth approximation of|σ|, which becomes
tighter whenε is closer to zero. We have:s∗(τ) = 1

ε (1+ τ) log(1+ τ)+ 1
ε (1− τ) log(1− τ).

Moreover,s′(σ) = τ ⇔ (s∗)′(τ) = σ = 1
ε log 1+τ

1−τ .

Once the representer theorem has been applied, our optimization problem can be rewritten in
theprimal form in (14):

min
α∈R

mx×my

N

∑
i=1

ψi((XαY⊤)ii )+λΩ(α). (15)

We can now form the Lagrangian, associated with added constraintsv = diag(XαY⊤) and corre-
sponding Lagrange multiplierβ ∈ R

N:

L(v,α,β) =
N

∑
i=1

ψi(vi)−
N

∑
i=1

βi(vi − (XαY⊤)ii )+λΩ(α),

and minimize with respect tov andW to obtain thedualproblem, which is to maximize:

−
N

∑
i=1

ψ∗
i (βi)−λΩ∗

(

−
1
λ

X⊤Diag(β)Y

)

. (16)

Once the optimal dual variableβ is found (there are as many of those as there are observations),
then we can go back toα (which may or may not be of smaller size), by Fenchel duality, that is,
α is among the Fenchel duals of− 1

λX⊤Diag(β)Y. Thus, when the functions is differentiable and
strictly convex (which implies that the Fenchel dual is unique), then we obtainthe primal variables
α in closed form from the dual variablesβ. Whens is not differentiable, for example, for the trace
norm then, following Amit et al. (2007), we can find the primal variables by noting that onceβ is
known, the singular vectors ofα are known and we can find the singular values by solving a reduced
convex optimization problem.

5.1.1 COMPUTATIONAL COMPLEXITY

Note that for optimization, we have two strategies, following the same two strategies in regular
kernel methods: using the primal problem in Eq. (15) of dimensionmXmY ≤ nXnY (the actual
dimension of the underlying data) or using the dual problem in Eq. (16) of dimensionN (the number
of ratings). The choice between those two formulations is problem dependent.

5.2 Collaborative Filtering

In the presence of (many) identical columns and rows, which is often the case in collaborative
filtering situations, the kernel matricesK and L have some columns (and thus rows) which are
identical. In such cases, it is computationally more desirable to instead consider the kernel matrices
(with their square-root decompositions)K̃ = X̃X̃⊤ andL̃ = ỸỸ⊤ as the kernel matrices for all distinct
elements ofX andY (let nX andnY be their sizes). Then each observation(xi ,yi , ti) corresponds to
a pair of indices(a(i),b(i)) in {1, . . . ,nX }×{1, . . . ,nY }, and the primal problem becomes:
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min
α∈R

mx×my

n

∑
i=1

ψi(δ⊤a(i)X̃αỸ⊤δb(i))+λΩ(α),

whereδu is a vector with only zeroes except at positionu. The dual function is

−
N

∑
i=1

ψ∗
i (βi)−λΩ∗

(

−
1
λ

X̃⊤
N

∑
i=1

βiδa(i)δ⊤b(i)Ỹ

)

.

Similar to usual kernel machines and the general case presented above,using the primal or the
dual formulation for optimization depends on the number of available ratingsN compared to the
ranksmX andmY of the kernel matrices̃K and L̃. Indeed, the number of variables in the primal
formulation ismXmY , while in the dual formulation it isN.

5.3 Low-rank Constrained Problem

We approximate the spectral norm by an infinitely differentiable spectral function. Since we con-
sider in this paper only infinitely differentiable loss functions, our problem isthat of minimizing
an infinitely differentiable convex functionG(W) over rectangular matrices of sizep×q for cer-
tain integersp andq. As a result of our spectral regularization, we hope to obtain (approximately)
low-rank matrices. In this context, it has proved advantageous to consider low-rank decompositions
of the formW = UV⊤ whereU andV havem< min{p,q} columns (Burer and Monteiro, 2005;
Burer and Choi, 2006). Specifically, instead of optimizing a low-rankW directly, we can optimize
U andV jointly in training. Burer and Monteiro (2005) have shown that ifm= min{p,q} then the
non-convex problem of minimizingG(UV⊤) with respect toU andV⊤ has no local minima.

We now prove a stronger result in the context of twice differentiable functions, namely that if
the global optimum ofG has rankr < min{p,q}, then the low-rank constrained problem with rank
r +1 (or any larger rank, for that matter) has no local minimum and its global minimum corresponds
to the global minimum ofG. The following theorem makes this precise (see Appendix C for proof).

Proposition 5 Let G be a twice differentiable convex function on matrices of size p×q with compact
level sets. Let m> 1 and(U,V)∈R

p×m×R
q×m a local optimum of the function H: R

p×m×R
q×m 7→

R defined by H(U,V) = G(UV⊤), that is, U is such that∇H(U,V) = 0 and the Hessian of H at
(U,V) is positive semi-definite. If U or V is rank deficient, then N= UV⊤ is a global minimum of
G, that is,∇G(N) = 0.

The previous proposition shows that if we have a local minimum for the rank-m problem and
if the solution is rank deficient, then we have a solution of the global optimization problem. This
naturally leads to a sequence of reduced problems of increasing dimensionm, smaller thanr + 1,
wherer is the rank of the global optimum. However, the number of iterations of each ofthe local
minimizations and the final rankmcannot be bounded a priori in general.

Note that using a low-rank representation to solve the trace-norm regularized problem leads
to a non-convex minimization problem with no local minima, while simply using the low-rank
representationwithout the trace norm penalty and potentially with a Frobenius norm penalty, may
lead to local minima. That is, instead of Eq. (14) with the trace norm, we consider the following
formulation:
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min
α∈R

mX ×r , β∈R
mY ×r

RN

(

diag
(

Xαβ⊤Y⊤
))

+λ
r

∑
q=1

‖α(:,k)‖2‖β(:,k)‖2 ,

whereα(:,k) andβ(:,k) are thek-th columns ofα andβ. In the simulation section, we compare
the two approaches on a synthetic example, and show that the convex formulation solved through a
sequence of non-convex formulations leads to better predictive performance.

5.4 Kernel Learning for Spectral Functions

In our collaborative filtering context, there are two potentially useful sources of kernel learning:
learning the attribute kernels, or learning the weightsη andζ between Dirac kernels and attribute
kernels. In this section, we show how multiple kernel learning (MKL) (Lanckriet et al., 2004; Bach
et al., 2004) may be extended to spectral regularization.

We first prove a computationally useful fact about our particular objective function:

Proposition 6 The dual solution of the optimization problem in Eq. (16) depends only on thematrix
K⊗G.

Proof It suffices to show that for all matricesB, then the positive singular values ofX⊤BY only
depend onK ⊗G. The largest singular value is defined as the maximum ofa⊤X⊤BYbover unit

norm vectorsa and b. By a change of variable, it is equivalent to maximize(X⊤ã)X⊤BY(Y⊤b̃)

‖X⊤ã‖‖Y⊤b̃‖
=

vec(b̃ã⊤)(K⊗G)vec(B)

vec(b̃ã⊤)⊤(K⊗G)vec(b̃ã⊤)
with respect to ˜a and b̃ (Golub and Loan, 1996). Thus the largest positive

singular value is indeed a function ofK ⊗G. Results for other singular values may be obtained
similarly.

This shows that the natural kernel matrix to be learned in our context is the Kronecker product
K ⊗G. We thus follow Lanckriet et al. (2004) and considerM kernel matricesK1, . . . ,KM for
X andM kernel matricesG1, . . . ,GM for Y . One possibility could be to follow Lanckriet et al.
(2004) and to learn a convex combination of the matricesKk ⊗Gk by minimizing with respect to
the combination weights the optimal value of the problem in Eq. (16). However,unlike the usual
Hilbert norm regularization, this does not lead to a convex problem in general. We thus focus on
the alternative formulation of the MKL problem (Bach et al., 2004): we consider the sum of the
predictor functions associated with each of the individual kernel pairs(Kk,Gk) and penalize by the
sum of the norms.

That is, if we let denoteX1, . . . ,XM and Y1, . . . ,YM the respective square roots of matrices
K1, . . . ,KM andG1, . . . ,GM, we look for predictor functions which are sums of theM possible atomic
predictor functions, and we penalize by the sum of spectral functions, toobtain the following opti-
mization problem:

min
∀k,αk∈R

mk
x×mk

y

n

∑
i=1

ψi

(

M

∑
k=1

(XkαkY
⊤
k )ii

)

+λ
M

∑
k=1

Ω(αk).

We form the Lagrangian:

L(v,α1, . . . ,αM,β) =
n

∑
i=1

ψi(vi)−
N

∑
i=1

βi(vi −
M

∑
k=1

(XkαkY
⊤
k )ii )+λ

M

∑
k=1

Ω(αk),

817



ABERNETHY, BACH, EVGENIOU AND VERT

and minimize w.r.t.v andα1, . . . ,αM to obtain the dual problem, which is to maximize

−∑
u

ψ∗
i (βi)−∑

k

λΩ∗

(

−
1
λ

X⊤
k Diag(β)Yk

)

.

In the case of the trace norm, we obtain support kernels (Bach et al., 2004), that is, only a sparse
combination of matrices ends up being used. Note that in the dual formulation, there is only oneβ
to optimize, and thus it is preferable to use the dual formulation rather than the primal formulation.

6. Experiments

In this Section we present several experimental findings for the algorithmsand methods discussed
above. Much of the present work was motivated by the problem of collaborative filtering and we
therefore focus solely within this domain. As discussed in Section 3, by usingoperator estimation
and spectral regularization as a framework for CF, we may use potentially more information to
predict preferences. Our primary goal now is to show that, as one wouldhope, such capabilities do
improve prediction accuracy.

6.1 Data Sets and Metrics

We present several plots created by experimenting on synthetic data. Thisartificial data set was gen-
erated as follows: (1) sample i.i.d. multivariate features forx of dimension 6, (2) generate i.i.d. mul-
tivariate features fory of dimension 6 as well, (3) samplez from a random bilinear form inx and
y plus some noise, (4) restrict the observed feature space to only 3 features for bothx andy. Since
part of the data is discarded, the label cannot be perfectly predicted bythe known features. On the
other hand, since we keep some of them, knowing and using these attributes should work better than
not using them. In other words, we expect that settingη andζ to be values other than 0 or 1 should
provide better performance.

We also experimented with the well-known MovieLens 100k data set from the GroupLens Re-
search Group at the University of Minnesota. This data set consists of ratings of 1682 movies by
943 users. Each user provided a rating, in the form of a score from{1,2,3,4,5}, for a small sub-
set of the movies. Each user rated at least 20 movies, and the total number of ratings available is
exactly 100,000, averaging about 105 per user. This data set was rather appropriate as it included
attribute information for both the movies and the users. Each movie was labeled with at least one
among 19 genres (e.g., action or adventure), while the users’ attributes included age, gender, and
an occupation among a list of 21 occupations (e.g., administrator or artist). Weconverted the users’
age attribute to a set of binary features identifying one of five age categories.

All test set accuracies are measured as the root mean squared error averaged over 10-fold cross
validations. In particular, we focus on the comparisons of intermediate values ofη andζ, compared
to the four “corners” of theη/ζ−parameter space:

• η = 0,ζ = 0: matrix completion

• η = 0,ζ = 1 andη = 1,ζ = 0: multi-task learning on users or objects

• η = 1,ζ = 1: pairwise learning
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Figure 1: Comparison between two spectral penalties: the trace norm (left)and the Frobenius norm
(right), each with an additional fixed rank constraint as described in Section 5.3. Each
surface plot displays performance values over a range ofη and ζ values, all obtained
using the synthetic data set. The minimal value achieved by the trace norm is 0.1222 and
the one achieved by the rank constraint is 0.1540.

6.2 Results

We now summarize a number of experimental results for several of the aforementioned algorithms.

6.2.1 TRACENORM VERSUSLOW-RANK

In Figure 1, we present two performance plots over theη/ζ parameter space, both obtained using the
synthetic data set. The left plot displays the results when using the trace norm spectral penalty. Here
we used the low rank decomposition formulation described in Section 5.3 which (by Proposition 5)
has no local minima. The plot on the right uses the same rank-constrained formulation, but with
a Frobenius norm penalty instead. The trace norm constrained algorithm performs slightly better.
Moreover, best predictive performance is achieved in both cases in themiddle of the square and not
at any of the four corners.

6.2.2 KERNEL LEARNING

In Figure 2, we show the test set accuracy as a function of the regularization parameter, when we use
the kernels corresponding to the four corners as the four basis kernels. We can see that we recover
similar performance (error of 0.14 instead of 0.12) than by searching over all η andζ’s. The same
algorithm could also be used to learn kernels on the attributes.
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Figure 2: Learning the kernel: test set accuracy vs. regularization parameter. Minimum value is
0.14.

6.2.3 PERFORMANCE ONMOVIELENS DATA

Figure 3 shows the predictive accuracy in RMSE on the MovieLens data set, obtained by 10-fold
cross-validation. The heat plot provides some insight on the relative value, for both movies and
users, of the given attribute kernels versus the simple identity kernels. Thecorners have higher
values than some of the values inside the square, showing that the best balance between attribute
and Dirac kernels is achieved forη,ζ well inside the interior of[0,1]× [0,1].

7. Conclusions

We have presented a method for solving a generalized matrix completion problem where we have
attributes describing the matrix dimensions. The problem is formalized as the problem of inferring a
linear compact operator between two general Hilbert spaces, which generalizes the classical finite-
dimensional matrix completion problem. We introduced the notion of spectral regularization for
operators, which generalizes various spectral penalizations for matrices, and we proved a general
representer theorem for this setting. Various approaches, such as standard low rank matrix comple-
tion, are special cases of our method. This framework is particularly relevant for CF applications
where attributes are available for users and/or objects, and preliminary experiments confirm the
benefits of our method.

An interesting direction of future research is to explore further the multi-tasklearning algorithm
we obtained with low-rank constraint, and to study the possibility to derive on-line implementations
that may better fit the need for large-scale applications where training data are continuously increas-
ing. On the theoretical side, a better understanding of the effects of normand rank regularizations
and their interaction would be of considerable interest.
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Figure 3: A heat plot of performance for a range of kernel parameterchoices,η andζ, using the
MovieLens data set.

Appendix A. Compact Operators on Hilbert Spaces

In this appendix, we recall basic definitions and properties of Hilbert space operators. We refer
the interested reader to general books (Brezis, 1980; Berlinet and Thomas-Agnan, 2003) for more
details.

Let X andY be two Hilbert spaces, with respective inner products denoted by〈x,x′〉X and
〈y,y′〉Y for x,x′ ∈ X andy,y′ ∈ Y . We denote byB (Y ,X ) the set of bounded operators fromX to
Y , that is, of continuous linear mappings fromY to X . For any two elements(x,y) in X ×Y , we
denote byx⊗y their tensor product, that is, the linear operator fromY to X defined by:

∀h ∈ Y , (x⊗y)h = 〈y,h〉Y x .

We denote byB0(Y ,X ) the set ofcompactlinear operators fromY to X , that is, the set of linear
operators that map the unit ball ofY to a relatively compact set ofX . Alternatively, they can also
be defined as the limit of finite rank operators.

WhenX andY have finite dimensions, thenB0(Y ,X ) is simply the set of linear mappings from
Y to X , which can be represented by the set of matrices of dimensions dim(X )×dim(Y ). In that
case the tensor productx⊗y is represented by the matrixxy⊤, wherey⊤ denotes the transpose ofy.

For general Hilbert spacesX andY , any compact linear operatorF ∈ B0(Y ,X ) admits aspec-
tral decomposition:

F =
∞

∑
i=1

σiui ⊗vi . (17)
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Here the thesingular values(σi)i∈N form a sequence of non-negative real numbers such that
lim
i→∞

σi = 0, and(ui)i∈N
and(vi)i∈N

form orthonormal families inX andY , respectively. Although

the vectors(ui)i∈N
and(vi)i∈N

in (17) are not uniquely defined for a given operatorF , the set of
singular values is uniquely defined. By convention we denote byσ1(F),σ2(F), . . ., the successive
singular values ofF ranked by decreasing order. Therank of F is the number rank(F) ∈ N∪{+∞}
of strictly positive singular values.

We now describe three subclasses of compact operators of particular relevance in the rest of this
paper.

• The set of operators with finite rank is denotedBF (Y ,X ).

• The operatorsF ∈ B0(Y ,X ) that satisfy:
∞

∑
i=1

σi(F)2 < ∞

are calledHilbert-Schmidtoperators. They form a Hilbert space, denotedB2(Y ,X ), with
inner product〈·, ·〉X⊗Y between basic tensor products given by:

〈

x⊗y,x′⊗y′
〉

X⊗Y
=
〈

x,x′
〉

X

〈

y,y′
〉

Y
. (18)

In particular, the Hilbert-Schmidt norm of an operator inB2(Y ,X ) is given by:

‖F ‖2 =

(

∞

∑
i=1

σi(F)2

)
1
2

.

Another useful characterization of Hilbert-Schmidt operators is the following. Each linear
operatorF : Y → X uniquely defines a bilinear functionfH : X ×Y → R by

f (x,y) = 〈x,Fy〉X .

The set of functionsfF associated to the Hilbert-Schmidt operators forms itself a Hilbert
space of functionsX ×Y → R, which is the reproducing kernel Hilbert space of the product
kernel defined for((x,y) ,(x′,y′)) ∈ (X ×Y )2 by

k⊗
(

(x,y) ,
(

x′,y′
))

=
〈

x,x′
〉

X

〈

y,y′
〉

Y
.

• The operatorsF ∈ B0(Y ,X ) that satisfy:
∞

∑
i=1

σi(F) < ∞

are calledtrace-classoperators. The set of trace-class operators is denotedB1(Y ,X ). The
trace normof an operatorF ∈ B1(Y ,X ) is given by:

‖F ‖1 =
∞

∑
i=1

σi(F) .

Obviously the following ordering exists among these various classes of operators:

BF (Y ,X ) ⊂ B1(Y ,X ) ⊂ B2(Y ,X ) ⊂ B0(Y ,X ) ⊂ B (Y ,X ) ,

and all inclusions are equalities ifX andY have finite dimensions.
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Appendix B. Proof of Theorem 3

We start with a general result about the decrease of singular values for compact operators composed
with projection:

Lemma 7 LetG andH be two Hilbert spaces, H a compact linear subspace ofH , andΠH denote
the orthogonal projection onto H. Then for any compact operator F: G 7→H it holds that:

∀i ≥ 1, σi(ΠHF) ≤ σi(F) .

Proof We use the classical characterization of thei-th singular value:

σi(F) = max
V∈Vi(G)

min
x∈V,‖x‖G=1

‖Fx‖H ,

whereVi(G) denotes the set of all linear subspaces ofG of dimensioni. Now, observing that for
anyx we have‖ΠHFx‖H ≤ ‖Fx‖H proves the Lemma.

Given a training set of patterns(xi ,yi)i=1,...,N ∈ X ×Y , remember that we denote byXN andYN the
linear subspaces ofX andY spanned by the training patterns{xi , i = 1, . . . ,N} and{yi , i = 1, . . . ,N},
respectively. For any operatorF ∈ B0(Y ,X ), let us now consider the operatorG = ΠXNFΠYN . By
construction,F andG agree on the training patterns, in the sense that fori = 1, . . . ,N:

〈xi ,Gyi〉X =
〈

xi ,ΠXNFΠYNyi
〉

X
=
〈

ΠXNxi ,FΠYNyi
〉

X
= 〈xi ,Fyi〉X .

ThereforeF andG have the same empirical risk:

RN(F) = RN(G) . (19)

Now, by denotingF∗ the adjoint operator, we can use Lemma 7 and the fact that the singular values
of an operator and its adjoint are the same to obtain, for anyi ≥ 1:

σi(G) = σi(ΠXNFΠYN)

≤ σi(FΠYN)

= σi(ΠYNF∗)

≤ σi(F
∗)

= σi(F).

This implies that the spectral penalty term satisfiesΩ(G) ≤ Ω(F). Combined with (19), this shows
that if F is a solution to (12), thenG = ΠXNFΠYN is also a solution. Observing thatG∈ XN ⊗YN

concludes the proof of the first part of Theorem 3, resulting in (13).
We have now reduced the optimization problem inB0(Y ,X ) to a finite-dimensional optimiza-

tion over the matrixα of size mX ×mY . Let us now rephrase the optimization problem in this
finite-dimensional space.

Let us first consider the spectral penalty termΩ(F). Given the decomposition (13), the non-zero
singular values ofF as an operator are exactly the non-zero singular values ofα as a matrix, as soon
as(u1, . . . ,umX ) and

(

v1, . . . ,vmY

)

form orthonormalbases ofXN andYN, respectively. In order to
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be able to express the empirical riskRN(F) we must however consider a decomposition ofF over
the training patterns, as:

F =
N

∑
i=1

N

∑
j=1

γi j xi ⊗y j . (20)

In order to express the singular values from this expression let us introduce theGram matrices K
andG of the training patterns, that is, theN×N matrices defined fori, j = 1, . . . ,N by:

Ki j =
〈

xi ,x j
〉

X
, Gi j =

〈

yi ,y j
〉

Y
.

We note that by definition the ranks ofK and G are respectivelymX and mY . Let us now fac-
torize these two matrices asK = XX⊤ andG = YY⊤, whereX ∈ R

N×mX andY ∈ R
N×mY are any

square roots, for example, obtained by kernel PCA or incomplete Cholesky decomposition (Fine
and Scheinberg, 2001; Bach and Jordan, 2005). The matricesX andY provide a representation
of the pattern in two orthonormal bases which we denote by(u1, . . . ,umX ) and

(

v1, . . . ,vmY

)

. In
particular we have, for anyi, j ∈ 1, . . . ,N:

xi ⊗y j =
mX

∑
l=1

mY

∑
m=1

XilYjmul ⊗vm,

from which we deduce:

F =
mX

∑
l=1

mY

∑
m=1

(

N

∑
i=1

N

∑
j=1

XilYjmγi j

)

ul ⊗vm.

Comparing this expression to (13) we deduce that:

α = X⊤γY .

The empirical errorRN(F) is a function off (xl ,yl ) for l = 1, . . . ,N. From (20), we see that:

f (xl ,yl ) =
N

∑
i=1

N

∑
j=1

γi j Kil Gl j ,

and therefore the vector of predictionsFN = ( f (xl ,yl ))l=1,...,N ∈ R
N can be rewritten as:

FN = diag(KγG) = diag
(

XαY⊤
)

.

We can now replace the empirical riskRN(FN) by RN
(

diag
(

XαY⊤
))

and the penaltyΩ(F) by Ω(α)
to deduce the optimization problem (14) from (12), which concludes the proof of Theorem 3.

Appendix C. Proof of Proposition 5

Since the function has compact level sets, we may assume that we are restricted to an open bounded
subset ofRp×q where the second and first derivatives are uniformly bounded. We let denoteC > 0

a common upper bound of all derivatives. The gradient of the functionH is equal to∇H =
(∇G⊤U

∇G V

)

,
while the Hessian ofH is the following quadratic form:

∇2H[(dU,dV),(dU,dV)] = 2trdV⊤∇GdU+∇2G[UdV⊤ +dUV⊤,UdV⊤ +dUV⊤].
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Without loss of generality, we may assume that the last columns ofU andV are equal to zero (this
can be done by rotation ofU or V). The zero gradient assumption implies that∇G⊤U = 0 and
∇GV = 0. While if we takedU anddV with the firstm−1 columns equal to zero, and last columns
equal to arbitraryu andv, then the second term in the Hessian is equal to zero. The positivity of the
first term implies that for allu andv, v⊤∇Gu≥ 0, that is, the gradient ofG at N = UV⊤ is equal to
zero, and thus we get a stationary point and thus a global minimum ofG.
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